2019年贵州省铜仁市中考数学试卷及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年贵州省铜仁市中考数学试卷
一、选择题(共10小题,每小题4分,满分40分)
1.(4分)2019的相反数是()
A.B.﹣C.|2019|D.﹣2019
2.(4分)如图,如果∠1=∠3,∠2=60°,那么∠4的度数为()
A.60°B.100°C.120°D.130°
3.(4分)今年我市参加中考的学生约为56000人,56000用科学记数法表示为()A.56×103B.5.6×104C.0.56×105D.5.6×10﹣4 4.(4分)某班17名女同学的跳远成绩如下表所示:
成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23234111这些女同学跳远成绩的众数和中位数分别是()
A.1.70,1.75B.1.75,1.70C.1.70,1.70D.1.75,1.725 5.(4分)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()
A.360°B.540°C.630°D.720°
6.(4分)一元二次方程4x2﹣2x﹣1=0的根的情况为()
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
7.(4分)如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H 分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()
A.12B.14C.24D.21
8.(4分)如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC 上,且CE=CD,CF=CB,则S△CEF=()
A.B.C.D.
9.(4分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为()
A.
B.
C.
D.
10.(4分)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;
②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的
个数是()
A.2B.3C.4D.5
二、填空题:(本大题共8个小题,每小题4分,共32分)
11.(4分)因式分解:a2﹣9=.
12.(4分)小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是S小刘2=0.6,S小李2=1.4,那么两人中射击成绩比较稳定的是;
13.(4分)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;
14.(4分)分式方程=的解为y=.
15.(4分)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为.
16.(4分)如图,在△ABC中,D是AC的中点,且BD⊥AC,ED∥BC,ED交AB于点E,BC=7cm,AC=6cm,则△AED的周长等于cm.
17.(4分)如果不等式组的解集是x<a﹣4,则a的取值范围是.18.(4分)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)
三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)
19.(10分)(1)计算:|﹣|+(﹣1)2019+2sin30°+(﹣)0
(2)先化简,再求值:(﹣)÷,其中x=﹣2
20.(10分)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.
求证:BD=CE.
21.(10分)某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2)):
(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);
(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?
22.(10分)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45°和60°,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,≈1.732)
四、(本大题满分12分)
23.(12分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.
(1)求一次函数的表达式;
(2)求△AOB的面积;
(3)写出不等式kx+b>﹣的解集.
五、(本大题满分12分)
24.(12分)如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.
(1)求证:FG是⊙O的切线;
(2)已知FG=2,求图中阴影部分的面积.
六、(本大题满分14分)
25.(14分)如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.
(1)求该抛物线的表达式;
(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.
(3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.