高考数学 导数、数列压轴题的破解策略 数列创新试题
高考数学 导数压轴题的破解策略
倍,故可得
y
x
1 ex
在区间 ,2 ,在区间 2, ,当 x
2
时,
ymin
1 e2
.
考点 2 乘除导致凹凸反转同构函数
图5
图6
图7
图8
315
如图
5:
y
x ex
x ex
f
x ,即将
f x 关于原点对称后得到
y
x ex
,故可得
考点 3 顺反同构函数
图9
图 10
图 11
图 12
如图 9: x ln x eln x ln x f ln x ,当 ln x ,1 ,即 x 0, 1 ,当 ln x 1,,即 x 1 , ,
e
e
如图 8: y
ex x
1
1 e
x
1
1
e
x
1
1 e
f
1
x
1
x
0 ,属于分式函数,将
f
1
x
关于原点对称后,左
移一个单位,再将纵坐标缩小
1 e
倍,故可得
y
ex x 1
在区间 1,0 ,在区间 0, ,当
x
0
时, y min
1.
x 0,e
,
ymax
1 e
.
如图 11:ln x 1 e ln ex ef ln ex ,当 ln ex ,1 ,即 x 1, ,当 ln ex 1, ,即 x 0,1 ,
导数、数列压轴题的破解策略:合理巧设函数与导数压轴题
合理“巧设”,轻松应对函数与导数压轴题函数与导数的交汇问题经常出现在压轴题(包括客观题和主观题中的压轴题)位置.解决这类问题时,往往会遇到某些难以确定的根、交点、极值点或难以计算的代数式.倘若迎难而上,往往无功而返;这时,放弃正面求解所需要的量,先设它为某字母,再利用其满足的条件式实行整体代换以达到消元或化简的效果.下面通过介绍几种具体的“设”的方法来解决这类难题.一、根据函数的单调性,巧设自变量【例1】(2013四川卷理)设函数()f x =,a R e ∈为自然对数的底数),若曲线sin y x =上存有点()00,x y ,使得00(())f f y y =,则a 的取值范围是( ).A. []1,eB. 11,1e -⎡⎤-⎣⎦C. []1,1e +D. 11,1e e -⎡⎤-+⎣⎦【解析】 易知()f x =.设0()f t y =……… ①,又00()()y f f y =,由单调性则0()t f y =……… ②. 下面证明0t y =.若0t y ≠,由单调性则0()f t y ≠,则()00()f y f y ≠与已知矛盾,.所以必有0t y =. 代入②即00()f y y =.曲线sin y x =上存有点()00,x y ,使得00()f y y =x 在[]0,1上存有解.即2x e x x a +-=在[]0,1x ∈上有解.设2()x h x e x x =+-,则()12x h x e x '=+-.在[]0,1x ∈上12x e +≥,22x ≤,所以()120x h x e x '=+-≥,则()h x 在[]0,1上单调递增,所以1(0)()(1)h h x h e =≤≤=.故[]1,a e ∈. 故选A.【评注】由()f x 的单调性可知, 对于00(())f f y y =,则必存有唯一的自变量t ,使得0()f t y =,从而有0()t f y =.这样方便表达.【变式1】(2015·石家庄高三教学检测一)设函数()2x f x e x a =+-(,a R e ∈为自然对数的底数),若曲线sin y x =上存有点()00,x y ,使得00(())f f y y =,则a 的取值范围是( ).A. 11,1e e -⎡⎤-+⎣⎦ B. []1,1e + C. [],1e e + D. []1,e【答案】易知()2x f x e x a =+-为单调递增函数.同例1,有00()f y y =.曲线sin y x =上存有点()00,x y ,使得00()f y y =,等价为:()2x f x e x a x =+-=在[]1,1-上存有解.即x e x a +=在[]1,1x ∈-上有解.设()x h x e x =+,()10x h x e '=+>,则()h x 在[]1,1-上单调递增,所以11(1)()(1)1h h x h e e -=-≤≤=+.故11,1a e e ⎡⎤∈-+⎢⎥⎣⎦. 故选A. 【变式2】(2016届广雅中学高三开学测试)已知()f x 是定义在()0,+∞上的单调函数,且对()0,x ∀∈+∞,都有2(()log )3f f x x -=,则方程()()2f x f x '-=的实数解所在的区间是( ).A. 10,2⎛⎫ ⎪⎝⎭B. 1,12⎛⎫⎪⎝⎭C. ()1,2D. ()2,3【答案】因为()f x 是定义在()0,+∞上的单调函数,所以存有唯一0x ,使得0()3f x = ①. 又2(()log )3f f x x -=,故有20()log f x x x -=,解得20()log f x x x =+.用0x 代替x ,则有0200()log f x x x =+ ②.由①②解得02x =.将02x =代入化简()()2f x f x '-=,得21log 0ln 2x x -=⋅.令21g()log ln 2x x x =-⋅,因为1g(1)0ln 2=-<,1g(2)102ln 2=->,又g()x 在()1,2上单调递增,故g()x 在()1,2上存有唯一零点,即方程()()2f x f x '-=的实数解所在的区间是()1,2.故选C.二、根据两个函数的图象,巧设交点的横坐标【例2】(2015·四川卷理)已知函数()2x f x =,2()()g x x ax a R =+∈.对于不相等的实数12,x x ,设12121212()()()(),f x f x g x g x m n x x x x --==--.现有如下命题:○1对于任意不相等的实数12,x x ,都有0m >;○2对于任意的a 及任意不相等的实数12,x x ,都有0n >; ○3对于任意的a ,存有不相等的实数12,x x ,使得m n =; ○4对于任意的a ,存有不相等的实数12,x x ,使得m n =-.其中的真命题有 (写出所有真命题的序号).【解析】对于○1,由()2x f x =的单调递增的性质可知,1212()()0f x f x m x x -=>-,故○1准确.对于○2,由2()()g x x ax a R =+∈先单调递减再递增的性质可知,存有1212()()0f x f x m x x -=<-的情形,故○2不准确. 对于○3,m n =等价于1212()()()()f x f x g x g x -=-,即1222112222x x x ax x ax -=+--,即1222112222x x x ax x ax --=--.设2()2x h x x ax =--,则()()2ln 22x h x x a '=-+.此时由2ln 2y x =和2y x a =+的图象(如下图)可知,调整合适的a 可使2y x a =+的图象全在2ln 2y x =的图象之下,这时()()2ln 220x h x x a '=-+>恒成立,所以2()2x h x x ax =--单调递增. 据此分析可知:存有a ,使得对于不相等的实数12,x x ,不可能有1222112222x x x ax x ax --=--,即不可能有m n =,故○3不准确.对于○4,m n=-等价于()1212()()()()f x f x g x g x -=--,即()1222112222x x x ax x ax -=-+--,即1222112222x x x ax x ax ++=++. 设2()2x h x x ax =++,则()()2ln 22x h x x a '=---.此时由2ln 2y x =和2y x a =--的图象(如下图)可知,两者必有交点,设交点横坐标为0x .由简图可知,当()0,x x ∈-∞时,2ln 22x x a <--,则()0h x '<,()h x 单调递减;()0,x x ∈+∞y xy=2x+a y=2x ln2时,2ln 22x x a >--,则()0h x '>,()h x 单调递增.于是,对于任意的a ,由单调性可知:存有不相等的实数12,x x ,使得1222112222x x x ax x ax ++=++,即m n =-成立.故○4准确. 综上,所给命题中的真命题有○1、○4.【评注】当导函数为超越函数时,有时我们无法直接求得零点,即便二次求导也难以奏效.这时不妨将其转化为研究两个简单函数的图象的交点问题.由图象可直观获得两图象的高低情况(对应函数值的大小比较),从而轻松判断导函数的正负情况.为了方便表述,可设两图象的交点的横坐标为0x .【变式3】(2015·郑州市质量预测节选)给定方程:1sin 102xx ⎛⎫+-= ⎪⎝⎭,探究该方程在(),0-∞唯一交点. ()0,x x ∈-∞减;(0,0x x ∈递增.所以()h x结合(0)h 如下,根属于区间(【例3(1(2)证明:当0a >时,2()2ln f x a a a≥+.【解析】(1)2()2(0)x af x e x x '=->.当0a ≤时,因为()0f x '>,所以()f x '没有零点;当0a >时,令2()()2(0)x ah x f x e x x'==->,因为22()40x a h x e x '=+>,所以()h x 在()0,+∞上单调递增.当0x →时,又0x >,所以2()2x ah x e x=-→-∞,结合2()210a h a e =->,可得()h x 即()f x '在()0,+∞上存在唯一零点.(2)证明:由(1)可知,当0a >时,(f '设该零点为0x ,则有0200()20x af x e x '=-=.○1 此时由22x y e =和a y x =的图象可2()20x af x e x'=-<,()f x 单调递减;(0x x ∈22x a e x>, 则2()20x af x e x'=->,()f x 单调递增. 所以()f x 在0x 处取得最小值020()x f x e =-由○1得0202x ae x =0020020()ln ln 22x x a a f x e a x a x e =-=-0022a ax x =+所以当0a >时,2()2ln f x a a a≥+.【评注】当我们研究函数的极值大小时,经常遇到一些较难确定大小的代数式(如0200()ln x f x e a x =-),而0x 又是一个无法算得的数值,这时我们利用极值点处的导数为零这一条件(如0200()20x af x e x '=-=),消去某些式子,得到较为简单的代数式(如0002()2ln 2a f x ax a x a=++),使研究更为简便. 【例4】设函数2()ln(1)f x x a x =++有两个极值点1x ,2x ,且12x x <. (1)求实数a 的取值范围; (2)求2()f x 的取值范围.【解析】(1)求导得()2122()2111x x a f x x a x x x++'=+=>-++.令函数2()22g x x x a =++,则由函数()f x 有两个极值点1x ,2x 可知,1x ,2x 必为方程()0g x =在()1,-+∞上的两个不等根,又注意到函数()g x 图像的对称轴为12x =-,所以只需480(1)0a g a ∆=->⎧⎨-=>⎩,解得102a <<.故实数a 的取值范围是1(0,)2.(2)2x 为2()220g x x x a =++=的根,则有222222220,22x x a a x x ++==--即 ()2222222()22ln(1)f x x x x x =-++.由(1)可知,(0)0g a =>,而对称轴12x =-,故有21,02x ⎛⎫∈- ⎪⎝⎭. 设()22()22ln(1)h x x x x x =-++,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()21()242ln(1)22221ln(1)01h x x x x x x x x x'=-++-+=-++>+. 所以()h x 在1,02x ⎛⎫∈- ⎪⎝⎭上单调递增,则112ln 2()(),(0),024h x h h -⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭.故2()f x 的取值范围是12ln 2(,0)4-.【评注】2x 为函数2()ln(1)f x x a x =++极值点,若直接求解2x ,再代入2()f x ,显然运算量较大.不妨由2222222()=01x x af x x ++'=+,求得22222a x x =--,将2222()ln(1)f x x a x =++中的a 消去即可迅速求解.【变式4】(2013·新课标全国卷Ⅱ节选)已知函数()ln(2)x f x e x =-+,证明()0f x >. 【答案】易知函数1()2x f x e x '=-+在(2,)-+∞单调递增.由(1)(0)0f f ''-⋅<知()0f x '=在(1,0)-有唯一实根0x .当()02,x x ∈-时,()0f x '<,故()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,故()f x 单调递增.故()f x 取得最小值0()f x .由0()0f x '=得0001()02x f x e x '=-=+即0012x e x =+,则002x e x -=+即00ln(2)x x +=-. 所以02000000(1)1()ln(2)022x x f x e x x x x +=-+=+=>++,则有min 0()()()0f x f x f x ≥=>.得证. 【变式5】(2013·惠州二模第21题节选)已知函数()ln |f x ax x x b =++是奇函数,且图像在点(,())e f e 处的切线斜率为3 (e 为自然对数的底数). (1)求实数,a b 的值; (2)若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 的最大值. 【答案】(1)由题意易得1,0a b ==.