基于Matlab-的-n阶非奇异方阵的LU分解实现

合集下载

lu分解条件 主子式不为零

lu分解条件 主子式不为零

lu分解条件主子式不为零1.引言1.1 概述在数学和线性代数中,LU分解是一种重要的矩阵分解方法,可以将一个矩阵分解为一个下三角矩阵(Lower triangular matrix)和一个上三角矩阵(Upper triangular matrix)的乘积。

LU分解条件指的是在进行LU分解时,矩阵的主子式不为零的要求。

主子式是指从一个矩阵中选择若干行和若干列所形成的子矩阵的行列式。

矩阵的主对角线上的行列式称为一阶主子式,主对角线两侧排列的两行两列行列式称为二阶主子式,依此类推。

主子式的值可以用来确定矩阵的性质和特征。

主子式不为零的意义在于确保LU分解的可行性和唯一性。

当矩阵的主子式都不为零时,LU分解存在且唯一。

这是因为当主子式不为零时,矩阵中的行和列之间存在一定的关系和约束,使得LU分解可以被准确地进行。

LU分解的重要性在于它可以简化矩阵计算和求解线性方程组的过程。

通过LU分解,我们可以将复杂的线性方程组转化为两个简单的三角形方程组,从而更方便地求解未知数。

此外,LU分解还具有数值稳定性强、计算效率高等优点,在科学计算、工程领域和数据处理中被广泛应用。

因此,深入理解和掌握LU分解条件和主子式不为零的意义对于学习和应用线性代数及相关领域的人来说是至关重要的。

本文将从讲解LU分解条件的概念和重要性入手,详细阐述主子式不为零的定义与意义,并总结它们在实际应用中的价值和需要注意的事项。

通过对这两个概念的全面理解,读者将能够更好地应用LU分解方法解决实际问题,并在相关领域中取得更好的成果。

1.2文章结构文章结构部分的内容可以按照如下编写:文章结构部分旨在介绍本文的整体架构和内容安排。

通过清晰明了的结构安排,读者可以更好地理解文章的逻辑脉络和思路。

本文分为引言、正文和结论三个部分。

引言部分首先对整篇文章进行了概述,概括了文章的主题和目的,引起读者的兴趣。

接着介绍了文章的具体结构,包括引言、正文和结论部分,并简要描述了每个部分的内容。

浅谈矩阵的LU分解和QR分解及其应用

浅谈矩阵的LU分解和QR分解及其应用

浅谈矩阵的LU分解和QR分解及其应用基于理论研究和计算的需要,往往有必要把矩阵分解为具有某种特性的矩阵之积,这就是我们所说的矩阵分解.本文将介绍两种常用的矩阵分解方法,以及其在解线性方程组及求矩阵特征值中的应用.1.矩阵的LU 分解及其在解线性方程组中的应用1.1高斯消元法通过学习,我们了解到利用Gauss消去法及其一些变形是解决低阶稠密矩阵方程组的有效方法. 并且近些年来利用此类方法求具有较大型稀疏矩阵也取得了较大进展. 下面我们就通过介绍Gauss 消去法,从而引出矩阵的LU 分解及讨论其对解线性方程组的优越性.首先通过一个例子引入:(1.1)例1, 解方程组(1.2)(1.3)解. Step1 (1.1) ( 2) (1.3) 消去(1.3)中未知数, 得到4x2 x3 11 (1.4)Shep2 . (1.2) (1.4) 消去(1.4) 中的未知数x2x1 x2 x3 6 1有4x2x3 5 显然方程组的解为x* 2 上述过程相当于2x3 6 31 1 1 6 1 1 1 6 1 1 1 60 4 1 5 0 4 1 5 0 4 1 52 2 1 10 4 1 100 2 62)+ (r i 表示矩阵的i行)由此看出,消去法的基本思想是: 用逐次消去未知数的方法把原方程化为与 其等价的三角方程组 .下面介绍解一般 n 阶线性方程组的 Gauss 消去法 .a11a1nx 1b 1设AXb则n 阶线性方程组a n1annx nb nAX b (1.5) 并且 A 为非奇异矩阵 .通过归纳法可以将 AX b 化为与其等价的三角形方程,事实上: 及方程(1.5)为A 1 X b 1 ,其中A1Ab 1b(1) 设 a 1(11)0,首先对行计算乘数 mi1a i11m 111. 用 m i1乘 (1.5)的第一个方程加到第 i i 2,3, ,n 个方程上 .消去方程 (1.5)的第 2个方程直到第 n 个方程的未知数 x . a 111 得到与 (1.5) 等价的方程组A 2 b 2(1.6)其中 a ij 2a ij 1m i1a ij 1b i 2b i 1m i1b 11(2) 一般第 k 1 k n 1 次消去,设第 k 1步计算完成 . 即等价于A kX b k(1.7)a 111 a 112 a222且消去未知数 x 1,x 2, ,x k 1.其中 A kb 11简记作 b n 2由设 D i 0(i 1, ,k)及式 (1.8)有 a kk k设 a k (kk) 0 计 算 m ik a ik k/a k kk (ik= 1, n,ikn用 m ik aa ik k (i k 1, ,n) 消去 第k 1 个 方 程直 到第 n 个 方 程的 未知 数 x k . 得 到与 (1. 7等)价的 方 程组 A k 1X b k 1故由数学归纳法知,最后可以把原方程化成一个与原方程等价的三 角方程组 . 但是以上分析明显存在一个问题,即使 A 非奇异也无法保证 a ii i0, 需要把非奇异的条件加强 .D i 0. 即a11 D1 a11 0,Dkak1aikakk证明 利用数学归纳法证明引理的充分性 . 显然,当 k 1 时引理的充分性是成 立的,现在假设引理对 k 1是成立的,求证引理对 k 亦a ii i0 i 1,2 k 1 于是可用 Gauss 消去法将中,即a 111 a 121a 222A1 A ka kk a 11na 22nka knD 2a122 a 111 a 222a 222Dka n k ka n knnnD 3 a 111 a 222 a 333a2ka 111 a 222 a kk k(1.8)a k kka 222显然,由假设 a ii10 i 1,2 k ,利用(1.8) 亦可以推出D i 0(i 1, ,k) 从而由此前的分析易得;定理 1 如果n阶矩阵A的所有顺序主子式均不为零,则可通过Gauss消去法(不进行交换两行的初等变换) ,将方程组(1.5) 约化成上三角方程组,即a111a112a11n x1 b11a222 a22n x2 b22(1.9)a n n n x nb n n1.2矩阵LU 分解从而由以上讨论即能引出矩阵的LU 分解,通过高等代数我们得知对 A 施行行初等变换相当于用初等矩阵左乘A,即L1A1 A2 L1b 1 b2其中1m21 1L1m n1 0 1一般第k 步消元,,相当于L k A k A k 1 Lkb k b k 1重复这一过程,最后得到L n 1 L2L1A1A nn 1 2 11 n(1.10)L n 1 L2L1b 1 b n1m k 1,k 1m nk将上三角形矩阵A n记作U,由式(1.9)得到A=L11L21L n11U LU ,其中其中1m21 1m n1 m n2 1 由以上分析得;定理 2 (LU 分解) 设 A 为n阶矩阵,如果 A 的顺序主子式D i 0(i 1,2,, n 1). 则 A 可分解为一个单位下三角矩阵 L 和一个上三角矩阵 U的乘积,且这种分解是唯一的 .证明 由先前的分析得出存在性是显然的,即 A LU . 下证唯一性 ,设A LU CD 其中 L , C 为单位下三角矩阵, U , D 为上三角矩阵 . 由于D 1 L C UD 上式右端为上三角矩阵,左端为单位下三角矩阵,从而上式两端都 必须等于单位矩阵,故 U D , L C . 证毕.11 例 2 对于例子 1 系数矩阵矩阵 A 0 4 22 结合例 1,故1 0 0 1 1 1A LU0 1 0 0 4 121 10 2对于一般的非奇异矩阵, 我们可以利用初等排列矩阵 I ki (由交换单位矩阵 I的第 k 行与第 i k 行得到),即L 1I 1i 1A 1 A 2 ,L 1I 1i 1b 1 b21 1 (1.11) L k I ki kA k A k 1 ,L k I ki kb kbk 1(1.11)利用(1.11)得L n 1I n 1,i n 1 L 1I 1i 1A AU .简记做. 其中面就 n 情况来考察一下矩阵A AL4I 4i 4L 3I 3i 3L 2I 2i 2L 1I 1i 1A L 4 I 4i 4L 3I 4i 4 (I 4i 4I3i 3I 2i 2L 1I 4i 4I 3i 3I 2i 2) (I 4i 4 I 3i 3I 2i 2I 1i 1)A11 由 Gauss 消去法,得(I4i 4 I 3i 3L 2I 4i 4I 3i 3 )从而记从而容易的为单位下三角矩阵, 总结以上讨论可得如下定理.定理3 如果A非奇异矩阵,则存在排列矩阵P使PA LU 其中L为单位下三角矩阵,U 为上三角矩阵.1.3矩阵LU 分解的应用以上对非奇异矩阵 A 的LU 分解进行了全面的讨论,一下我们就简单介绍一下应用.对于矩阵A一旦实现了LU 分解,则解线性方程的问题,便可以等价于:(1) Ly b 求y (2) Ux=y , 求x (1.12)即,设 A 为非奇异矩阵,且有分解式 A LU ,其中三角矩阵。

matlab 矩阵运算 奇异值分解

matlab 矩阵运算 奇异值分解

matlab 矩阵运算奇异值分解
奇异值分解(SVD)是线性代数中的一个基础方法,可以将一个矩阵分解为三个部分的乘积:
A = U \Sigma V^T
其中,A为任意m \times n矩阵,U为一个m \times m正交矩阵,\Sigma 为一个m \times n矩阵,仅有对角线上有数值且为非负实数(称为奇异值),V 为一个n \times n正交矩阵。

matlab中的SVD函数是svd,其用法为:
`[U,S,V] = svd(A)`
其中,A为一个矩阵,U、S、V分别为返回的矩阵U、奇异值矩阵S和矩阵V。

我们可以使用SVD来完成很多矩阵操作,例如:
1. 矩阵压缩:将一个矩阵的奇异值降低,从而达到压缩数据的目的。

2. 去噪:对于一个受到噪声干扰的矩阵,对其进行SVD分解,将奇异值低的部分去掉,再将去掉部分重构回原始矩阵,即可实现去噪的效果。

3. 图像压缩和重构:将一张图片看成一个矩阵,对其进行SVD分解,再将奇异值低的部分去掉,将去掉部分重构回图片,实现图片的压缩和重构。

4. 推荐系统:对用户和商品之间的评分矩阵进行SVD分解,然后通过对低奇异值部分的填充,实现对评分的预测,即推荐系统。

MATLAB矩阵分解算法大全

MATLAB矩阵分解算法大全

MATLAB矩阵分解算法大全1.LU分解:LU分解是一种常见的矩阵分解方法,用于解线性方程组和计算矩阵的行列式。

MATLAB中可以使用`lu`函数来进行LU分解。

以下是一个示例:```matlabA=[1,2,3;4,5,6;7,8,9];[L, U, P] = lu(A);```其中,`L`和`U`是分解后的下三角矩阵和上三角矩阵,`P`是置换矩阵。

