气相色谱分析

合集下载

仪器分析笔记《气相色谱分析》

仪器分析笔记《气相色谱分析》
A、气固色谱分填充柱和毛细管柱两种:
填充柱(Packing column):常用不锈钢制成,内径2~4 mm,柱长1~3m。填充吸附剂或覆盖
在载体上均匀固定液膜。
毛细管柱(Capillary column):常用石英制成,内径0.1~0.5mm,柱长可达数十米。固定液直
接涂在毛细管内壁表面。
B、气相色谱固定相可分为:
1.2.2色谱分离的基本理论
柱效率可用理论塔板数(n)或理论塔板高度(H)表示。柱效率的高低能反映组分在柱内两相间的分配情况和组分通过色谱柱后峰加宽的程度,它与组分在气相中的扩散及在液相中的传质阻力有关。
1、塔板理论
塔板理论是将色谱柱比作蒸馏塔,柱内有若干“想象”的塔板。每两块塔板之间的距离称为板高,各组分就在这些塔板间隔的气液两相间进行分配,经过多次分配平衡后,分配系数小的组分先离开色谱柱,分配系数大的组分,后离开色谱柱。
C、按分离的原理分类
①吸附色谱:利用组分在固定相上的吸附能力强弱不同分离。
②分配色谱:利用组分在固定液中溶解度不同分离。
③凝胶(排阻)色谱:利用大小不同的分子在多孔固定相中的选择渗透分离
④离子交换色谱法:利用组分在离子交换剂上的亲和力大小不同分离
3、气相色谱仪组成
Ⅰ载气系统:气源、气体净化器、供气控制阀门和仪表;
(1)分配系数
在一定温度和压力下,组分在固定相和流动相间达到分配平衡时的浓度比,称为分配系数。
式中—— :组分在固定相中的浓度; :组分在流动相中的浓度。
该组分与固定液分子间作用力 ;
空气在固定液中不溶解,其 ,故空气在柱子内的滞留时间最短,最先从色谱柱中馏出,因此,将空气的保留时间称之为死时间;
被测组分的 相差越大,越容易分离;

气相色谱原理及分析方法大全

气相色谱原理及分析方法大全

气相色谱原理及分析方法大全气相色谱(Gas Chromatography,以下简称GC)是一种广泛应用于化学分析领域的高效分离技术。

其基本原理是将待分析物质溶解在惰性气体(载气)中,通过气相色谱柱进行分离和检测。

GC可以用于分析液体、气体和固体样品中各种化合物的组成和含量,广泛应用于食品、环境、药物、化工等多个领域。

GC的基本原理有以下几个方面:1.载气:载气是GC中重要的组成部分,常见的载气有氢气、氮气和氦气。

载气的选择主要取决于柱内的分离机理和分析目的。

2.色谱柱:色谱柱是GC中进行分离的关键部件。

常见的色谱柱有毛细管柱和填充柱。

毛细管柱可以实现高效分离,填充柱适用于高分子量的化合物。

3.样品进样:样品进样是GC中样品装载的步骤。

常见的进样方式有液相进样和气相进样。

液相进样适用于液态样品,气相进样适用于气态和固态样品。

4.分离:样品在色谱柱中根据其化学特性逐渐分离。

分离是通过样品与柱内固定相之间的相互作用实现的。

5.检测:分离后的化合物将进入检测器中进行检测。

常见的检测器有热导检测器(TCD)、火焰光度检测器(FID),质谱检测器(MS)等。

GC的分析方法主要包括以下几种:1.定量分析:GC可以进行定量分析,用于测定样品中具体化合物的含量。

根据色谱峰的面积或高度与样品中化合物的浓度之间的关系进行计算。

2.定性分析:GC可以进行定性分析,通过比对样品的色谱图与化合物库中的色谱图进行鉴定。

3.体系优化:GC可以通过优化实验条件,如改变柱内固定相、调节进样方式和检测器等,以获得更好的分离效果和更高的灵敏度。

4.联用技术:GC可以与其他分析技术联用,如质谱联用(GC-MS),用于提高分析的准确性和灵敏度。

5.样品前处理:GC常常需要对样品进行前处理,如易挥发物的富集、萃取和衍生化等,以提高分析的精确度和灵敏度。

总结起来,气相色谱是一种基于分离原理的高效分析技术,可以应用于各种样品的化学分析。

在实践中,根据不同的分析目的和样品特性,可以选择合适的载气、色谱柱、检测器等,进行定量和定性分析,优化实验体系,并与其他分析技术联用,为化学分析提供可靠的方法和数据。

仪器分析气相色谱分析

仪器分析气相色谱分析

甲醇淋洗、烘干
酸。一些拖尾,可加 H3PO4 或 KOH 添加剂解决。
碱洗
5-10%NaOH 甲醇液回流, 水、甲醇淋洗、烘干
除 Al2O3 酸性作用点。用于胺类等碱性物质。
硅烷化 釉化
加入 DMCS 或 HMDS 等硅 烷化试剂,使与-SiOH 反应 2%Na2CO3 浸泡担体,过滤 得滤液再水稀 3 倍,用稀滤 液淋洗担体,烘干后再高温 处理
气固色谱:利用不同物质在固体吸附剂上的物理 吸附——脱吸能力不同实现物质的分离。只适于 较低分子量和低沸点气体组分的分离分析。
气液色谱:利用待测物在气体流动相和固定在惰 性固体表面的液体固定相之间的分配原理实现分 离。
第一节 气相色谱仪
102G型气相色谱仪
102型气相色谱仪 常用于学生实验
GC-7890气相色谱仪
350~550oC 活化
永久气体�
不同极性 170oC
除水、通气活化
水+气体氧 +CH4+低级醇