(2)当1x >时,由()1f x k x <-恒成立,得min ()()1f x k x <-. 当1x >时,设()ln ()11f x x x xg x x x +==--,则22ln '()(1)x xg x x --=-. 设()2ln h x x x =--,则1'()10h x x=->,()h x 在(1,)+∞上是增函数. 因为(3)1ln 30h =-<,(4)2ln 40h =->,所以0(3,4)x ∃∈,使0()0h x =.0(1,)x x ∈时,()0,'()0h x g x <<,即()g x 在0(1,)x 上为减函数;同理()g x 在0(,)x +∞上为增函数.故min 0()()g x g x =.由000()2ln 0h x x x =--=得00ln 2x x =-. 于是,000000min 0000ln (2)()()11x x x x x x g x g x x x x ++-====--,所以min 0()(3,4)k g x x <=∈,又k Z ∈,故k 的最大值为3.【变式6】( 2012·新课标全国卷文节选)设函数()2x f x e ax =--. (1) 求()f x 的单调区间;(2)若1,a k =为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.【答案】(1)易得若0,()a f x ≤在R 上单调递增;若0,()a f x >在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)当1a =时,()()1()(1)10x x k f x x x k e x '-++=--++>等价于1(0)1x x k x x e +<+>-.令1()1x x g x x e +=+-,则min ()k g x <. 221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--,由(1)可知,函数()2x h x e x =--在()0,+∞上单调递增,同时(1)(2)0h h ⋅<,则()h x 在()1,2上存在唯一零点a ,即()g x '在()1,2上存在唯一零点a ,即()1,2a ∈.当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>,所以min 1()()1a a g x g a a e +==+-. 因为 ()0g a '=,即20a e a --=. 将2a e a =+代入()g a 得11()1211aa a g a a a a a e ++=+=+=++--. 由()1,2a ∈得()()2,3g a ∈.因为()k g a <,故整数k 的最大值为2.。
压轴题型13 数列压轴大题的处理策略(原卷版)-2023年高考数学压轴题专项训练
压轴题13数列压轴大题的处理策略高考数列这类问题虽然没有解析几何那样大的计算量,没有太多需要理解的东西,也不需要立体几何中的空间想象力,然而数列中涉及到的的递推思想、函数思想、分类讨论思想以及数列求和、求通项公式的各种方法和技巧贯穿与整个高中数学之中,高中最常见的数列题型就是求通项公式和数列求和两种了,数列作为数学中的一个重要概念,常常出现在各种数学竞赛中,其重要性不言而喻。
在数列中,我们需要掌握其定义、性质和求和公式等知识点,才能够有效地解决各种数列相关的问题。
对于求和问题,我们可以通过数学归纳法或递推公式等方法进行求解。
同时,我们还需要掌握数列的通项公式,以便于我们更直观地理解数列的规律和性质。
而在数列压轴题中,我们需要将所学的数列知识灵活运用,解决各种复杂的数列问题。
例如,我们可能需要使用数学归纳法证明某个数列的性质,或者需要通过构造新的数列来解决问题。
总的来说,数列作为数学中的一个重要概念,在数学竞赛中经常出现,是我们必须掌握的知识点之一。
通过不断练习和总结,我们可以更好地掌握数列的求和、通项公式和数列压轴题等知识,从而在数学高考中获得好成绩。
○热○点○题○型1数列中的不动点问题○热○点○题○型2数列与数学史○热○点○题○型3数列与生活○热○点○题○型4数列与不等式1.已知数列{}n a 的前n 项和为n S ,()2*n S n n =∈N ,数列{}n b 为等比数列,且21a +,41a +分别为数列{}n b 第二项和第三项.(1)求数列{}n a 与数列{}n b 的通项公式;(2)若数列()()1322(1)11+⋅-=+-⋅--n nn n n n n c a b b b ,求数列{}n c 的前2n 项和2n T ;(3)求证:()2131n i i i b b =<-∑.2.已知有穷数列()*12:,,,,3N A a a a N N ∈≥N 满足{}()1,0,11,2,,i a i N ∈-= .给定正整数m ,若存在正整数s ,()t s t ≠,使得对任意的{}0,1,2,,1k m ∈- ,都有s k t k a a ++=,则称数列A 是m -连续等项数列.(1)判断数列:1,1,0,1,0,1,1A --是否为3-连续等项数列?是否为4-连续等项数列?说明理由;(2)若项数为N 的任意数列A 都是2-连续等项数列,求N 的最小值;(3)若数列12:,,,N A a a a 不是4-连续等项数列,而数列112:,,,,1N A a a a - ,数列212:,,,,0N A a a a 与数列312:,,,,1N A a a a 都是4-连续等项数列,且30a =,求N a 的值.3.已知数列{}n a 中,n S 是其前n 项的和,21511S S =,112n n na a a ++=-.(1)求1a ,2a 的值,并证明11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)证明:11111222n n n n S n +-+<<-.4.已知数列{}n a ,设()12*n n a a a m n N n+++=∈ ,若{}n a 满足性质Ω:存在常数c ,使得对于任意两两不等的正整数i 、j 、k ,都有()()()k i j i j m j k m k i m c -+-+-=,则称数列{}n a 为“梦想数列”.(1)若()2*n n b n N =∈,判断数列{}n b 是否为“梦想数列”,并说明理由;(2)若()21*n c n n N =-∈,判断数列{}n c 是否为“梦想数列”,并说明理由;(3)判断“梦想数列”{}n a 是否为等差数列,并说明理由.5.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X -,1t X -,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()1211,,,t t t t t t P X X X X P X X +--+⋅⋅⋅=.现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为()*N ,A A A B ∈<,赌博过程如下图的数轴所示.当赌徒手中有n 元(0n B ≤≤,N n ∈)时,最终输光的概率为........()P n ,请回答下列问题:(1)请直接写出()0P 与()P B 的数值.(2)证明(){}P n 是一个等差数列,并写出公差d .(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →∞时,()P A 的统计含义.6.求符合条件的序列12,,n a a a L 的个数,满足如下条件:(1){}0,1,1,2,i a i n ∈= ;(2){}1,2,,2|i n i ∀∈ ,有{}11max ,i i i a a a -+≥.7.已知无穷数列A :1a ,2a ,…满足:①1a ,2a ,…N i a ∈且0(1,2,)i a i >= ;②(1,2,;1,2,;31)i j i j i j a a a a a i j i j ++≤≤+=+=+≥ ,设*i a 为(1,2,)i a i = 所能取到的最大值,并记数列*A :*1a ,*2a ,….(1)若数列A 为等差数列且11a =,求其公差d ;(2)若121a a ==,求*4a 的值;(3)若11a =,22a =,求数列*A 的前100项和.8.若数列{an }满足“对任意正整数i ,j ,i ≠j ,都存在正整数k ,使得ak =ai •aj ”,则称数列{an }具有“性质P ”.(1)判断各项均等于a 的常数列是否具有“性质P ”,并说明理由;(2)若公比为2的无穷等比数列{an }具有“性质P ”,求首项a 1的值;(3)若首项a 1=2的无穷等差数列{an }具有“性质P ”,求公差d 的值.9.已知数列A :1a ,2a ,…,n a 满足:{}0,1i a ∈(1i =,2,…,n ,2n ≥),从A 中选取第1i 项、第2i 项、…、第m i 项(12m i i i <<< ,2m ≥)称数列1i a ,2i a ,…,m i a 为A 的长度为m 的子列.记()T A 为A 所有子列的个数.例如A :0,0,1,其()3T A =.(1)设数列A :1,1,0,0,写出A 的长度为3的全部子列,并求()T A ;(2)设数列A :1a ,2a ,…,n a ,A ':n a ,1n a -,…,1a ,A '':11a -,21a -,…,1n a -,判断()T A ,()T A ',()T A ''的大小,并说明理由;(3)对于给定的正整数n ,k (11k n ≤≤-),若数列A :1a ,2a ,…,n a 满足:12n a a a k ++⋅⋅⋅+=,求()T A 的最小值.10.某辖区组织居民接种新冠疫苗,现有A ,B ,C ,D 四种疫苗且每种都供应充足.前来接种的居民接种与号码机产生的号码对应的疫苗,号码机有A ,B ,C ,D 四个号码,每次可随机产生一个号码,后一次产生的号码由前一次余下的三个号码中随机产生,张医生接种A 种疫苗后,再为居民们接种,记第n 位居民(不包含张医生)接种A ,B ,C ,D 四种疫苗的概率分别为(),(),(),()n n n n P A P B P C P D .(1)第2位居民接种哪种疫苗的概率最大;(2)证明:()()()n n n P B P C P D ==;(3)张医生认为,一段时间后接种A ,B ,C ,D 四种疫苗的概率应该相差无几,请你通过计算第10位居民接种A ,B ,C ,D 四种的概率,解释张医生观点的合理性.参考数据:910910553411115.110, 1.710, 2.010,9.810.3322----⎛⎫⎛⎫⎛⎫⎛⎫≈⨯≈⨯≈⨯≈⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11.在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2n n n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .12.已知函数()y f x =是定义在()(),00,∞-+∞U 上的偶函数,当0x >时,()()121,0212,22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,()n a f n =(n 为正整数).(1)当20x -≤<时,求()y f x =的解析式;(2)若函数()()g x f x m =-存在零点,且零点个数不超过10,求实数m 的取值范围;(3)求数列{}n a 的前n 项和为,n n S S 是否存在极限?若存在,求出这个极限;若不存在,请说明理由13.设数列{}n a 的前n 项和为n S ,且n a 与4-n 的等差中项为n n S a -.(1)证明:数列{}2n a +是等比数列;(2)设32log 2n n a b +=,证明:1352111111111n b b b b -⎛⎫⎛⎫⎛⎫⎛⎫++++> ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .14.已知数列:A 1a ,2a ,…,()3N a N ≥的各项均为正整数.设集合,{}|,1j i T x x a a i j N ==-≤≤≤记T 的元素个数为()P T .(1)若数列:A 1,1,3,2,求集合T ,并写出()P T 的值;(2)若A 是递增数列,求证:“()1P T N =-”的充要条件是“A 为等差数列”;(3)若23N =,数列A 由1,2,3,…,11,22这12个数组成,且这12个数在数列A 中每个至少出现一次,求()P T 的最大值.15.已知递增数列{}n a 的前n 项和为n S ,且满足211,441n n a S n a =-+=,设11n n n b a a +=,*n ∈N ,且数列{}n b 的前n 项和为n T .(1)求证:数列{}n a 为等差数列;(2)试求所有的正整数m ,使得222121m m m m m a a a a a ++++-为整数;(3)若对任意的*N n ∈,不等式118(1)n n T n λ+<+-恒成立,求实数λ的取值范围.16.若无穷数列{}n a 的各项均为整数.且对于,,i j i j *∀∈<N ,都存在k j >,使得k j i j i a a a a a =--,则称数列{}n a 满足性质P .(1)判断下列数列是否满足性质P ,并说明理由.①n a n =,1n =,2,3,…;②2n b n =+,1n =,2,3,….(2)若数列{}n a 满足性质P ,且11a =,求证:集合{}3∣n n a *∈=N 为无限集;(3)若周期数列{}n a 满足性质P ,请写出数列{}n a 的通项公式(不需要证明).17.在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“和扩充”.如数列1,2第1次“和扩充”后得到数列1,3,2,第2次“和扩充”后得到数列1,4,3,5,2.设数列a ,b ,c 经过第n 次“和扩充”后所得数列的项数记为n P ,所有项的和记为n S .(1)若1,2,3a b c ===,求2P ,2S ;(2)设满足2023n P ≥的n 的最小值为0n ,求0n 及03n S ⎡⎤⎢⎥⎣⎦(其中[x ]是指不超过x 的最大整数,如[]1.21=,[]2.63-=-);(3)是否存在实数a ,b ,c ,使得数列{n S }为等比数列?若存在,求,a b ,c 满足的条件;若不存在,请说明理由.18.已知函数2()x f x ax b =+,(1)1f =,1223f ⎛⎫= ⎪⎝⎭.令112x =,()1n n x f x +=.(1)求数列{}n x 的通项公式;(2)证明:12112en x x x +⋅⋅⋅>.19.已知有穷数列()*12:,,,,3N A a a a N N ∈≥N 满足{}()1,0,11,2,,i a i N ∈-= .给定正整数m ,若存在正整数s ,()t s t ≠,使得对任意的{}0,1,2,,1k m ∈- ,都有s k t k a a ++=,则称数列A 是m -连续等项数列.(1)判断数列:1,1,0,1,0,1,1A --是否为3-连续等项数列?是否为4-连续等项数列?说明理由;(2)若项数为N 的任意数列A 都是2-连续等项数列,求N 的最小值;(3)若数列12:,,,N A a a a 不是4-连续等项数列,而数列112:,,,,1N A a a a - ,数列212:,,,,0N A a a a 与数列312:,,,,1N A a a a 都是4-连续等项数列,且30a =,求N a 的值.。