2.QR分解:QR分解是一种用于解线性方程和计算特征值和特征向量的矩阵分解方法。

MATLAB中可以使用`qr`函数进行QR分解。

以下是一个示例:```matlabA=[1,2,3;4,5,6;7,8,9];[Q, R] = qr(A);```其中,`Q`是正交矩阵,`R`是上三角矩阵。

3. Cholesky分解:Cholesky分解是一种用于解正定对称矩阵线性方程组的方法。

MATLAB中可以使用`chol`函数进行Cholesky分解。

以下是一个示例:```matlabA=[4,2,2;2,5,4;2,4,6];R = chol(A);```其中,`R`是上三角矩阵。

4.奇异值分解(SVD):SVD是一种常用的矩阵分解方法,用于计算矩阵的奇异值和奇异向量。

MATLAB中可以使用`svd`函数进行奇异值分解。

以下是一个示例:```matlabA=[1,2,3;4,5,6;7,8,9];[U, S, V] = svd(A);```其中,`U`和`V`是正交矩阵,`S`是对角矩阵,对角线上的元素是矩阵的奇异值。

5.特征值分解:特征值分解是一种用于计算矩阵的特征值和特征向量的方法。

MATLAB中可以使用`eig`函数进行特征值分解。

以下是一个示例:```matlabA=[1,2,3;4,5,6;7,8,9];[V, D] = eig(A);```其中,`V`是特征向量的矩阵,`D`是对角矩阵,对角线上的元素是矩阵的特征值。

上述是几种常见的矩阵分解算法及其在MATLAB中的实现方法。

《现代数值计算方法(MATLAB版)》习题解答

《现代数值计算方法(MATLAB版)》习题解答


5 2
> 1, 故

2.8 提示: (1) A = 1 3 a > 1, ⇒ a3 − 14a + 12 > 0, Seidel 迭代收敛.
a > 0, a 2 − 1 > 0, ⇒ 2 , 当 |a| > 5 时, Jacobi 迭代收敛. (2) a3 − 14a + 12 > 0, a 所以, 当 a ≥ √ 14 时, A 对称正定, 从而 Gauss-
2
故 Jacobi 迭代, Gauss-Seidel 迭代均收敛. 2.13 提示: ρ(J ) = 0.9 < 1, 故迭代法收敛. 1 0 . 5 0. 5 2.14 提示: 容易验证 A = 0.5 1 0.5 是对称正定的, 故 Gauss-Seidel 迭代收敛, 但 2D − A = 0.5 0.5 1 1 −0.5 −0.5 −0.5 1 −0.5 不正定, 故 Jacobi 迭代发散. −0.5 −0.5 1 0 0 −1 3 2.15 提示: BJ = 1 0 0 . 特征方程 3λ + λ + 2 = 0, 特征值 λ1 = −0.478, λ2,3 = 1 2 0 3 3 故 Jacobi 迭代收敛. −1 −1 , 因为 ρ(BS ) = 1, 故 Gauss-Seidel 迭代发散. −1 −22 11 1 2.16 提示: (1) 将原方程组的系数矩阵调整为: 1 −4 2 , 显然为严格对角占优矩阵, 故 11 −5 −33 = 0
1 2
= 0 0 0 0 0

matlab求解代数方程组解析

matlab求解代数方程组解析

第三讲 Matlab 求解代数方程组理论介绍:直接法+迭代法,简单介绍相关知识和应用条件及注意事项 软件求解:各种求解程序讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)一、直接法 1.高斯消元法:高斯消元法的基本原理: 在(1)中设110,a ≠将第一行乘以111,k a a -加到第(2,3,,),k k n = 得: (1)(1)(1)(1)11112211(2)(1)(2)22112(2)(2)(2)22n n n n n nn n n a x a x a x b a x a x b a x a x b ⎧+++=⎪++=⎪⎨⎪⎪++=⎩(2)其中(1)(1)1111,.k k aa b b ==再设(2)220,a ≠将(2)式的第二行乘以(2)2(2)22,(3,,)k a k n a -= 加到第k 行,如此进行下去最终得到:(1)(1)(1)(1)11112211(2)(1)(2)22112(1)(1)(1)1,111,1()()n n n n n n n n n n n n n n n n nn n n a x a x a x b a x a x b a x a x b a x b --------⎧+++=⎪++=⎪⎪⎨⎪+=⎪⎪=⎩(3) 从(3)式最后一个方程解出n x ,代入它上面的一个方程解出1n x -,并如此进行下去,即可依次将121,,,,n n x x x x - 全部解出,这样在()0(1,2,,)k kk a k n ≠= 的假设下,由上而下的消元由下而上的回代,构成了方程组的高斯消元法. 高斯消元法的矩阵表示:若记11(),(,,),(,,)T T ij n n n n A a x x x b b b ⨯=== ,则(1)式可表为.Ax b =于是高斯消元法的过程可用矩阵表示为:121121.n n M M M Ax M M M b --=其中:(1)21(1)111(1)1(1)11111n a a M a a ⎛⎫ ⎪ ⎪- ⎪=⎪ ⎪ ⎪ ⎪- ⎪⎝⎭ (2)32(2)222(2)2(2)221111n a a M a a ⎛⎫⎪⎪ ⎪-⎪=⎪ ⎪ ⎪⎪- ⎪⎝⎭高斯消元法的Matlab 程序: %顺序gauss 消去法,gauss 函数 function[A,u]=gauss(a,n) for k=1:n-1%消去过程 for i=k+1:n for j=k+1:n+1%如果a(k,k)=0,则不能削去 if abs(a(k,k))>1e-6 %计算第k 步的增广矩阵 a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j); else%a(k,k)=0,顺序gauss 消去失败 disp (‘顺序gauss 消去失败‘); pause; exit; end end end end%回代过程 x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1 s=0; for j=i+1:n s=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回gauss 消去后的增广矩阵 A=triu(a); %返回方程组的解 u=x ;练习和分析与思考: 用高斯消元法解方程组:12345124512345124512452471523814476192536x x x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++=⎪⎪++++=⎨⎪+++=⎪+++=⎪⎩2.列主元素消元法在高斯消元法中进行到第k 步时,不论()k ik a 是否为0,都按列选择()||(,,)k ik a i k n = 中最大的一个,称为列主元,将列主元所在行与第k 行交换再按高斯消元法进行下去称为列主元素消元法。

