基于主动轮廓线模型的配准方法
(阅-000)一种基于轮廓的医学图像弹性配准方法
作者简介: 舒小华( 1965- ) , 男, 国防科技大学博士研究生, 研究方向为信号与信息处理、图像处理; 沈振康( 1937- ) , 男, 国防科技大学 ATR 实验室 教授, 博士生导师, 主要研究方向: 数字图像处理、目标识别、信号处理、神经网络等。
C舒om小pu华ter, 沈En振gi康ne:e一rin种g 基an于d 轮Ap廓pli的ca医tio学ns图计像算弹机性工配程准与方应法用
式函数) :
#( r) =p( r) , r∈[0, 1]
( 4)
由于这种径向函数具有紧支撑特性, 且是正定函数。用它
作 为 弹 性 配 准 的 变 换 函 数 , 不 仅 线 性 方 程 T( ui) =vi 的 解 稳 定 、 唯一, 而且方程的求解和插值运算量都不是很大, 因此很适合
应用于基于特征点的弹性配准中。本文采用的 ψ函数:
在变换函数的选取中, 径向基函数对变形图像的弹性配准
是有效的。它们对于能对线性方程 T( ui) =vi 提供稳定、唯 一 的
解。目前所使用的径向基函数有 薄 板 样 条 函 数[6]( RTPS) , 二 次 曲
面样条函数( RM) , 高斯函数( RG) 等:
#r4-dlnr 4- d∈2N
RTPS( r) = r4-d otherwise
$ Rs( x) = &i R( ‖x- ui‖) i=1
( 9) ( 10)
式中 R( r) =R( ‖x- ui‖) 为径向基函数, 其值取决于点 x 与特征 点 ui 间的距离, αi 为待定的配准参数。为了保证无限远处的弹 性变换为零, 需满足约束条件:
n
’&i $j( ui) =0, j=1, …, m i=1
激光雷达考试浓缩笔记
一、技术介绍1.激光雷达概念:激光探测与测量,Light Detection And Ranging,英文缩写为LiDAR,LiDAR的光源一般采用激光,原理与雷达原理相同,故都将LiDAR翻译为激光雷达,也可称为激光扫描仪。
工作原理:脉冲式和相位式,它有激光发射器、接收器、时间计数器、微电脑构成,成像为点云,并以数据为基础重建目标三维模型。
(相位式问题:相位测量仅能测出不足一周的相位差,相位差的分辨率限制测距的精度,为了保证精度而又兼顾测程,采用几个调制光波长配合测距。
)激光扫面技术分类:1D激光测距、2D激光测距、3D激光测距、多传感器的集成激光雷达和普通雷达的区别:普通雷达:射频电磁波被送到大气中,大气中的目标散射发射电磁波的一部分到普通雷达的接收器中。
激光雷达也发射和接收电磁波,但其频率相对较高,激光雷达工作在紫外光、可见光、近外红三个光谱波段激光雷达存在的问题两点同步难匹配、数据处理自动化程度低测量复杂度高、仪器昂贵、操作人员需要较高技巧、生产成本高、费时对天气、可见度等自然条件要求高很难获取较全面的信息2.三维激光扫描技术概念:三维激光扫描系统:由三维激光扫描仪、计算机、电源供应系统、支架以及系统配套软件构成、而三维激光扫描仪又由激光发射器、接收器、时间计数器、马达控制可旋转的滤光镜、控制电路板、微电脑、CCD相机以及软件组成。
三维激光扫描技术是一种先进的全自动高精度立体扫描技术,用三维激光扫描仪获取目标物表面各点的空间坐标,然后由获得的测量数据构造出目标物的三维模型的一种全自动测量技术。
是继GPS后的又一项测绘新技术,已成为空间数据获取的重要技术手段。
原理:三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后沿几乎相同的路径反向传回到接收器,可以计算目标点P与扫描仪距离S。
激光测距技术是三维激光扫描仪的主要技术之一,激光测距的原理主要有基于脉冲测距法、干涉测距法、激光三角法三种类型。
主动轮廓算法 python
主动轮廓算法 python主动轮廓算法是一种常用于图像分割的算法,它能够自动地将图像中的目标对象轮廓提取出来。
这一算法能够在医疗影像、自动驾驶等领域有着很广泛的应用。
本文将介绍如何在 Python 中使用主动轮廓算法实现图像分割。
第一步:导入相应的库在 Python 中,要使用主动轮廓算法,我们需要导入 numpy 和skimage 中的相应模块。
具体代码如下:```pythonimport numpy as npimport matplotlib.pyplot as pltfrom skimage import data, img_as_floatfrom skimage.segmentation import active_contour```第二步:读取图像要对图像进行分割,我们首先需要读取图像。
这里我们使用skimage 库自带的一张图像,具体代码如下:```pythonimage = img_as_float(data.camera())```第三步:生成初始轮廓接下来,我们需要生成初始的轮廓。
我们可以使用一些预定义的方法生成初始轮廓,如圆形、矩形等。
下面是生成圆形轮廓的代码。
```pythons = np.linspace(0, 2*np.pi, 400)x = 220 + 100*np.cos(s)y = 100 + 100*np.sin(s)init = np.array([x, y]).T```第四步:运行主动轮廓算法有了初始轮廓,我们就可以运行主动轮廓算法了。
在这里,我们可以设置循环的次数、阿尔法值以及 beta 值等参数。
代码如下:```pythonsnake = active_contour(gaussian(image, 3),init, alpha=0.015, beta=10,gamma=0.001)```这里的 gaussian 用于对图像进行高斯滤波以平滑图像。
计算机视觉中的图像配准与目标检测算法
计算机视觉中的图像配准与目标检测算法图像配准与目标检测算法在计算机视觉中扮演着重要的角色,它们可以帮助计算机系统更好地分析和理解图像信息。
图像配准是指将两幅或多幅图像中的对应点一一对应起来,以便在匹配这些图像时获得更加准确的结果。
而目标检测算法则是用来识别图像中特定目标的算法,例如人脸、车辆、动物等。
本文将介绍图像配准和目标检测算法的基本原理和常用方法,以及它们在计算机视觉领域中的应用。
一、图像配准算法1.1基本原理图像配准是通过计算机算法将两幅或多幅图像中的相关特征点进行匹配,以获得这些图像之间的几何变换关系。
这些特征点可以是角点、边缘、纹理等,通过对这些特征点进行匹配,可以得到这些图像之间的旋转、平移、缩放等变换关系。
图像配准的主要目的是将不同条件下获取的图像进行精确对准,从而获得更加准确的匹配结果。
1.2常用方法(1)特征点匹配特征点匹配是图像配准算法中最常见的方法之一,它通过对图像中的特征点进行匹配来获得图像之间的几何变换关系。
这些特征点可以是由角点检测算法检测出的角点,也可以是由边缘检测算法检测出的边缘点等。
在特征点匹配中,通常会使用一些匹配算法来寻找图像中对应的特征点,常用的匹配算法有最近邻匹配、RANSAC算法等。
(2)基于图像内容的配准基于图像内容的配准是一种能够自动进行图像配准的方法,它不需要事先提取出特征点,而是直接对整幅图像进行匹配。
这种方法通常会使用图像相似度度量来进行匹配,例如结构相似度(SSIM)度量、互相关等。
基于图像内容的配准在匹配结果的准确性和鲁棒性方面往往比特征点匹配方法更好,但计算复杂度较高。
1.3应用场景图像配准算法在计算机视觉中有着广泛的应用场景,例如医学影像配准、遥感影像配准、工业检测等。