2022年高考数学全国乙卷导数压轴题解析
㊀㊀㊀讲题比赛获奖论文之六:2022年高考数学全国乙卷导数压轴题解析◉中央民族大学附属中学呼和浩特分校㊀李雪峰㊀㊀摘要:函数零点问题在高考压轴题中经常出现.在解题过程中,按照一定标准对参数分类讨论㊁把握细节确定方向㊁引入隐零点㊁区间卡根,这些方面都可能成为解决零点问题的障碍.所以,选取适当的角度观察㊁分析,根据题目中的关键信息制定策略㊁拟定解题思路,并在此基础上进行计算㊁推理论证,往往是解题的关键.只有明白了思考的底层逻辑,才能使分析问题㊁解决问题的能力有所提高.关键词:函数零点问题;分类讨论;数形结合;区间卡根1试题呈现(2022年高考数学全国乙卷第21题)已知函数f (x )=l n (1+x )+a x e -x.(1)当a =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,求a 的取值范围.2试题解析本题的第(1)问不多赘述,下面给出第(2)问的几种不同的思考角度和解题方法.2.1思路一及解法2.1.1解题思路一的形成因为题中所给条件是函数零点问题,所以我们先观察函数值的正负情况以及何时为零.当a ȡ0时,若x >0,则f (x )=l n (1+x )+a x e -x>0恒成立,与题意不符.因此,下面只讨论a <0时的情形.通过观察易知f (0)=0,当x ң-1时,f (x )ң-ɕ;当x ң+ɕ时,f (x )ң+ɕ.要使f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,则可以猜测f (x )的图象大致如图1所示.图1由图1可知,fᶄ(0)=a +1<0显然为其必要条件,即a <-1.下面需要说明:①当a ȡ-1时,不符合题意;②当a <-1时,讨论函数f (x )的单调性,再根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.思路一的思维导图如图2所示.函数f (x )零点问题观察函数的零点及正负情况确定讨论a 的标准说明a ȡ0和-1ɤa <0时不符合题意当a <-1时,利用隐零点讨论f (x )的单调性,并区间探点,说明a <-1时符合题意得出结论图22.1.2具体解法解法1:由思路一的分析可知a ȡ0不合题意,下面只讨论a <0时的情形.由f (x )求导,得f ᶄ(x )=e x +a (1-x 2)(x +1)ex.设g (x )=e x +a (1-x 2).当-1ɤa <0时,在区间(0,+ɕ)上,有g (x )=e x +a (1-x 2)=(e x+a )-a x 2>0.所以,在区间(0,+ɕ)上,f ᶄ(x )>0,f (x )单调递增,则f (x )>f (0)=0,这与题意不符.当a <-1时,g ᶄ(x )=e x-2a x ,因为g ᵡ(x )=e x-2a >0,所以g ᶄ(x )在区间(-1,+ɕ)上单调递增.又因为g ᶄ(-1)=e -1+2a <0,gᶄ(0)=1>0,所以存在唯一x 0ɪ(-1,0),使g ᶄ(x 0)=0.因此,当x ɪ(-1,x 0)时,g ᶄ(x )<0,g(x )单调递减;当x ɪ(x 0,+ɕ)时,g ᶄ(x)>0,g (x )单调递增.(为直观起见,下面分别画出函数g ᶄ(x ),g (x ),f (x )的大致图象,如图3~5所示.)图3㊀㊀图4322022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.㊀㊀㊀图5于是g (x 0)<g (0)=a +1<0,又因为g (-1)=1e >0,g (1)=e >0,所以存在x 1ɪ(-1,x 0),x 2ɪ(x 0,1),使g (x 1)=g (x 2)=0.当x ɪ(-1,x 1)时,g (x )>0,f ᶄ(x )>0,f (x )单调递增;当x ɪ(x 1,x 2)时,g (x )<0,f ᶄ(x )<0,f (x )单调递减;当x ɪ(x 2,+ɕ)时,g (x )>0,fᶄ(x )>0,f (x )单调递增.同时可知f (x 1)>f (0)=0,f (x 2)<f (0)=0.(至此,利用隐零点求出了函数f (x )的单调区间.下面利用放缩法进行区间卡根,根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.)当-1<x <0时,因为x e -x>-e(证明略),所以f (x )=l n (1+x )+a x e -x<l n (x +1)-e a .由l n (x +1)-e a <0,得x <e e a -1.取m =e e a-1,则f (m )<0,从而存在唯一s ɪ(m ,x 1),使f (s )=0.当x >0时,因为x e -xɤ1e (证明略),所以f (x )=l n (1+x )+a x e -x>l n (x +1)+a e.由l n (x +1)+a e>0,得x >e -a e-1.取n =e -a e-1,则f (n )>0,从而存在唯一t ɪ(x 2,n ),使f (t )=0.所以,当a <-1时,函数f (x )区间(-1,0)和(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).解法2:当a ȡ0时,在区间(0,+ɕ)上,f (x )=l n (1+x )+a x e -x>0,与题意不符.下面只讨论a <0时的情形.由f (x )求导得f ᶄ(x )=1x +1+a (1-x )ex=1x +1[1+a (1-x 2)e x].(注意常见的变形技巧:对数 单身狗 ,指数 找朋友 .)设g (x )=1+a (1-x 2)ex,x ɪ(-1,+ɕ).求导,得g ᶄ(x )=a (x 2-2x -1)ex,x ɪ(-1,+ɕ).易得g (x )在(-1,1-2)上单调递减,在(1-2,1+2)上单调递增,在(1+2,+ɕ)上单调递增.当-1ɤa <0时,g (0)=a +1ȡ0,又因为当x >1+2时,g (x )=1+a (1-x 2)ex>1,所以当x >0时,g (x )>0,f ᶄ(x )>0,f (x )单调递增,从而f (x )>f (0)=0,这与题意不符.(为直观起见,给出g (x )的图象,如图6所示.)图6当a <-1时,g (0)=a +1<0,因为g (-1)=g (1)=1>0,g (1-2)<g (0)<0,所以存在唯一x 1ɪ(-1,0),x 2ɪ(0,1),使g (x 1)=g (x 2)=0.此时f (x )在(-1,x 1)上单调递增,(x 1,x 2)上单调递减,在(x 2,+ɕ)上单调递增.故f (x 1)>f (0)=0>f (x 2).(为直观起见,给出g (x ),f (x )的图象,如图7.)㊀图7下面找点说明f (x )在区间(-1,0),(0,+ɕ)上有零点.f (x )=l n (1+x )+a xex (a <-1).设m (x )=x e x ,则x ɪ(-1,1)时,m ᶄ(x )=1-xex >0,x ɪ(1,+ɕ)时,m ᶄ(x )<0.于是m (x )ɪ-e ,1e æèçöø÷.所以,可得l n (1+x )+ae<l n (1+x )+a xex <l n (1+x )-a e .由l n (1+x )+a e=0,解得x =e -ae-1>0,f (e -a e-1)>l n (1+e --1)+a e=0.由l n (1+x )-a e =0,解得x =e e a-1.所以可得f (e a e -1)<l n (1+e a e-1)-a e =0.所以f (x )在区间(-1,0),(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).点评:解法1和解法2的基本思路一样,都是按照一定的标准对参数a 进行分类讨论,然后借助隐零点将函数的定义域分成若干个单调区间,最后在每个单调区间上卡根,根据零点存在定理说明函数零点的情况.解法2在求导后将导函数等价变形,使再求导后只需解一个不含参的二次不等式,简化了运算.解题一般是按照由易到难的顺序进行思考,即先42命题考试试题研究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年12月上半月Copyright ©博看网. All Rights Reserved.㊀㊀㊀观察㊁猜想,再分析㊁思辨,最后论证㊁求解.题目越复杂越要注意细节,细节往往是打通解题思路的关键.2.2思路二及解法2.2.1解题思路二的形成函数零点的问题往往可以转化为两个函数图象交点问题,因此该题可以考虑参变分离,将函数零点的问题转化为直线与另一个函数图象交点问题,同时还可以避免参数讨论带来的麻烦.思路二的思维导图,如图8所示.函数f (x )零点问题转化为直线y =-a 与y =F (x )图象交点问题求导后,讨论F ᶄ(x )的符号及F (x )的单调性x >0时,求出F (x )在x =0处的极限,由图可得a <-1当x <0时,利用隐零点,讨论F (x )的单调性,并求出F (x )当x 趋于-1时的极限,由图可得a <-1得出结论图82.2.2具体解法解法3:因为f (0)=0,所以f (x )=0等价于-a =e x l n (1+x )x.令F (x )=e x l n (1+x )x (x >-1),则F ᶄ(x )=e x[(x 2-1)l n (1+x )+x ]x 2(x +1).令g (x )=(x 2-1)l n (1+x )+x ,则gᶄ(x )=x [1+2l n (1+x )].(注意到g (0)=0,所以先讨论g (x )在x >0时的正负情况.)当x >0时,gᶄ(x )>0,则g (x )单调递增,g (x )>g (0)=0,从而当x >0时,F ᶄ(x )>0,F (x )在(0,+ɕ)单调递增.由导数定义,得㊀F (x )>l i m x ң0F (x )=l i m x ң0e xl n (1+x )-e 0l n (1+0)x -0=[e xl n (1+x )]ᶄ|x =0=[e x 11+x +e xl n (1+x )]|x =0=1.(为直观起见,下面给出F (x )的图象.)图9如图9所示,要使直线y =a 与F (x )图象在y 轴右侧恰有一个交点,则必然有-a >1,即a <-1.因为e e l n (1+e -a )e-a+a >l n (1+e -a )+a >l n e -a+a =0,所以由零点存在定理可知,a <-1时,f (x )在区间(0,+ɕ)恰有一个零点.当-1<x <0时,令g ᶄ(x )=0,得x =e --1.易知g (x )在(-1,e -12-1)上单调递增,在(e -12-1,0)上单调递减,则g (e -12-1)>g (0)=0.因为g (e -1-1)=-e 2+3e -1e2<0,所以存在唯一x 0ɪ(e -1-1,e -12-1),使g (x 0)=0.(为直观起见,给出g (x ),F (x )的图象,如图10.)㊀㊀图10当-1<x <x 0时,g (x )<0,F ᶄ(x )<0,F (x )单调递减;当x 0<x <0时,g (x )>0,F ᶄ(x )>0,F (x )单调递增.所以F (x 0)<l i m x ң0F (x )=1.又因为l i m x ң-1F (x )=+ɕ,所以要使直线y =a 与f (x )图象在y 轴左侧恰有一个交点,则必然有-a >1,即a <-1.综上所述,当a <-1时,f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点.点评:解法3的好处在于对F (x )求导后避免了参数的讨论;难点在于当x 趋于0时F (x )的极限值不易求出,虽然可用洛必达法则,但是超出了高中所学.该解法绕开了洛必达法则,利用导数的定义求出F (x )在x =0处的极限,比较巧妙,不易想到.3试题链接下面给出两道高考真题,供读者练习.试题1㊀(2017年全国Ⅰ卷理科)已知函数f (x )=a e 2x +(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.试题2㊀(2018年全国Ⅱ卷理科)已知函数f (x )=e x-a x 2.(1)若a =1,证明:当x ȡ0时,f (x )ȡ1;(2)若f (x )在(0,+ɕ)只有一个零点,求a .4总结函数零点问题是高考的常考内容,数形并用㊁合理分类是解题的关键.区间探点是一个难点,常常可以用放缩法解决.上述方法都是解决此类问题的典型方法,由于方法3中的极限值不易求出,考试中绝大多数考生选择了方法1和方法2.该题对学生的逻辑推理能力和运算能力要求较高,解题时要求学生注意细节㊁大胆猜想㊁合理分类㊁准确计算,这样才能将问题顺利解决.Z522022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.。
