三角高程测量原理及公式
三角高程测量法的基本原理与实施步骤
![三角高程测量法的基本原理与实施步骤](https://img.taocdn.com/s3/m/e54d572af08583d049649b6648d7c1c708a10be7.png)
三角高程测量法的基本原理与实施步骤高程测量是地理测量中的一个重要组成部分,它是确定地点在垂直方向上的高度差,从而推导出地形的起伏和变化情况。
三角高程测量法是一种常用且较为精确的高程测量方法之一,本文将介绍三角高程测量法的基本原理与实施步骤。
一、三角高程测量法的基本原理三角高程测量法基于三角形的相似性原理,它通过一个已知高度的基准点和两个相邻点之间的水平距离来计算出相邻点的高度差。
其基本原理如下:1. 角度测量:首先,我们需要测量出两个相邻点相对于基准点的水平方向的角度。
这可以通过定向测量仪等测量设备来完成。
测量精度要求高时,可以使用全站仪等高精度仪器。
2. 距离测量:在角度测量完成后,我们需要通过测距仪、测距杆等工具测量出基准点和相邻点之间的水平距离。
测距精度将直接影响测量结果的准确性。
3. 高度差计算:测量完成后,我们可以利用三角形的相似性原理,根据已知的角度和距离计算出两个相邻点的高度差。
具体计算方式是利用三角函数中的正切函数来求解高度差。
二、三角高程测量法的实施步骤实际进行三角高程测量时,我们需要按照一定的步骤来进行,以确保测量结果的准确性和可靠性。
下面是三角高程测量法的实施步骤:1. 确定基准点:首先,我们需要选择一个已知高度的基准点。
这个基准点可以是大地水准点、气象台、水坝等高程已知的地物。
在选择基准点时,需要考虑地理位置的便利性和高程的稳定性。
2. 设置测量站:在确定基准点后,我们需要设置测量站点,并在测量站点上安装测量设备,如全站仪等。
测量站点的选择应考虑到地势的平坦性和视线的通畅性,以确保能够准确测量角度和距离。
3. 开展测量:在测量站点设置完毕后,我们可以开始进行角度和距离的测量工作。
首先,利用测量设备测量出基准点和相邻点之间的水平角度;然后,利用测距仪等设备测量出基准点和相邻点之间的水平距离。
4. 计算高度差:在完成测量后,我们可以根据已知的角度、距离和基准点的高度,利用三角函数的运算来计算出相邻点的高度差。
三角高程测量
![三角高程测量](https://img.taocdn.com/s3/m/a993db45e418964bcf84b9d528ea81c758f52e2b.png)
§4-6 三角高程测量一、三角高程测量原理及公式在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。
传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。
方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆),并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为:故(4-11)式中为A、B两点间的水平距离。
图4-12 三角高程测量原理当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正数简称为两差改正:设c为地球曲率改正,R为地球半径,则c的近似计算公式为:设g为大气折光改正,则g的近似计算公式为:因此两差改正为:,恒为正值。
采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。
采用光电测距仪测定两点的斜距S,则B点的高程计算公式为:(4-12)为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。
实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。
理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。
当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。
二、光电三角高程测量方法光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。
表4-6 光电三角高程测量技术要求往返各注:表4-6中为光电测距边长度。
对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。
三角高程测量原理、误差分析及应用(精)
![三角高程测量原理、误差分析及应用(精)](https://img.taocdn.com/s3/m/8f98e65ebe1e650e52ea99bc.png)
