圆锥曲线方程知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.圆锥曲线方程 知识要点
圆锥曲线与方程知识点总结:
圆锥曲线与方程:在高考命题中考查的形式是一道解答题与一道选择题或填空题,分数一般在12--18分左右,选择题或填空题常考圆锥曲线的基本问题,比如顶点坐标,焦点坐标,离心率及双曲线的渐近线方程等,求解难度不大但是容易失分。解答题多以中档或高档题与考生见面,涉及知识范围广且多为交汇性试题,难度大,求解时,除了要掌握必备的基础知识与常规的运输技巧之外,可能还会用到以下其他章节的知识。 一、椭圆方程.
1. 椭圆方程的第一定义:为端点的线段
以无轨迹方程为椭圆21212121212121,2,
2,
2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+
⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12
22
2 b a b
y a
x
=+
.
ii. 中心在原点,焦点在y 轴上:)0(12
22
2
b a b x a y
=+
.
②一般方程:)0,0(122 B A By Ax =+.
③椭圆的标准方程:12
22
2=+
b y a x 的参数方程为⎩⎨⎧==θ
θsin cos b y a x (一象限θ应是属于20π
θ ).
⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.
②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==.
⑤准线:c a x 2±=或c
a y 2±=.
⑥离心率:)10( e a
c
e =. ⑦焦点半径:
i. 设),(00y x P 为椭圆)0(12
22
2 b a b
y a
x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆
)0(12
22
2 b a a y b x =+
上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002
2002
01 x a ex x c
a e pF x ex a c
a x e pF -=-=+=+=归结起来为“左加右减”.
注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222a b c a b d -=和),(2a
b c
⑶共离心率的椭圆系的方程:椭圆
)0(12
22
2 b a b y a x =+
的离心率是)(22b a c a
c
e -==
,方程t t b y a x (2
22
2=+
是大于0的参数,)0 b a 的离心率也是a
c
e =
我们称此方程为共离心率的椭圆系方程. ⇒-=+=0201,ex a PF ex a PF ⇒
-=+=0201,ey a PF ey a PF
⑸若P 是椭圆:
12
22
2=+
b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2
tan
2θb (用
余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2
cot 2θ⋅b .
二、双曲线方程.
1. 双曲线的第一定义:
以无轨迹
方程为双曲线
21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=- ⑴①双曲线标准方程:
)0,(1),
0,(12
22
22
22
2 b a
b x a y b a b y a x
=-
=-
.
一般方程:)0(122 AC Cy Ax =+.
⑵①i. 焦点在x 轴上:
顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程c a x 2±= 渐近线方程:0=±b y a x 或02222=-b
y a x
ii. 焦点在y 轴上:
顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x
a y 或02222=-b
x a y ,
参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩
⎨⎧==θθ
sec tan a y b x .
②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a
c
e =
. ④准线距c a 22(两准线的距离);通径a
b 2
2.
⑤参数关系a
c
e b a c =
+=,222. ⑥焦点半径公式:对于双曲线方程
1
2
22
2=-b y a x
(21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
“长加短减”原则:(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号) a
ex MF a ex MF -=+=0201 构成满足a MF MF 221=-
M a
ex F M '--='01a
ey F M a ey F M a ey MF a ey MF -'-='+'
-='+=-=02010201
asin α,)bsin α)N 的轨迹是椭圆