六招破解高考导数压轴题
破解高考导数压轴题的常见策略纵观近十年高考数学课标全国卷,容易发现导数压轴题有如下特点:主要考查导数的几何意义,利用导 数研究函数的单调性、极值、最值,研究方程和不等式. 试题有一定的综合性,并与数学思想方法紧密结合, 对函数与方程的思想,分类与整合的思想等都进行深入的考查.下面介绍破解高考导数压轴题的六种策略.1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2018 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.2. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
3. 构造函数利用导数解决不等式问题是导数的一个非常重要的应用,其关键是根据不等式的结构特点,构造恰当的 辅助函数,进而通过研究函数的单调性和最值,最终解决问题.运用构造函数法来解题是培养学生创新意识的 手段之一.例3设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.4.合理放缩高考数学压轴题往往涉及函数不等式问题,由于高考命题基本上涉及超越函数,研究其单调区间时一般 涉及解超越不等式,难度非常高,往往陷入绝境.放缩法是解决函数不等式问题的一把利器,关键是如何合理 放缩.常见的一种放缩法是切线放缩法,曲线的切线为一次函数,高中阶段大部分函数的图像均在切线的同侧, 即除切点外,函数的图像在切线的上方或下方,利用这一特性,可以将参与函数放缩成一次函数.例 4设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.5.虚设零点导数在研究函数的单调性、极值和最值方面有着重要的应用,而这些问题都离不开一个基本点——导函 数的零点,因为导函数的零点既可能是原函数单调区间的分界点,也可能是原函数的极值点或最值点.可以说, 抓住了导函数的零点,就抓住了原函数的要点.在高考导数压轴题中,经常会遇到导函数具有零点但求解相对 比较复杂甚至无法求解的问题.此时,不必正面强求,只需要设出零点,充分利用其满足的关系式,谋求一种 整体的代换和过渡,再结合其他统计解决问题,这种方法即是“虚设零点”.例 5(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.6. 多次求导高中函数压轴题一般需要求导,利用导函数的正负来判断原函数的增减.有些试题,当你一次求导后发现 得出的结果还存在未知的东西,导函数的正负没有清晰得表现出来时,就可以考虑二次求导甚至三次求导, 这个时候要非常细心,观察全局,不然做到后边很容易出错.例 6设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. x x 2f (x)x 2-=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x-->()()g x ()h a ()h a教师版1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2017 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1(2015 年高考数学全国乙卷(Ⅰ卷)理 21) 已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 3. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2(2013 年高考数学全国乙卷(Ⅰ卷)理 21)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
数列创新题的基本类型及求解策略(含答案)
数列创新题的基本类型及求解策略高考创新题,向来是高考试题中最为亮丽的风景线.这类问题着重考查观察发现,类比转化以及运用数学知识,分析和解决数学问题的能力.当然数列创新题是高考创新题重点考查的一种类型.下举例谈谈数列创新题的基本类型及求解策略. 一、创新定义型例1.已知数列{}n a 满足1log (2)n n a n +=+(n *∈N ),定义使123k a a a a ⋅⋅⋅⋅为整数的数叫做企盼数,则区间[1,2005]内所有的企盼数的和M =________. 解:∵1log (2)n n a n +=+(n *∈N ),∴1232312......log 3log 4log (2)log (2)k k a a a a k k +=⋅⋅⋅+=+.要使2log (2)k +为正整数,可设1()22n k n ++=,即1()22n k n +=-(n *∈N ). 令11222005n +-≤≤⇒19n ≤≤(n *∈N ). 则区间[1,2005]内所有企盼数的和9912341011()(22)(22)(22)(22).......(22)n n n M k n +====-=-+-+-++-∑∑29234102(21)(222.......2)2918205621-=+++++⨯=-=-,∴2056M =. 评析:准确理解企盼数的定义是求解关键.解题时应将阅读信息与所学知识结合起来,侧重考查信息加工能力. 二、性质探求型例2.已知数列{}n a 满足31,2,3,4,5,67n n n n a a n +=⎧=⎨-⎩≥,则2005a =______.解:由3n n a a +=-,7n ≥知,63n n n a a a ++=-=.从而当n ≥6时,有6n n a a +=,于是知20053346111a a a ⨯+===. 评析:本题主要通过对数列形式的挖掘得出数列特有的性质,从而达到化归转化解决问题的目的.其中性质探求是关键. 三、知识关联型例3.设是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点(1,2,3,)i P i =,使123,,,PF PF PF 组成公差为的等差数列,则的取值范围为_______.解析:由椭圆第二定义知e i i iPF PP ='e i i i PF PP '⇒=,这些线段长度的最小值为右焦点到右顶点的距离即11FP =-,最大值为右焦点到左顶点的距离即211PF =+,故若公差0d >11(1)n d +=-+-,∴2121n d >+≥,∴1010d <≤.同理,若公差0d <,则可求得1010d -<≤. 评析:本题很好地将数列与椭圆的有关性质结合在一起,形式新颖,内容深遂,有一定的难度,可见命题设计者的良苦用心.解决的关键是确定该数列的最大项、最小项,然后根据数列的通项公求出公差的取值范围. 四、类比联想型例4.若数列{}()n a n *∈N 是等差数列,则有数列123nn a a a a b n++++=()n *∈N 也是等差数列;类比上述性质,相应地:若数列{}n c 是等比数列,且0n c >,则有数列n d =_______也是等比数列.解析:由已知“等差数列前n 项的算术平均值是等差数列”可类比联想“等比数列前n 项的几何平均值也应该是等比数列”不难得到n d =也是等比数列.评析:本题只须由已知条件的特征从形式和结构上对比猜想不难挖掘问题的突破口. 五、规律发现型例5.将自然数1,2,3,4,排成数陈(如右图),在处转第一个弯,在转第二个弯,在转第三个弯,….,则第2005个转弯处的数为____________.21―22 ―23―24―25-26| | 20 7 ― 8 ―9 ―10 27 | | | 19 6 1 ―2 11 …… | | | | 18 5 ― 4 ―3 12 | | 17―16 ―15―14 ―13解:观察由起每一个转弯时递增的数字可发现为“1,1,2,2,3,3,4,4,”.故在第2005个转弯处的数为:12(1231002)10031006010++++++=.评析:本题求解的关键是对图表转弯处数字特征规律的发现.具体解题时需要较强的观察能力及快速探求规律的能力.因此,它在高考中具有较强的选拔功能. 六、图表信息型例6.下表给出一个“等差数阵”:ij ⑴写出45a 的值; ⑵写出ij a 的计算公式;⑶证明:正整数在该等差数列阵中的充要条件是21N +可以分解成两个不是的正整数之积. 解:⑴4549a =(详见第二问一般性结论). ⑵该等差数阵的第一行是首项为,公差为的等差数列:143(1)j a j =+-; 第二行是首项为,公差为的等差数列:275(1)j a j =+-,……, 第行是首项为43(1)i +-,公差为21i +的等差数列, 因此43(1)(21)(1)2(21)ij a i i j ij i j i j j =+-++-=++=++;⑶必要性:若在该等差数阵中,则存在正整数,i j 使得(21)N i j j =++, 从而212(21)21N i j j +=+++ (21)(21)i j =++. 即正整数21N +可以分解成两个不是的正整数之积.充分性:若21N +可以分解成两个不是的正整数之积,由于21N +是奇数,则它必为两个不是的奇数之积,即存在正整数k ,l ,使得21(21)(21)N k l +=++,从而(21)kl N k l l a =++=可见在该等差数阵中.综上所述,正整数在该等差数阵中的充要条件是21N +可以分解成两个不是的正整数之积. 评析:本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.求解关键是如何根据图表信息求出行列式中对应项的通项公式. 七、“杨辉三角”型例7.如图是一个类似“杨辉三角”的图形,第行共有个数,且该行的第一个数和最后一个数都是,中间任意一个数都等于第1n -行与之相邻的两个数的和,,1,2,,,.......(1,2,3,)n n n n a a a n =分别表示第行的第一个数,第二个数,…….第个数.求,2(2n a n ≥且)n ∈N 的通项式.122343477451114115............................................解:由图易知2,23,24,25,22,4,7,11,a a a a ====从而知,2{}n a 是一阶等差数列,即3,22,24,23,25,24,2,2(1),22......(1)3......(2)4......(3)...............................1 (1)n n a a a a a a a a n n --=-=-=-=--以上1n -个式相加即可得到: ,22,2,2(1)(2)(1)(2)234.......(1)222n n n n n n a a n a +-+--=++++-=⇒=+即2,222n n n a -+=(2n ≥且)n ∈N评析:“杨辉三角”型数列创新题是近年高考创新题的热点问题.求解这类题目的关键是仔细观察各行项与行列式的对应关系,通常需转化成一阶(或二阶)等差数列结合求和方法来求解.有兴趣的同学不妨求出(,ij a i j *∈N 且)i j ≥的通项式. 八、阅读理解型例8.电子计算机中使用二进制,它与十进制的换算关系如下表:大的数是 . 解:通过阅读,不难发现:00101112,20212,31212=⨯=⨯+⨯=⨯+⨯,0124020212=⨯+⨯+⨯,0125120212=⨯+⨯+⨯,进而知0127121212=⨯+⨯+⨯,写成二进制为111.于是知二进制为位数能表示十进制中最大的数是111111化成十进制为6012345211212121212126321-⨯+⨯+⨯+⨯+⨯+⨯==-.评析:通过阅读,将乍看陌生的问题熟悉化,然后找到解决的方法,即转化成等比数列求解. 总之,求解数列创新题的关键是仔细观察,探求规律,注重转化,合理设计解题方案,最后利用等差、等比数列有关知识来求解.。
高考数学:函数与导数压轴题高频考点与破解妙招.doc