三角高程测量1 三角高程测量的基本原理三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。
目前,由于水准测量方法的发展,它已经退居次要位置,但在山区和丘陵地带依然被广泛采用。
在三角高程测量中,我们需要使用全站仪或者经纬仪测量出两点之间的距离(水平距离或者斜距和高度角,以及测量时的仪器高和棱镜高,然后根据三角高程测量的公式推算出待测点的高程。
由图中各个观测量的表示方法,AB两点间高差的公式为:h=S0tanα+i1-i2 ①但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。
因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。
1.1 单向观测法单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。
这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。
1.2 对向观测法对向观测法是目前使用比较多的一种方法。
对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。
从而就可以得到两个观测量:直觇:hAB= S往tanα往+i往-v往+c往+r往②反觇:hBA= S返tanα返+i返-v返+c返+r返③S——A、B间的水平距离;α——观测时的高度角;i——仪器高;v——棱镜高;c——地球曲率改正;r——大气折光改正。
然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。
由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。
所以在对向观测法中可以将它们消除掉。
h=0.5(h AB- h BA=0.5[( S往tanα往+i往-v往+c往+r往-( S返tanα返+i返-v返+c返+r返]=0.5(S往tanα往-S返tanα返+i往-i返+v返-v往④与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。
(完整版)三角高程测量
![(完整版)三角高程测量](https://img.taocdn.com/s3/m/5856f72d83d049649b6658ea.png)
32
2020年8月9日星期日
四、偏心误差系数的测定
基本原理:因为相对观测竖角(绝对值) 的平均值可消除竖盘偏心的影响,因此也可 通过相对观测的竖角来反映偏心误差。
测定步骤 1.为了减小竖盘指标差的影响,在平坦 地区选择两个相距约50m的固定点A、B, 在两点上竖立标尺,如图10-8所示。
33
2020年8月9日星期日
α=(R–L-180°)/2
=(278°12′24″- 81°47′36″- 180°)
= + 8°12′24″
12
2020年8月9日星期日
对高度角式注记,竖直角的计算 当竖直角为仰角时(参考前面的示意图)
α左 = L - 0° α右 = 180°- R α= (L – R + 180°)/2 (a) 当竖直角为俯角时
竖盘指标水准管
竖盘指标水准 管微动螺旋
6
图中3号螺旋为 竖盘指标水准管 微动螺旋
2020年8月9日星期日
2.竖盘的注记形式 顺时针,逆时针。
望远镜水平时,竖盘读数为90°的整倍数。
竖盘逆时针注记(盘左高度角式)
7
2020年8月9日星期日
竖盘顺时针注记(盘左天顶距式)
8
2020年8月9日星期日
3.竖角的表示形式
• 计算竖直角:各按三丝所测得的L和R分别计算出相应
的竖角,最后取平均值为该竖角的角值。
22
2020年8月9日星期日
五、指标差的检验与校正
1.测定指标差 盘左、盘右瞄准同一明显目标,观测多个测回 求得指标差。 2.求出盘左或盘右的正确读数(读数减指标 差)。 3.微调竖盘指标水准管,使竖盘位于正确读数。 4.调节竖盘水准管校正螺丝,使气泡居中。
三角高程测量原理
![三角高程测量原理](https://img.taocdn.com/s3/m/7786620aa4e9856a561252d380eb6294dd8822b7.png)
三角高程测量原理三角高程测量是利用三角轮测量法使用测量设备进行高程测量的方法。
三角高程测量的基本原理是:两个观测者分别在不同的地方进行观测,观测者A观测B点的高度,B观测A与C点之间的距离和角度,从而可以计算C点的高程。
这一原理也被叫做三角测量法,这是一种建立地表某一点的垂直高度的方法,即根据两个已知点的高度、和连接二者的行程距离、角度,确定第三点的高度的方法;其方法是建立给定调查区域中各点之间的三角关系,以几何形式表示出高程关系,然后用解三角形公式求出每点的垂直高度。