二 气液色谱固定相——载体+固定液 由载体和固定液构成; 载体为固定液提供大的惰性表面,以承担固定
液,使其形成薄而匀的液膜。 1. 载体 也称担体
惰性的,多孔性固体颗粒。 对载体的要求:稳、匀、大。 载体类型:分为硅藻土型和非硅藻土型,后硅藻土型
第3章 气相色谱分析
3.1、气相色谱仪 3.2、气相色谱流动相与固定相 3.3、气相色谱检测器 3.4、 气相色谱分离分析条件 3.5、气相色谱定性方法 3.6、气相色谱定量方法 3.7、 毛细管柱气相色谱法简介 3.8、气相色谱的应用
气相色谱过程:待测物样品被被蒸发为气体 并注入到色谱分离柱柱顶,以惰性气体 指不与 待测物反应的气体,只起运载蒸汽样品的作用, 也称载气 将待测物样品蒸汽带入柱内分离。 其分离原理是基于待测物在气相和固定相之 间的吸附——脱附 气固色谱 和分配 气液色 谱 来实现的。因此可将气相色谱分为气固色 谱和气液色谱。

气相色谱分析

气相色谱分析
成离子流,借测定离子流
强度进行检测。
通用型质量检测器
FID具有灵敏度高、响应快、线性范围宽等 优点,是目前最常用的检测器之一。
三、电子捕获检测器(ECD)
利用含有强电负性 元素的物质捕获电子的 能力,通过测定电子流 进行检测
63Ni或3H
专属型浓度检测器
U
具灵敏度高、选择性好的特点。是目前分析痕量 强电负性有机化合物最有效的检测器。但对无电负性 的物质如烷烃等几乎无响应。
一、载气系统
获得纯净、流速稳定的载气。包括压力计、 流量计及气体净化装置。 载气:要求化学惰性,不与有关物质反应 气体净化装置:去水、去氧、去总烃 载气——N2气、 H2气等 燃气——H2气 助燃气——空气
二、进样系统
常以微量注射器或六通
阀将液体样品注入气化室
三、色谱柱系统
色谱分析的心脏,包括填充柱和开管柱 (或毛细管柱)

复杂混合物、有机同系物、异构体及手性异构体 填充柱理论塔板数可达数千,毛细管柱可达一百多万

检测灵敏度高(10-11~ 10-13g) ,样品用量少 操作简单,分析速度快
沸点500以下,分子量400以下,热稳定性好的
气、液、固态物质,约占全部有机物的20%
第二节 气相色谱仪器
第二节
n 1 k R ( )( ) 4 1 k
柱效项 柱选择项 柱容量项
a.柱效项影响因素
n 1 k R ( )( ) 4 1 k
影响色谱峰宽窄,主要取决于色谱柱性能及载气流速
1 已知 n L 或n H
R n
R L 或 R
1 H
增加柱长;降低板高是改善分离的一个有效手段
即按被分离组分的极性或基团与固定液