高考数学:函数与导数压轴题高频考点与破解妙招1以导数面目包装的函数性质的综合应用有关函数与导数的小题压轴题是新课标全国卷的高频考题,高频题型:①以导数面目包装的函数性质题(单调性、奇偶性、最值等);②用导数法判断函数f(x)的图象或已知函数图象求参数的取值范围;③函数与集合、不等式、数列、平面向量、新定义等知识相交汇.【命题意图】本题主要考查函数与导数、函数的单调性、函数的最值、函数的零点等知识,意在考查考生的化归与转化能力、数形结合能力和运算求解能力.【攻略秘籍】破解以导数面目包装的函数性质综合题需过双关:第一关是“还原关”,即先还原出函数的解析式;第二关是“数形关”,即不等式恒成立问题与有解问题多需要数形结合,即可轻松解决.2利用导数研究函数的单调性、极值与最值利用导数研究函数的单调性、极值与最值是高考的一棵“常青树”,高频题型:①判断函数f(x)的单调性或求函数f(x)的单调区间;②求函数f(x)的最值或极值;③由函数的单调区间、最值或极值求参数的值.【命题意图】本题主要考查函数的极值、利用函数的单调性求参数的取值范围,意在考查分类讨论思想和方程思想,考查考生的化归与转化能力、运算求解能力.【攻略秘籍】破解此类题的关键:一是方程思想,即对于含有参数的可导函数有极值的关键是对参数进行分类讨论,并寻找其导数为零的根,以及在根的左、右两侧导数的符号;二是转化思想,即可导函数f(x)在某个区间D内单调递增(或递减),则有f ′(x)≥0(或f ′(x)≤0)在区间D内恒成立,从而把已知函数的单调性问题转化为恒成立问题来解决,这里需注意“=”的情形.3函数、导数与零点相交汇如稍加留神,便可以发现,函数、导数与函数的零点(方程的根)相交汇的考题在近年的高考中扮演着重要的角色,高频题型:①判断函数的零点(方程的根)的个数问题;②已知函数在给定区间的零点(方程在给定区间的解)的情况,求参数的取值范围或证明不等式成立.【命题意图】本题主要考查函数的零点、函数的最值、导数及其应用、基本不等式等知识,考查推理论证能力、运算求解能力、创新意识.【攻略秘籍】破解此类难题要过好三关:第一关,应用关,即利用导数法求函数的单调区间与最值,一般是求导数,在定义域范围内,令导函数大于(小于)零,得其单调递增(减)区间,从而求出函数的单调区间,再由函数的单调性,可求其最值;第二关,转化关,即把判断函数的零点个数问题转化为判断函数最值的符号问题;第三关,构造函数关,即通过构造函数,把比较大小问题转化为判断函数的单调性问题.4函数、导数与不等式相交汇函数、导数与不等式相交汇的试题是2015年高考题中比较“抢眼”的一种题型.对于只含有一个变量的不等式问题,常通过构造函数,利用函数的单调性和极值来证明,高频题型:①用导数法解决含参不等式恒成立问题;②用导数法解决含参不等式有解问题;③证明不等式.【命题意图】本题主要考查函数的单调性与极值点、不等式恒成立问题、证明不等式等知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想.【攻略秘籍】破解此类不等式证明的关键是通过构造函数、利用导数法判断函数的单调性来证明不等式.根据题设条件的结构特征构造一个函数,一是需要预设与所证不等式有相同的结构;二是需要熟练掌握简单复合函数的求导变换.不等式恒成立求参数的取值范围常利用“分离参数法”,也可以单刀直入地利用导数法,通过分类讨论使问题获解.注意恒成立问题与能成立问题的区别.从以上四例可以看出,只要我们对“函数与导数类”压轴题常见类型心中有数,把握其实质,掌握其规律,规范其步骤,做到“胸中有法”,那么不论高考“函数与导数类”压轴题的构思多么新颖,我们都能做到以不变应万变,此类压轴题就能迎刃而解.。
导数和数列综合问题解决技巧之构造函数法
导数和数列不等式的综合问题解决技巧之构造函数法1.已知曲线.从点向曲线引斜率为22:20(1,2,)n C x nx y n -+== (1,0)P -n C 的切线,切点为.(0)n n k k >n l (,)n n n P x y (1)求数列的通项公式; {}{}n n x y 与(2)证明:.13521n n nxx x x x y -⋅⋅⋅<<A A A A 【解析】曲线是圆心为,半径为的圆, 222:()n C x n y n -+=(,0)n n 切线 :(1)n n l y k x =+ (Ⅰ,解得,又,n =2221n n k n =+2220n n n x nx y -+= 联立可解得, (1)n n ny k x =+,1n n n x y n ==+(Ⅱ=n n x y = 先证:, 13521n x x x x -⋅⋅⋅⋅< 证法一:利用数学归纳法 当时,,命题成立, 1n =112x =<假设时,命题成立,即 n k =13521kx x x x -⋅⋅⋅⋅< 则当时,1n k =+135212121k kk x x xx x x -++⋅⋅⋅⋅<=∵, 2222416161483k kk k ++=>++.<=∴当时,命题成立,故成立. 1n k =+13521n x x x x -⋅⋅⋅⋅<==,121214)12(4)12(2122222+-=--<-=-nnnnnnnnnnn xxnnnnnxxxx+-=+=+-⨯⨯⨯<-⨯⨯⨯=⋅⋅⋅⋅-1112112125331212432112531<不妨设,令,t=()f t t t=则在上恒成立,故在上单调递减,()10f tt'=<t∈()f t t t=t∈从而()(0)0f t t t f=-<=<综上,成立.13521nnnxx x x xy-⋅⋅⋅⋅<<2.设函数表示的导函数.2()2(1)ln(),()kf x x x k N f x*'=--∈()f x(I)求函数的单调递增区间;()y f x=(Ⅱ)当k为偶数时,数列{}满足,求数列{}的通项公式;na2111,()3n n na a f a a+'==-2na (Ⅲ)当k为奇数时,设,数列的前项和为,证明不等式()12nb f n n'=-{}n b n n S对一切正整数均成立,并比较与的大小.()111n bnb e++>n20091S-2009ln解:(Ⅰ)函数的定义域为(0,+∞),又,212[(1)]()22(1)kkxy f x xx x--''==--=当k为奇数时,,122(1)()xf xx+'=即的单调递增区间为.(0,),()0(0,)x f x'∈+∞∴>+∞在恒成立.()f x'(0,)+∞当k为偶函数时,222(1)2(1)(1)()x x xf xx x-+-'==(0,),0,10,x x x∈+∞>+>又由,得,即的单调递增区间为,()0f x'>10,1x x->∴>()f x(1,)+∞综上所述:当k 为奇数时,的单调递增区间为, ()f x (0,)+∞当k 为偶数时,的单调递增区间为()f x (1,).+∞(Ⅱ)当k 为偶数时,由(Ⅰ)知, 所以22(1)()x f x x-'=22(1)().n n n a f a a -'=根据题设条件有 2222221112(1)3,21,12(1),n n n n n n a a a a a a +++-=- ∴=+ +=+∴{}是以2为公比的等比数列, 21n a +∴ 221211(1)22,2 1.n n n n n a a a -+=+⋅= ∴=-(Ⅲ)由(Ⅰ)知,当k 为奇数时,12(),f x x'=+ 11111(),1.223n n b f n n S n n'∴=-= =+++⋅⋅⋅+由已知要证两边取对数,即证111,n e n +⎛⎫+> ⎪⎝⎭11ln 1,1n n ⎛⎫+> ⎪+⎝⎭事实上:设则 11,t n+=1(1),1n t t =>-因此得不等式 …………………………………………① 1ln 1(1)t t t>->构造函数下面证明在上恒大于0.1()ln 1(1),g t t t t=+->()g t (1,)+∞∴在上单调递增,即211()0,g t t t '=->()g t (1,)+∞()(1)0,g t g >=1ln 1,t t>-∴ ∴即成立.11ln 1,1n n ⎛⎫+> ⎪+⎝⎭111,n e n +⎛⎫+> ⎪⎝⎭()111n b n b e ++>由得 11ln,1n n n +>+111231ln ln ln ln(1),23112n n n n +++⋅⋅⋅+<++⋅⋅⋅+=++即当时, 11ln(1),n S n +-<+2008n =20091S -<2009.ln3.已知,函数. 0a >1()ln xf x x ax-=+(Ⅰ)试问在定义域上能否是单调函数?请说明理由;(Ⅱ)若()f x 在区间 [)1,+∞上是单调递增函数,试求实数a 的取值范围;(Ⅲ)当 1a =时,设数列 1n ⎧⎫⎨⎬⎩⎭的前n 项和为,求证:n S 111()(2)n n nS f n S n N n n---<-<∈*≥且解:(Ⅰ)的定义域为,,由得. ()f x ()0,+∞21()ax f x ax -'=()0f x '=1x a=当时,,递减; 1(,x a a∈()0f x '<()f x 当时,,递增. 1(,)x a∈+∞()0f x '>()f x所以不是定义域上的单调函数.()y f x =(Ⅱ)若在是单调递增函数,则恒成立,即恒成立. ()f x x ∈[1,)+∞()0f x '≥1a x≥即.1max,[1,)a x x ⎧⎫≥ ∈+∞⎨⎬⎩⎭11x∴≤1a ∴≥ (Ⅲ)当时,由(Ⅱ)知,在上为增函数, 1a =1()ln xf x x x-=+[1,)+∞ 111()ln ln ,n n nf n n n n n n----=+-= 又当时,, ,即.1x >()(1)f x f >1ln 0x x x -∴+>1ln 1x x>- 令则,当时,()1ln ,g x x x =--1()1g x x'=-(1,)x ∈+∞()0.g x '>从而函数在上是递增函数, ()g x [1,)+∞所以有即得()(1)0,g x g >=1ln .x x -> 综上有: 11ln 1,(1).x x x x-<<->111ln .1x x x x+∴<<+ 令时,不等式也成立,1,2,...,1,(2)x n n N n *=-∈≥且111ln .1x x x x+∴<<+ 于是代入,将所得各不等式相加,得1112311...ln ln ...ln 1....2312121n n n n +++<+++<+++--即 11111...ln 1. (2321)n n n +++<<+++-即 111()(2).n n nS f n S n N n n*---<-<∈≥且4.设函数.(是自然对数的底数)()(1),()x f x e x g x e =-=e (Ⅰ)判断函数零点的个数,并说明理由; ()()()H x f x g x =-(Ⅱ)设数列满足:,且 {}n a 1(0,1)a ∈1()(),,n n f a g a n N *+=∈①求证:;②比较与的大小.01n a <<n a 1(1)n e a +-解:(Ⅰ), 令 ()(1)x H x e e '=--0()0,ln(1)H x x e '= =- 当时,在上是增函数 0(,)x x -∞()0,H x '> ()H x 0(,)x x -∞ 当时,在上是减函数 0(,)x x +∞()0,H x '< ()H x 0(,)x x +∞ 从而max 0()(0)(1)1(1)ln(1)2x H x H e x e e e e ==-+-=---+注意到函数在上是增函数, ()ln 1k t t t t =-+[)1,+∞ 从而 从而 ()(1)0,11k t k e ≥=->又0()0H x > 综上可知:有两个零点.()H x (Ⅱ)因为即, 所以 1()(),n n f a g a +=1(1)1na n e a e +-+=11(1)1n a n a e e +=-- ①下面用数学归纳法证明. 当时,,不等式成立. (0,1)n a ∈1n =1(0,1)a ∈ 假设时, 那么 n k =(0,1)k a ∈11(1)1k a k a e e +=--1011kka a e e e e << ∴<-<- 即 10(1)11k a e e ∴<-<-1(0,1)k a +∈ 这表明时,不等式成立. 所以对, 1n k =+n N *∈(0,1)n a ∈②因为,考虑函数1(1)1na n n n e a a e a +--=--()1(01)x p x e x x =-- << ,从而在上是增函数()10x p x e '=->()p x (0,1)()(0)0p x p >=所以,即1(1)0n n e a a +-->1(1)n n e a a +->5.数列的各项均为正数,为其前项和,对于任意,总有成等差数列. {}n a n S n n N *∈2,,n n n a S a (1)求数列的通项公式;{}n a(2)设数列的前项和为,且,求证:对任意实数是常数,{}n b n n T 2ln n n nxb a =(1,](x e e ∈e=2.71828…)和任意正整数,总有;n 2n T <(3)在正数数列中,.求数列中的最大项. {}n c 11(),()n n n a c n N +*+=∈{}n c 解:由已知:对于,总有成立 (1)n N *∈22n n n S a a =+ (2)21112(2)n n n S a a n ---∴=+≥(1)—(2)得22112n n n n n a a a a a --∴=+-- 111()()n n n n n n a a a a a a ---∴+=+-均为正数,1,n n a a - 11(2)n n a a n -∴-=≥ 数列是公差为1的等差数列∴{}n a 又时,,解得,1n =21112S a a =+11a =()n a n n N *∴=∈(2)证明:对任意实数和任意正整数,总有(]1,x e ∈n 22ln 1n n n x b a n=≤222111111...1...121223(1)n T n n n∴≤+++<++++⋅⋅-⋅1111111(1() (22223)1n n n ⎛⎫=+-+-++-=-<⎪-⎝⎭(3)解:由已知22112a c c ==⇒= ,33223a c c ==⇒=44334a c c ==⇒==易得55445a c c ==⇒=12234,......c c c c c <>>> 猜想时,是递减数列2n ≥{}n c令,则 ln ()x f x x=221ln 1ln ()x xx x f x x x ⋅--'==当时,,则,即 ∴3x ≥ln 1x >1ln 0x -<()0f x '< 在内为单调递减函数, ∴()f x [)3,+∞由知 11n n n a c ++=ln(1)ln 1n n c n +=+ 时,是递减数列,即是递减数列 2n ∴≥{}ln n c {}n c又,数列中的最大项为12c c <∴{}n c 2c =6.已知23()ln 2,().8f x x xg x x =++=(1)求函数的极值点;()()2()F x f x g x =-⋅(2)若函数在上有零点,求的最小值;()()2()F x f x g x =-⋅),()te t Z ⎡+∞∈⎣t (3)证明:当时,有成立;0x >[]1()1()g x g x e +<(4)若,试问数列中是否存在?若存在,求出所有相1(1)()()g n n b g n n N *+=∈{}n b ()n m b b m n =≠等的两项;若不存在,请说明理由.