在医学影像配准中,图像配准算法可以帮助医生更好地对比不同时间或不同条件下的患者影像,从而更准确地诊断疾病。
在遥感影像中,图像配准算法可以将同一地区不同时间的遥感影像进行配准,以获得地表特征的变化情况。
A Method for Registration of 3-D Shapes部分中文
一种三维图像的配准方法成员Paul Jbesl、IEEE,以及NeilD.McKay摘要:本文介绍了一种多方面、表示独立的三维图像的精确计算方法,包括自由曲线和曲面。
该方法处理所有6个自由程度是基于迭代最近点(ICP)算法,这需要一个去找到一个几何实体到一个给定点的最接近点的过程。
ICP算法总是单调收敛到局部的最近平均距离,而经验表明在最初的几次迭代收敛速度快。
因此,给定一组充足的初始旋转和平移为一个特定类的对象具有一定的“图像复杂度”,通过测试每个初始配准可以在全局围内最大限度地减少平均距离的所有六个自由程度。
例如,一个给定的“模型”的图像和感测到的“数据”的图像表示模型的图像的主要部分,它通过测试一个初始的平移和一个相对较小的旋转设置允许给定的模型复杂度来配准几分钟。
这种方法的一个重要应用是配准从不固定的刚性物体与一种理想的形状检验前的几何模型监测到数据。
所描述的方法也是有用的,用于决定的基本问题,如不同的几何表示的重叠(图像等价),以及用于估计未知的点集运动的对应关系。
实验结果表明基于点集,曲线和曲面上的配准算法的能力。
关键词-自由型曲线匹配,自由形态表面匹配,运动估计,姿态估计,四元数,三维配准。
一、引言全局和局部图像匹配度量自由曲线曲面以及点集的匹配,在[ 3 ]中描述了一种试图将计算机视觉中的一个关键问题的描述形式化和统一化的尝试:在传感器坐标系给出的三维数据,它描述了一个数据的图像可能对应一个模型的图像,并给出了在一个模型中的坐标系统中的模型的形状用不同的几何形状表示,估计最佳的旋转和平移对齐,或配准,模型图像和数据的图像距离最小化,从而允许通过一个均方距离度量的等价的形状。
许多应用的关键的利害关系是下面的问题:从一系列图像的分割区域匹配的B样条曲面是在计算机辅助设计(CAD)的一个子集的模式吗?本文提供了一个解决这个自由曲面匹配问题的方案,正如在[ 3 ]和[ 5 ]中定义的一种特殊的情形一样,一个简单的,统一的方法,概括到N 维的,提供的解决方案1)不对应点集匹配问题2)自由曲线的匹配问题。
基于特征的点云配准方法
基于特征的点云配准方法1.引言1.1 概述点云配准是计算机视觉和机器人领域中一个重要的问题,它涉及到将多个点云数据集对齐到同一个坐标系下。
点云配准的目标是找到最优的刚体变换,使得不同点云之间的对应点能够对齐,从而进行后续的分析和处理。
在过去的几十年里,点云配准一直是一个受到广泛关注的研究热点。
它在三维重建、目标识别和机器人导航等领域具有广泛的应用。
然而,由于数据量大、噪声干扰和姿态变化等挑战,点云配准任务仍然具有一定的挑战性。
为了解决这个问题,研究者们提出了许多不同的点云配准方法。
其中基于特征的点云配准方法是一种常用的方法。
这种方法利用点云中的特征进行匹配和对齐,以实现点云的配准。
特征提取方法用于从点云中提取具有判别性和鲁棒性的特征描述子,而特征匹配方法则用于准确地匹配不同点云中的特征点。
本文将重点讨论基于特征的点云配准方法。
首先,我们将介绍一些常用的特征提取方法,包括描述子,这些描述子能够捕捉点云中的局部几何信息和表面特征。
然后,我们将讨论特征匹配方法,这些方法用于确定不同点云中对应的特征点。
接着,我们将介绍基于特征的点云配准方法,这些方法通过最小化特征点对之间的距离,来估计点云之间的刚体变换关系。
最后,我们将讨论点云配准的优化算法,用于进一步优化配准结果。
通过本文的研究,我们希望能够深入了解基于特征的点云配准方法在实践中的应用和挑战。
同时,我们也希望能够为点云配准算法的改进和发展提供一定的参考和借鉴。
点云配准作为一个重要的问题,它的研究和应用具有广阔的前景,有望为三维重建、机器人导航和虚拟现实等领域的发展做出重要贡献。
文章结构部分的内容如下所示:1.2 文章结构本文主要围绕基于特征的点云配准方法展开研究,通过以下几个方面进行论述和探讨。
第2节是正文的核心部分,首先介绍了特征提取方法,包括特征描述子和特征匹配。
在特征提取方法中,我们将重点介绍如何从点云数据中提取出能够描述点云特征的特征描述子,以及如何通过特征匹配来寻找匹配的特征点对。
新的MR_CT图像轮廓提取方法
收稿日期:2009-06-25;修回日期:2009-08-18。
作者简介:黎燕(1976-),女,广西玉林人,讲师,博士,主要研究方向:智能控制、图像处理; 李刚(1977),男,重庆人,讲师,博士研究生,主要研究方向:图像处理、模式识别。
文章编号:1001-9081(2009)12-3343-03新的MR 2CT 图像轮廓提取方法黎 燕,李 刚(中南大学信息科学与工程学院,长沙410075)(liyanly@mail .csu .edu .cn )摘 要:提出了一种新的轮廓提取算法,并将这种算法应用到MR 2CT 图像的轮廓提取。
该算法首先计算图像的灰度阈值,选定属性形态运算递增准则中的属性,并构造选定属性的直方图,通过灰度阈值得到在属性直方图对应的属性阈值;对图像进行属性形态开闭运算,将图像多余信息滤除,再应用典型梯度算子中的罗伯特算子得到图像对象轮廓。
证明了该算法具有递增性、幂等性、反扩展性和移不变性。
对这种方法在MR 2CT 图像上进行了实验,实验结果表明MR 2CT 轮廓能完好地提取出来。
仿真实验还证明:该方法有效地保留图像的必要信息,同时具有强抗噪性而且轮廓边缘保持完好。
关键词:轮廓提取;属性阈值;属性直方图;梯度算子;MR 2CT 中图分类号:TP391 文献标志码:ANew con tour extracti ng m ethod of M R 2CT i m agesL I Yan,L I Gang(S chool of Infor m a tion S cience and Eng ineering,Cen tra l S ou th U n iversity,Changsha Hunan 410075,Ch ina )Abstract:A new contour extraction method was p resented and app lied in MR 2CT i m ages to get the contours .The new contour extraction method got the gray threshold firstly .The attribute of i mage in the criteria of attribute operation was constructed .The selected attribute histogram was structured .The attribute threshold was gotten by the corresponding gray threshold in the attribute histogram.The i mages were operated by the attribute open and close operation .The useless infor mation in i mage was removed .Then Roberts operator of classical gradient operators was used to get the i mage contour .Some