气相色谱分析范文

气相色谱分析范文

气相色谱分析范文一、气相色谱的原理气相色谱是一种在气相状态下进行的分离分析技术。

其原理基于物质在固定相(色谱柱内部的不活性填料)和流动相(惰性的气体载气)之间的分配行为。

样品混合物经过样品进样器进入色谱柱内部,其中的化合物在流动相的驱动下被逐一注入,然后被吸附、解吸过程和流动相传送,最终在柱输出端被依次分离出来。

常见的色谱柱填料有固定化液态或固态的聚合物、硅胶、活性炭等。

色谱柱经过激活处理后可以有效地提供大的表面积,用于吸附不同化合物。

流动相是通常是气体,如氮气、氦气等,其主要功能是将样品逐一推进色谱柱,并在柱输出端将各组分分离开。

流动相的选择与分析的目标物有关,需要保证其惰性和溶解度适中,以避免对样品产生干扰。

在色谱柱中,样品被吸附和解吸过程反复发生,这样每个组分就会在固定相和流动相之间动态平衡,根据其在两相之间相对分配系数的大小进行移动。

分析过程常常利用检测器检测传出的组分浓度的变化,以得到被分离物的含量。

二、气相色谱的仪器气相色谱仪主要由以下几个主要部分组成:进样器、色谱柱、流动相的送气装置、检测器和数据处理系统。

1.进样器:样品通过进样器由进样针进入色谱柱内。

进样器通常包括定量进样器和进样口,它们的选择取决于样品的性质和分析的要求。

2.色谱柱:色谱柱是气相色谱分析的核心部分,其中通常包含固定相(填料)和色谱柱壁。

填料的选择取决于分析的目标物和分离要求。

3.流动相的送气装置:气相色谱中的流动相是通过气体送气装置输送至色谱柱内的。

常见的气体有氮气、氦气等。

4.检测器:检测器是用于检测样品在色谱柱中分离过程中向传出流体中传输的成分。

5.数据处理系统:一般使用计算机系统控制气相色谱仪进行操作和数据采集、处理。

三、气相色谱的应用气相色谱在有机化学、环境分析、食品安全等领域有广泛的应用。

1.在有机化学中,气相色谱可以用于合成产物的纯度分析、反应进程的监控、结构鉴定等。

2.在环境分析中,气相色谱可以应用于空气和水中有机污染物的检测、土壤中的残留物的分析等。

气相色谱分析

气相色谱分析

2021/8/1
5
1.色谱法概述
色谱法是一种分离技术。在分析化学 领域中是一种新型的分离分析方法。 气相色谱是色谱中普遍使用的一种。
2021/8/1
6
1.1 色谱法的产生和发展
俄 国 植 物 学 家 Tsweet 发 明 的 方 法后来被称为“经典液相色谱 法”。 (1906年) 所使用的玻璃管称为色谱柱。 管内的碳酸钙填充物称为固定 相。 淋洗液称为流动相或淋洗剂。 混合物中的各组分被称为溶质。
2021/8/1
7
❖色谱法普遍用来分离无色物质,但色谱法 这个名称一直被沿用下来。
❖1941年Martin和Synge 发现了液-液(分配)
色谱法,阐述了气-固吸附色谱原理,提出 气-液色谱法设想; (1952 年诺贝尔化学奖)
❖色谱学成为分析化学的重要分支学科,则 是以气相色谱的产生、发展为标志。
内径细 0.1-0.5mm 柱长 50-300m/常用石英
毛细管柱
2021/8/1
22
2.5 检测系统
➢检测器、控温装置 ➢将经色谱柱分离后的各组分按其特性及
含量转化为相应的电讯号。
➢根据检测原理不同,浓度型、质量型
➢浓度型:热导池、电子捕获检测器 ➢质量型:氢火焰离子化、火焰光度检测

2021/8/1
2021/8/1
3
第 一 1 色谱法概述 章 2 气相色谱仪
气 3 气相色谱分析理论基础
相 色
4 分离条件的选择
谱 5 检测器
分 析
6 定性定量方法
2021/8/1
4
主要参考书目
❖ 仪器分析,朱明华,高等教育出版社 ❖ 现代仪器分析,杜廷发,国防科技大学

气相色谱分析法

气相色谱分析法

3. 分配比(容量因子)k 分配比(容量因子)k 在实际工作中,也常用分配比来表征色谱分配 在实际工作中, 平衡过程.分配比是指,在一定温度下, 平衡过程.分配比是指,在一定温度下,组分在两 相间分配达到平衡时的质量比: 相间分配达到平衡时的质量比:
组分在固定相中的质量 ms k= = 组分在流动相中的质量mM
色谱法: 又称色层法或层析法,是一种 色谱法: 物理化学分析方法,它利用不同溶质(样 品)与固定相和流动相之间的作用力(分 配,吸附,离子交换等)的差别,当两相 做相对移动时,使得各组分按一定顺序从 固定相中流出,实现混合物中各组分的分 离.
2. 色谱法分类
流动相为气体( (1)气相色谱:流动相为气体(称为载气). 气相色谱 流动相为气体 称为载气) 按分离柱不同可分为:填充柱色谱和毛细管柱色谱; 按分离柱不同可分为:填充柱色谱和毛细管柱色谱; 按固定相的不同又分为: 按固定相的不同又分为:气固色谱和气液色谱
组分在固定相中的浓度 cs K= = 组分在流动相中的浓度 cM
分配系数是色谱分离的依据. 分配系数是色谱分离的依据.
分配系数 K 的讨论
组分在固定相中的浓度 K= 组分在流动相中的浓度
一定温度下,组分的分配系数 越大,出峰越慢; 一定温度下,组分的分配系数K越大 出峰越慢; 越大,
试样一定时,K主要取决于固定相性质; 试样一定时, 主要取决于固定相性质 主要取决于固定相性质; 试样一定时 每个组份在各种固定相上的分配系数 不同; 每个组份在各种固定相上的分配系数K不同 每个组份在各种固定相上的分配系数 不同; 选择适宜的固定相可改善分离效果; 选择适宜的固定相可改善分离效果; 选择适宜的固定相可改善分离效果 试样中的各组分具有不同的 值是分离的基础; 试样中的各组分具有不同的K值是分离的基础 试样中的各组分具有不同的 值是分离的基础; 某组分的 = 0时,即不被固定相保留,最先流出. 某组分的K 某组分的 时 即不被固定相保留,最先流出.

分析化学手册 5 气相色谱分析

分析化学手册 5 气相色谱分析

分析化学手册 5 气相色谱分析《分析化学手册 5 气相色谱分析》一、气相色谱分析简介气相色谱分析(Gas Chromatography,GC)是一种分离不同分子组分物质所用的技术。

它由一个柱,一个活性柱材料,一台负责改变柱内组分气体比例的汽油机,一台采样泵和一台探测器组成。

柱架中装有一个分子过滤固定柱,这种柱架可以把混合溶液中的分子分离出来。

在一个GC实验中,通常将混合溶液放入GC中并用一种类似汽油机装置将混合物作为气体进入GC柱架,汽油机将其进一步压缩,并进行热加热,以便混合物的组成物被分离,经过一定的时间,每一种组分物质都会按其分子量、电荷等参数沿着柱架向下流动,最终被探测器检测到。