基于matlab的数字信号调制与解调

基于matlab的数字信号调制与解调

一matlab常用函数1、特殊变量与常数ans 计算结果的变量名computer 确定运行的计算机eps 浮点相对精度Inf 无穷大I 虚数单位inputname 输入参数名NaN 非数nargin 输入参数个数nargout 输出参数的数目pi 圆周率nargoutchk 有效的输出参数数目realmax 最大正浮点数realmin 最小正浮点数varargin 实际输入的参量varargout 实际返回的参量操作符与特殊字符+ 加- 减* 矩阵乘法 .* 数组乘(对应元素相乘)^ 矩阵幂 .^ 数组幂(各个元素求幂)\ 左除或反斜杠/ 右除或斜面杠 ./ 数组除(对应元素除)kron Kronecker张量积: 冒号() 圆括[] 方括 . 小数点 .. 父目录 ... 继续, 逗号(分割多条命令); 分号(禁止结果显示)% 注释! 感叹号' 转置或引用= 赋值== 相等<> 不等于& 逻辑与| 逻辑或~ 逻辑非xor 逻辑异或2、基本数学函数abs 绝对值和复数模长acos,acodh 反余弦,反双曲余弦acot,acoth 反余切,反双曲余切acsc,acsch 反余割,反双曲余割angle 相角asec,asech 反正割,反双曲正割secant 正切asin,asinh 反正弦,反双曲正弦atan,atanh 反正切,双曲正切tangent 正切atan2 四象限反正切ceil 向着无穷大舍入complex 建立一个复数conj 复数配对cos,cosh 余弦,双曲余弦csc,csch 余切,双曲余切cot,coth 余切,双曲余切exp 指数fix 朝0方向取整floor 朝负无穷取整*** 最大公因数imag 复数值的虚部lcm 最小公倍数log 自然对数log2 以2为底的对数log10 常用对数mod 有符号的求余nchoosek 二项式系数和全部组合数real 复数的实部rem 相除后求余round 取整为最近的整数sec,sech 正割,双曲正割sign 符号数sin,sinh 正弦,双曲正弦sqrt 平方根tan,tanh 正切,双曲正切3、基本矩阵和矩阵操作blkding 从输入参量建立块对角矩阵eye 单位矩阵linespace 产生线性间隔的向量logspace 产生对数间隔的向量numel 元素个数ones 产生全为1的数组rand 均匀颁随机数和数组randn 正态分布随机数和数组zeros 建立一个全0矩阵colon) 等间隔向量cat 连接数组diag 对角矩阵和矩阵对角线fliplr 从左自右翻转矩阵flipud 从上到下翻转矩阵repmat 复制一个数组reshape 改造矩阵roy90 矩阵翻转90度tril 矩阵的下三角triu 矩阵的上三角dot 向量点集cross 向量叉集ismember 检测一个集合的元素intersect 向量的交集setxor 向量异或集setdiff 向是的差集union 向量的并集数值分析和傅立叶变换cumprod 累积cumsum 累加cumtrapz 累计梯形法计算数值微分factor 质因子inpolygon 删除多边形区域内的点max 最大值mean 数组的均值mediam 中值min 最小值perms 所有可能的转换polyarea 多边形区域primes 生成质数列表prod 数组元素的乘积rectint 矩形交集区域sort 按升序排列矩阵元素sortrows 按升序排列行std 标准偏差sum 求和trapz 梯形数值积分var 方差del2 离散拉普拉斯diff 差值和微分估计gradient 数值梯度cov 协方差矩阵corrcoef 相关系数conv2 二维卷积conv 卷积和多项式乘法filter IIR或FIR滤波器deconv 反卷积和多项式除法filter2 二维数字滤波器cplxpair 将复数值分类为共轭对fft 一维的快速傅立叶变换fft2 二维快速傅立叶变换fftshift 将FFT的DC分量移到频谱中心ifft 一维快速反傅立叶变换ifft2 二维傅立叶反变换ifftn 多维快速傅立叶变换ifftshift 反FFT偏移nextpow2 最靠近的2的幂次unwrap 校正相位角多项式与插值conv 卷积和多项式乘法roots 多项式的根poly 具有设定根的多项式polyder 多项式微分polyeig 多项式的特征根polyfit 多项式拟合polyint 解析多项式积分polyval 多项式求值polyvalm 矩阵变量多项式求值residue 部分分式展开interp1 一维插值interp2 二维插值interp3 三维插值interpft 使用FFT的一维插值interpn 多维插值meshgrid 为3维点生成x和y的网格ndgrid 生成多维函数和插值的数组pchip 分段3次Hermite插值多项式ppval 分段多项式的值spline 3次样条数据插值绘图函数bar 竖直条图barh 水平条图hist 直方图histc 直方图计数hold 保持当前图形loglog x,y对数坐标图pie 饼状图plot 绘二维图polar 极坐标图semilogy y轴对数坐标图semilogx x轴对数坐标subplot 绘制子图bar3 数值3D竖条图bar3h 水平3D条形图comet3 3D 慧星图cylinder 圆柱体fill3 填充的3D多边形plot3 3维空间绘图quiver3 3D震动(速度)图slice 体积薄片图sphere球stem3 绘制离散表面数据wate***ll 绘制瀑布trisurf三角表面clabel 增加轮廓标签到等高线图中datetick 数据格式标记grid 加网格线gtext 用鼠标将文本放在2D图中legend 图注plotyy 左右边都绘Y轴title 标题xlabel X轴标签ylabel Y轴标签zlabel Z轴标签contour 等高线图contourc 等高线计算contourf 填充的等高线图hidden 网格线消影meshc 连接网格/等高线mesh 具有参考轴的3D网格peaks 具有两个变量的采样函数surf 3D阴影表面图su***ce 建立表面低层对象surfc 海浪和等高线的结合surfl 具有光照的3D阴影表面trimesh 三角网格图二Matlab常用指令1、通用信息查询(General information)demo 演示程序help 在线帮助指令helpbrowser 超文本文档帮助信息helpdesk 超文本文档帮助信息helpwin 打开在线帮助窗info MATLAB 和MathWorks 公司的信息subscribe MATLAB 用户注册ver MATLAB 和TOOLBOX 的版本信息version MATLAB 版本whatsnew 显示版本新特征2、工作空间管理(Managing the workspace)clear 从内存中清除变量和函数exit 关闭MATLAB load 从磁盘中调入数据变量pack 合并工作内存中的碎块quit 退出MATLAB save 把内存变量存入磁盘who 列出工作内存中的变量名whos 列出工作内存中的变量细节workspace 工作内存浏览器3 、管理指令和函数(Managing commands and functions)edit 矩阵编辑器edit 打开M 文件inmem 查看内存中的P 码文件mex 创建MEX 文件open 打开文件pcode 生成P 码文件type 显示文件内容what 列出当前目录上的M、MAT、MEX 文件which 确定指定函数和文件的位置4 、搜索路径的管理(Managing the seach patli)addpath 添加搜索路径rmpath 从搜索路径中删除目录path 控制MATLAB 的搜索路径pathtool 修改搜索路径5、指令窗控制(Controlling the command window)beep 产生beep 声echo 显示命令文件指令的切换开关diary 储存MATLAB 指令窗操作内容format 设置数据输出格式more 命令窗口分页输出的控制开关6、操作系统指令(Operating system commands)cd 改变当前工作目录computer 计算机类型copyfile 文件拷贝delete 删除文件dir 列出的文件dos 执行dos 指令并返还结果getenv 给出环境值ispc MATLAB 为PC(Windows)版本则为真isunix MATLAB 为Unix 版本则为真mkdir 创建目录pwd 改变当前工作目录unix 执行unix 指令并返还结果vms 执行vms dcl 指令并返还结果web 打开web 浏览器! 执行外部应用程序三Matlab运算符和特殊算符1、算术运算符(Arithmetic operators)+ 加- 减* 矩阵乘 .* 数组乘^ 矩阵乘方 .^ 数组乘方\ 反斜杠或左除/ 斜杠或右除 ./或.\ 数组除张量积[注]本表第三栏括号中的字符供在线救助时help 指令引述用2、关系运算符(Relational operators)= = 等号~= 不等号< 小于> 大于<= 小于或等于>= 大于或等于3、逻辑操作(Logical operators)& 逻辑与| 逻辑或~ 逻辑非xor 异或any 有非零元则为真all 所有元素均非零则为真4、特殊算符(Special characters):冒号( ) 圆括号[ ] 方括号{ } 花括号@ 创建函数句柄 . 小数点 . 构架域的关节点 .. 父目录? 续行号, 逗号; 分号% 注释号! 调用操作系统命令= 赋值符号ˊ引号ˊ复数转置号 .ˊ转置号[,] 水平串接[;] 垂直串接( ),{ },. 下标赋值( ),{ },. 下标标识subsindex 下标标识四Matlab编程语言结构控制语句(Control flow)break 终止最内循环case 同switch 一起使用catch 同try 一起使用continue 将控制转交给外层的for 或while 循环else 同if 一起使用elseif 同if 一起使用end 结束for,while,if 语句for 按规定次数重复执行语句if 条件执行语句otherwise 可同switch 一起使用return 返回switch 多个条件分支try try-cathch 结构while 不确定次数重复执行语句2、计算运行(Evaluation and execution)assignin 跨空间赋值builtin 执行内建的函数eval 字符串宏指令evalc 执行MATLAB 字符串evalin 跨空间计算串表达式的值feval 函数宏指令run 执行脚本文件3、脚本文件、函数及变量(Scripts,function,and variables)exist 检查变量或函数是否被定义function 函数文件头global 定义全局变量isglobal 若是全局变量则为真iskeyword 若是关键字则为真mfilename 正在执行的M 文件的名字persistent 定义永久变量script MATLAB 命令文件4、宗量处理(Augument handling)inputname 实际调用变量名nargchk 输入变量个数检查nargin 函数输入宗量的个数nargout 函数输出宗量的个数nargoutchk 输出变量个数检查varagin 输入宗量varagout 输出宗量5、信息显示(Message display)disp 显示矩阵和文字内容display 显示矩阵和文字内容的重载函数error 显示错误信息fprintf 把格式化数据写到文件或屏幕lasterr 最后一个错误信息lastwarn 最后一个警告信息sprintf 按格式把数字转换为串warning 显示警告信息6 、交互式输入(Interactive input) input 提示键盘输入keyboard 激活键盘做为命令文件pause 暂停uicontrol 创建用户界面控制uimenu 创建用户界面菜单五Matlab基本矩阵函数和操作1、基本矩阵(Elementary matrices)eye 单位阵linspace 线性等分向量logspace 对数等分向量meshgrid用于三维曲面的分格线坐标ones 全1 矩阵rand 均匀分布随机阵randn 正态分布随机阵repmat 铺放模块数组zeros 全零矩阵: 矩阵的援引和重排2、矩阵基本信息(Basic array information)disp 显示矩阵和文字内容isempty 若是空矩阵则为真isequal 若对应元素相等则为1 islogical 尤其是逻辑数则为真isnumeric 若是数值则为真length 确定向量的长度logical 将数值转化为逻辑值ndims 数组A的维数size 确定矩阵的维数3、矩阵操作(Matrix manipulateion)blkdiag 块对角阵串接diag 