(为自然对数的底数).e 解:(1)由题意,的定义域为23()ln 228F x x x x =++-(0,)+∞,函数的单调递增区间为和, (32)(2)()4x x F x x --'=∴()F x 20,3⎛⎤⎥⎝⎦[)2,+∞的单调递减区间为,()F x 2,23⎡⎤⎢⎥⎣⎦所以为的极大值点,为的极小值点,23x =()F x 2x =()F x (2)在上的最小值为 ()F x 2,3x ⎡⎫∈+∞⎪⎢⎣⎭(2)F且,在上没有零点, 23ln 41(2)242ln 2082F -=⨯-++=>()F x ∴2,3⎡⎫+∞⎪⎢⎣⎭函数在上有零点,并考虑到在单调递增且在单调递减,故只∴()F x ),te ⎡+∞⎣()F x 20,3⎛⎤ ⎥⎝⎦2,23⎡⎤⎢⎥⎣⎦须且即可,23t e <()0F t ≤易验证 121222313()120,()20,88F e e e F e e e -----⎛⎫=⋅+->=⋅-< ⎪⎝⎭当时均有所以函数在上有零点, 2,t t Z ≤∈()0,t F e <()F x )1,()t e e t Z -⎡∈⎣即函数在上有零点, 的最大值为()F x ),()te t Z ⎡+∞∈⎣t ∴2-(3)证明:当时,不等式0x >[]1()1()g x g x e +<即为: 11(1)ln(1)1ln(1)xx e x x x x+<⇔+<⇔+<构造函数则 ()ln(1)(0),h x x x x =+->1()10,11x h x x x-'=-=<++所以函数在上是减函数,因而时, ()h x (0,)+∞0x >()(0)0,h x h <=即:时,成立,所以当时,成立;0x >ln(1)x x +<0x >[]1()1()g x g x e +<(4)因为 1(1)(2)111(1)(2)2222(1)11(1)3(1),(1n n n n n n n n n n n b n n e n n b n b n n n n n++++++++++++===⋅+<<令,得, 23(1)1n n+<2330n n -->因此,当时,有4n ≥(1)(2)1(1)(2)1,n n n n n nb b +++++<所以当时,,即 4n ≥1n n b b +>456...b b b >>>又通过比较的大小知:, 1234b b b b 、、、1234b b b b <<<因为且时所以若数列中存在相等的两项,只能是与后面的项11,b =1n ≠111,n n b n +=≠{}n b 23b b 、可能相等,又,所以数列中存在唯一相等的两项, 11113964283528,35b b b b ====>={}n b 即.28b b =7.在数列中, {}n a 12a =11,22().n n n a a n N ++=+∈ (I )求证:数列为等差数列; }2{nn a(II )若m 为正整数,当时,求证:. 2n m ≤≤1231(1)()n m n n m m n a m⋅--+≤解:(I )由变形得:1122+++=n n n a a 122,1221111=-+=++++n nn n n n n n a a a a 即故数列是以为首项,1为公差的等差数列 }2{nn a121=a (II )(法一)由(I )得n n n a 2⋅= m m n m m m a n n m m nm n n 1)23)(1(1)3)(1(221-≤+--≤⋅+-即令mn m nn m n f n m n f 123()()1(,23()1()(+⋅-=+⋅+-=则当mn m n m n f n f n m 1)32(1)1()(,2⋅-+-=+≥>时m m m n m 11)32()211(32()11(⋅-+≥⋅-+=又 23221211211(1>>-+>+-⋅+=-+m m m C m m m m m 123(211>-+∴则为递减数列. )(,1)1()(n f n f n f 则>+当m=n 时,递减数列.)1()(+>n f n f )(,2n f n m 时当≥≥∴ mm m m f x f m m 1)1(49(),1()49()2()(11max-≤--==∴2故只需证要证:时,2,)11()1(491)23)(1(2≥+=+≤-≤+-m mm m m m n m m m m n 而即证49221212212122122)1(121111(22010=⨯-+≥-+=-+=-⋅+=⋅+⋅+≥+m m m m m mm C m C C m m m m m 故原不等式成立.(法二)由(I )得n n n a 2⋅= mm n m m m a n n m m nm n n 1)23)(1(1)3)(1(221-≤+--≤⋅+-即令)123ln 1()23()('),2()23)(1()(-⋅+-=≤≤+-=m x m x f m x x m x f m xm x则上单调递减. ],2[)(0)(',11,2m x f x f mx m m x 在即<∴<+-∴≤≤ ∴ mm m m f x f m m 1)1()49(),1()49()2()(11max-≤--==∴2故只需证也即证,时而2,)11(149≥+≤m mm49221212212122122)1(121111(22210=⨯-+≥-+=-+=-⋅+=⋅+⋅+≥+m m m m m mm C m C C m m m m m 故原不等式成立.。
求解与数列有关的创新题的思路
解题宝典新高考数学试题中加入了一些创新题,此类问题侧重于考查同学们的创新和应变能力.与数列有关的创新题的命题形式比较新颖,通常会根据数列自身的特点,将函数、不等式、方程等知识交汇融合.与数列有关的创新题主要包括新定义问题和结构不良问题.本文结合实例,谈一谈求解与数列有关的创新题的思路.一、新定义问题新定义问题是新高考数学中的一类创新题,是指给出一个同学们没有接触过的新定义,要求同学们现学现用,根据新定义去解题.主要包括以下几种类型:①新定义概念;②新定义运算;③新定义规则.这类问题侧重于考查同学们的创新能力、运算能力、推理能力.解答这类问题的关键在于要仔细研究新定义,类比所学的等差、等比数列的概念、通项公式、基本性质以及前n 项和公式,从而寻找到解题的思路.例1.(多选题)已知函数f (x )的定义域为(-∞,0)∪(0,+∞),如果对任意给定的等比数列{a n },{f (a n )}仍是等比数列,那么称函数f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数,其中是“保等比数列函数”的为().A.f (x )=x 3B.f (x )=e xC.f (x )=|x |D.f (x )=ln|x |分析:解答本题的关键在于理解“保等比数列函数”,并根据等比数列的定义来建立关系式,证明{f (a n )}仍是等比数列.解:设等比数列{a n }的公比为q ,q ≠0,则a n +1a n=q ,对于选项A 中的函数f (x )=x 3,因为f (a n +1)f (a n )=a 3n +1a 3n =(a n +1a n )3=q 3,q 3是非零常数,所以该函数为“保等比数列函数”;对于选项B 中的函数f (x )=e x,因为f (a n +1)f (a n )=e a n +1ea n=e a n +1-a n,e a n +1-a n不是常数,所以该函数不是“保等比数列函数”;对于选项C 中的函数f (x )=|x |,因为f (a n +1)f (a n )===|q |,|q |是非零常数,所以该函数为“保等比数列函数”;对于选项D 中的函数f (x )=ln |x |,因为f (a n +1)f (a n )=ln |a n +1|ln |a n |,ln |a n +1|ln |a n |不是常数,所以该函数不是“保等比数列函数”;故本题的答案为AC .解答这类新定义问题,关键是明确新定义的涵义,将其与等差、等比数列的定义、性质、公式等关联起来,逐步分析、推理,从而得到正确答案.例2.给定数列{A n },若对任意m ,n ∈N *且m ≠n ,A m +A n 是{A n }中的项,则称{A n }为“H 数列”.设数列{a n }的前n 项和为S n .(1)请写出一个数列{a n }的通项公式________,此时数列{a n }是“H 数列”;(2)设{a n }既是等差数列又是“H 数列”,且a 1=6,a 2∈N *,a 2>6,求公差d 的所有可能取值.解:(1)a n =2n .对任意m ,n ∈N *且m ≠n ,a n +a m =2(n +m )=a m +n ∈{a n },因此数列{a n }为“H 数列”.(2)因为{a n }既是等差数列又是“H 数列”,且a 1=6,a 2∈N *,a 2>6,由等差数列的通项公式可得a n =6+(n -1)d ,而a 2=6+d >6,即d >0,且d ∈N *,所以a 1+a 2=6+6+d =12+d ,根据“H 数列”的定义知a 1+a 2=a k ,若a 1+a 2=a 3=6+2d ,解得d =6,此时a n =6n ,数列{a n }是“H 数列”;若a 1+a 2=a 4=6+3d ,解得d =3,此时a n =3n +3,数列{a n }是“H 数列”;若a 1+a 2=a 5=6+4d ,解得d =2,此时a n =2n +4,数列{a n }是“H 数列”;若a 1+a 2=a 6=6+5d ,解得d =32∉N *,舍去;若a 1+a 2=a 7=6+6d ,解得d =65∉N *,舍去;若a 1+a 2=a 8=6+7d ,解得d =1,此时a n =n +5,数列{a n }是“H 数列”;当k ≥9时,{a n }不是“H 数列”;故公差d 的所有可能取值为1,2,3,6.此类新定义问题比较新颖,具有较强的灵活性与开放性.解答本题,需理解并弄懂新定义,根据题设条安旺明39解题宝典件与新定义,写出一个符合题意的数列的通项公式.此类问题的答案往往不唯一,只要写出任何一个符合题意的答案即可.解答第二个问题,需结合等差数列的定义和新定义“H 数列”建立关系式,运用分类讨论思想逐步找到公差d 的所有可能取值.二、结构不良问题结构不良问题的主要特征是:(1)变量的范围、条件不明确,或缺少限定条件;(2)目标含糊不清;(3)求解途径不唯一或根本不存在解答方法,即通常没有唯一的标准答案.在解题时,可将问题与熟悉的题目进行类比,将其中的某一个条件、目标确定,将问题转化为自己熟悉的题目,运用数列中的性质、定义、公式进行求解.例3.在①a 1,a 3,a 21成等比数列,②S 4=28,③S n +1=S n +a n +4三个条件中任选一个,补充在下面的问题中,并做出解答.已知{a n }是公差不为零的等差数列,S n 为其n 前项和,a 2=5,______,{b n }是等比数列,b 2=9,b 1+b 3=30,公比q >1.(1)求数列{a n },{b n }的通项公式;(2)数列{a n }和{b n }的所有项分别构成集合A ,B ,将A ∪B 的元素按从小到大依次排列构成一个新数列{c n },求T 80=c 1+c 2+c 3+…+c 80.解:(1)选①,由于{a n }是公差不为0的等差数列,设公差为d ,由a 1,a 3,a 21成等比数列,可得(a 1+2d )2=a 1(a 1+20d ),又d ≠0,可得4a 1=d ,又a 2=5,即a 1+d =5,解得a 1=1,d =4,所以a n =1+4(n -1)=4n -3;选②,由S 4=28,a 2=5,得4a 1+6d =28,a 1+d =5,解得a 1=1,d =4,所以a n =1+4(n -1)=4n -3;选③,由S n +1=S n +a n +4,可得a n +1-a n =d =4,又a 2=5,即a 1+d =5,可得a 1=1,所以a n =1+4(n -1)=4n -3;由于{b n }是等比数列,由b 2=9,b 1+b 3=30,公比q >1,可得b 1q =9,b 1+b 1q 2=30,解得b 1=3,q =3,所以b n =3n;(2)由于a 80=317,35=243<317<36=729,所以{c n }的前80项中最多有5项是数列{b n }中的项,其中b 2=9=a 3,b 4=81=a 21为公共项,又a 77=305>243=b 5,所以{c n }的前80项是由{a n }的前77项及b 1,b 3,b 5构成,所以T 80=c 1+c 2+c 3+…+c 80=a 1+a 2+a 3+…+a 77+b 1+b 3+b 5=12×77×(1+305)+3+27+243=12054.本题中的条件不唯一,要求任意选取一个条件,构建出一个完整的数学问题.选择不同的条件,得出的数列{a n }、{b n }的通项公式就会有所不同.无论选择哪个条件,其求解思路都是一致的,都需运用等差、等比的通项公式、等差数列的前n 项和公式来求解.例4.已知函数f (x )=log k x(k 为常数,k >0且k ≠1).(1)在下列条件中选择一个,使得数列{a n }是等比数列,并说明理由.①数列{f (a n )}是首项为2,公比为2的等比数列;②数列{f (a n )}是首项为4,公差为2的等差数列;③数列{f (a n )}是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =2时,设a n b n =2n +14n 2-1,求数列{b n }的前n 项和T n .解:(1)①③不能使得数列{a n }成等比数列,②可以.由题意知f (a n )=4+(n -1)×2=2n +2,即log k a n =2n +2,得a n =k 2n +2,且a 1=k 4≠0,所以a n +1a n =k 2(n +1)+2k2n +2=k 2,因为常数k >0且k ≠1,所以k 2为非零常数,所以数列{a n }是以k 4为首项,k 2为公比的等比数列.(2)由(1)知a n =k 4·(k 2)n -1=k 2n +2,所以当k =2时,a n =2n +1,而a n b n =2n +14n 2-1,可得b n =14n 2-1,则b n =14n 2-1=1(2n -1)(2n +1)=12(12n -1-12n +1),所以T n =b 1+b 2+…+b n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1)=n 2n +1.选②后,根据函数的解析式、等比数列的定义建立关系式,通过对数运算证明数列{a n }是等比数列.对于第二个问题,需根据数列{b n }通项公式的特点进行裂项,运用裂项相消法求数列的和.解答此类结构不良问题,需根据已有的知识和经验对各个条件进行判断,构建条件与所求目标之间的关系,进行合理的探究与分析,进而使问题得解.随着新高考改革的不断推进与深入,数学命题会进一步加大创新与开放的力度,试卷中会出现更多具有创新性、开放性的数学问题.这就要求同学们夯实基础,重视培养创新能力和综合分析能力,这样才能灵活应对这些创新题.(作者单位:甘肃省秦安县第二中学)40。