二、气相色谱分析原理气相色谱分析的基本原理是利用柱内复杂的分子过滤作用来分离有机物。

它是通过热活化或汽油机压力改变试液混合物中各组成物质之间的相对比例,从复杂的混合溶液中将有机物分离出来,经过探测器的检测以便实现色谱分析的目的。

在气相色谱仪的回收环节,由活性柱材料提供的结合功能,首先结合溶液柱中的无机离子和较大分子物质,然后再结合较小分子物质,又因为物质在结合和脱离活性柱材料的过程中,各物质的临界点不一样,所以其分子组成的组分物质以根据其临界点的差异,以不同的速率流动到检测器,实现色谱分析的目的。

三、气相色谱分析应用气相色谱在药学、生物学以及化学分析中有着广泛的应用。

气相色谱的薄层色谱可用来快速分析样品中的各成分,而深层色谱则可以测定分子混合中低量组分,它可以测定出健康体检、环境检测和油品分析中排放出的有毒物质等多种样品,它不仅涉及到分离和测定,而且可以测量有机物的活性和氧化指示物的水平。

此外,气相色谱还可用于分析宏观物料,如燃料油、生物油脂、染料等,从而检查产品质量,还可以检测气体、蒸气、液体和固体中可挥发物质等。

四、气相色谱分析技术气相色谱分析技术是一种高效、可靠的分离和检测分析技术,它将有机物浓度范围从比重分数降低到50-100微克/克,精确度高于重量少于10-8克。

气相色谱结果分析

气相色谱结果分析

气相色谱结果分析气相色谱(Gas Chromatography, GC)是一种常见的分离和检测化合物的分析方法。

它不仅在医药、化工、化妆品等领域中被广泛应用,而且在食品行业中也有广泛的用途。

在实际数据处理中,根据气相色谱检测结果进行分析,对于误差及信息可信度的评估都非常重要。

本文将介绍气相色谱结果分析的基本方法和应用。

气相色谱分析的基本原理气相色谱将需要分析的样品通过溶解或热解的方式,将其转变为气态分子,并在柱内的涂层物上进行分离,最后在检测器中进行检测。

气相色谱分析的三个要素分别是样品、柱和检测器。

1.样品样品的准备工作在气相色谱分析中非常重要。

首先应确保样品干燥后粉碎均匀。

接着,样品必须在进入气象管之前被转化为气体状态。

值得注意的是,在将样品转化为气态分子时,还需要添加一定量的内部标准品,以确保数据的准确性和可靠性。

2.柱在柱中的涂层物,也就是固相材料,是分离样品的关键。

「顺时针」柱和「逆时针」柱是两种常见的柱类型,这两种柱分别适用于不同类型的检测物。

涂层质量也会显著影响分离结果。

3.检测器检测器在气象色谱分析中主要用于检测样品的分离和识别,是气象色谱分析中不可或缺的部件之一。

在选择检测器时需要根据检测物分子结构、检测灵敏度和检测速度等多方面因素进行考虑。

气相色谱结果分析的方法气相色谱分析数据处理要依靠计算机软件,可以通过多种方法进行分析。

以下是几种主要的分析方法:1.峰高度分析法在峰高度分析法中,根据检测器收到的信号高度来计算每个成分的组成比例。

这种方法需要依靠标准直方图和谱库数据库来进行数据分析。

2.峰面积分析法峰面积分析法直接测量峰面积来计算每个成分的组成比例。

在这种方法中,需要对每个成分的响应因子进行校正。

3.峰形匹配分析法峰形匹配分析法基于计算机比较分析,使用已知成分的谱库作为比较基准,从而对待测样品的数据进行分析。

气相色谱分析数据的应用气相色谱分析通常成为质量控制体系中的关键部分,因为它具有快速、准确、灵活和可靠的特点。

气相色谱分析

气相色谱分析

气相色谱分析思 考 题1. 什么叫保留时间?相对保留值?答: 保留时间是被测组分从进样开始到出现最大电信号-色谱峰最高点时所需的时间。

相对保留值是两个组分的调整保留值之比。

(1)(1)21(2)(2)R R RRt V r t V ''==''2. 简要说明气相色谱分析法的分离原理。

答: 气相色谱法的分离原理是基于不同物质组分在流动相(气相)和固定相两相间的作用力不同,当试样通过色谱柱时,试样中的各组分在两相中进行反复多次的分配,最终可使作用力不同的各个组分彼此得以分离。

3. 从给定的色谱图上可以得到哪些信息? 答: 从流出曲线上可以得到如下的信息:(1) 根据色谱峰的数目,得知该试样中至少含有多少组分; (2) 根据色谱峰的位置,即利用保留值可以进行定性鉴定; (3) 根据峰面积或峰高,可以进行定量分析;(4) 根据峰的保留值和峰宽,可对色谱柱的分离效能作出评价。

4. 气相色谱仪的基本组成包括哪些部分?各有什么作用? 答: 载气系统、进样系统、色谱柱、检测系统、记录系统(1) 载气系统的作用是提供一定流量的流动相-载气,载气携带样品通过色谱柱,组分得到分离;(2)进样系统的作用是将试样以气态形式加到流动相中,与载气一同进入色谱柱在柱内达到分离的目的;(3) 色谱柱的作用是分离试样中的各个组分;(4) 检测器是将流出色谱柱的组分的量转变成电信号;(5) 记录系统将检测器给出的电信号记录成流出曲线-色谱图。