创建对角阵,抽取对角向量end 数组的长度,即最大下标find 找出非零元素1 的下标fliplr 矩阵的左右翻转flipud 矩阵的上下翻转flipdim 交换对称位置上的元素ind2sub 据单下标换算出全下标reshape 矩阵变维rot90 矩阵逆时针90°旋转sub2idn 据全下标换算出单下标tril 抽取下三角阵triu 抽取上三角阵4、特殊变量和常数(Special variables and constants)ans 最新表达式的运算结果eps 浮点相对误差i,j 虚数单位inf 或Inf 无穷大isfinite 若是有限数则为真isinf 若是无穷大则为真isnan 若为非数则为真NaN 或nan 非数pi 3.1415926535897?. realmax 最大浮点数realmin 最小正浮点数why 一般问题的简明答案5、特殊矩阵(Specialized matrices)compan 伴随矩阵gallery 一些小测试矩阵hadamard Hadamard 矩阵hankel Hankel 矩阵hilb Hilbert 矩阵invhilb 逆Hilbert 矩阵magic 魔方阵pascal Pascal 矩阵rosser 典型对称特征值实验问题toeplitz Toeplitz 矩阵vander Vandermonde 矩阵wilkinson Wilkinson's 对称特征值实验矩阵六Matlab基本数学函数1、三角函数(Trigonometric)acos 反余弦acosh 反双曲余弦acot 反余切acoth 反双曲余切acsc 反余割acsch 反双曲余割asec 反正割asech 反双曲正割asin 反正弦asinh 反双曲正弦atan 反正切atanh 反双曲正切atan2 四象限反正切cos 余弦cosh 双曲余弦cot 余切coth 双曲余切csc 余割csch 双曲余割sec 正割sech 双曲正割sin 正弦sinh 双曲正弦tan 正切tanh 双曲正切2、指数函数(Exponential)exp 指数log 自然对数log10 常用对数log2 以2 为底的对数nestpow2 最近邻的2 的幂pow2 2 的幂sqrt 平方根3、复数函数(Complex)abs 绝对值angle 相角complex 将实部和虚部构成复数conj 复数共轭cplxpair 复数阵成共轭对形式排列imag 复数虚部isreal 若是实数矩阵则为真real 复数实部unwrap 相位角360°线调整4、圆整和求余函数(Rounding and remainder)ceil 朝正无穷大方向取整fix 朝零方向取整floor 朝负无穷大方向取整mod 模数求余rem 求余数round 四舍五入取整sign 符号函数 6 特殊函数(Specialized math functions) cart2pol 直角坐标变为柱(或极)坐标cart2sph 直角坐标变为球坐标cross 向量叉积dot 向量内积isprime 若是质数则为真pol2cart 柱(或极)坐标变为直角坐标sph2cart 球坐标变为直角坐标七Matlab矩阵函数和数值线性代数1、矩阵分析(Matrix analysis)det 行列式的值norm 矩阵或向量范数normest 估计2 范数null 零空间orth 值空间rank 秩rref 转换为行阶梯形trace迹subspace 子空间的角度2、线性方程(Linear equations)chol Cholesky 分解cholinc 不完全Cholesky 分解cond 矩阵条件数condest 估计1-范数条件数inv 矩阵的逆lu LU 分解luinc 不完全LU 分解lscov 已知协方差的最小二乘积nnls 非负二乘解pinv 伪逆qr QR 分解rcond LINPACK 逆条件数\、/ 解线性方程3、特性值与奇异值(Eigenvalues and singular values)condeig 矩阵各特征值的条件数eig 矩阵特征值和特征向量eigs 多个特征值gsvd 归一化奇异值分解hess Hessenberg 矩阵poly 特征多项式polyeig 多项式特征值问题qz 广义特征值schur Schur 分解svd 奇异值分解svds 多个奇异值4、矩阵函数(Matrix functions)expm 矩阵指数expm1 矩阵指数的Pade 逼近expm2 用泰勒级数求矩阵指数expm3 通过特征值和特征向量求矩阵指数funm 计算一般矩阵函数logm 矩阵对数sqrtm 矩阵平方根5、因式分解(Factorization utility)cdf2rdf 复数对角型转换到实块对角型balance 改善特征值精度的平衡刻度rsf2csf 实块对角型转换到复数对角型八数据分析和傅里叶变换1、基本运算(Basic operations)cumprod 元素累计积cumsum 元素累计和cumtrapz 累计积分hist 统计频数直方图histc 直方图统计max 最大值mean 平均值median 中值min 最小值prod 元素积sort 由小到大排序sortrows 由小到大按行排序std 标准差sum 元素和trapz 梯形数值积分var 求方差2、有限差分(Finite differentces)del2 五点离散Laplacian diff 差分和近似微分gradient 梯度3、相关(Correlation)corrcoef 相关系数cov 协方差矩阵subspace 子空间之间的角度4、滤波和卷积(Filtering and convoluteion)conv 卷积和多项式相乘conv2 二维卷积convn N 维卷积detrend 去除线性分量deconv 解卷和多项式相除filter 一维数字滤波器fliter2 二维数字滤波器5、傅里叶变换(Fourier transforms)fft 快速离散傅里叶变换fft2 二维离散傅里叶变换fftn N 维离散傅里叶变换fftshift 重排fft 和fft2 的输出ifft 离散傅里叶反变换ifft2 二维离散傅城叶反变换ifftn N 维离散傅里叶反变换ifftshift 反fftshift九音频支持1、音频硬件驱动(Audio hardware drivers)sound 播放向量soundsc 自动标刻并播放waveplay 利用系统音频输出设配播放waverecor 利用系统音频输入设配录音2、音频文件输入输出(Audio file import and export)auread 读取音频文件(.au) auwrite 创建音频文件(.au) wavread 读取音频文件(.wav) wavwrite 创建音频文件(.wav)3、工具(Utilities)lin2mu 将线性信号转换为μ 一律编码的信号mu2lin 将μ 一律编码信号转换为线性信号十插补多项式函数1、数据插补(Data Interpolation)griddata 分格点数据griddata3 三维分格点数据griddatan 多维分格点数据interpft 利用FFT 方法一维插补interp1 一维插补interp1q 快速一维插补interp2 二维插补interp3 三维插补intern N 维插补pchip hermite 插补2 、样条插补(Spline Interpolation)ppval 计算分段多项式spline 三次样条插补3 、多项式(Polynomials)conv 多项式相乘deconv 多项式相除poly 由根创建多项式polyder多项式微分polyfit 多项式拟合polyint 积分多项式分析polyval 求多项式的值polyvalm 求矩阵多项式的值residue 求部分分式表达roots 求多项式的根十一数值泛函函数和ODE 解算器1、优化和寻根(Optimization and root finding)fminbnd 非线性函数在某区间中极小值fminsearch 单纯形法求多元函数极值点指令fzero 单变量函数的零点2、优化选项处理(Optimization Option handling)optimget 从OPTIONS 构架中取得优化参数optimset 创建或修改OPTIONS 构架3、数值积分(Numerical intergration)dblquad 二重(闭型)数值积分指令quad 低阶法数值积分quadl 高阶法数值积分4、绘图(Plotting)ezcontour 画等位线ezcontourf 画填色等位线ezmesh 绘制网格图ezmeshc 绘制含等高线的网格图ezplot 绘制曲线ezplot3 绘制3 维曲线ezpolar 采用极坐标绘图ezsurf 画曲面图ezsurfc 画带等位线的曲面图fplot 画函数曲线图5、内联函数对象(Inline function object)argnames 给出函数的输入宗量char 创建字符传输组或者将其他类型变量转化为字符串数组formula 函数公式inline 创建内联函数6、差微分函数解算器(Differential equation solvers)ode113 变阶法解方程ode15s 变阶法解刚性方程ode23 低阶法解微分方程ode23s 低阶法解刚性微分方程ode23t 解适度刚性微分方程odet23tb 低阶法解刚性微分方程ode45 高阶法解微分方程十二二维图形函数1、基本平面图形(Elementary X-Y graphs)loglog 双对数刻度曲线plot 直角坐标下线性刻度曲线plotyy 双纵坐标图polar 极坐标曲线图semilogx X 轴半对数刻度曲线semilogy Y 轴半对数刻度曲线2 、轴控制(Axis control)axes 创建轴axis 轴的刻度和表现box 坐标形式在封闭式和开启词式之间切换grid 画坐标网格线hold 图形的保持subplot 创建子图zoom 二维图形的变焦放大3、图形注释(Graph annotation)gtext 用鼠标在图上标注文字legend 图例说明plotedit 图形编辑工具text 在图上标注文字texlabel 将字符串转换为Tex 格式title 图形标题xlabel X 轴名标注ylabel Y 轴名标注4、硬拷贝(Hardcopy and printing)orient 设置走纸方向print 打印图形或把图存入文件printopt 打印机设置十三三维图形函数1、基本三维图形(Elementary 3-D plots) fill3 三维曲面多边形填色mesh 三维网线图plot3 三维直角坐标曲线图surf 三维表面图2 、色彩控制(Color control)alpha 透明色控制brighten 控制色彩的明暗caxis (伪)颜色轴刻度colordef 用色风格colormap 设置色图graymon 设置缺省图形窗口为单色显示屏hidden 消隐shading 图形渲染模式whitebg 设置图形窗口为白底3、光照模式(Lighting)diffuse 漫反射表面系数light 灯光控制lighting 设置照明模式material 使用预定义反射模式specular 漫反射surfnorm 表面图的法线surfl 带光照的三维表面图4 、色图(Color maps)autumn 红、黄浓淡色bone 蓝色调灰度图colorcube 三浓淡多彩交错色cool 青和品红浓淡色图copper 线性变化纯铜色调图flag 红-白-蓝黑交错色图gray 线性灰度hot 黑-红-黄-白交错色图hsv 饱和色彩图jet 变异HSV 色图lines 采用plot 绘线色pink 淡粉红色图prism 光谱色图spring 青、黄浓淡色summer 绿、黄浓淡色vga 16 色white 全白色winter 蓝、绿浓淡色5、轴的控制(Axis control)axes 创建轴axis 轴的刻度和表现box 坐标形式在封闭式和开启式之间切换daspect 轴的DataAspectRatio 属性grid 画坐标网格线hold 图形的保持pbaspect 画坐标框的PlotBoxAspectRatio 属性subplot 创建子图xlim X 轴范围ylim Y 轴范围zlim Z 轴范围zoom 二维图形的变焦放大6、视角控制(Viewpoint control)rotate3d 旋动三维图形view 设定3-D 图形观测点viewmtx 观测点转换矩阵7、图形注释(Graph annotation)colorbar 显示色条gtext 用鼠标在图上标注文字plotedit 图形编辑工具text 在图上标注文字title 图形标题xlabel X 轴名标注ylabel Y 轴名标注zlabel Z 轴名标注8 、硬拷贝(Hardcopy and printing)orient 设置走纸方向print 打印图形或把图存入文件printopt 打印机设置verml 将图形保存为VRML2.0 