i mportant p roperties such as increment,idempotency,anti 2extension and disp lacement invariability were p roposed and p roved .This method was experi mented on MR 2CT i mages .The results show that the contours of MR 2CT i m ages were obtained satisfactorily .The si mulating experi mental results show that the method getting attribute threshold automatically can retain the i mportant infor mation of i mage effectively .The new contour extraction method has the strong anti 2noise ability and the shapes of contours are kep t good .Key words:contour extraction;attribute threshold;attribute histogram;gradient operator;MR 2CT0 引言图像的轮廓经常是图像识别和分析中用来获取特征和提取基元的对象。
主动形体模型法在肝脏CT图像分割中的应用
医学 图像分 割是 医学 图像 处理 与分 析 的一个重 要领域 , 同时也 是计 算机 辅助诊 断 与治疗 的基 础 . 图像 分割 就是 根据 某种 均匀性 或一 致性 的原 则将 图 像分 成若 干个 有 意义 的部 分 , 每 部分 都 符 合 一 致 使 性 的要求 . 定 医学 图像 的均匀性 和一 致性 原则 , 制
收 稿 日期 : 0 10 - 0 2 1 -4 1
作 者 简 介 : 华 强 ( 9 5 ) 男 , 西 九 江人 , 士研 究 生 , 究 方 向为 模 式 识 别 与 图形 图像 处 理 技 术 , — i:le 9 6 3 1 g i cr. 凌 18一 , 江 硕 研 Ema bu 1 8 0 2 @ ma .o l l n
第4 O卷 第 4期
21 0 2年 8月
浙 江 工 业 大 学 学 报
J OURNAL OF Z HEJANG I UNI VERS TY I OF TECHNOLCGY }
Vo1 0 No. .4 4
Au g. 2 2 01
主 动形 体 模 型法 在 肝 脏 C 图像 分 割 中 的应 用 T
点中问, 用等 间距 采 样 的 方式 选 取 另 外一 些 中间 连
接点 ]共 同构 成肝脏 轮 廓 的边 界点 集合 . , 以训 练 集
中的一 幅肝脏 C 图像 ( 1 为 例 , 次从 左 上 角 T 图 ) 依 开始 延顺 时针 方 向标 注 1 8个 拐角 点或者 特征 点 , 确 保 这 些点 都能 唯一地 在训 练集 的每 一 幅图像 中找 到 对 应 的点 , 最后 补齐 1 2个 中 间 的等 间 隔点 , 确定 了
LI G ua q a g N H — i n , LON G he g c n S n — hu ,X I N G ng y a A Pe — u n
轮廓匹配原理
轮廓匹配原理轮廓匹配是一种图像处理方法,用于比较和匹配图像中的轮廓。
它可以用于物体识别、目标跟踪、图像匹配等领域。
本文将介绍轮廓匹配的原理、应用及优缺点。
一、轮廓匹配的原理轮廓匹配的原理是通过计算图像中物体的轮廓特征,然后将其与预先存储的模板进行比较,从而判断物体是否匹配。
其基本步骤如下:1. 图像预处理:首先对输入图像进行预处理,包括灰度化、二值化、滤波等操作,以便获取物体的轮廓。
2. 轮廓提取:利用边缘检测算法(如Canny算子)提取图像中的轮廓。
3. 轮廓匹配:将提取得到的轮廓与模板进行比较。
常用的匹配方法有基于形状的匹配(如Hu矩)、基于统计的匹配(如归一化相关系数)、基于几何特征的匹配(如面积、周长)等。
4. 匹配度评估:根据匹配结果计算匹配度,可以使用欧氏距离、相关系数等指标。
二、轮廓匹配的应用1. 物体识别:通过比较待识别物体的轮廓与数据库中的模板进行匹配,实现物体识别和分类。
2. 目标跟踪:在视频监控、自动驾驶等领域中,通过与模板匹配,实现对目标物体的跟踪和定位。
3. 图像匹配:在图像检索、图像拼接等应用中,通过比较图像的轮廓特征,寻找相似或相同的图像。
4. 缺陷检测:在制造业中,通过比较产品轮廓与标准模板,实现对产品缺陷的检测和分类。
三、轮廓匹配的优缺点轮廓匹配具有以下优点:1. 鲁棒性强:轮廓匹配对图像的光照、尺度变化和一定程度的噪声具有较好的鲁棒性。
2. 计算简单:轮廓匹配只需要计算轮廓特征,不需要对整个图像进行处理,因此计算复杂度较低。
3. 灵活性高:轮廓匹配可以根据具体应用需求选择不同的匹配方法和参数,具有较高的灵活性。
然而,轮廓匹配也存在一些缺点:1. 对噪声敏感:轮廓匹配对图像中的噪声比较敏感,噪声会引入误匹配的情况。
2. 对形变敏感:轮廓匹配对图像的形变比较敏感,当物体发生形变时,匹配结果可能不准确。
3. 对遮挡敏感:轮廓匹配对图像中的遮挡比较敏感,当物体被遮挡时,匹配结果可能不可靠。
机器视觉 轮廓匹配方法
在机器视觉中,轮廓匹配是一种用于比较和匹配图像中物体轮廓的方法。
这种方法通常用于在一个图像中查找与模板或标准轮廓相似的目标物体。
轮廓匹配可以在许多应用中使用,如物体检测、识别和跟踪等。
以下是一些常见的轮廓匹配方法:
1.形状匹配法:这是一种基于轮廓形状相似性的匹配方法。
它通过计算轮廓的形状描述符(例如,Hu矩、傅里叶描述子等)来量化轮廓的形状特征,然后将模板轮廓的形状特征与图像中的轮廓进行比较。
2.轮廓匹配算法:OpenCV等图像处理库提供了轮廓匹配的实现。
通过比较轮廓的各个点之间的距离或相似性,可以计算出一个匹配得分,从而找到图像中与模板轮廓最相似的位置。
3.轮廓匹配的变换:有时候,物体在图像中可能发生了旋转、缩放、平移等变换。
为了应对这些变换,可以使用仿射变换、透视变换等技术对图像和模板进行变换,然后进行匹配。
4.轮廓的模板匹配:将模板轮廓与图像中的不同位置进行逐一比较,并找到与模板匹配度最高的位置。
这种方法可以用于物体检测,但对于旋转和尺度变化较大的情况可能效果较差。
轮廓匹配方法可能对噪声和局部变化敏感,而且在复杂的场景中可能存在局限性。
因此,在实际应用中,通常需要结合其他图像处理和机器学习技术,以及考虑场景特定的情况,来实现更准确和鲁棒的轮廓匹配。
主动轮廓模型的研究及其改进模型在目标检测中的应用的开题报告
主动轮廓模型的研究及其改进模型在目标检测中的应用的开题报告一、研究背景和意义:随着计算机技术和现代视觉技术的不断发展,图像处理和计算机视觉技术已经得到了广泛的应用。
其中,目标检测技术是图像处理和计算机视觉领域的一个重要问题。
目标检测就是从图像或视频中确定感兴趣物体的位置和形状。
目标检测技术在许多领域都有广泛的应用,如智能交通、视频监控、医学诊断、娱乐等等。
主动轮廓模型(Active Contour Model,ACM)是一种特殊的变分模型,常用于图像分割和目标检测。
ACM模型基于贝叶斯定理和弯曲能量,通过最小化能量函数的方法来找到轮廓。
相比于一些传统的图像分割技术,主动轮廓模型能够更好地提取图像中的轮廓信息,并且能够适应复杂的轮廓形状。