5. 能否根据理论塔板数来判断分离的可能性?为什么?答:因为理论塔板数的大小只能说明色谱柱对某一组分分离效能的好坏,所以不能作为两个组分能否分离的依据。

6. 试述速率方程式中A ,B ,C 三项的物理意义。

答:速率方程 H = A + B/u + Cu 中A 项为涡流扩散项,它与柱内填充物颗粒大小和填充均匀程度有关;B 项为分子扩散系数,它与柱内扩散路径的弯曲程度和组分在气相中的扩散系数有关;C 项为传质阻力项系数,包括气相传质阻力和液相传质阻力两部分,气相传质阻力是指组分从气相移动到固定相表面,再从固定相表面移动到气相时所受的阻力,液相传质阻力是指组分从固定相的气液界面移动到固定相内部,又返回到气液界面时所受的阻力。

第二章气相色谱分析

第二章气相色谱分析

流出曲线方程
• C0为进样浓度;tR为保留时间; σ为标准偏差, C为时间t时在柱出口的浓度。
色谱柱长:L,
虚拟的塔板间距离:H, 色谱柱的理论塔板数:n, 则三者的关系为: n=L/H 理论塔板数与色谱参数之间的关系为:
保留时间包含死时间,在死时间内不参与分配!
有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。 • 用不同物质计算可得到不同的理论塔板数。 • 组分在 tM 时间内不参与柱内分配。需引入有效塔板数 和有效塔板高度:
Cg 0.01k (1 k )
2

dp
2
Dg
液相传质阻力系数Cl为
由上式看出,固定相的液膜厚度df薄,组分在液相的 扩散系数D1大,则液相传质阻力就小。降低固定液的 含量,可以降低液膜厚度,但k值随之变小,又会使 C1增大。当固定液含量一定时,液膜厚度随载体的比 表面积增加而降低,因此,一般采用比表面积较大的 载体来降低液膜厚度,但比表面太大,由于吸附造成 拖尾峰,也不利分离。虽然提高柱温可增大Dl,但会 使k值减小,为了保持适当的Cl值,应控制适宜的柱 温。
2 色谱流出曲线及有关术语
1).流出曲线和色谱峰
2)、基线
是柱中仅有流动相通过时,检测器响 应讯号的记录值,稳定的基线应该是一条 水平直线。
3)、峰高
色谱峰顶点与基线之间的垂直距离,以h 表示。
4)、保留值
(1)时间表示的保留值
保留时间(tR):组分从进样到柱后出现浓度极 大值时所需的时间; 死时间(tM):不与固定相作用的气体(如空气 )从进样到出现峰极大值所需的时间称为死时 间; 调整保留时间(tR '):tR'= tR-tM
滞留因子(retardation factor):

气相色谱分析方法

气相色谱分析方法

气相色谱分析方法气相色谱分析(Gas Chromatography, GC)是利用样品分子在气相载体流动相中的分配系数不同,通过样品在固定相上的不同保留时间来实现分离和分析的方法。

它是分析化学中最常用的方法之一,广泛应用于食品、环境、农药、化妆品、制药等领域。

气相色谱仪的基本组成包括进样系统、色谱柱、分离柱温控系统、检测器和数据处理系统等。

进样系统通常采用自动进样器或手动进样器,能够精确控制样品量和进样时间。

色谱柱是气相色谱分离的核心部分,是由特定固定相涂覆在毛细管内壁上的柱状物质。

分离时样品成分在固定相和流动相中进行分配,不同成分由于分配系数不同而具有不同的保留时间,从而实现分离。

而分离柱温控系统则可以控制色谱柱的温度,进一步影响分离效果。

检测器则用于检测色谱出口的化合物,并将其转化为电信号输出,根据信号的大小和特征进行定性和定量分析。

目前常用的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、质谱检测器(MS)等。

数据处理系统则用于对检测到的信号进行数据分析和处理,得到最终的分析结果。

气相色谱分析的过程包括制备样品、进样、分离、检测和数据处理等几个步骤。

首先,需要对样品进行前处理,如提取、浓缩、衍生化等,以适应气相色谱分析的需要。

接着,将样品进入进样系统,控制好样品的量和流速,确保进样的准确性和可重复性。

然后,样品进入色谱柱,通过流动相的推动下,在固定相中发生分离。

不同成分由于分配系数不同,会在不同的时间点分离出来,形成峰状图。

接下来,样品通过检测器,根据不同的检测原理进行检测和测定。

最后,将检测到的信号转化为电信号,并通过数据处理系统进行数据分析和处理,得到最终的结果。

气相色谱分析方法具有以下几个优点:首先,气相色谱分离效果好,能够分离出复杂样品中的各种成分,使分析结果更加准确可靠;其次,分离时间短,通常只需要几分钟到一小时,能够快速获得分析结果;此外,气相色谱方法具有灵敏度高、选择性好、重现性好、分析范围广等特点,能够适应不同样品的分析需求。