文件十四特殊图形1、特殊平面图形(Specialized 2-D graphs)area 面域图bar 直方图barh 水平直方图comet 彗星状轨迹图compass 从原点出发的复数向量图errorbar 误差棒棒图ezplot 画二维曲线ezpolar 画极坐标曲线feather 从X 轴出发的复数向量图fill 多边填色图fplot 函数曲线图hist 统计频数直方图pareto Pareto图pie 饼形统计图plotmatrix 散点图阵列scatter 散点图stairs 阶梯形曲线图stem 火柴杆图2 、等高线及二维半图形(Contour and 2-1/2D graphs)clabel 给等高线加标注contour 等高线图contourf 等高线图contour3 三维等高线ezcontour 画等位线ezcontourf 画填色等位线pcolor 用颜色反映数据的伪色图voronoi Voronoi 图3、特殊三维图形(Specialized 3-D graphs)bar3 三维直方图bar3h 三维水平直方图comet3 三维彗星动态轨迹线图ezgraph3 通用指令ezmesh 画网线图ezmeshc 画等位线的网线图ezplot3 画三维曲线ezsurf 画曲面图ezsurfc 画带等位线的曲面图meshc 带等高线的三维网线图meshz 带零基准面的三维网线图pie3 三维饼图ribbon 以三维形式绘制二维曲线scatter3 三维散点图stem3 三维离散杆图surfc 带等高线的三维表面图trimesh 三角剖分网线图trisurf 三角剖分曲面图waterfall 瀑布水线图4、内剖及向量视图(Volume and vector visualization)coneplot 锥体图contourslice 切片等位线图quiver 矢量场图quiver3 三维方向箭头图slice 切片图5、图像显示及文件处理(Image display and file I/O)brighten 控制色彩的明暗colorbar 色彩条状图colormap 设置色图contrast 提高图像对比度的灰色图gray 线性灰度image 显示图像imagesc 显示亮度图像imfinfo 获取图像文件的特征数据imread 从文件读取图像的数据阵(和伴随色图))imwrite 把强度图像或真彩图像写入文件6、影片和动画(Movies and animation)capture 当前图的屏捕捉frame2im 将影片动画转换为编址图像getframe 获得影片动画图像的帧im2frame 将编址图像转换为影片动画movie 播放影片动画moviein 影片动画内存初始化rotate 旋转指令7、颜色相关函数(Color related function)spinmap 颜色周期性变化操纵8、三维模型函数(Solid modeling)cylinder 圆柱面patch 创建块sphere 球面Surf2patch 将曲面数据转换为块数据十五句柄图形1、图形窗的产生和控制(Figure window creation and control)clf 清除当前图close 关闭图形figure 打开或创建图形窗口gcf 获得当前图的柄openfig 打开图形refresh 刷新图形shg 显示图形窗2、轴的产生和控制(Axis creation and control)axes 在任意位置创建轴axis 轴的控制box 坐标形式在封闭式和开启式之间切换caxis 控制色轴的刻度cla 清除当前轴gca 获得当前轴的柄hold 图形的保持ishold 若图形处保持状态则为真subplot 创建子图3、句柄图形对象(Handle Graphics objects)axex 在任意位置创建轴figure 创建图形窗口image 创建图像light 创建光line 创建线patch 创建块rectangle 创建方surface 创建面text 创建图形中文本uicontextmenu 创建现场菜单对象uicontrol 用户使用界面控制uimenu 用户使用菜单控制4、句柄图形处理(Handle Graphics operations)copyobj 拷贝图形对象及其子对象delete 删除对象及文件drawnow 屏幕刷新findobj 用规定的特性找寻对象gcbf "正执行回调操作"的图形的柄gcbo "正执行回调操作"的控件图柄指令gco 获得当前对象的柄get 获得对象特性getappdat 获得应用程序定义数据isappdata 检验是否应用程序定义数据reset 重设对象特性rmappdata 删除应用程序定义数据set 建立对象特性setappdata 建立应用程序定义数据5 、工具函数(Utilities)closereq 关闭图形窗请求函数ishandle 若是图柄代号侧为真newplot 下一个新图十六图形用户界面工具align 对齐用户控件和轴cbedit 编辑回调函数ginput 从鼠标得到图形点坐标guide 设计GUI menu 创建菜单menuedit 菜单编辑propedit 属性编辑uicontrol 创建用户界面控制uimenu 创建用户界面菜单十七字符串1 、通用字符串函数(General)blanks 空格符号cellstr 通过字符串数组构建字符串的元胞数组char 创建字符传输组或者将其他类型变量转化为字符串数组deblank 删除最后的空格double 把字符串变成ASCII 码值eval 执行串形式的MATLAB 表达式2、字符串查询(String tests)iscellstr 若是字符串组成的元胞数组则为真ischar 若是字符串则为真isletter 串中是字母则为真isspace 串中是空格则为真isstr 若是字符串则为真3、字符串操作(String operations)base2dec X-进制串转换为十进制整数bin2dec 二进制串转换为十进制整数dec2base 十进制整数转换为X 进制串dec2bin 十进制整数转换为二进制串dec2hex 十进制整数转换为16 进制串findstr 在一个串中寻找一个子串hex2dec 16-进制串转换为十进制整数hex2num 16-进制串转换为浮点数int2str 将整数转换为字符串lower 把字符串变成小写mat2str 将数组转换为字符串num2str 把数值转换为字符串strcat 把多个串连接成长串strcmp 比较字符串strcmpi 比较字符串(忽略大小写)stringsMATLAB 中的字符串strjust 字符串的对齐方式strmatch 逐行搜索串strnomp 比较字符串的前N 个字符strncmpi 比较字符串的前N 个字符(忽略大小写)strrep 用另一个串代替一个串中的子串strtok 删除串中的指定子串strvcat 创建字符串数组str2mat 将字符串转换为含有空格的数组str2num 将字符串转换为数值upper 把字符串变成大写十八文件输入/输出clc 清除指令窗口disp 显示矩阵和文字内容fprintf 把格式化数据写到文件或屏幕home 光标返回行首input 提示键盘输入load 从磁盘中调入数据变量pause 暂停sprintf 写格式数据到串sscanf 在格式控制下读串十九时间和日期clock 时钟cputme MATLAB 战用CPU 时间date 日期etime 用CLOCK 计算的时间now 当前时钟和日期pause 暂停tic 秒表启动toc 秒表终止和显示二十数据类型1、数据类型(Data types)cell 创建元胞变量char 创建字符传输组或者将其他类型变量转化为字符串数组double 转化为16 位相对精度的浮点数值对象function handle 函数句柄inline 创建内联函数JavaArray 构建Java 数组JavaMethod 调用某个Java 方法JavaObject 调用Java 对象的构造函数single 转变为单精度数值sparse 创建稀疏矩阵struct 创建构架变量uint8(unit16、unit32) 转换为8(16、32)位无符号整型数int8(nit16、nit32) 转换为8(16、32)位符号整型数2、多维数组函数(Multi-dimensional array functions)cat 把若干数组串接成高维数组ndims 数组A 的维数ndgrid 为N-D 函数和插补创建数组ipermute 广义反转置permute 广义非共轭转置shiftdim 维数转换squeeze 使数组降维3、元胞数组函数(Cell array functions)cell 创建元胞变量celldisp 显示元胞数组内容cellfun 元胞数组函数cellplot 图示元胞数组的内容cell2struct 把元胞数组转换为构架数组deal 把输入分配给输出is cell 若是元胞则为真num2 cell 把数值数组转换为元胞数组struct2 cell 把构架数组转换为元胞数组4、构架函数(Structure functions)fieldnames 获取构架的域名getfield 获取域的内容isfield 若为给定构架的域名则为真isstruct 若是构架则为真rmfield 删除构架的域setfield 指定构架域的内容struct 创建构架变量5、函数句柄函数(Function handle functions)@ 创建函数句柄functions 列举函数句柄对应的函数func2str 将函数句柄数组转换为字符串str2func 将字符串转换为函数句柄6、面向对象编程(Object oriented programming functions)dlass 查明变量的类型isa 若是指定的数据类型则为真inferiorto 级别较低isjava 若是java 对象则为真isobject 若是对象则为真methods 显示类的方法名substruct 创建构架总量superiorto 级别较高二一示例demo 演示程序flow 无限大水体中水下射流速度数据intro 幻灯演示指令peaks 产生peaks 图形数据二二符号工具包1、微积分(Calculus)diff 求导数limit 求极限int 计算积分jacobian Jacobian 矩阵symsum 符号序列的求和trylor Trylor 级数2、线性代数(Linear Algebra)det 行列式的值diag 创建对角阵,抽取对角向量eig 矩阵特征值和特征向量expm 矩阵指数inv 矩阵的逆jordan Jordan 分解null 零空间poly 特征多项式rank 秩rref 转换为行阶梯形svd 奇异值分解tril 抽取下三角阵triu 抽取上三角阵3、化简(Simplification)collect 合并同类项expand 对指定项展开factor 进行因式或因子分解horner 转换成嵌套形式numden 提取公因式simple 运用各种指令化简符号表达式simplify 恒等式简化subexpr 运用符号变量置换子表达式subs 通用置换指令4、方程求解(Solution of Equation)compose 求复函数dsolve 求解符号常微分方程finverse 求反函数fminunc 拟牛顿法求多元函数极值点fsolve 解非线性方程组lsqnonlin 解非线性最小二乘问题solve 求解方程组5、变量精度(Variable Precision Arithmetic)digits 设置今后数值计算以n 位相对精度进行vpa 给出数值型符号结果6、积分变换(Integral Transforms)fourier Fourier 变换ifourier Fourier 反变换ilaplace Ilaplace 反变换iztrans Z 反变换laplace Ilaplace 变换ztrans Z 变换7、转换(Conversions)char 把符号对象转化为字符串数组double 把符号常数转化为16 位相对精度的浮点数值对象poly2sym 将多项式转换为符号多项式sym2poly 将符号多项式转换为系数向量8、基本操作(Basic Operation)ccode 符号表达式的C 码表达式findsym 确认表达式中符号"变量" fortran 符号表达式的fortran 表达式latex 符号表达式的LaTex 表示pretty 习惯方式显示sym 定义基本符号对象syms 定义基本符号对象9、串处理函数(String handling utilities)isvarname 检查是否为有效的变量名vectorize 将字符串表达式或内联函数对象向量化10 、图形应用(Pedagogical and Graphical Applications)ezcontour 画等位线ezcontourf 画填色等位线ezmesh 画网线图ezmeshc 带等位线的网线图ezplot 绘制符号表达式的图形ezplot2。