三角高程测量法包括三角测距、圆周测量、三次弯曲和三次内曲四种测量方法。
其中三角测距是最常用的测量方法,一般利用直尺和望远器来测量,测量结果一般以米为单位。
圆周测量是采用大圆周半径和测站角度之间的关系,合计周长来测知道多个测站的间距的方法,圆周测量的准确度比三角测距要高,是一种近似非精密法。
而三次弯曲、三次内曲,则利用观测者固定位置站物体两点夹角和物体位移零件码之间的关系,来测知两点间距的方法。
三角高程测量有很多优点,一是结果精度较高,尤其是三角测距的精度,可以达到几厘米的精度;二是测量工作量较少,测量过程能完全采用人工操作,当采用大圆具时,只需要把大圆测量四次,即可完成三角高程的测量;三是可以进行大范围的高程测量,甚至可以对非中心观测地域的无中心点测量进行高程测量。
但三角高程测量也存在不足之处,包括测量范围受限、实用性差等,其中值得特别提及的是,三角高程测量结果取决于气温、大气压力及湿度的变化,而这些因素的变化会影响视线的变化,从而导致测量结果的误差加大。
总的来说,三角高程测量是一种非常重要的高程测量方法,它具有精度高、测量范围广、操作简便等优点,但同时也存在一定的不足,有需要时要注意其所遇到的局限性,以减少测量结果的误差,使测量结果更精确。
三角高程
![三角高程](https://img.taocdn.com/s3/m/8ccf9b5a2b160b4e767fcfa2.png)
四、仪器高i和目标高v的测定误差 1.测定地形控制点的高程:对于测定地形控 制点高程的三角高程测量,仪器高、觇标高 的测定误差,仅要求精确到厘米级,这是很 容易达到的,测量时认真丈量即可。 2.控制测量的高程:对于用光电测距三角高 程代替四等水准测量时,仪器高和觇标高的 测定要求达到毫米级,其丈量误差应注意控 制,一般丈量两次取其平均值。
2 2 2 2 mh md m S S 2 S hBA AB BA AB
其容许值为:
2 2 S d容
二、三角高程测量的计算 1.三角高程路线的计算 对于控制而言,三角高程导线都应进行往返 观测,其起闭点都应是高级控制点。 (1)高差计算 外业成果检查、整理,不合格的应重测; 画草图,计算相邻点间的高差、距离,当往 返测高差互差符合规范要求后取其平均值。 (2)三角高程路线成果整理 计算高差闭合差: f h h ( H b H a ) 计算每公里高差改正数: 公里 f h / S公里 计算每测段高差改正数: i S i 公里 计算各待定点高程:
D
B p
v
r
EG=IE•tgα
hAB
r=0.08 • s2/R
p=s2/2R
C
HB
通常令 f=p-r,则 f=0.42 s2/R
S B0 R
HB= HA+Stgα+i-v+f
ε
O
HB= HA+Stgα+i-v+f
平距、斜距、视距
四、竖角的测定 竖角的测定一般采用两种方法。 1.中丝法 (1)在测站上安臵好仪器,对中、整平、量 取仪器高i。 (2)盘左位臵瞄准目标,使十字丝的中丝切 目标于某一位臵,其高度即为v。 (3)转动竖盘水准管微动螺旋,使竖盘水准 管气泡居中。读取竖盘读数即为L。 (4)同上法,以盘右位臵照准原目标,读取 竖盘读数即为R。(注意气泡居中)
三角高程测量的计算公式
![三角高程测量的计算公式](https://img.taocdn.com/s3/m/02b9b211580102020740be1e650e52ea5518ceff.png)
三角高程测量的计算公式三角高程测量是一种常用的地理测量方法,随着测量技术的发展和应用领域的拓宽,其计算公式也越来越重要。
本文将从计算公式的基本原理、计算过程和误差控制三方面进行阐述,以期让读者更深入地了解三角高程测量的计算方法。
一、基本原理三角高程测量,顾名思义,是以三角形理论为基础进行测量的一种方法。
通常情况下,我们选取三个站点进行测量,这三个站点构成一个三角形,我们可以测量得到三个角的角度和三边的长度。
在此基础上,我们可以运用三角函数,求得这个三角形的高程。
具体来说,我们可以通过以下公式进行计算:H = L(a sin B + b sin A)/ sin C其中,H为目标点的高程,L为相邻两个点的距离,A 和B为相邻两点到目标点的水平角,C为相邻两点之间的斜线距离。
在实际操作中,我们一般采用三边测量和两边一角测量两种方法来进行三角高程测量。
无论采用哪种方法,都需要进行角度和距离的测量,然后通过计算公式求得目标点的高程。
二、计算过程在进行三角高程测量之前,我们需要对测量区域进行勘验,确定三个测量点的位置,并在每个站点上架设三角测量仪器。
在具体的测量过程中,我们首先测量站点之间的距离和角度。
这一步骤可以采用三边测量或两边一角测量方式。
如果采用三边测量方式,则需要同时测量两个角度。
如果采用两边一角测量方式,则需要测量三个角度。