因此,研究主动轮廓模型的改进和应用具有很大的意义。
二、研究内容和目标:本文主要研究主动轮廓模型的改进方法以及在目标检测中的应用。
具体内容包括以下几个方面:1.研究当前主动轮廓模型的改进方法,对比不同的主动轮廓模型,并分析比较其优劣势。
常用的主动轮廓模型包括基于全局和局部的模型、形态学方法、Snake模型、Level Set等。
2.研究如何将主动轮廓模型应用在目标检测中。
本文将主要研究基于主动轮廓模型的目标检测算法,重点解决目标检测中遇到的问题,如遮挡、光照变化等。
3.设计和实现改进的主动轮廓模型并进行实验验证。
我们将设计一种基于Level Set方法的改进主动轮廓模型,并与传统的主动轮廓模型进行对比实验。
在此基础上,我们将开发一个基于主动轮廓模型的目标检测系统,并对其进行评估和优化。
三、研究方法和技术路线:本文将采用如下的研究方法和技术路线:1.研究和分析当前主动轮廓模型的改进方法,包括基于全局和局部的模型、形态学方法、Snake模型、Level Set等。
2.研究主动轮廓模型在目标检测中的应用,包括基于主动轮廓模型的目标检测算法,解决目标检测中的遮挡、光照变化等问题。
基于主动轮廓的岩心FIB-SEM序列图像孔隙提取方法
基于主动轮廓的岩心FIB-SEM序列图像孔隙提取方法户瑞林;滕奇志;何小海;龚剑【摘要】岩心FIB-SEM序列图像在孔隙提取过程中存在着灰度不均匀,孔隙内部出现高光等难点,目前尚没有一种统一的提取岩石孔隙的方法.提出一种基于主动轮廓的岩心FIB-SEM序列图像孔隙提取方法,其利用图像层间相关性,采用主动轮廓算法提取孔隙,同时给出一种自动寻找最优提取效果的算法.利用该方法所提取孔隙的效果优于对比算法,与人工识别出的孔隙区域十分接近.【期刊名称】《现代计算机(专业版)》【年(卷),期】2018(000)027【总页数】6页(P36-41)【关键词】主动轮廓;FIB-SEM;岩心;序列图像;孔隙提取【作者】户瑞林;滕奇志;何小海;龚剑【作者单位】四川大学电子信息学院图像信息研究所,成都610065;四川大学电子信息学院图像信息研究所,成都610065;四川大学电子信息学院图像信息研究所,成都610065;成都西图科技公司,成都610024【正文语种】中文0 引言近来,由于世界常规油气产量的持续下降,致密气、页岩气、致密油等非常规油气资源越来越受到世界各国的关注[1]。
非常规油气储集层以纳米级孔喉为主,局部发育在微米-毫米级,研究储集层的孔隙结构对于非常规油气的开采具有重要意义[2]。
聚焦离子束扫描电镜(FIB-SEM)是研究非常规油气储集层结构的一种新方法。
FIB-SEM使用离子束对岩石进行连续剥蚀切割,同时利用电子束进行成像,能够还原真实岩心三维孔隙结构[2]。
对岩心进行物相区分,提取岩心孔隙结构是数字岩石分析的核心步骤,但在对岩石的FIB-SEM图像进行孔隙提取时,存在着如下的难点:(1)FIB-SEM成像时,由于观察面与电子束不垂直,底部信号比上部弱,扫描图由上至下会有变暗的效果,这在利用量化方式进行物相区分时会产生很大的干扰[4];(2)在对岩石成像时,由于每张图片都是分别拍摄,当前帧相对上一帧图像存在着一定的偏移,这在利用序列图像层间相关性进行孔隙提取时,会产生极大的影响;(3)岩石中除孔隙之外的其他结构,如有机质、黏土矿物等,在FIB-SEM图像中也会呈现深色区域,这提高了区分孔隙和岩石的难度;(4)由于SEM的分辨率较高,当岩石的观察面出现较大孔隙时,SEM成像会将其内部细节表现出来,再加上荷电的作用,孔隙内部一般还伴随着高亮的特点[4],这意味着孔隙在图像中所呈现的形式有所不同,增加了鉴别孔隙的难度。
主动轮廓模型综述
主动轮廓模型综述
主动轮廓模型是一种用于图像分割的有效方法,它可以以高效的方式生成自然图像中物体的准确轮廓。
主动轮廓模型使用类似的技术来检测图像中的物体边界,但它不使用像素的灰度信息,而是使用形状信息。
它是基于边缘检测理论的一种改进,通过计算图像像素之间的相关性来识别物体边界。
主动轮廓模型采用具有动态内容的边缘检测算法,旨在从图像中检测物体边界。
与传统的边缘检测理论不同,主动轮廓模型采用了非线性的边缘检测算法,这种算法可以检测出复杂的物体边界,包括难以检测的边缘、曲线和斑点等。
主动轮廓模型也可以检测到图像中存在的物体边界,即使它们看起来无法被人眼所见。
主动轮廓模型采用多种技术来检测图像中物体边界,包括水平边缘检测、垂直边缘检测、对比度检测和颜色检测等。
它还可以使用特定的算法来识别和分类图像中的物体和背景,这样可以更好地检测出物体的边界。
此外,主动轮廓模型还可以自动检测和追踪图像中的运动物体,例如人物和动物等。
主动轮廓模型具有很强的实用性,它已经广泛应用于图像处理、机器视觉和计算机视觉等领域。
主动轮廓模型
可以自动检测出图像中的物体边界,帮助研究者更好地理解图像中的物体结构,并提取出图像中的有用信息。
主动轮廓模型在图像分割、机器人视觉、运动检测和视频监控等领域都有着广泛的应用。
总之,主动轮廓模型是一种有效的图像分割算法,它通过计算图像像素间的相关性来识别物体边界,同时可以自动检测出图像中的物体边界,并且广泛应用于图像处理、机器视觉、运动检测和视频监控等领域。
测绘技术配准方法与步骤解析
测绘技术配准方法与步骤解析引言当今世界我们所生活的这个地球,是一个充满了复杂且多样化的地貌景观与自然环境的星球。
为了更好地了解我们所处的环境和地理地貌格局,我们需要运用测绘技术来获取地理信息。
然而,在测绘过程中,不同地图数据之间的配准问题一直是一个重要的挑战。
本文将探讨测绘技术中的配准方法以及相关步骤,以帮助读者更好地理解这一领域。
一、配准的概念与意义配准,顾名思义,就是将不同投影和坐标系统的地图或者影像数据彼此对齐,以确保它们可以更好地被整合和分析。
在测绘中,配准是避免地图数据产生误差和不一致性的关键步骤。
只有在配准完成后,我们才能准确地分析和比较各种地图数据。
二、配准方法在测绘技术中,有多种配准方法可以选择。
下面将介绍几种常见的配准方法:1.基准点配准法基准点配准法是一种传统的配准方法,主要通过选择地图或影像数据中的特征点,并将其与其他数据进行匹配。
这些特征点可以是建筑物、河流、交叉口等地理要素。
通过测量这些特征点在不同地图或影像数据上的坐标,我们可以计算出数据之间的差异,并进行相应的调整以实现配准。
2.地形配准法地形配准法是一种基于地形和地貌特征的配准方法。
通过使用全球定位系统(GPS)或数字高程模型(DEM)数据,我们可以获取地形和地貌的信息。
然后,通过将这些数据与其他地图数据进行匹配,我们可以实现数据的精确配准。
3.遥感影像配准法遥感影像配准法是一种利用遥感技术进行配准的方法。
遥感影像可以提供全球范围内的高分辨率图像,用于获取地理信息。
在遥感影像配准中,我们可以使用图像处理软件进行自动或手动匹配,在不同遥感影像之间建立几何和颜色匹配,以实现精确的配准。
三、配准步骤在进行测绘技术中的配准时,我们需要遵循一系列的步骤来确保配准的准确性和可靠性。
以下是一些常见的配准步骤:1.数据收集与获取首先,我们需要收集和获取不同的地图数据或遥感影像数据。
这些数据可以来自于不同的测绘机构、卫星或其他数据供应商。
一种从粗到精的红外和可见光卫星图像配准方法
一
种从 粗 到精 的 红 S n 可 见光 卫 星 图像 配准 方法
胡永利 , 王 亮 , 刘 蓉。 , 张 丽 , 段福庆
1 .北京工业大学计算机学 院,多媒体 与智能软件技术北京市重点实验室 , 北京 1 0 0 1 2 4 2 .北京工业大学电子信息与控制工程学院 , 北京 3 .北京服装学院基 础部 ,北京 1 0 0 0 2 9 1 0 0 8 7 5 4 .北京师范大学信息科学与技术学院 , 北京 1 0 0 1 2 4