如何解决高考数学中的数列与数学归纳法题目
如何解决高考数学中的数列与数学归纳法题目数列与数学归纳法是高考数学中常见的题型,对于考生来说,熟练掌握解决这类题目的方法和技巧至关重要。
本文将介绍一些解决高考数学中的数列与数学归纳法题目的策略和步骤。
一、数列题目解决策略对于数列题目,首先需要明确题目给出的条件以及需要求解的内容。
然后可以按照以下步骤进行解决:1. 找出数列的通项公式:通过观察数列中元素之间的规律,可以尝试找出数列的通项公式。
常见的数列有等差数列、等比数列和递推数列等,可以根据数列的性质来确定通项公式。
2. 确定数列的首项和公差(或公比):根据数列的通项公式,可以确定数列的首项和公差(或公比)。
首项即数列中的第一个数,公差即等差数列中相邻两项之间的差值,公比即等比数列中相邻两项之间的比值。
3. 求解问题:根据题目给出的条件和要求,使用所确定的数列通项公式和已知信息,对数列进行计算,得到所需的结果。
需要注意题目中可能涉及到的问题类型,如求和、求极限、求范围等,应选择相应的解决方法。
二、数学归纳法题目解决策略数学归纳法常用于证明一些数学命题的正确性,在高考数学中也经常出现数学归纳法的题目。
解决这类题目时,可以按照以下步骤进行:1. 确定归纳假设:首先需要明确题目给出的命题,并对其进行归纳分析。
通过观察命题中的模式和规律,得出归纳假设,即命题成立的前提条件。
2. 验证归纳基础:归纳基础是证明归纳法的第一步,需要验证命题在某个确定的数值下是否成立。
通常选取最小的自然数或指定的特殊值进行验证,并确保命题在该值下是成立的。
3. 假设归纳成立:假设在某个确定的情况下命题成立,即假设命题对任意给定的自然数n成立。
4. 利用归纳法证明:利用归纳假设和归纳成立的情况,通过数学推理和逻辑推导来证明命题对n+1也成立。
通常需要进行等式转换、代数运算等步骤。
5. 总结归纳法的结果:根据归纳法的步骤和推导过程,总结出命题的结论,确保命题在任意给定的自然数下都成立。
函数与导数经典常考压轴大题
函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x 22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.02证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .3(2024·上海松江·二模)已知函数y =x ⋅ln x +a (a 为常数),记y =f (x )=x ⋅g (x ).(1)若函数y =g (x )在x =1处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:f (x )+f (t -x )≥f (t )-t ln2+a ;(3)当a =1时,求证:g (x )+cos x <e x x.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x ∈D ,m ≤f x ⇔m ≤f x min ;(2)∀x ∈D ,m ≥f x ⇔m ≥f x max ;(3)∃x ∈D ,m ≤f x ⇔m ≤f x max ;(4)∃x ∈D ,m ≥f x ⇔m ≥f x min .3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-axe x a∈R.(1)讨论f x 的单调性;(2)若关于x的不等式f x >a1-x无整数解,求a的取值范围.2(2024·黑龙江哈尔滨·一模)已知函数f x =xe x-ae x,a∈R.(1)当a=0时,求f x 在x=1处的切线方程;(2)当a=1时,求f x 的单调区间和极值;(3)若对任意x∈R,有f x ≤e x-1恒成立,求a的取值范围.3(2024·陕西安康·模拟预测)已知函数f x =ln x+1,g x =e x-1.(1)求曲线y=f x 与y=g x 的公切线的条数;(2)若a>0,∀x∈-1,+∞,f x+1≤a2g x +a2-a+1,求a的取值范围.04零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x轴(或直线y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x-1,g x =ln x+b.(1)求函数F x =x-1f x 的单调区间;(2)若总存在两条直线和曲线y=f x 与y=g x 都相切,求b的取值范围.2(2024·北京房山·一模)已知函数f(x)=e ax+1 x.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f (x)⋅x2,求函数g(x)的极大值;(3)若a<-e,求函数f(x)的零点个数.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.2(2024·河北沧州·一模)已知函数f x =x a e2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.3(2024·全国·模拟预测)已知函数f (x )=e x -sin x .(1)若f (x )≥ax 2+1对于任意x ∈[0,+∞)恒成立,求a 的取值范围;(2)若函数f (x )的零点按照从大到小的顺序构成数列x n ,n ∈N *,证明:2ni =1x i <-2n 2+n π;(3)对于任意正实数x 1,x 2,证明:e x 2-x 2-1 e x 1>sin x 1+x 2 -sin x 1-x 2cos x 1.1已知函数f x =ax -ln x x ,a >0.(1)若f x 存在零点,求a 的取值范围;(2)若x 1,x 2为f x 的零点,且x 1<x 2,证明:a x 1+x 2 2>2.2已知函数f x =3ln x -ax .(1)讨论f x 的单调性.(2)已知x 1,x 2是函数f x 的两个零点x 1<x 2 .(ⅰ)求实数a 的取值范围.(ⅱ)λ∈0,12 ,f x 是f x 的导函数.证明:f λx 1+1-λ x 2 <0.3如图,对于曲线Γ,存在圆C 满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 0 3);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1 和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.4已知函数f x =ax2+x-ln x-a.(1)若a=1,求f x 的最小值;(2)若f x 有2个零点x1,x2,证明:a x1+x22+x1+x2>2.5已知函数f x =12e2x+a-2e x-2ax.(1)若曲线y=f x 在0,a-32处的切线方程为4ax+2y+1=0,求a的值及f x 的单调区间.(2)若f x 的极大值为f ln2,求a的取值范围.(3)当a=0时,求证:f x +5e x-52>32x2+x ln x.6已知函数f x =12x2+x+a ln x+1,a∈R.(1)讨论f x 的单调性;(2)证明:当a<-1时,a2+f x >1.7已知函数f x =x ln x+ax+1a∈R.(1)若f x ≥0恒成立,求a的取值范围;(2)当x>1时,证明:e x ln x>e(x-1).(1)判断函数f(x)的单调性(2)证明:①当a≥0时,f(x)≤0;②sin1n+1+sin1n+2+⋯+sin12n<ln2,n∈N*.9牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程f x =0的其中一个根r在x=x0的附近,如图6所示,然后在点x0,f x0处作f x 的切线,切线与x轴交点的横坐标就是x1,用x1代替x0重复上面的过程得到x2;一直继续下去,得到x0,x1,x2,⋯,x n.从图形上我们可以看到x1较x0接近r,x2较x1接近r,等等.显然,它们会越来越逼近r.于是,求r近似解的过程转化为求x n,若设精度为ε,则把首次满足x n-x n-1<ε的x n称为r的近似解.已知函数f x =x3-x+1,a∈R.(1)试用牛顿迭代法求方程f x =0满足精度ε=0.5的近似解(取x0=-1,且结果保留小数点后第二位);(2)若f x +3x2+6x+5+ae x≤0对任意x∈R都成立,求整数a的最大值.(计算参考数值:e≈2.72,e1.35≈3.86,e1.5≈4.48,1.353≈2.46,1.352≈1.82)(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.11已知函数f x =x2-2a ln x-2(a∈R).(1)讨论f x 的单调性;(2)若不等式f x ≤2ln x2+x2-2x在区间(1,+∞)上有解,求实数a的取值范围.12已知函数f x =xe x,其中e=2.71828⋯为自然对数的底数.(1)求函数f x 的单调区间;(2)证明:f x ≤e x-1;(3)设g x =f x -e2x+2ae x-4a2+1a∈R,若存在实数x0使得g x0≥0,求a的最大值.13已知函数f x =e x-1-ax a∈R.(1)若函数f x 在点1,f1处的切线与直线x+2ey+1=0垂直,求a的值;(2)当x∈0,2时,讨论函数F x =f x -x ln x零点的个数.14已知函数f(x)=e2x-(2a-1)e x-ax.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.15已知函数f x =e x-x2+a,x∈R,φx =f x +x2-x.(1)若φx 的最小值为0,求a的值;(2)当a<0.25时,证明:方程f x =2x在0,+∞上有解.16已知f (x )=x ex,g (x )=ln x x .(1)求函数y =f (x )、y =g (x )的单调区间和极值;(2)请严格证明曲线y =f (x )、y =g (x )有唯一交点;(3)对于常数a ∈0,1e,若直线y =a 和曲线y =f (x )、y =g (x )共有三个不同交点x 1,a 、x 2,a 、x 3,a ,其中x 1<x 2<x 3,求证:x 1、x 2、x 3成等比数列.17已知函数f x =sin x -ax ⋅cos x ,a ∈R .(1)当a =1时,求函数f x 在x =π2处的切线方程;(2)x ∈0,π2时;(ⅰ)若f x +sin2x >0,求a 的取值范围;(ⅱ)证明:sin 2x ⋅tan x >x 3.18f(x)=2sin(x+φ)-a+e-x,φ∈0,π2,已知f(x)的图象在(0,f(0))处的切线与x轴平行或重合.(1)求φ的值;(2)若对∀x≥0,f(x)≤0恒成立,求a的取值范围;(3)利用如表数据证明:157k=1sinkπ314<106.eπ314e-π314e78π314e-78π314e79π314e-79π314 1.0100.990 2.1820.458 2.2040.45419数值线性代数又称矩阵计算,是计算数学的一个重要分支,其主要研究对象包括向量和矩阵.对于平面向量a =(x ,y ),其模定义为|a |=x 2+y 2.类似地,对于n 行n 列的矩阵A nn =a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮,其模可由向量模拓展为A =∑ni =1∑nj =1a 2ij12(其中a ij为矩阵中第i 行第j 列的数,∑为求和符号),记作A F,我们称这样的矩阵模为弗罗贝尼乌斯范数,例如对于矩阵A 22=a 11a 12a21a 22=2435,其矩阵模A F =∑n i =1∑nj =1a 2ij12=22+42+32+52=3 6.弗罗贝尼乌斯范数在机器学习等前沿领域有重要的应用.(1)∀n ∈N *,n ≥3,矩阵B nn =100⋯0020⋯0003⋯0⋮⋮⋮⋮00⋯n,求使B F >35的n 的最小值.(2)∀n ∈N *,n ≥3,,矩阵C nn =1cos θcos θcos θ⋯cos θcos θ0-sin θ-sin θcos θ-sin θcos θ⋯-sin θcos θ-sin θcos θ00sin 2θsin 2θcos θ⋯sin 2θcos θsin 2θcos θ⋮⋮⋮⋮⋮⋮0000⋯(-1)n -2sin n -2θ(-1)n -2sin n -2θcos θ0000⋯0(-1)n -1sin n -1θ求C F.(3)矩阵D mn =ln n +2n +100⋅⋅⋅0ln n +1n 22ln n +1n 220⋅⋅⋅0⋮ln 43n -1n -1ln 43 n -1n -1ln 43 n -1n -1⋅⋅⋅0ln 32 n n ln 32 n n ln 32 nn ⋅⋅⋅ln 32nn,证明:∀n ∈N *,n ≥3,D F >n 3n +9.20已知函数f x =sin x -ln 1+ax .