在完成角度和距离的测量之后,我们可以将数据输入到计算公式中,求解目标点的高程。
需要注意的是,三角高程测量的计算精度受到多种因素的影响,例如测量仪器的精度、环境因素以及人为操作错误等。
因此,在进行计算之前,我们需要对数据进行校核,以确保计算结果的准确性。
三、误差控制三角高程测量存在着测量误差,这不可避免。
为了尽可能地减小误差对测量结果的干扰,我们可以采取一些措施。
具体来说,我们可以从以下几方面入手:(1)选择合适的测量仪器。
测量仪器的精度和稳定性对测量结果的影响很大。
因此,我们需要选用精度高、稳定性好的测量仪器来进行测量。
测绘技术三角高程测量详解
![测绘技术三角高程测量详解](https://img.taocdn.com/s3/m/c0a2950ce55c3b3567ec102de2bd960591c6d942.png)
测绘技术三角高程测量详解测绘技术在现代社会中扮演着重要的角色,其中三角高程测量作为测绘技术的重要组成部分,对于地理信息的获取和实际应用具有重要意义。
本文将对三角高程测量进行详细解析,介绍其原理、方法和应用。
一、三角高程测量的原理三角高程测量是一种基于三角形的测量方法,通过测量三角形的边长与角度来计算目标点的高程。
其基本原理是利用三角形的几何关系,根据已知边长和角度的关系求解目标点的高程。
三角高程测量的原理有两种方法,即几何三角高程测量和均差三角高程测量。
几何三角高程测量是利用定点观测和差角观测进行高程测量,其原理是通过比较观测点与已知高程点之间的角度差异,从而计算出目标点的高程。
均差三角高程测量是通过测量三角形边长和角度的变化量,利用高程差与边长、角度的关系求解目标点的高程。
二、三角高程测量的方法三角高程测量有多种方法,常用的包括:倾斜距离法、距离比例法、角度比例法、高程变换法等。
下面将对其中两种方法进行详细介绍。
1. 倾斜距离法倾斜距离法是一种适用于平地和坡地的高程测量方法,其原理是通过测量目标点与已知点之间的倾斜距离和水平距离的比值来计算目标点的高程。
该方法需要在目标点和已知点之间设置一个水平距离基线,并使用倾斜仪测量两点之间的倾斜角和倾斜距离,再根据比例关系计算出高程。
倾斜距离法的优点是测量方便快捷,适用范围广,但需要考虑目标点与已知点之间的可视性和坡度等因素对测量结果的影响。
2. 距离比例法距离比例法是一种适用于山地和复杂地形的高程测量方法,其原理是测量目标点与已知点之间的距离,并根据距离比例关系计算出目标点的高程。
该方法需要测量目标点与已知点之间的水平距离和垂直距离,并计算距离比例,再通过已知点的高程推算出目标点的高程。
距离比例法的优点是适用范围广,不受地形复杂性的限制,但需要考虑测量误差和仪器精度对结果的影响。
三、三角高程测量的应用三角高程测量在地理信息系统、地质勘探、城市规划等领域具有广泛的应用。
三角高程测量原理
![三角高程测量原理](https://img.taocdn.com/s3/m/aea76d814128915f804d2b160b4e767f5acf80b0.png)
三角高程测量原理
1.直接测高法
直接测高法是通过在地面上测量三角形的边长和角度来计算目标点的高程。
主要步骤包括:
(1)测量基线长度:选取一条基线,并准确地测量出其长度。
(2)观测角度:通过望远镜观测目标点与基线两段的夹角,记录下各个角度。
(3)计算高程:利用三角形的边长比例关系,以及所测得的角度,利用三角函数计算出目标点与基准点的高程差。
2.间接测高法
间接测高法是通过测量基线两端与目标点之间的水平距离和垂直距离来计算目标点的高程差。
主要步骤包括:
(1)测量基线长度:选取一条基线,并准确地测量出其长度。
(2)嵌入高程点:在基线两端设置两个已知高程点,并记录下它们与基准点的高程差。
(3)观测距离:利用测距仪或全站仪测量基线两端与目标点之间的水平距离和垂直距离。
(4)计算高程:利用已知高程点与目标点的水平距离、垂直距离,以及基准点与已知高程点的高程差,利用三角形的相似性计算出目标点与基准点的高程差。
在实际应用中,三角高程测量常常与全球定位系统(GPS)结合使用,通过卫星定位来获取更准确的基准点和基线,提高测量结果的精度。
此外,还可以利用差分GPS技术对测量结果进行实时改正,得到更准确的高程数据。
总的来说,三角高程测量原理是一种常用的测量方法,能够通过测量
角度和距离来计算出地面上其中一点的高程或者两点之间的高差。
在实际
应用中,需要考虑到多种因素的影响,并结合其他测量技术来提高测量结
果的准确性和精度。
三角高程测量的原理
![三角高程测量的原理](https://img.taocdn.com/s3/m/48d59d1258eef8c75fbfc77da26925c52cc59194.png)
2 即圆弧PN的弦切角∠MPN等于圆心角 ε的一半。
三角高程测量