Matlab求解非线性超定方程组-恰定方程组-欠定方程组

Matlab求解非线性超定方程组-恰定方程组-欠定方程组

Matlab 求解非线性超定方程组3x+2/(5+y)=6,4x+4/(5+y)=7 ,9x+4/(8+y)=1211x+2/(4+y)=15x,y 是未知数clc;clear;%其实楼主的问题可以等效为求最小值的问题,我使用的指标是典型的平方和最小xtt=[1,1]; f=@(x)(3*x(1)+2/(5+x(2))-6)^2+(4*x(1)+4/(5+x(2))-7)^2+(9*x(1)+4/(8+x( 2))-12)^2+(11*x(1)+2/(4+x(2))-15)^2;[x,fval]=fminsearch(f,xtt)求解线性方程组solve ,linsolve例:A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1];%矩阵的行之间用分号隔开,元素之间用逗号或空格B=[3;1;1;0]X=zeros(4,1);% 建立一个 4 元列向量X=linsolve(A,B)diff (fun ,var,n):对表达式fun 中的变量var 求n 阶导数。

例如:F=sym ( 'u(x,y)*v(x,y)' ); %sym ()用来定义一个符号表达式diff(F); %matlab 区分大小写pretty(ans) %pretty ():用习惯书写方式显示变量;ans 是答案表达式非线性方程求解fsolve(fun,x0,options)其中fun 为待解方程或方程组的文件名;x0 位求解方程的初始向量或矩阵;option 为设置命令参数建立文件fun.m :function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注:...为续行符m 文件必须以function 为文件头,调用符为@ ;文件名必须与定义的函数名相同;fsolve ()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

矩阵的LU分解(自编MATLAB)实验报告

矩阵的LU分解(自编MATLAB)实验报告

1矩阵的LU分解1.1 LU 分解原理定理:设A C?n?n,如果A的顺序主子式0, 0,…,则存在唯一的主对角线上元素全为1 的下三角矩阵L与唯一的上三角矩阵U,使得A=LU.证明:对矩阵A的阶数使用数学归纳法.显然,当n=1 时,=1就是唯一的分解式。

现假定对n-1 阶矩阵,定理的结论成立。

对A进行分块A=其中.由于n-1 阶矩阵的k 阶顺序主子式就是A的k阶主子式(k=1,2,…,n-2),故它们都不为零.从而由归纳法假设,有唯一的LU分解其中的主对角线上的元素都1.由于==0所以是n-1阶可逆矩阵先假设已有A=LU,其中L=,U=,==A 则,是n-1阶可逆矩阵,则由上式可惟一确定, 这就证明了A的LU分解的存在性和唯一性.1.2 LU分解算法当n 阶矩阵满足定理的条件时,可以用初等变换的方法求出L 和U.因为当A=LU时,由于L 可逆,故必存在可逆矩阵P 使得即PA=PLU=U.也就是说,可以先对A施行行的初等变换得出上三角矩阵U,而矩阵P可以通过对单位矩阵I进行相同的行初等变换得出,即P(A,I)(PA,PI)(U,P)于是,为保持P为下三角矩阵(从而也是下三角矩阵),在进行行初等变换时,不能进行行的对换,上行的倍数应加到下行的对应元.1.3 LU分解用于解方程组矩阵的三角分解在求解线性方程组时十分方便.如对线性方程组由于是下三角矩阵,则解向量可以通过依次求出其分量而求出,在求解方程组可以通过该方程组依次求出分量而快速得出.于是由两个方程组的求解而给出的解.1.4程序流程图1.5 MATLAB程序function f=LU_decom(A)[m,n]=size(A)if m~=nfprintf('Error:m and n must be equal!m=%d,n=%d\n',m,n) endfor i=1:n-1if (det(A(1:i,1:i))==0)fprintf('Error:det A(%d,%d)=0!\n',i,i)flag='failure'return;elseflag='ok';endendL=eye(n);U=zeros(n);for i=1:nU(1,i)=A(1,i);endfor r=2:nL(r,1)=A(r,1)/U(1,1);endfor i=2:nfor j=i:nz=0;for r=1:i-1z=z+L(i,r)*U(r,j);endU(i,j)=A(i,j)-z;endif abs(U(i,i))<epsflag='failure'return;endfor k=i+1:nm=0;for q=1:i-1m=m+L(k,q)*U(q,i);endL(k,i)=(A(k,i)-m)/U(i,i); end endLU1.6 实际数据计算已知矩阵A先对A进性LU分解,并求解方程A的解.(1)A的LU分解在MATLAB命令行中输入A=[2 1 1;4 1 0;-2 2 1];并调用以上函数可得如下结果>> A=[2 1 1;4 1 0;-2 2 1];LU_decom(A)m =3n =3L =1 0 02 1 0-1 -3 1U =2 1 10 -1 -20 0 -4(2)解方程组,程序及结果如下%-----用LU分解解线性方程组------y=zeros(n,1);y(1)=b(1);for i=2:ny(i)=b(i)-sum(L(i,1:i-1)'.*y(1:i-1));endyx(n)=y(n)/U(n,n);for i=n-1:-1:1x(i)=(y(i)-sum(U(i,i+1:n)'.*x(i+1)))/U(i,i);endx=x'运行结果如下:y =12x =-0.50001.0000-0.50001.7数据分析调用MATLAB固有的LU分解函数,以及解方程组相关函数对以上数据进行计算,运行结果如下:>> A=[2 1 1;4 1 0;-2 2 1];>> b=[1 2 1]';>> [L,U]=lu(A)L =0.5000 0.2000 1.00001.0000 0 0-0.5000 1.0000 0U =4.0000 1.0000 00 2.5000 1.00000 0 0.8000 >> X=inv(A)*bX =0.25001.0000-0.5000经比对结果相同,可见以上程序可行。

MATLAB中的非负矩阵分解方法详解

MATLAB中的非负矩阵分解方法详解

MATLAB中的非负矩阵分解方法详解介绍非负矩阵分解(Non-negative Matrix Factorization,简称NMF)是一种常用的数据分析和特征提取方法。

相比于传统的矩阵分解方法,NMF具有许多独特的优势,尤其适用于处理非负数据或稀疏数据。

NMF的基本思想是将一个非负矩阵分解为两个非负矩阵的乘积,其中一个矩阵表示特征的组合权重,另一个矩阵表示特征的表示方式。

这种分解方法可以被看作是一种特征选择和降维的手段,能够提取原始数据中的主要特征信息。

NMF的应用NMF广泛应用于多个领域,包括图像处理、文本挖掘、生物信息学等。

在图像处理领域,通过NMF可以将图像数据分解为基础形状和颜色分布,实现图像的压缩和图像特征的提取。

在文本挖掘领域,NMF可以用于对文本进行主题建模和情感分析。

NMF的算法原理NMF的目标是找到两个非负矩阵W和H,使得原始矩阵V与它们的乘积WH 的近似误差最小。

这个优化问题可以通过迭代算法来求解。

常见的NMF算法有HALS、MU和Lee-Seung算法。

算法1:HALS算法HALS算法是一种基于交替最小二乘法的NMF算法。

它通过固定一个矩阵,求解另一个矩阵的更新值,然后交替迭代,最终找到近似解。

该算法的迭代过程中对更新值进行非负性约束,确保输出的矩阵非负。

HALS算法的具体流程如下:1. 初始化矩阵W和H为非负随机数;2. 固定H,通过最小二乘法求解W的更新值;3. 固定W,通过最小二乘法求解H的更新值;4. 重复步骤2和步骤3,直到满足停止准则。

算法2:MU算法MU算法是一种基于乘法更新规则的NMF算法。

与HALS算法不同,MU算法采用两个非负矩阵的元素逐个更新的方式。

该算法的迭代过程中同样对更新值进行非负性约束。

MU算法的具体流程如下:1. 初始化矩阵W和H为非负随机数;2. 根据乘法更新规则,更新矩阵W和H的元素;3. 重复步骤2,直到满足停止准则。

算法3:Lee-Seung算法Lee-Seung算法是最早提出的NMF算法之一,也是一种基于乘法更新规则的方法。

Matlab泛函指令

Matlab泛函指令
usvsvda给出矩阵a的奇异值分解三对组阵使ausvtrrankatol大于阈值tol的奇异值为矩阵a的数值秩normaflag计算矩阵a的范数范数类型由flag指定可取21等conda根据conda1p计算条件数pinvatol在指定阈值tol下求矩阵a的广义逆nulla求取矩阵a零空间的酉矩阵ortha求取矩阵a值空间的酉矩阵subspaceab计算两矩阵之间的夹角?413线性二乘问题的解?对于线性模型yax式中为服从正态分布n01的白噪音求该超定方程最小二乘解有三种途径最小二乘解有三种途径
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.710726e-018. x = 3.3897 5.7774
演示
nx=norm(x),nxx=norm(xx),nxxx=norm(xxx) %计算三个解的范数
ti = 0.0013 ans =
2.0023e+013 eri =
演示
0.0410
rei =
tic;xd=A\b; td=toc, erd=norm(x-xd), red=norm(A*xd-b)/norm(b) %¡° 左除¡± 法解恰定方程的误差、残差、运算次数和所有时 间
td = 7.2246e-004