仪器分析-气相色谱分析

仪器分析-气相色谱分析

• 3、保留值:是试样各组分在
色谱柱中保留行为的量度,它 反映组分与固定相间作用力大 小,通常用保留时间和保留体 积表示。 死时间tM:不被固定相吸附或 溶解的组分(如空气、甲烷) 从进样到出现其色谱蜂最大值 所需的时间,图中O'A'所示。 保留时间tR :指某组分通过 色谱柱所需时间,即试样从进 样到出现峰极大值时的时间, 图中O‘B所示。 调整保留时间tR’ 死时间后的 保留时间,它是组分在固定相 中的滞留时间。图中A’B所示, 即 tR’ = tR - tM
通常以有效塔板数neff 和有效塔板高度Heff 表示:
neff H eff
t t 2 5.5 4( ) 1 6( )2 W1 / 2 Wb L neff
' R
' R
2-2-3 速率理论
• 塔板理论存在的假定有缺陷,不能解释塔板高度H
受那些因素影响. 1956年,荷兰化学工程师van Deemter提出了色谱过程动力学速率理论。 • van Deemter方程:H=A+B/u+C*u u 为流动相线速度; A,B,C 为常数. 其中: A — 涡流扩散系数; B — 分子扩散系数; C — 传质阻力系数(包括液相和固相传质阻力系 数)
• 1、气路系统
• 载气:H2,N2,He,Ar等 • 净化器:提高载气纯度 • 稳压恒流装置,气体流速控制和测量。
• 2、进样系统
• 进样器: 微量注射器、六通阀 • 气化室:瞬间气化,死体积尽可能小
• 3、分离系统
• 色谱柱有填充柱和毛细管柱两大类
2-1-3 组成
• • • • •
4、温控系统 色谱柱、气化室、检测室三处温度控制 气化室温度应使试样瞬间气化但又不分解; 检测器除氢火焰外都对温度敏感; 柱温的变化影响柱的选择性和柱效,因此柱室的 温度控制要求精确,温控反复根据需要可以恒温, 也可以程序升温。

气相色谱

气相色谱

气化温度 进样后要有足够的气化温度,使液体试样 迅速气化被载气带入柱中,在得证试样不分解 的情况下,适当提高气化温度对分离及定量有 利。 气化温度比柱温高30~70℃。
对固定相的要求:
①挥发性小,操作温度下有较低蒸气压,以
免流失;
②热稳定性好,操作温度下不发生分解;
③对试样各组分有适当的溶解能力。
假设试样中有n个组分,每个组分的质量分别为m1, m2,……,mn各组分含量的总和m为100%,其中组分i的质量ωi 分数可按下式计算:
mi mi Ai f i i 100% 100% 100% m m1 m2 mn Ai f1 A2 f 2 An f n
3、分离系统
色谱柱(心脏部分)、柱箱和恒温控制装置。
色谱柱:填充柱、空心毛细管柱。
填充柱:
制备简单,可供使用的单体、固定液、吸附剂繁多, 可解决各种分离分析问题。 填充柱外形有U型、W型和螺旋型三种,内径均为2~ 6mm,长度在1~10m之间,通常2~4m。不锈钢、玻璃、 聚四氟乙烯。
空心毛细管:
气相色谱法
信 号
气相色谱法是采用气体作为
流动相的一种色谱分析法。在此法 中,载气(不与被测物作用,用来 载送试样的惰性气体,如氢气、氮 气等)载着欲分离的试样通过色谱 柱中的固定相,使试样中各组分分 离,然后分别检测。检测器信号由 记录仪记录,得到“色谱图”。
时间
气相色谱的工作流程
6 7 9 2 4 5 8 3 1
现今,“色谱”这一名词仍沿用下来。但随着技术的发展, 色谱法研究的对象已不局限于有色物质。
Tsweet的实验
色谱法的原理
分离原理:使混合物中各组分在两相间进行分配,
一相是不动的,称为固定相。另一相是携带混合物流

分析化学 气相色谱法

分析化学 气相色谱法

仪器分析
●按化学结构分类: 烷烃, 聚硅氧烷, 聚二醇, 酯和聚酯 烷烃类: 异三十烷(squalane ), 阿皮松(Apiezon)
聚硅氧烷类:
CH3
CH3
CH3
H3C Si O Si O n Si CH3
CH3
R
CH3
R=-CH3, methylsilicone, OV-1, OV-101, SE-30, non-polar R=94% methyl, 5% phenyl, 1% vinyl, SE-54, weakly polar R= 50% methyl, 50% phenyl, OV-17, middle polar R= 50% methyl, 25% cyanopropyl, 25% phenyl, OV-225, polar
仪器分析
◆毛细管柱
第十七章 气相色谱法
仪器分析
●石英材质, 外涂聚酰亚胺保护层.
● 内径 0.10~0.53mm,常用规格0.10、0.25、0.32、 0.53mm.
● 常用类型:涂壁毛细管 (WCOT)
载体涂层毛细管 (SCOT)
交联毛细管(用于GC-MS)
● 载气流速: 1~2 mL/min
红色载体(Chromosorb P,6201等)
非硅藻土类 (玻璃微球,特氟龙)
酸洗(AW)
碱洗 (BW)
减弱载体表面吸附 活性
硅烷化 (DMCS, HMDS)
二、气-固色谱固定第相十七章 气相色谱法
仪器分析
吸附剂: 石墨化炭黑,硅胶,氧化铝,用于分析低分子量醇、烷烃和 醛酮
分子筛: 用于分析 H2,O2, CO, N2, CO2, CH4等
qlgt, Rt环 , R苯己烷或qlgtt, ,R R正 丁己 二烷 烯