因ε很小, PN PN D,由图可
得 MPN MN MN
2 PN D
即
MN D
2
因
PN D
R' R'
所以
MN D2
若令
k
R
2R ' ,k称为大气折光系数
R' ,则 R ' R,代入上式得
hAB =D·tanα + i - v + f1 - f2
三角高程测量
在三角高程测量中,由于球 差f1使高差减小,气差f2使高差 增大,因此,在高差中应进行“ 加入球差减去气差”的改正,即 球气差改正,亦称两差改正,通 常用 f 表示。即
f = f1 - f2 将上式代入hAB =D·tanα + i v + f1 - f2 ,并整理得:
k f2
MN
D2 2R
k
三角高程测量
D2 f1 CE 2R
f2
MN
D2 2R
k
将上式代入 f = f1 - f2 得
f D2 D2 k (1 k) D2
2R 2R
2R
三角高程测量
4. 三角高程测量的观测方法
(1)直、反觇观测 由已知高程点设站观测待定高程点的垂直角叫直
觇。 由待定高程点设站观测已知高程点的垂直角叫反
由于R>>i+HA,故可以用R代替
i+HA+R,则
R2+D2=(CE+R)2
展开得 R2+D2=CE2+2R·CE+R2
则
三角高程测量
![三角高程测量](https://img.taocdn.com/s3/m/1c86a41a7fd5360cba1adb97.png)
§4-6三角高程测量一、三角高程测量原理及公式在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。
传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。
方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆),并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为:故(4-11)式中为A、B两点间的水平距离。
图4-12三角高程测量原理当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正数简称为两差改正:设c为地球曲率改正,R为地球半径,则c的近似计算公式为:设g为大气折光改正,则g的近似计算公式为:因此两差改正为:,恒为正值。
采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。
采用光电测距仪测定两点的斜距S,则B点的高程计算公式为:(4-12)为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。
实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。
理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。
当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。
二、光电三角高程测量方法光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。
表4-6光电三角高程测量技术要求注:表4-6中为光电测距边长度。
对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。
三角高程计算公式及其含义
![三角高程计算公式及其含义](https://img.taocdn.com/s3/m/f5db2b56b6360b4c2e3f5727a5e9856a56122629.png)
三角高程计算公式及其含义在地理测量和地理信息系统中,三角高程计算是一种常用的方法,用于确定地表上各点的高程。
三角高程计算公式是一种基于三角测量原理的数学公式,通过测量三角形的边长和角度,来计算出三角形的高程。
这种方法可以用来确定地表上任意点的高程,对于地形测量和地图制图非常有用。
三角高程计算公式的一般形式如下:h = (a sin(B)) / sin(A)。
其中,h表示目标点的高程,a表示已知边长,B表示已知角度,A表示未知角度。
这个公式基于正弦定理,通过已知的边长和角度来计算出目标点的高程。
这种方法可以用来测量地表上任意点的高程,无论是平原还是山地,都可以通过三角高程计算公式来确定其高程。
三角高程计算公式的含义非常重要,它可以帮助测量员确定地表上各点的高程,从而绘制出精确的地形图。
地形图是地理信息系统中非常重要的一部分,它可以用来确定地表的起伏和坡度,对于农业、建筑和城市规划等领域都非常有用。
通过三角高程计算公式,可以确定地表上各点的高程,从而绘制出准确的地形图,为各种应用提供重要的参考数据。