分辨率 、噪声 的大小等均有 很大差 异 。因此 ,需要 深入研 究 红外和可见光卫 星图像配准 中的特 征表示和 匹配等 问题 ,以
的频谱 幅度求 出旋转 和缩 放参 数 0 , s 。 具体地 , 将F 的坐标
( M , ) 表示为极坐标( p , a ) ,即 u =p c o s a ,v =p s i n a ,进一步令
. D— e k
,
可以得 到其对数 一 极坐标 ( , a ) ,即 “一 e k C O S a , 一
e k s i n a 。同样 , 将F 2 的坐标也表示为对数 一 极坐标( 是 , a ) , 则
( 愚 , 口 ) 与( 志 , 口 )的关 系 为
( 愚 , 口 )一 ( 忌— —k , — — ) ( 4 )
法通常对同一类 型的图像具有较好 的配 准效果 , 但对 于不 同
信息 , 通常需要考虑不同模态卫星 图像 的特性 ,采用数据 融
合 等方法分析和处理这些 多模 态图像 , 以满足不 同的应用需 求 。但 图像数据融合处 理 的前 提和基 础是 图像 的精 确配 准 , 即在数据融合之前需要建 立在 不同时间和视角获取 的不 同分
一种基于轮廓多边形逼近的可见光与红外图像配准方法
一种基于轮廓多边形逼近的可见光与红外图像配准方法吴东东;周东翔;关涛;宋保泉【摘要】针对遥感可见光与红外图像配准的问题,提出采用对轮廓进行多边形逼近的配准方法。
由于可见光与红外遥感图像中噪声多、灰度复杂等特点,使得很多配准方法失效。
在提取目标轮廓后对轮廓多边形逼近,然后利用Freemen链码作对多边形的特征进行分析,根据仿射变换中直线不变原理,得到多边形的边和顶点之间的关系,利用控制点对进行配准。
实验证明该方法取得了较好的效果。
%10.3969/j.issn.1000-386x.2012.10.009【期刊名称】《计算机应用与软件》【年(卷),期】2012(000)010【总页数】4页(P28-30,122)【关键词】图像配准;红外图像;可见光图像;多边形逼近;Freeman链码【作者】吴东东;周东翔;关涛;宋保泉【作者单位】国防科学技术大学电子科技与工程学院湖南长沙410073;国防科学技术大学电子科技与工程学院湖南长沙410073;国防科学技术大学电子科技与工程学院湖南长沙410073;国防科学技术大学电子科技与工程学院湖南长沙410073【正文语种】中文【中图分类】TP3010 引言图像配准是将两幅不同源相机、不同视角、不同时间获得的图像,根据相似部分变换到同一坐标下的过程。
图像配准在图像处理中应用非常多,配准处理是很多图像处理的基础,图像拼接、图像融合,都必须先配准。
基于可见光与红外图像的特点文献[1]首先提出基于轮廓的配准方法。
国内也有许多开始研究基于轮廓的配准方法。
文献[2]提出利用轮廓的方向性和一些不变特性进行配准,但是他们的配准图像的轮廓必须非常清晰,两幅图形中必须有可以提取的相似特征。
文献[3]中提出的基于控制点图像配准方法,首先采用插值优化,再直接选取控制点进行配准。
但是如果在图像较复杂的情况下,不易找到有效的控制点。
文献[4]在一种基于角点特征的图像自动配准方法中提到利用Harris算子找到角点再筛选出控制点,对特定的图像都可以实现配准。
一种组合主动轮廓线模型算法
一种组合主动轮廓线模型算法
徐牧;王润生
【期刊名称】《计算机工程与科学》
【年(卷),期】2004(26)12
【摘要】本文针对传统主动轮廓线模型(Snake模型)无法检测凹陷目标轮廓的缺陷,提出了一种由全局Snake模型和局部Snake模型两部分组成的组合Snake模型.组合模型首先使用全局Snake模型进行轮廓粗检测,并使用SUSAN算子检测目标轮廓上凹陷最"深"的凹点;然后,在凹点附近的局部区域,使用局部Snake模型进行轮廓凹陷部分的检测;其后以其替代使用全局模型检测出的目标轮廓的相应部分,形成最终检测的目标轮廓.实验结果表明,本算法具有较好的检测精度和抗噪性.
【总页数】4页(P38-41)
【作者】徐牧;王润生
【作者单位】国防科技大学,ATR国家重点实验室,湖南,长沙,410073;国防科技大学,ATR国家重点实验室,湖南,长沙,410073
【正文语种】中文
【中图分类】TP391.41
【相关文献】
1.一种新的B样条主动轮廓线模型 [J], 李培华;张田文
2.一种新的主动轮廓线跟踪算法 [J], 杨杨;张田文
3.基于多种群粒子群优化算法的主动轮廓线模型 [J], 李睿;郭义戎;郝元宏;李明
4.一种B—样条主动轮廓线模型 [J], 张爱东;张田文
5.一种新的主动轮廓线模型 [J], 谢颖;张雪飞
因版权原因,仅展示原文概要,查看原文内容请购买。
空心涡轮叶片复杂陶芯弯扭变形分析方法比较
空心涡轮叶片复杂陶芯弯扭变形分析方法比较张现东;卜昆;刘连喜;窦杨柳【摘要】陶芯作为熔模铸造空心涡轮叶片的内腔转接件,其弯扭变形程度直接关系到空心涡轮叶片的壁厚尺寸精度。
为了研究陶芯制造过程中出现的弯曲和扭曲变形,首先,借鉴叶片给出了陶芯弯曲变形和扭曲变形的定义,并根据陶芯结构特点研究了陶芯弯扭变形的计算方法,包括基于轮廓线的弯扭变形计算方法:主动轮廓模型法和样条拟合轮廓线法,与基于数据点的弯扭变形计算方法:凸包算法、二维配准算法和距离权值算法。
然后,分别通过仿真与实测数据比较了5种算法,结果表明:样条拟合轮廓线法具有更高的稳定性和精度。
%Ceramic core is used to form the cooling channel of hollow turbine blade in investment casting process. The bending and torsion deformations of ceramic core have direct inlfuence on the wall thickness dimension accuracy of turbine blade. To study bending and torsion deformation of ceramic core generating in manufacturing process, ifrstly, based on the deifnition of bending and torsion deformations for airfoil and the structure characteristics of ceramic core, the al-gorithms for computing bending and torsion deformations of ceramic core are studied, including contour-based methods:Snake-model, spline-iftting method and point-based methods: Convex-hull, 2D-registration, distance-weight method. Sec-ondly, through computing a simulated known bending and twist deformation, these ifve methods are compared. The com-paring results indicate that the accuracy and stability of spline-iftting method is better than other methods.【期刊名称】《航空制造技术》【年(卷),期】2016(000)021【总页数】6页(P63-68)【关键词】陶芯;弯扭变形;主动轮廓模型;样条拟合;凸包算法;二维配准;距离权值【作者】张现东;卜昆;刘连喜;窦杨柳【作者单位】西北工业大学现代设计与集成制造技术教育部重点实验室,西安710072;西北工业大学现代设计与集成制造技术教育部重点实验室,西安 710072;北京星航机电装备有限公司,北京 100074;西北工业大学现代设计与集成制造技术教育部重点实验室,西安 710072【正文语种】中文张现东西北工业大学航空宇航制造工程专业博士研究生,主要研究方向为CAD/CAM、精密测量、熔模精密铸造模具设计与优化。
