算法的含义及算法复杂度分析方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法的含义
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
特征
一个算法应该具有以下六个重要的特征:
算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。
1、有限性
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
2、确切性
算法的每一步骤必须有确切的定义;
3、输入
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4、输出一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
算法复杂度分析
通常一个算法的复杂度是由其输入量决定的,随着输入的增加,复杂度越大。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
方法:
时间复杂度
(1)算法耗费的时间和语句频度
一个算法所耗费的时间=算法中每条语句的执行时间之和
每条语句的执行时间=语句的执行次数(即频度(Frequency Count))×语句执行一次所需时间算法转换为程序后,每条语句执行一次所需的时间取决于机器的指令性能、速度以及编译所产生的代码质量等难以确定的因素。
若要独立于机器的软、硬件系统来分析算法的时间耗费,则设每条语句执行一次所需的时间均是单位时间,一个算法的时间耗费就是该算法中所有语句的频度之和。
(2)问题规模和算法的时间复杂度
算法求解问题的输入量称为问题的规模(Size),一般用一个整数表示。
矩阵乘积问题的规模是矩阵的阶数。
一个图论问题的规模则是图中的顶点数或边数。
一个算法的时间复杂度(Time Complexity, 也称时间复杂性)T(n)是该算法的时间耗费,是该算法所求解问题规模n的函数。当问题的规模n趋向无穷大时,时间复杂度T(n)的数量级(阶)称为算法的渐进时间复杂度。
(3)渐进时间复杂度评价算法时间性能
主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。
空间复杂度
与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作:
S(n)=O(f(n))
算法执行期间所需要的存储空间包括3个部分:
·算法程序所占的空间;
·输入的初始数据所占的存储空间;·算法执行过程中所需要的额外空间。