三角高程计算公式的应用非常广泛,不仅可以用于地形测量和地图制图,还可以用于工程测量和建筑规划。
在工程测量中,三角高程计算可以帮助工程师确定工程场地的高程,从而进行设计和施工。
在建筑规划中,三角高程计算可以帮助规划师确定建筑场地的高程,从而进行布局和设计。
通过三角高程计算公式,可以为各种工程和建筑提供准确的高程数据,为实际施工和规划提供重要的参考。
总之,三角高程计算公式是地理测量和地理信息系统中非常重要的一种方法,它可以帮助确定地表上各点的高程,为地形测量、地图制图、工程测量和建筑规划提供重要的参考数据。
通过三角高程计算公式,可以为各种应用提供准确的高程数据,为实际工作提供重要的支持。
因此,掌握和应用三角高程计算公式是地理测量和地理信息系统工作者的基本技能,也是各种应用领域的重要工具。
三角高程测量原理
![三角高程测量原理](https://img.taocdn.com/s3/m/c4c5d5be8762caaedd33d483.png)
大地水准面
用水准测量方法测定地面点的高程,其精 度较高,但在地形起伏变化较大的山区、 丘陵地区,使用该法就十分困难。在这种 情况下,通常要采用三角高程测量的方法。
二、三角高程测量的原理
在相邻两点间观测其竖直角,再根据这两 点间的水平距离,应用三角学的原理计算 出两点间的高差,进而推算出点的高程。 原理如图所示。
a.仪器高:望眼镜的旋转中Байду номын сангаас心I至地面点的垂直高度。
b.目标高:望眼镜中的十字 丝的横丝照准B点标尺上一 点M,M距B点的高度。
推导计算公式:
S.tan AB iA vB hAB hAB S. tan AB iA vB
H B H A hAB H A S. tan AB iA vB 注意:竖角的正负号
三角高程测量的原理
制作人:蔡成赟
主要内容
一、几何水准测量 二、三角高程测量的原理 三、地球曲率与大气折射的影响
一、几何水准测量
几何水准测量:简称为水准测量,利用水 准仪提供的水平视线,测量两点间高差, 从而由已知点高程推算出未知点高程。
前进方向
水a
准 尺
水平视 线
A HA
水
b
准 尺
B hAB
HB=HA+hAB
c.直觇:把仪器设在已知高程点上,观测该 点与未知点之间的高差。
d.反觇:把仪器设在未知高程点上,观测该 点与已知点之间的高差。
三、地球曲率与大气折射的影响
a.地球曲率的影响
在水准测量中,常采用前后视距相等来抵 消地球曲率的影响。
三角高程测量也可将仪器设在两点中间进 行观测,或在两点上分别安置仪器进行对 向观测,并计算各自所得的高差,取绝对 值的平均值,也可消除地球曲率的影响。
三角高程测量原理及公式
![三角高程测量原理及公式](https://img.taocdn.com/s3/m/0bff8e100a4e767f5acfa1c7aa00b52acfc79ce8.png)
三角高程丈量
一、三角高程丈量原理
(一)合用于:地形起伏大的地域进行高程控制。
实践证明,电磁波三角高程的精度能够达到四等水平的要求。
(二)原理
h AB D tan i l
h AB Ssin i l
B点的高程:
H B H A h AB
注意:当两点距离较大(大于300m)时:
1、加球气差更正数:
f0.43 D
2 R
即有:
即有: h AB i Dtg l f
2、可采纳对向观察后取均匀的方法,抵消球气差的影响。
球差为正,气差为负
二、三角高程丈量的观察和计算
①布置经纬仪于测站上,量取仪高 i 和目标高 s。
读至,量取两次的结果之差≤ 1cm 时,取均匀值。
②中间丝对准目标时,将竖盘指标水平管气泡居中,读取竖盘读数。
一定以盘左、盘右进
行观察。
③竖直角观察测回数与限差应切合规定。
④用电磁波测距仪丈量两点间的倾斜距离D’,或用三角丈量方法计算得两点间的水平距离D。
三角高程测量的经典总结
![三角高程测量的经典总结](https://img.taocdn.com/s3/m/e2b88252e418964bcf84b9d528ea81c758f52e2b.png)
三角高程测量的经典总结---------------------------------------------------------------最新资料推荐------------------------------------------------------ 三角高程测量的经典总结2. 4 三角高程 2. 4. 1 三角高程测量原理 1、原理三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。
这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。
三角点的高程主要是作为各种比例尺测图的高程控制的一部分。