一种3d模型配准算法
一种3d模型配准算法一种3D模型的配准算法J摘要本篇文章描述精确和有效计算包含自由形态曲线和自由形态平面的3D模型的通用、独立表示的方法该方法基于算法处理“全六自由度”,需要一个给定的点的几何实体发现最近点的程序算法总是对均方差度量的局部最小值单调收敛,实验表明在第一次迭代中收敛的比例加快因此,通过测试每一次最初的配准为一个复杂模型的详细数据给出一个适当的初始旋转和转化能最小化“全六自由度”距离度量的均方差例如,一个已知的“”模型和一个“”模型代表着一个模型的主要部分通过一个最初变换还有一个相对较小的一系列旋转能在几分钟内配准这个算法的一个主要应用就是在模型检查之前使用一个理想的几何模型记录读出数据这个方法适用于决定基本问题上,比如不同几何体表达式的全等还有估算一致性不确定的点集的轨迹实验的结果证明了这个配准算法在点集、曲线和曲面上的性能关键字自由形态曲线配准、自由形态曲面配准、运动估计、位姿估算、四元数、3D配准1 介绍自由形态曲线、曲面、点集的全局和部分模型匹配度量在“几何建模与计算机视觉”中已经被描述出来,试图在计算机视觉中形式化和统一这个关键问题的描述:在一个传感器坐标系中已知3D数据,描述了一个可能和模型形状一致的数据模型,已知模型坐标系中的模型形状,估算最理想的旋转变换,对齐或者配准模型形状和数据模型,最小化两个形状的距离,经由一个均方差度量最终决定等价模型许多应用主要关注一下几个问题:一个深度图像的分割区域和在一个模型中的B样条曲面子集匹配吗?本文为自由曲面匹配问题(该问题已经在“几何建模与计算机视觉”中定义,“自由形态曲面匹配问题” 作为一个特例)提供了一个简单的、一般的、统一的方法,这个解决方法已经推及到n维度已经为以下问题提供了解决方案:1) 无一致性的点集匹配问题; 2) 自由形态曲线匹配问题该算法要求无提取特征,无曲线或平面派生,还有无3-D数据预处理此次提出的方法主要应用于在模型检查前使用几何模型从移动的精确装置中记录数位化资料当使用高精确无触点的测量设备在一个浅深度区域检查模型时,不同的感测点所得的数据并没有太大的变化因此,出于简化的目的还有存在基于与检测应用相关的大量数据,在大量数据之中的不相等的点集并不在考虑之中相似的,排除异常值被视为进程的一个步骤,同样的,同样的这个步骤可能会是一个最好的手段,也可能不会被处理在检测应用的环境中,假定一个有能够排除明显误差的感应器、高精准、无触点的检测设备,没有产生不良数据,数据合理这个模型配准算法可以通过下列几个几何数据表达式应用:1) 点集;2) 线段集;3) 隐性曲线:;4) 参数曲线:; 5) 三角形集合; 6) 隐性曲面:; 7) 参数曲面:,,;这些包含了大多数应用将要利用一个方法匹配3D模型,其它的表达式通过一个估算已知模型到已知数字化点的最近点的程序处理本文结构如下:首先回顾数个相关的论文;接下来会提及计算包含上文的集合表达式的一个模型到一个已知点的最近点的数学初步;然后介绍迭代最近点算法,一个证明关于其单调收敛性质的定理初次配准的问题会在接下来提到最后,从提供的点集、曲线、曲面集展示迭代最近点算法的性能2 文献回顾相关的一些工作已经被发表在3D自由形态模型的配准领域目前有关于整体形状匹配或者配准的大部分的文献资料局限于特定的类型或者形状,也就是说1) 多面模型;2) 分段-二次曲面模型; 3) 一致性已知的点集;读者可能会查阅XX年以前的相关资料为而来的其它最近的相关采集工作在下文中不会介绍,读者请阅读以下文章从历史的观点上来说,使用3D数据匹配自由形态模型的工作早已经被还有他在法国国家信息与自动化研究所的团队完成,早在XX年,他们就有效的匹配了法国雷诺公司的汽车配件这个工作使得在计算机视觉团队中为3D点集的一致性使用四元数进行最小二乘法配准变得非常普及选择性的使用算法在这个时间范围内并不被世人所周知这个工作的初始限制就是它依赖在自由形态模型中合理的大型2D区域中可能的存在XX年,和对没有抽取特征的自由形态空间曲线匹配问题开发了一个解决方法他们使用一个非四元数近似处理最小二乘法旋转矩阵这个方法适用于处理质量合理的曲线数据,但是不适用面对有噪声的曲线数据,因为这个方法对曲线使用弧长抽样法获得一致点集et al发表了3D点集位置估算问题使用鲁棒性方法结合最小二乘法配准方法,提供了一个鲁棒性统计量,选择性的最小二乘法或点集进行匹配这个算法能够处理统计的离群值而且只要标准正交矩阵的行列式为正就能够理论上被四元数算法取代一个最近的会议议程里就包涵这个领域的贡献根据的最小二乘法四元数匹配提出了一个选择性使用4x4矩阵最大特征值代替最小特征值的构想和也发展了扩展高斯图像方法允许曲线匹配还有基于曲面正常直方图的非凸模型的受限制集合的匹配···以上都是一些专家的研究简单介绍,不必深究3 数学初步在这一部分,描述了在不同的几何表达式上计算一个已知点的最近点的方法首先,内容包括基础几何实体、参数实体、隐性实体读者可能需要查阅的相关知识以扩充知识框架欧式距离:,,设A是点集中的一个点表示为;点到点A的欧氏距离就是:(1)A的最近点满足公式设L为连接点与点的线段点到线段L的欧式距离为:(2) , & ,这个要求直接进行闭型计算设L属于线段集合表示为,再令点到线段集L的欧氏距离为:(3)在线段集L上的最近点满足等式令t是被三个点、、定义的三角形点和三角形t的欧式距离为:, & ,& , (4) 要求直接进行闭型计算令T是三角形集合的一个元素表示为,T={ }i=1…… 点和三角形集T的欧式距离为:(5)在三角形集合T上的最近点满足等式A 点对参数实体的距离在这部分,一条参数曲线和一个参数曲面被视为一个单独的参数实体,当时代替参数曲线,当时应该代替参数曲面曲线的评估区域是一个区间,但是这个评估区域对于曲面可以是在平面上的一个任意的闭合区域对于更多的参数实体的信息,例如,和B抽样曲线/曲面,可以参考其他的文章从一个给定的点到一个参数实体E的距离为(6) 对于距离的估算不是闭型是相对涉及下面介绍一个对计算点对曲线还有点对曲面距离的方法一旦对单独实体的距离度量,参数实体的集合直接进行闭型运算令F属于参数实体集合表示为,再令;i=1…点到这个参数实体F的距离为:(7)最近点在参数实体集合F上,满足等式我们第一步先创造一个计算从一个点到一个参数实体的距离的单行体几何学近似值对一个参数空间曲线C={ },能够计算一个多段线L(C )比如分段线性近似值绝不脱离空间曲线预先设立的距离,通过相应的参数曲线的论证值u标记多线段的每一点,这能够获得一个估值,这个值就是线段集合的最近点的论证值相似的,对一个参数曲面一个能计算三角形集合T(S ),这个分段三角形的近似值绝不脱离曲面预先设立的距离通过相应的参数曲面论证值标记每一个三角形的顶点,能获得一个估值( ,即三角形集的最近点估值作为这些曲线和曲面的程序的结果,假定一个有效的初值能致的值非常接近参数实体最近点当一个可信赖的开始的点是可用的时候,点对参数实体的距离问题对使用一个纯牛顿的最小值方法来说是理想的标量的客观功能最小化为(8)令为向量不同倾斜度操作数当 f=0时最小值产生当这个参数实体是曲面时,2D倾斜度向量为,2D海塞矩阵为:(9) 当客观功能的局部派生为以下:(10) (11)(12)(13)(14) 曲线要求仅计算和对每位实体,牛顿校正公式为:(15)当使用初始点选择方法描述以上基于一个理性小值的单一方法时,牛顿计算最近点在迭代一至五下分成三次的一般收敛方法这个计算牛顿方法在对比寻找最好初始点时费时较少B 点对隐性实体的距离一个定义为空集的隐性参数实体满足从一个给定点到一个隐性实体的距离I为(16) 计算距离的估值不是闭型的,是相对涉及下面是一个对计算点对曲线还有点对曲面距离方法的概述一旦实施对独立实体的距离度量那么隐性实体的集合直接进行闭型运算令J属于参数实体集合表示为J={ }k=1…… 点到一个隐性实体集合J的距离为(17)在隐性实体上的最近点满足等式我们第一步先通过计算从一个点到一个隐性实体的距离为完成参数实体创造一个单行体几何学近似值计算点到线集合或者是点到三角形集合的距离产生一个近似最近点,这个近似值能被用来计算精确距离参数实体达到无约束的最优化就足够了,隐性实体距离问题与其完全不同为了寻找在一个定义为的隐性实体上的最近点,一定要解决在最小化二次的客观功能项目、一个非线性受约束最小化方面受约束的最优化问题(18) 一个解决这个问题的方法是去构建增强的拉格朗日乘数法系统方程式:+ =0 (19)当,经由数字方法解决这个系统非线性方程式方程式还有未知的非线性系统的数字为三个2D曲线、四个曲面、还有五个定义好的参数空间曲线连续方法能用来解决此类代数实体问题,但是一个好的初始点会允许使用更快的方法,比如多维的牛顿寻根方法从数字的观点,参数方法更容易解决从应用的观点,没有工业系统存储在隐性结构下的自由形态曲线或曲面因为这个原因,用我们的工具系统或者经由特殊数学事件或经由参数架构处理隐性曲面的利益当然,如果这里有一个必要去处理在隐形架构中自由形态隐性实体的申请,以上算法能够实现使用一个近似距离算法,该算法蕴含了为曲面和2D曲线简单升级的公式当g 接近为零时:(20)此方法仅在起始点为、方向为的无限线与隐性实体交叉在一点,而这一点向量与无限线同向时精确在一般情况下并不正确,这个近似值通常更远离隐性实体的点因此,如果需要精确结果的话不能使用其结果C.相对点集配准所有的最近点算法都提到扩展到N维一个更必要的程序就是评估产生的最小二乘旋转与变换对我们的目的来说,在2D和3D中,只要不要求映射,四元数算法比方法更好方法,基于两点分布的互协方差矩阵,容易推广至n维,当维度大于3为时,此算法可能会成为我们的选择的解决方法如下,尽管等价于方法我们简要的陈述一下互协方差矩阵的重要作用组成四元数的是四个向量,要求,3是3x3单独矩阵与特征向量单元在本部分的末尾,你会发现,可以由一个相应的是最大化特征向量矩阵单元旋转四元数产生一个3 的旋转矩阵I令为一个变换向量完成配准状态的向量被表示为令P={ }为测试数据点集,与一个模型点集X={ }对齐,当还有每个点和与之对应的点有相同的指数均方差客观的功能的最小化为被测试的点集P的质量的重心还有相对的点集X的质心由下列公式给出:点集P与X的互协方差矩阵为:反对称矩阵=(…)的循环部分被用来构建列向量这个向量接下来被用于构建对称4x4矩阵Q:Q(上式)被选为理想的旋转理想的变换向量为:最小二乘四元数运算是O(Np)表示为:是最小二乘法点匹配误差符号 (P)是被用来表示点集P在通过配准向量变换之后的形式4 迭代最近点算法()既然已经概述了从一个给定的点计算几何形状最近点的方法还有计算最小二乘法配准向量,算法能够依照一个抽象的几何体X描述下来因此,被很好的应用于一下几个部分:1、点集;2、线段集;3、参数曲线集;4、隐性曲线集;5、三角形集;6、参数曲面集;7、隐性曲面集在算法的描述中,一个模型P移动到对齐的模型X中还有模型可能被表示在任何允许的形式中对于我们的目的来说,如果模型没有在点集形式中的话,那么此模型必须被分解为点集幸运的是,这个很简单;点被三角形集合还有线段集合作为起始点与末尾点使用,如果模型在曲面或者曲线形式中,那么则使用三角形/线段的起始点和末尾点的近似值点的数量在模型中被表示为Np令Nx为模型包含的点、线段、或者三角形的数量如上文说到,曲线与曲面最近点估算实现了我们的系统要求一个线或三角形框架去产出牛顿迭代的初始参数值,因此,Nx的数量仍然与这些平滑实体相关但是根据估值的精确性有所不同单独数据点与模型X之间的距离度量d被描述为在X中的最近点产生的最小距离表示为,致d( )=d( X)y属于X标记计算最近点为O(Nx)最坏事件与期望事件(Nx)当最近点计算被表示为每一个在P中的点时,程序是最坏事件O()令Y表示最近点的结果集,然后令C为最近点操作数:Y=C(PX) (29)给结果一个相关的点集Y,最小二乘法配准为计算以上描述的:( d)=Q(PY) (30)模型点集的位置经由P= 校正A 算法声明算法陈述如下: 点集P同Np点{ }从模型和模型X中获取迭代是通过设置P0=P =,k=0初始化配准向量被定义为与初始数据集P0相关,为了使得最后的配准代表完全变换步骤1、2、3、4被应用,直到公差r收敛计算需要的每个操作数已经在方括号中给出a) 计算最近点Yk=C(PkX)( 消耗:O())最坏事件,O()平均) b) 计算配准:( dk)=Q(P0Yk)( 消耗:O(Np)) c) 应用配准:Pk+1= (P0)(消耗:O(Np))d) 当变化在方差误差下降到一个预先设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期: 2006 08 22; 修回日期: 2007 04 22 作者简介: 何 乔 ( 1979 ), 男, 四川渠县人, 硕士研究生, 主要 从事数字摄影测量与航测质量控制技术研究。
第 4期
何 乔, 等 基于主动轮廓线模型的配准方法
29
一般情况下, 权系数 1 ( s)可设置为 1。 |vss |2是平滑性约束项, 即对 Snake的曲率的约
们不仅可以调节各项约束的比例, 还可以对是否加
入某项约束进行控制, 如: 当不需要考虑某项时, 只 需要将该项前的系数设置为零。一般地, 三个权值
均给为 1。
3 实验步骤及结论
实验中采用由人工给定两个种子点的算法提取
两种子点之间的线特征。假设两个种子点的坐标为 (X s1, Ys1 )和 (X s2, Ys2 ), 加入了 n 个内插点以后, 表 示 Snake初 始位 置的 坐 标序 列为 (X s1, Ys1 )、( x 0, y0 )、(x 1, y1 ) ∃∃、( xn - 1, yn - 1 )、(X s2, Ys2 )。以这个 坐标序列为基础, 既可利用优化算法进行线特征提 取, 具体步骤如下:
1引 言
主动 轮廓 线模 型 ( act ive contour m odels) 又称 Snake m ode ls, 原 始 的 Snake 模 型 是 K ass 等 人 于 1987年提出的。 Snake 模型的基本思想很简单, 它 以构成一定形状的一些控制点为模板 (轮廓线 ) , 通 过模板自身的弹性形变, 与图像局部特征相匹配达 到调和, 即某种能量函数 极小化, 完 成对图像的分 割。再通过对模板的进一步分析而实现图像的理解 和识别。