4.1.3 线性二乘问题的解

对于线性模型y=Ax+η,式中η为服从正 态分布N(0,1)的白噪音,求该超定方程 最小二乘解有三种途径: (1) 正则方程法得解x=(ATA)-1ATb
(2) 广义逆法得解x=A+b
(3) 用矩阵除法得解x=A\b
例4.1-2 对于超定方程,进行三种解法比较

matlab的lu分解

matlab的lu分解

matlab的lu分解什么是LU分解?LU分解是一种常用的线性代数求解方法,用于解决形如AX=B的线性方程组,其中A是一个非奇异矩阵,X是未知向量,B 是已知向量。

LU分解的目的是将矩阵A分解为两个矩阵L和U的乘积,其中L是一个下三角矩阵,U是一个上三角矩阵。

通过将线性方程组转化为LU分解的形式,我们可以更方便地求解线性方程的解。

LU分解的具体步骤如下:1. 矩阵A的LU分解可以写为A = LU, 其中L是一个下三角矩阵,U是一个上三角矩阵。

我们可以假设L的主对角线元素为1,而U的对角线元素则与矩阵A的对角线元素相同。

2. 在进行LU分解之前,我们可以首先判断矩阵A是否可以进行LU分解。

如果A的行列式不为零,则说明A是非奇异矩阵,可以进行LU分解。

否则,如果A的行列式为零,则说明A是奇异矩阵,无法进行LU 分解。

3. LU分解的第一步是找到L和U的第一行。

L的第一行是A的第一行,U的第一行是A的第一行的副本。

之后,我们要使用该行来取消下方的所有元素。

4. 对于LU分解的每一行i,我们需要通过以下步骤来计算U的第i行和L的第i列:- U的第i行直接等于矩阵A的第i行减去L的前i-1行和U的前i-1列的乘积。

- L的第i列等于A的第i列减去L的第i行前面的元素已经求得的U 的第i列与L的第i行的乘积。

5. 重复步骤4,直到我们得到L和U的全部元素。

最终,我们将得到L 和U的乘积与矩阵A相等,即A = LU。

6. 使用LU分解来求解线性方程组。

将AX=B转化为LUx = B的形式。

我们可以先解得下三角线性方程Lc = B,求得c的值,然后再解上三角线性方程Ux = c,求得未知向量x的值。

使用MATLAB进行LU分解MATLAB是一种强大的数值计算工具,可以用于执行矩阵运算,包括LU 分解。

下面是使用MATLAB进行LU分解的步骤:1. 首先,在MATLAB的命令窗口中定义矩阵A和向量B,即输入A和B的数值。

matlab非线性方程的解法(含牛拉解法)

matlab非线性方程的解法(含牛拉解法)

非线性方程的解法(含牛拉解法)1引 言数学物理中的许多问题归结为解函数方程的问题,即,0)(=x f (1.1) 这里,)(x f 可以是代数多项式,也可以是超越函数。

若有数*x 为方程0)(=x f 的根,或称函数)(x f 的零点。

设函数)(x f 在],[b a 内连续,且0)()(<b f a f .根据连续函数的性质知道,方程0)(=x f 在区间],[b a 内至少有一个实根;我们又知道,方程0)(=x f 的根,除了极少简单方程的根可以用解析式表达外,一般方程的根很难用一个式子表达。

即使能表示成解析式的,往往也很复杂,不便计算。

所以,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止.如何寻求根的初始值呢?简单述之,为了明确起见,不妨设)(x f 在区间],[b a 内有一个实的单根,且0)(,0)(><b f a f .我们从左端出点a x =0出发,按某一预定的步长h 一步一步地向右跨,每跨一步进行一次根的“搜索”,即检查每一步的起点k x 和1+k x (即,h x k +)的函数值是否同号。

若有:0)(*)(≤+h x f x f k k (1.2) 那么所求的根必在),(h x x k k +内,这时可取k x 或h x k +作为根的初始近似值。

这种方法通常称为“定步长搜索法"。

另外,还是图解法、近似方程法和解析法。

2 迭代法2。

1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。

迭代法的基本思想是一种逐次逼近的方法。

首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。

对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。

这里,主要看看解方程迭代式的构造。

对方程(1。

矩阵的LU分解

矩阵的LU分解

第四章 矩阵的分解将矩阵分解为具有某种特性的因子之积,从以我们所熟悉的Gauss 消去法为依据而导出的LU 分解,到上个世纪60、70年代以Givens 和Householder 变换发展起来的QR 分解,在矩阵理论的研究与应用中都具有十分重要的意义。

这些特殊的分解式一方面反映了原矩阵的某些数值特征,另一方面,分解的方法与过程也为某些数值计算方法和理论分析提供了有效的工具。

§4.1n 阶矩阵的三角分解和LU 分解在线性代数中我们已经学过应用Gauss 消去法求解n 元线性方程组b Ax =, 其中:()nn ija A ⨯=,()Tn x x x x ,,,21 =,()Tn b b b b ,,,21 =。

Gauss 消去法的基本思路是将系数矩阵化为上三角形矩阵,或将增广矩阵化为上阶梯形矩阵,而后回代求解。

现在应用所谓选主元素法来实施Gauss 消去法的消去过程,至于回代过程我们不做讨论。

设()A A =0,记A 的k 阶顺序主子式为k ∆()n k ,,2,1 =。

如果()00111≠=∆a ,令()()011011a a c i i = ()n i ,,3,2 =,构造Frobenius 矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11121211 n n c c c L ,⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-111212111 n n c c c L则()()()()()()()()()1002020220101201101100A a a a a a a a AL nn n n n =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=- (4.1.1) 因此,在()0A的第一列中除主元素()011a 外,其余元素均被化为零。

式(4.1.1)即为()()110A L A =,由于倍加变换不改变矩阵行列式的值,所以由()1A 得到A 的二阶顺序主子式为()()1220112a a =∆。

如果()()01220112≠=∆a a ,则必有()0122≠a 。

MATLAB中的矩阵分解方法及其应用

MATLAB中的矩阵分解方法及其应用

MATLAB中的矩阵分解方法及其应用概述矩阵分解是一种常用的数学工具,可以将一个复杂的矩阵分解为若干个简单的矩阵,从而简化计算和分析过程。

在MATLAB中,有多种矩阵分解方法可供选择,如LU分解、QR分解、特征值分解等。

本文将对这些方法进行详细介绍,并探讨它们在各个领域的应用。

LU分解LU分解(Lower-Upper factorization)是一种常用的矩阵分解方法,它将一个矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A = LU。

在MATLAB中,可以使用“lu”函数进行LU分解。

LU分解的一个重要应用是求解线性方程组,通过LU分解可以将复杂的线性方程组转化为简单的求解过程。

QR分解QR分解是将一个矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积,即A = QR。

在MATLAB中,可以使用“qr”函数进行QR分解。

QR分解在许多领域中都有广泛的应用,如信号处理、图像处理等。

例如,在图像处理中,QR分解可以用于计算图像的特征值和特征向量,从而实现图像压缩和增强的效果。

特征值分解特征值分解是将一个矩阵分解为一个对角矩阵D和一个由特征向量组成的矩阵V的乘积,即A = VDV^(-1)。

在MATLAB中,可以使用“eig”函数进行特征值分解。

特征值分解在谱分析、信号处理、系统控制等领域中有广泛的应用。

例如,在谱分析中,特征值分解可以用于分析音频信号的频谱成分,从而实现音频信号的滤波和降噪。

奇异值分解奇异值分解是将一个矩阵分解为一个正交矩阵U、一个对角矩阵S和另一个正交矩阵V的乘积,即A = USV^T。

在MATLAB中,可以使用“svd”函数进行奇异值分解。

奇异值分解在图像处理、数据压缩等领域中有广泛的应用。

例如,在图像处理中,奇异值分解可以用于图像的降噪和图像的压缩,从而减少图像的存储空间和传输带宽。

总结MATLAB提供了丰富的矩阵分解方法,包括LU分解、QR分解、特征值分解和奇异值分解等。

matlab 矩阵分解

matlab 矩阵分解

Matlab矩阵分解矩阵分解是将一个复杂的矩阵拆分成更简单的矩阵的过程。

在Matlab中,我们可以使用不同的方法来进行矩阵分解,如LU分解、QR分解、奇异值分解(SVD)等。

这些方法可以帮助我们简化矩阵操作、求解线性方程组、计算特征值等。

本文将介绍Matlab中常用的矩阵分解方法,包括LU分解、QR分解和SVD分解,并提供相应的示例代码。

1. LU分解LU分解是将一个矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积的过程。

LU分解可以用于求解线性方程组、计算矩阵的逆等。

在Matlab中,我们可以使用lu函数进行LU分解。

下面是一个示例代码:A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; % 待分解的矩阵[L, U] = lu(A); % 进行LU分解在上面的代码中,我们定义了一个3x3的矩阵A,然后使用lu函数进行LU分解,并将结果保存在L和U中。

2. QR分解QR分解是将一个矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积的过程。

QR分解可以用于求解最小二乘问题、计算矩阵的特征值等。

在Matlab中,我们可以使用qr函数进行QR分解。

下面是一个示例代码:A = [1, 2; 3, 4; 5, 6]; % 待分解的矩阵[Q, R] = qr(A); % 进行QR分解在上面的代码中,我们定义了一个3x2的矩阵A,然后使用qr函数进行QR分解,并将结果保存在Q和R中。