一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。
如下图:现在计划测量 A、 B 间高差, 在 A 点架设仪器, B 点立标尺。
量取仪器高,使望远镜瞄准B 上一点M,它距B 点的高度为目标高,测出水平和倾斜视线的夹角,若 A、 B 水平距离 S 已知,则:注意:上式中可根据仰角或俯角有正负值之分,当取仪器高=目标高时,计算就方便了。
在已知点架站测的高差叫直占、反之为反战。
2、地球曲率与大气对测量的影响我们在水准测量中知道,高程的测量受地球曲率的影响,仪器架在中间可以消除,三角1 / 7高程也能这样,但是对于一些独立交会点就不行了。
三角高程还受大气折射的影响。
如图:加设 A 点的高程为, 在 A 点架设仪器测量求出 B 点的高程。
如图可以得出但如图有两个影响:1)、地球曲率,在前面我们已经知道,地球曲率改正2)、大气折射不易确定,一般测量中把折射曲线近似看作圆弧,其平均半径为地球半径的 6~7 倍,则:,在这里 r 就是图上的 f2。
通常,我们令下面求,如图,在三角形中: ,当测量范围在20km 以内,可以用 S 代替 L,然后对公式做一适当的改正,进行计算。
2. 4. 2 竖盘的构造及竖角的测定 1、竖盘构造 1)、构造有竖盘指标水准管,如图:竖盘与望远镜连在一起,转动望远镜是竖盘一起跟着转动;但是竖盘指标和指标水准管在一起,他们不动,只有调节竖盘水准管微动螺旋式才会移动。
三角高程测量的经典总结
![三角高程测量的经典总结](https://img.taocdn.com/s3/m/75abe23fcec789eb172ded630b1c59eef8c79a90.png)
2.4三角高程2.4.1三角高程测量原理1、原理三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。
这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。
三角点的高程主要是作为各种比例尺测图的高程控制的一部分。
一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。
如下图:现在计划测量A、B间高差,在A点架设仪器,B点立标尺。
量取仪器高,使望远镜瞄准B上一点M,它距B点的高度为目标高,测出水平和倾斜视线的夹角α,若A、B水平距离S已知,则:注意:上式中α可根据仰角或俯角有正负值之分,当取仪器高=目标高时,计算就方便了。
在已知点架站测的高差叫直占、反之为反战。
2、地球曲率与大气对测量的影响我们在水准测量中知道,高程的测量受地球曲率的影响,仪器架在中间可以消除,三角高程也能这样,但是对于一些独立交会点就不行了。
三角高程还受大气折射的影响。
如图:加设A点的高程为,在A点架设仪器测量求出B点的高程。
如图可以得出但如图有两个影响:1)、地球曲率,在前面我们已经知道,地球曲率改正2)、大气折射不易确定,一般测量中把折射曲线近似看作圆弧,其平均半径为地球半径的6~7倍,则:,在这里r就是图上的f2。
通常,我们令下面求,如图,在三角形中:,当测量范围在20km以内,可以用S代替L,然后对公式做一适当的改正,进行计算。
2.4.2竖盘的构造及竖角的测定1、竖盘构造1)、构造有竖盘指标水准管,如图:竖盘与望远镜连在一起,转动望远镜是竖盘一起跟着转动;但是竖盘指标和指标水准管在一起,他们不动,只有调节竖盘水准管微动螺旋式才会移动。
通常让指标水准管气泡居中时进行读数。
竖盘自动归零装置2)、竖盘的注记形式主要有顺时针和逆时针望远镜水平,读数为90度的倍数角度。
3)、竖角的表示形式高度角a:目标视线与水平方向的夹角天顶距z:目标视线与天顶距方向的夹角2、竖角及测定定义:竖直面内目标方向与水平方向的夹角。
全站仪三角高程测量及计算公式
![全站仪三角高程测量及计算公式](https://img.taocdn.com/s3/m/94b505c2ccbff121dd3683ff.png)
全站仪水平测量及计算公式因为用全站仪(附加棱镜)、经纬仪(附加塔尺)测量高程,是根据两点间的距离和竖直角,应用三角公式计算两点的高差,用全站仪测定高程的方法通常称为三角高程测量(或称测距高程)。
用全站仪测量高程的特点是,精度比用水准仪测量低,但是这种方法简便、灵活,受地形的限制小。
因此通常用于山区的高程测量和地形测量。
三角高程测量,一般应在一定密度的水准测量控制之下。
通常三角高程测量是高程控制测量的一种补充手段,其精度应同同等级的水准测量相同。