气相色谱质谱分析

气相色谱质谱分析

气相色谱质谱分析气相色谱质谱(GC-MS)联用技术的基本原理是将气相色谱用于样品的分离,然后通过质谱用于样品的分析和鉴定。

气相色谱是一种在高温下将样品中的化合物分离出来的方法,通过一系列化学条件的调整,不同化合物会在气相色谱柱上有不同的保留时间,从而实现对样品的分离。

而质谱则是通过将化合物分子打碎,测量分子碎片的质谱图,从而确定化合物的成分和结构。

气相色谱质谱仪的配置通常包括气相色谱仪、质谱仪和数据系统。

气相色谱仪一般由进样系统、色谱柱、温控系统和检测器组成。

进样系统可用于将样品引入到气相色谱柱中,色谱柱则是用于样品的分离。

温控系统用于控制色谱柱的温度,以实现样品的分离。

检测器则用于检测样品分离后的化合物,并将其转化为电信号。

质谱仪则由离子化室、扇形扫描器、质谱检测器和数据系统等组成。

气相色谱质谱联用技术在许多领域都有重要的应用,比如环境分析、食品安全、药物分析等。

在环境分析中,气相色谱质谱联用技术可用于检测空气、水和土壤中的有机污染物。

在食品安全方面,可用于检测农产品中的农药残留和食品添加剂。

在药物分析中,可用于药物代谢产物的研究、药物的检测和定量分析等。

气相色谱质谱分析的步骤包括样品的前处理、进样和分离、质谱测量及数据处理等。

首先,样品需要进行前处理,例如提取、浓缩等,以提高分析的灵敏度和准确性。

然后,样品可通过进样系统引入气相色谱仪中,进行分离。

在分离过程中,需要确定最佳的色谱柱和色谱条件,以实现样品的分离和分析。

分离完成后,化合物将进入质谱仪中,通过碰撞诱导解离(CID)或电离法进行离子化和打碎,然后测量分子碎片的质谱图,从而确定样品中化合物的成分和结构。

最后,通过数据系统对质谱图进行解析和处理,以提取有用的信息。

在实际应用中,为了提高GC-MS分析的灵敏度和准确性,还可以采用一些增强技术,例如固相微萃取(SPME)、衍生化反应等。

同时,对于复杂样品的分析,也可以采用多级质谱(MS/MS)技术,以进一步提高分析的特异性和灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12:11:51
二、 速率理论-影响柱效的因素
1. 速率方程(也称范.弟姆特方程式) H = A + B/u + C·u
H:理论塔板高度, u:载气的线速度(cm/s)
减小A、B、C三项可提高柱效; 存在着最佳流速; A、B、C三项各与哪些因素有关?
12:11:51
A─涡流扩散项
A = 2λdp
以塔板高度H对应载气流速u作图,曲线最低点的流速即 为最佳流速。
12:11:51
3. 速率理论的要点
(1)组分分子在柱内运行的多路径与涡流扩散、浓度梯度所 造成的分子扩散及传质阻力使气液两相间的分配平衡不能瞬 间达到等因素是造成色谱峰扩展柱效下降的主要原因。
(2)通过选择适当的固定相粒度、载气种类、液膜厚度及载 气流速可提高柱效。
n有效 = 16R2 [r21 / (r21 —1) ]2 = 16×1.52 ×(1.18 / 0.18 ) 2 = 1547(块)
L有效 = n有效·H有效 = 1547×0.1 = 155 cm 即柱长为1.55米时,两组分可以得到完全分离。
12:11:51
例题2:
在一定条件下,两个组分的保留时间分别为12.2s和12.8s
12:11:51
分离度的表达式:
R 2(tR(2) tR(1) ) Wb(2) Wb(1)

2(tR(2) tR(1) )
1.699(Y1/ 2(2) Y1/ 2(1) )
R=0.8:两峰的分离程度可达89%; R=1:分离程度98%; R=1.5:达99.7%(相邻两峰完全分离的标准)。
,计算分离度。要达到完全分离,即R=1.5,所需要的柱长。
解:
Wb1

4
t R1 n

4 12.2 3600

0.8133
Wb2

4
tR2 n

4 12.8 3600

0.8533
分离度: R 2(12.8 12.2) 0.72
0.8533 0.8133
L2

R2 R1
三、 分离度
塔板理论和速率理论都难以描述难分离物质对的实际分 离程度。即柱效为多大时,相邻两组份能够被完全分离。
难分离物质对的分离度大小受色谱过程中两种因素的综 合影响:保留值之差──色谱过程的热力学因素;
区域宽度──色谱过程的动力学因素。 色谱分离中的四种情况如图所示:
12:11:51
讨论:
色谱分离中的四种情况的讨论: ① 柱效较高,△K(分配系数)较大,完全分离; ② △K不是很大,柱效较高,峰较窄,基本上完全分离; ③柱效较低,,△K较大,但分离的不好; ④ △K小,柱效低,分离效果更差。
(3)速率理论为色谱分离和操作条件选择提供了理论指导。 阐明了流速和柱温对柱效及分离的影响。
(4) 各种因素相互制约,如载气流速增大,分子扩散项的影 响减小,使柱效提高,但同时传质阻力项的影响增大,又使 柱效下降;柱温升高,有利于传质,但又加剧了分子扩散的 影响,选择最佳条件,才能使柱效达到最高。
12:11:51
n理