3. 奇异值分解(SVD)奇异值分解是将一个矩阵分解为一个正交矩阵U、一个对角矩阵Σ和一个正交矩阵V的乘积的过程。

奇异值分解可以用于求解最小二乘问题、降维、图像压缩等。

在Matlab中,我们可以使用svd函数进行奇异值分解。

下面是一个示例代码:A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; % 待分解的矩阵[U, S, V] = svd(A); % 进行奇异值分解在上面的代码中,我们定义了一个3x3的矩阵A,然后使用svd函数进行奇异值分解,并将结果保存在U、S和V中。

matlab实现牛顿迭代法求解非线性方程组

matlab实现牛顿迭代法求解非线性方程组

matlab实现牛顿迭代法求解非线性方程组已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到0.00001————————————————————————————————首先建立函数fun储存方程组编程如下将fun.m保存到工作路径中: function f=fun(x);%定义非线性方程组如下%变量x1 x2 x3%函数f1 f2 f3syms x1 x2 x3f1=3*x1-cos(x2*x3)-1/2;f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06;f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;f=[f1 f2 f3]; ————————————————————————————————建立函数dfun用来求方程组的雅克比矩阵将dfun.m保存到工作路径中:function df=dfun(x);%用来求解方程组的雅克比矩阵储存在dfun中f=fun(x);df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];df=conj(df');————————————————————————————————编程牛顿法求解非线性方程组将newton.m保存到工作路径中:function x=newton(x0,eps,N);con=0;%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N;f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2 ) x0(3)});df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0 (2) x0(3)});x=x0-f/df;for j=1: length(x0);il(i,j)=x(j);endif norm(x-x0)<epscon=1;break;endx0=x;end%以下是将迭代过程写入txt文档文件名为iteration.txtfid=fopen('iteration.txt','w');fprintf(fid,'iteration');for j=1:length(x0)fprintf(fid,' x%d',j);endfor j=1:ifprintf(fid,'\n%6d ',j);for k=1:length(x0)fprintf(fid,' %10.6f',il(j,k));endendif con==1fprintf(fid,'\n计算结果收敛!');endif con==0fprintf(fid,'\n迭代步数过多可能不收敛!'); endfclose(fid);————————————————————————————————运行程序在matlab中输入以下内容newton([0.1 0.1 -0.1],0.00001,20)————————————————————————————————输出结果——————————————————————————————————————————在iteration中查看迭代过程iteration x1 x2 x3.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0);%迭代公式tol=norm(r-x0);%注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000)%迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendx0=[0 0 0];[r,n,data]=budong(x0);disp('不动点计算结果为')x1=[1 1 1];x2=[2 2 2];[x,n,data]=new_ton(x0);disp(’初始值为0,牛顿法计算结果为:’)[x,n,data]=new_ton(x1);disp('初始值为1,牛顿法计算结果为:')[x,n,data]=new_ton(x2);disp ('初始值为2,牛顿法计算结果为:')budong.mfunction[r,n,data]=budong(x0, tol)if nargin=-1tol=1e-3:x1=budong fun(x0);n=1;while(norm(x1-x0))tol)&(n500)x0=x1;x1=budong_fun(x0);n=n+1:data(:,n)=x1;endr=x1:new_ton.mfunction [x,n,data]=new_ton(x0, tol) if nargin=-1tol=1e-8;endx1=x0-budong_fun(x0)/df1(x0);n=1;while (norm(x1-x0))tol)x0=x1;x1=x0-budong_fun(x0)/df1(x0);n=n+1;data(:,n)=x1;x=x1;budong_fun.mfunction f=budong_fun(x)f(1)=3* x(1)-cos(x(2)*x(3))-1/2;f(2)=x(1)^2-81*(x(2)+0.1)^2+sin(x(3))+1.0 6;f(3)=exp(-x(1)*x(2))+20* x(3)+10* pi/3-1;f=[f(1)*f(2)*f(3)];df1.mfunction f=df1(x)f=[3sin(x(2)*x(3))*x(3) sin(x(2)*x(3))*x(2)2* x(1)-162*(x(2)+0.1)cos(x(3))exp(-x(1)*x(2))*(-x(2))exp(-x(1)*x(2))*(-x(1))20];结果:不动点计算结果为r=1.0e+012*NaN -Inf 5.6541初始值为0,牛顿法计算结果为:x=0.5000 -0.0000 -0.5236 初始值为1,牛顿法计算结果为:x=0.5000 0.0000 -0.5236 初始值为2,牛顿法计算结果为:x=0.5000 0.0000 -0.5236。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab 的 n阶方阵的LDU分解实现
1.引言
矩阵的LDU分解是“矩阵理论与方法”课程中非常重要的一部分。

LDU分解在实际工程应用中也非常广泛。

LDU分解可以将一个矩阵分解为一个下三角矩阵和一个对角矩阵和一个上三角矩阵的乘积。

LDU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。

将系数矩阵A转变成等价两个矩阵L和U和对角矩阵的乘积,其中L和U 分别是下三角和上三角矩阵,D为对角矩阵。

当A的所有顺序主子式都不为0时,矩阵A可以分解为A=LDU。

即:
Matlab 是很好的处理矩阵的工具。

它的功能非常强大,包括创建矩阵,对矩阵求逆,转置等操作非常简单,使其成为图像处理,信号分析等领域常用的工具。

Matlab 官方已经包括了对非奇异矩阵的LU分解函数[L,U]=lu(A),为了加深对矩阵分解的理解,本文不采用Matlab 官方的LU分解函数对矩阵A进行LDU 分解,而是根据理论推导和编程实现LDU分解。

2.程序设计
2.1.输入合法检验
LU分解需要被分解矩阵A满足如下条件:
1)矩阵A为方阵
2)A的顺序主子式
全故LU分解需先检验A为n阶方阵,然后检验A的n-1个顺序主子式D
k 不为0,才可进行LU分解。

而检验主子式D
可以在n-1次循环LU分解中
k
进行,故先检验矩阵是否为方阵。

代码如下
2.2. n -1次循环LDU 分解
LDU 分解本质上是高斯消元法。

实质上是将A 通过初等行变换变成一个上三角矩阵,其变换矩阵就是一个单位下三角矩阵。

从下至上地对矩阵A 做初等行变换,将对角线左下方的元素变成零,然后再证明这些行变换的效果等同于左乘一系列单位下三角矩阵,这一系列单位下三角矩阵的乘积的逆就是L 矩阵,它也是一个单位下三角矩阵。

LDU 分解主要分为两步:1
根据高斯消元法对A i ()消元,消元矩阵为L i +1-1;2计算L i +1
-1A i ()=A i +1()
以产生下一步迭代的A i ()。

2.2.1. 根据
构造L j ,L j -1(j =i +1)
高斯消元A i (),使A i ()第i+1列从第i+2行至n 行都为0。

构造消元矩阵L j ,L j -1。

首先判断是否为0,为0则无法继续分解,退出;否则继续。

代码如下
2.2.2. 计算L i +1-1A i ()=A i +1()
D
k
计算L
i+1
-1A i()=A i+1()并储存覆盖A i(),并计算下次循环的主子式。

代码如下
2.3.计算并返回L和A n-1()为结果
通过n-1次循环累乘L
i 得到L矩阵,并且根据最后得到的A n-1
()矩阵分解出
D和U矩阵。

代码如下
3.验证结果
3.1.可LDU分解的矩阵验证
构造可以LDU分解的矩阵A D
k
调用MyLU函数,分解A矩阵。

计算L*D*U验证是否为原矩阵A(方法下同)
3.2.输入矩阵A是否为空验证
输入矩阵A 中没有元素,输入不合法。

3.3. 输入矩阵A 为方阵验证
输入矩阵A 维度不合法。

3.4. 顺序主子式出现0的错误验证
因为计算()0
1
1*L A -时出现()1
220a =,导致顺序主子式()()0
1
211220a a ∆==。

该情况
为不合法输入。

至此,函数功能和合法性检查全部验证完毕。

4.心得体会
通过“矩阵理论与方法”的理论指导和Matlab编程的实践经验,我基本掌握了矩阵分解中的LDU分解的推导过程和算法步骤。

熟练掌握LDU分解,对今后研究LU分解、Doolittle分解、Crout分解、QR分解等矩阵分解方法的实现有非常大的帮助。

对LDU分解的推导过程进行步骤分解和归纳,我将N维矩阵的LDU分解归纳总结为n-1次循环,每步循环进行n-i次元素除法(计算高斯消元系数),2次N维矩阵乘法(计算L和()1i A+)和1次元素乘法(计算顺序主子式的值)。


乘法计算,即时间复杂度为
()()
()()
34
121
O n n i n O n
--++≈。

因为计算过程中需

1
,
j j
L L-
辅助计算矩阵和L i+1-1A i
()=A i+1()
,即空间复杂度为()2
O n。

该LDU分解设计还不够快速,占用空间相对较多,是以后改进的方向。

5.附录:程序源码
function [L,D,U] = MyLU(A)
%check validity
if(isempty(A))%check A if is empty
error('A is empty!');
end
[N,D] = size(A);
if(N ~= D)%check A if is square
error('A is not a square!');
end
%LDU decomposing
L = eye(N);
det_k = A(1,1);
for step_n = 1:N-1
if (det_k == 0)% check if Sequence principal minor appears 0
error('Sequence principal minor is 0');
end
Li = eye(N);
Li_inv = eye(N);
for step_row = step_n+1:N
mod=A(step_row,step_n)/A(step_n,step_ n);
Li(step_row,step_n) = mod;
Li_inv(step_row,step_n) = -mod;
end
A = Li_inv * A;
det_k = det_k * A(step_n+1,step_n+1);
L = L * Li; end
L = L;
D = eye(N);
U = zeros(N);
for i=1:N
if(A(i,i) ~= 0)
D(i,i) = A(i,i);
U(i,:) = A(i,:)/D(i,i); else
D(i,i) = 0;
U(i,i) = 1;
end
end
end。

相关文档
最新文档