使用主动 轮廓线模型目标跟踪的用途十分广 泛。本文主要介绍主动轮廓线模型怎样实现矢量图 与高分辨率影像的精确配准。选用的主动轮廓线模 型是 B样条 Snake模型, 从计算机图形学可知, B样 条曲线仅需要少量的控制点就可以柔和剧烈变化的 曲线。而且每一个控制点的移动仅引起一段曲线变 化, 不会影响整体形状。
一定的连续性, 即有:
∀ # EGrey = i
S i Grey ( x, y ) - Gm i 2 ds
( 4)
式中, EGrey为灰度 约束能量; Grey ( x, y )为线特征上
点 ( x, y )处的灰度值; Si为 Snake曲线上的一小段弧 线; Gm i为 Si的平均灰度, Gm i可由下式计算:
ห้องสมุดไป่ตู้
局部特征相匹配达到调和, 即某种能量函数极小化, 从而实现矢量图与 影像的精确 配准。因此, 提出了 一种基于 B
样条 Snake模型分割的高精度配准方法。
关键词: 主动轮廓线模型; B样条 Snake模型; 多项式纠正
中图分类号: TP391 41
文献标识码: A
文章编号: 1671 3044( 2007) 04 0028 03
Ci = | ui / | ui | - ui+ 1 / | ui+ 1 ! 2
( 9)
式中, Ci 为第 i 点的曲 率; ui 为第 i点 vi与第 i - 1 点 vi- 1构成的向 量。若 Snake上这一 点的曲率 大
30
海洋测绘
第 27卷
于一定的值, 并比它相 邻的两个点的曲率大, 影像 在该点的边缘强 度也大于一 定的值, 则该 点的 2 ( s)置零。
参考影像上量取控制点实现, 利用 5 个以上的控制 点即可以解算出配准系数。一般情况下, 整体粗匹 配可利用 4个控制点, 选用一阶仿射变换模型达到 影像与矢量图粗匹配的要求。 2 2 B 样条 Snake匹配方法
Kass等 将 Snake 的 内 部 势 能 定 义 为 如 下 形 式, 即:
E in t ( v ( s, t) ) = 1 ( s) | vs | 2 + 2 ( s) | vss | 2
为曲率变化最大值的倒数。
∀ ∀ E in t = i
1 ( s)
( vi - vi- 1 ) 2 + d0
i
2 ( s)
Ci
-
C
0 i
2
( 3) 改进后的内部势能函数为: EF ield ( v) 取决于影像 特征的约束, 影像约束是 指对影像的灰度与梯度的约束。影像中每一点的灰
度和梯度都是一个值域为 0~ 255的整数, 由影像的 灰度与梯度直接构成能量时, 需要加入权函数对这 种特征的作用进行调节。本文对梯度和灰度约束的 能量设计如下: 灰度约束就是对线特征灰度值的约 束。线特征上的灰度分布在一局部范围内应该具有
束。采用 | vi- 1 - 2vi + vi+ 1 |2作为第 i点曲率的合理
估计的前提是要求 i与 i + 1点和 i - 1点之间的距
离相等。由于在给定两个种子点的情况下, 确定种
子点之间的内插点时已要求点间距相等, 故将其作
为 vi点曲率的估计是合理的。在利用 Snake方法提
取影像中的目标时, 人工给定的种子点一般都是选
第 27卷第 4期 2007年 7月
海洋测绘 HYDROGRAPH IC SURV EY ING AND CHART ING
V o l 27, N o 4 Ju.l , 2007
基于主动轮廓线模型的配准方法
何 乔 1, 李二森2, 罗继文 1, 张 华 1
( 1 93920部队, 陕西 汉中 723213; 2 解放军信息工程大学 测绘学院, 河南 郑州 450052)
或人工施加的一些外部约束力引起的势能, 它能保
证 Snake在运行 过程中不 会陷入某 些局部最 小点 ( 如孤立的噪声点 ) 或逃离某些可靠的特征点 ( 如建
筑物角点 ) 。
在未考虑外部约束力作用的情况下, 改进后的
Snake总能量表示为以下的形式, 即:
ESnake = !* E in t + ∀* EGrey + #* EGradient ( 7) 式中, !、∀和 #分别为对三项能量进行调节的权, 它
2 多项式模型整体粗配准及 B样条 Snake匹配方法
2 1 多项式模型整体粗配准 多项式模型的整体配准在于确定矢量地图和高
分辨率遥感影像的几何关系, 实现二者的粗配准, 本 文采用二次多项式进行整体粗配准, 其公式为:
x = a0 + a1X + a2 Y + a3X Y + a4X 2 + a5 Y2 y = b0 + b1X + b2 Y + b3X Y + b4X 2 + b5 Y2 ( 1) 式中, (X, Y )和 ( x, y )分别为配准前后的坐标; a、b 为粗配准系数, 采用人机交互的控制点选区方法从
参考文献:
[ 1] 李培华, 张 田文. 主动轮 廓线模 型 (蛇 模型 )综 述 [ J]. 软件学报, 2000, 11( 6): 751~ 757.
[ 2] 李天庆, 张 毅, 刘 志, 等 . Snake模型综 述 [ J]. 计算 机工程, 2005, 31( 9): 1~ 3.
[ 3] 邱书波, 王 化祥, 梁志伟. 一 种新的 B Snake算 法在目 标轮廓跟踪 中的 应用 [ J] . 中国 图像 图形 学报, 2005, 10( 5) , 585~ 589.
( 1)给定 Snake初始位置。设初始位置由 n 个 初始点表示, 对于 Snake上每个起始点, 将 1 ( s)与
2 ( s)设置为 1, 并将 Emin 设置为一个较大的值; 而 !、∀和 #应根据所提取的线特征的实际情况设定。
( 2)对 Snake上的每一点, 在以这点为中心的一 定大小的窗 口内, 计算这 一点 在窗 口内 每一点 时 Snake的能量值, 即:
检查 Snake的总能量 ESnake是否与上次相同, 若 相同, 则停止迭代, 否则转向步骤 ( 2), 继续进行迭 代计算。
在优化计算收敛后, 可以对得到的坐标序列进 行检验, 若满足共线条件, 则可以用一条直线对这些 点进行拟合, 否则, 就以原始的坐标序列表示提取的 轮廓线。
根据上面的方法进行了试验, 取得了较好的结 果。实验中选取了矢量地图中的道路数据为初始轮 廓线, 配准前的初始道路轮廓线如图 1所示, 配准后 的道路曲线如图 2所示。
摘要: 随着地图修测的迫切需要, 如何 实现影像与地图的精确 配准就成为 急需解决的 问题。虽然 多项式模型
的配准方法简单直观, 但不能满足高精度地图修测的 需要。目 前影像与 矢量图 的配准 靠人工 实现, 不容易 准确量
测, 这越来越成为地图修测中全自动空中三角测量的 瓶颈。而 主动轮廓 线模型 通过模 板自身 的弹性 形变, 与图像
Ci = ui / ui - ui+ 1 / ui+ 1 ! 2
式中, Ci 为第 i点曲率的当前值; ui 为第 i 点 vi与第 i
- 1点 vi- 1构成的向量。在种子点移动窗口范围内计
算出种子点曲率的变化最大值
m ax {
|C i
-
C
0 i
|2
},
则
种子点处的平滑性约束项的权系数 2 ( s)可以设置
Ej = !* E in t, j + ∀* EG rey, j + #* EG rad ient, j ( 8) 式中, j= 0, 1, 2, ∃m - 1; m 为窗口中像元的个数。
( 3) 若 Ej < Em in, 则 Emin = Ej, 并将当前点移到 j 所对应的位置。
( 4)计算下一次迭代计算时的曲率极大值。对 Snake上每一点计算曲率值, 即:
2 ( s)都是位置的函数。 Snake位置与曲率的非连续 性是通过 1 ( s)与 2 ( s)置零得到的。