5.54( tR Y1/ 2
)2

16( tR Wb
)2
n有效

5.54(
t
' R
Y1/ 2
)2

16(
t
' R
Wb
)2
L H有效 n有效
12:11:51
3.塔板理论的特点和不足
(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越 小),被测组分在柱内被分配的次数越多,柱效能则越高,所 得色谱峰越窄。
12:11:51
2.载气流速与柱效——最佳流速
载气流速高时: 传质阻力项是影响柱效的
主要因素,流速,柱效。 载气流速低时:
分子扩散项成为影响柱效 的主要因素,流速,柱效 。
H - u曲线与最佳流速: 由于流速对这两项完全相反的作用,流速对柱效的总影
响使得存在着一个最佳流速值,即速率方程式中塔板高度对 流速的一阶导数有一极小值。
12:11:51
令Wb(2)=Wb(1)=Wb(相邻两峰的峰底宽近似相等),引入相对 保留值和塔板数,可导出下式:
R

2(t R ( 2 )
tR(1) )

t' R(2)
t' R (1)
(t ' R(2)
Wb(2) Wb(1)
Wb
t' 1) t'
R (1)
R (1)
Wb

(r21 1)
组分保留时间为何不同?色谱峰为何变宽? 组分保留时间:色谱过程的热力学因素控制;
(组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制;
(两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论;
12:11:51
一、塔板理论-柱分离效能指标
1.塔板理论(plate theory)
半经验理论; 将色谱分离过程比拟作蒸馏过程,将连续
(2)分离度与r21
增大r21是提高分离度的最有效方法,计算可知,在相同 分离度下,当r21增加一倍,需要的n有效 减小10000倍。
增大r21的最有效方法是选择合适的固定液。
12:11:51
例题1:
在一定条件下,两个组分的调整保留时间分别为85秒和 100秒,要达到完全分离,即R=1.5 。计算需要多少块有效 塔板。若填充柱的塔板高度为0.1 cm,柱长是多少? 解: r21= 100 / 85 = 1.18
2
Hale Waihona Puke 1 1.5 2 1 0.72
4.34
m
塔板数增加一倍,分离度增加多少?
12:11:51
请选择内容:
第一节 色谱法概述
generalization of chromatograph analysis
第二节 色谱理论基础
fundamental of chromatograph theory
12:11:51
B ·u —传质阻力项
(动画)
传质阻力包括气相传质阻力Cg和液相传质阻力CL即:
C =(Cg + CL)
Cg

0.01k (1 k)2

d
2 f
Dg
CL

2 3

k (1 k)2

d
2 f
DL
k为容量因子; Dg 、DL为扩散系数。
减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
dp:固定相的平均颗粒直径 λ:固定相的填充不均匀因子
(动画)
固定相颗粒越小dp↓,填充的越均匀,A↓,H↓,柱效 n↑。表现在涡流扩散所引起的色谱峰变宽现象减轻,色谱 峰较窄。
12:11:51
B/u —分子扩散项
B = 2 νDg ν :弯曲因子,填充柱色谱,ν <1。
(动画)
Dg:试样组分分子在气相中的扩散系数(cm2·s-1) (1) 存在着浓度差,产生纵向扩散; (2) 扩散导致色谱峰变宽,H↑(n↓),分离变差; (3) 分子扩散项与流速有关,流速↓,滞留时间↑,扩散↑; (4) 扩散系数:Dg ∝(M载气)-1/2 ; M载气↑,B值↓。
t' R(2)
(r21 1)
t t W '
'
R( 2) R(1)
b
r21
n有效 16
n有效
16R2 ( r21 )2 r21 1
L

16R
2
(
r21 r21
)2 1

H 有效
12:11:51
讨论:
(1)分离度与柱效
分离度与柱效的平方根成正比, r21一定时,增加柱效 ,可提高分离度,但组分保留时间增加且峰扩展,分析时间 长。
n=L/H 理论塔板数与色谱参数之间的关系为:
n 5.54( tR )2 16( tR )2
Y1/ 2
Wb
保留时间包含死时间,在死时间内不参与分配!
12:11:51
2.有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。
• 用不同物质计算可得到不同的理论塔板数。
• 组分在tM时间内不参与柱内分配。需引入有效 塔板数和有效塔板高度:
第二章 气相色谱分析
gas chromatographic analysis,GC
第二节 色谱理论基础
fundamental of chromatograph theory
一、塔板理论
plate theory
二、速率理论
rate theory
三、分离度
resolution
12:11:51
色谱理论
色谱理论需要解决的问题:色谱分离过程的热力学和动 力学问题。影响分离及柱效的因素与提高柱效的途径,柱效 与分离度的评价指标及其关系。
第三节 色谱定性、定量方法
qualitative and quantitative analysis in chromatograph
12:11:51
结束
的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程);
塔板理论的假设: (1) 在每一个平衡过程间隔内,平衡可以迅 速达到; (2) 将载气看作成脉动(间歇)过程; (3) 试样沿色谱柱方向的扩散可忽略; (4) 每次分配的分配系数相同。 (动画)
12:11:51
色谱柱长:L, 虚拟的塔板间距离:H, 色谱柱的理论塔板数:n, 则三者的关系为:
(2)不同物质在同一色谱柱上的分配系数不同,用有效塔 板数和有效塔板高度作为衡量柱效能的指标时,应指明测定 物质。
相关文档
最新文档