当我们采用全站仪(光电测距仪)进行高程测量放样时,如图2-2所示,由于全站仪的视线不都在一个水平面上,而全站仪所读读数由正负之分,在进行高程测量放样计算时,我们输入的数据必须以全站仪所读读数实际输入,设后视点BM 的高程为H0,在同一测站下(全站仪的仪器高恒等),放样点的实测高程的计算公式(以下为棱镜高度保持不变的放样点高程推导公式)如下:视线高程H视线 = H0-h0 + v放样点高程Hn = H视线-hn-v =(H0-h0 + v)+ hn-v= H0-h0 + hn当棱镜高度改变时,设棱镜改变后的高度相对与后视时的高度改变值为w (改变后的高度减去棱镜初始高度),则放样点的的实测高程为:Hn = H0-h0 + hn-w。
为避免误差因距离的传递,各等级的三角高程测量必须限制一次传递高程的距离。
三角高程测量路线的总长原则上可参考同等级的水准路线的长度,路线尽可能组成闭合多边形,以便对高差闭合差进行校核。
除以上介绍的基本方法外,采用全站仪测量高程中,视线高程有两种计算方法:一、若已知置站点地面高程,则视线高程为“置站点地面高程与全站仪仪器高之和”。
二、若已知后视点地面高程,则视线高程为“后视点地面高程减去后视高差读数加上棱镜高度”。
以上两种方法计算的视线高程是相等的。
由此可知,前视目标点的高程为“仪器视线高程加上前视高差读数减去棱镜高度”。
三角高程测量
![三角高程测量](https://img.taocdn.com/s3/m/ff108a75f46527d3240ce0f8.png)
三角高程测量(trigonometric leveling),通过观测两点间的水平距离和天顶距(或高度角)求定两点间高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。
三角高程测量的基本原理如图,A、B为地面上两点,自A点观测B点的竖直角为α1.2,S0为两点间水平距离,i1为A点仪器高,i2为B点觇标高,则A、B两点间高差为h1.2=S0tga1.2+i1-i2上式是假设地球表面为一平面,观测视线为直线条件推导出来的。
在大地测量中,因边长较长,必须顾及地球弯曲差和大气垂直折光的影响。
为了提高三角高程测量的精度,通常采取对向观测竖直角,推求两点间高差,以减弱大气垂直折光的影响。
影响一百多年以前,三角高程测量是测定高差的主要方法。
自水准测量方法出现以后,它已经退居次要地位。
但因其作业简单,在山区和丘陵地区仍得到广泛应用。
天顶距观测受到地面大气折光的严重影响。
若大气密度是均匀分布的,由光源L发出的光将以同心球波前的形式向各方向传播,其速度与大气密度相适应。
实际上大气密度一般随着高程的增加而减小,所以光波向上传播的速度比水平方向上的大。
这样,波前不再是同心球,而是图1所示的形式。
这时由测站S观测光源L,将望远镜垂直于波前,所看到的光源视方向将如箭头所示;图中的虚线表示视线的路径,它处处垂直于波前。
这种现象称为地面大气折光,光源的视方向与真方向SL之间的角γ称为折光角。
在三角高程测量中,折光角取决于测站与观测目标之间大气的物理条件,特别是大气密度向上的递减率。
在实际施测中,不可能充分地掌握大气的物理条件来计算折光角,一般只能估计它的概值,或者采取适当措施削弱它对最后结果的影响。
计算方法由三角高程测量结果计算两点间的高差时,是以椭球面为依据,这样求得的高差是椭球面高差。
如图2,A、B两点对于椭球面的高程分别为 H1和H2。
首先略去垂线偏差不计,设由A点向B点观测的天顶距为Z1(或高度角α 1 =90°-Z1),该两点在椭球面上的投影A0和B0相距的弧长为S0,A0B0弧的曲率半径为R0,则A和B的高差是:式中项是地球曲率的影响;项是大气折光的影响;k是折光系数,通常采用平均值k=0.10~0.16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角高程测量原理及公式 The Standardization Office was revised on the afternoon of December 13, 2020
三角高程测量
一、三角高程测量原理
(一)适用于:地形起伏大的地区进行高程控制。
实践证明,电磁波三角高程的精度可以达到四等水准的要求。
(二)原理
l
i S h l i D h AB AB -+=-+=ααsin tan
注意:当两点距离较大(大于300m )时:
1、 加球气差改正数:
即有:
2、可采用对向观测后取平均的方法,抵消球气差的影响。
球差为正,气差为负
f
l Dtg i h AB +-+=α即有: B 点的高程:
AB A B h H H += R
D f 243.0=
二、三角高程测量的观测和计算
①安置经纬仪于测站上,量取仪高i和目标高s。
读至,量取两次的结果之差≤1cm时,取平均值。
②当中丝瞄准目标时,将竖盘指标水准管气泡居中,读取竖盘读数。
必须以盘左、盘右进行观测。
③竖直角观测测回数与限差应符合规定。
④用电磁波测距仪测量两点间的倾斜距离D’,或用三角测量方法计算得两点间的水平距离D。