(1)若x ∈0,π2时,f x ≥0,求实数a 的取值范围;(2)设n ∈N *,证明:sin 13+ln 32-ln n +2n +1<nk =1sin 1k k +2 <34.1函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;2(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【解析】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4(t +1)2=(t -1)2t (t +1)>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.【解析】(1)当a =1时,f x =2e x -12x 2+1,f x =2e x -x ,则f 0 =3,f 0 =2,则切线方程为y -3=2x ,因此曲线y =f x 在点0,f 0 处的切线方程为2x -y +3=0.(2)证明:函数f x =a +1 e x -x ,x 1,x 2是y =f x 的两个零点,所以x 1=a +1 e x 1,x 2=a +1 e x 2,则有x 1+x 2=a +1 e x 1+e x 2,且x 2-x 1=a +1 e x 2-e x1,由x 1<x 2,得a +1=x 2-x 1e x 2-ex 1.要证x 1+x 2>2,只要证明a +1 e x 1+e x 2>2,即证x 2-x 1 e x 2+ex1e x 2-ex 1>2.记t =x 2-x 1,则t >0,e t >1,因此只要证明t ⋅e t +1e t -1>2,即t -2 e t +t +2>0.记h t =t -2 e t +t +2(t >0),则h t =t -1 e t +1,令φt =t -1 e t +1,则φ t =te t ,当t >0时,φ t =te t >0,3所以函数φt =t -1 e t +1在0,+∞ 上递增,则φt >φ0 =0,即h t >h 0 =0,则h t 在0,+∞ 上单调递增,∴h t >h 0 =0,即t -2 e t +t +2>0成立.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.【解析】(1)因为f x =ln x +x 2-2ax ,x >0,所以f(x )=1x +2x -2a =2x 2-2ax +1x,令g (x )=2x 2-2ax +1,则Δ=4a 2-8=4a 2-2 ,因为a >0,当0<a ≤2时,Δ≤0,则g (x )≥0,即f (x )≥0,此时f (x )在(0,+∞)上单调递增,当a >2时,Δ>0,由g (x )=0,得x 3=a -a 2-22,x 4=a +a 2-22,且x 3<x 4,当0<x <x 3或x >x 4时,g (x )>0,即f (x )>0;当x 3<x <x 4时,g (x )<0,即f (x )<0,所以f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减;综上,当0<a ≤2时,f (x )在(0,+∞)上单调递增,当a >2时,f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减,其中x 3=a -a 2-22,x 4=a +a 2-22.(2)由(1)可知,x 3,x 4为f (x )的两个极值点,且x 3<x 4,所以x 1=x 3,x 2=x 4,且x 1,x 2是方程2x 2-2ax +1=0的两不等正根,此时a >2,x 1+x 2=a >0,x 1⋅x 2=12,所以x 1∈0,22 ,x 2∈22,+∞ ,且有2ax 1=2x 21+1,2ax 2=2x 22+1,则2f x 1 -f x 2 =2ln x 1+x 21-2ax 1 -ln x 2+x 22-2ax 2=2ln x 1+x 21-2x 21-1 -ln x 2+x 22-2x 22-1 =-2x 21+2ln x 1-ln x 2+x 22-1=x 22-212x 22+2ln12x 2-ln x 2-1=x 22-12x 22-32ln x 22-2ln2-1令t =x 22,则t ∈12,+∞ ,令g t =t -12t -32ln t -2ln2-1,则g t =1+12t 2-32t =2t -1 t -1 2t 2,当t ∈12,1 时,g t <0,则g t 单调递减,当t ∈1,+∞ 时,g t >0,则g t 单调递增,所以g t min =g 1 =-1+4ln22,所以2f x 1 -f x 2 的最小值为-1+4ln22.402证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.【解析】(1)f x =me x -2x +m ,f 2 =me 2-4+m ,f 2 =me 2-4+m ,则有4e 2=me 2-4+m ,4e 2×2-me 2-4+m -4e 2=0,解得m =4;(2)由m =4,故f x =4e x -x 2+4x -4,要证对一切x ≥0,都有f x ≥e 2x 2,即证4e x ≥e 2+1 x 2-4x +4对一切x ≥0恒成立,即证e 2+1 x 2-4x +4e x ≤4对一切x ≥0恒成立,令g x =e 2+1 x 2-4x +4e x,gx =2e 2+1 x -4-e 2+1 x 2+4x -4e x =-e 2+1 x 2+2e 2+3 x -8e x=-e 2+1 x -4 x -2 e x ,则当x ∈0,4e 2+1 ∪2,+∞ 时,g x <0,则当x ∈4e 2+1,2时,g x >0,即g x 在0,4e 2+1 、2,+∞ 上单调递减,在4e 2+1,2上单调递增,又g 0 =4e 0=4,g 2 =4e 2+1 -4×2+4e 2=4e 2+4-8+4e 2=4,故g x ≤4对一切x ≥0恒成立,即得证.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .【解析】(1)当a =4时,f (x )=(x -4)e x +x +4,则f (x)=(x-3)e x+1,得f (0)=-2,又f(0)=0,所以f(x)在x=0处的切线为y=-2x;(2)f(x)=(x-a)e x+x+a≥0对∀x∈[0,+∞)恒成立,f (x)=(x+1-a)e x+1,设g(x)=(x+1-a)e x+1(x≥0),则g (x)=(x+2-a)e x,当2-a≥0即a≤2时,g (x)≥0,g(x)在[0,+∞)上单调递增,且g(0)=2-a≥0,所以g(x)≥0,即f (x)≥0,此时f(x)在[0,+∞)上单调递增,且f(0)=0,所以f(x)≥0对∀x∈[0,+∞)恒成立.当2-a<0即a>2时,令g (x)<0⇒0<x<a-2,g (x)>0⇒x>a-2,所以函数g(x)在(0,a-2)上单调递减,在(a-2,+∞)上单调递增,则g(x)min=g(a-2)=1-e a-2<0,又g(0)=2-a<0,所以在(0,a-2)上恒有g(x)<0,即f (x)<0,函数f(x)在(0,a-2)上单调递减,且f(0)=0,则在(0,a-2)上有f(x)<0,不符合题意.综上,a≤2,即实数a的取值范围为(-∞,2](3)由a n+1=2a na n+2,得1a n+1-1a n=12,又1a1=1,所以数列1a n是以1为首项,以12为公差的等差数列,故1a n=1+12(n-1)=n+12,所以a n=2n+1.当n=1时,S1+13=a1+13=43<ln6恒成立;当n≥2时,先证:2n+1<ln n+2n,即证2n+1<ln n+1+1n+1-1=ln1+1n+11-1n+1,设x=1n+1,则0<x<1,即证2x<ln1+x1-x(0<x<1),令h(x)=2x-ln 1+x1-x(0<x<1),则h (x)=2-1x+1-11-x=-2x21-x2<0,所以h(x)在(0,1)上单调递减,故h(x)<h(0)=0,即2x<ln 1+x1-x,即2n+1<ln n+2n.所以当n≥2时,S n+13=13+23+24+⋯+2n+1<ln6+ln42+ln53+⋯+ln n+2n=ln6×4×5×⋯×n(n+1)(n+2)2×3×4×5×⋯×n=ln[(n+1)(n+2)].综上,S n+13<ln[(n+1)(n+2)].3(2024·上海松江·二模)已知函数y=x⋅ln x+a(a为常数),记y=f(x)=x⋅g(x).(1)若函数y=g(x)在x=1处的切线过原点,求实数a的值;(2)对于正实数t,求证:f(x)+f(t-x)≥f(t)-t ln2+a;(3)当a=1时,求证:g(x)+cos x<e xx.【解析】(1)由题意,函数y=x⋅ln x+a,且y=f(x)=x⋅g(x),可得g(x)=f(x)x=ln x+ax,x>0,则g (x)=1x-ax2=x-ax2,5所以g (1)=1-a,又因为g(1)=ln1+a=a,所以g x 在x=1处的切线方程为y=(1-a)(x-1)+a,又因为函数y=g(x)在x=1处的切线过原点,可得0=(1-a)⋅(0-1)+a,解得a=1 2 .(2)设函数h x =f x +f t-x,t>0,可得h x =x ln x+(t-x)ln(t-x)+2a,其中0<x<t,则h x =ln x+1-ln(t-x)-1=lnxt-x,令h x >0,可得xt-x>1,即2x-tt-x>0,即2x-tx-t<0,解得t2<x<t,令h x <0,可得0<xt-x<1,解得0<x<t2,所以h x 在t2,t上单调递增,在0,t2上单调递减,可得h x 的最小值为ht2,所以h x ≥h t2 ,又由ht2=f t2 +f t-t2=t ln t2+2a=f t -t ln2+a,所以f x +f t-x≥f t -t ln2+a.(3)当a=1时,即证ln x+1x <e xx-cos x,由于cos x∈[-1,1],所以e xx-cos x≥e xx-1,只需证ln x+1x<e xx-1,令k x =ln x+1x-e xx+1,x>0,只需证明k x <0,又由k x =1x-1x2-e x(x-1)x2=(1-e x)(x-1)x2,因为x>0,可得1-e x<0,令k x >0,解得0<x<1;令k x <0,解得x>1,所以k x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以k x 在x=1处取得极大值,也时最大值,所以k x max=k1 =2-e<0,即k x <0,即a=1时,不等式g(x)+cos x<e xx恒成立.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x∈D,m≤f x ⇔m≤f x min;(2)∀x∈D,m≥f x ⇔m≥f x max;(3)∃x∈D,m≤f x ⇔m≤f x max;(4)∃x∈D,m≥f x ⇔m≥f x min.673、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-ax e x a ∈R .(1)讨论f x 的单调性;(2)若关于x 的不等式f x >a 1-x 无整数解,求a 的取值范围.【解析】(1)f x =1-a -ax e x ,当f x =0,得x =1-aa ,当a >0时,x ∈-∞,1-a a时,fx >0,f x 单调递增,x ∈1-a a,+∞ 时,f x <0,f x 单调递减,当a <0时,x ∈-∞,1-aa时,f x <0,f x 单调递减,x ∈1-a a,+∞ 时,f x >0,f x 单调递增,当a =0时,f x =e x ,函数f x 在R 上单调递增,综上可知,a >0时,函数f x 的单调递增区间是-∞,1-a a,单调递减区间是1-aa ,+∞ ,a <0时,函数f x 的单调递减区间是-∞,1-a a ,单调递增区间是1-aa ,+∞ ,a =0时,函数f x 的增区间是-∞,+∞ ,无减区间.(2)不等式1-ax e x >a 1-x ,即a x -x -1e x<1,设h x =x -x -1e x ,h x =1-2-x e x =e x +x -2e x,设t x =e x +x -2,t x =e x +1>0,所以t x 单调递增,且t 0 =-1,t 1 =e -2>0,所以存在x 0∈0,1 ,使t x 0 =0,即h x 0 =0,当x ∈-∞,x 0 时,h x <0,h x 单调递减,当x ∈x 0,+∞ 时,h x >0,h x 单调递增,所以h x ≥h x 0 =x 0e x-x 0+1ex,因为e x≥x +1,所以h x ≥h x 0 =x 0e x-x 0+1e x 0≥x 0x 0+1 -x 0+1e x 0=x 20+1ex>0,当x ≤0时,h x ≥h 0 =1,当x ≥1时,h x ≥h 1 =1,不等式1-ax e x >a 1-x 无整数解,即a x -x -1e x<1无整数解,若a ≤0时,不等式恒成立,有无穷多个整数解,不符合题意,若a ≥1时,即1a≤1,因为函数h x 在-∞,0 上单调递减,在1,+∞ 上单调递增,所以x ∈Z 时,h x ≥min h 0 ,h 1 =1≥1a ,所以h x <1a 无整数解,符合题意,当0<a <1时,因为h 0 =h 1 =1<1a ,显然0,1是a ⋅h x <1的两个整数解,不符合题意,8综上可知,a ≥1.2(2024·黑龙江哈尔滨·一模)已知函数f x =xex -ae x ,a ∈R .(1)当a =0时,求f x 在x =1处的切线方程;(2)当a =1时,求f x 的单调区间和极值;(3)若对任意x ∈R ,有f x ≤e x -1恒成立,求a 的取值范围.【解析】(1)当a =0时,f x =xex ,则f x =1-x ex,f 1 =0,f 1 =1e ,所以切线方程为y =1e.(2)当a =1时,f x =xe -x -e x ,f x =1-x e -x -e x =1-x -e 2xex.令g x =1-x -e 2x ,g x =-1-2e 2x<0,故g x 在R 上单调递减,而g 0 =0,因此0是g x 在R 上的唯一零点即:0是f x 在R 上的唯一零点当x 变化时,f x ,f x 的变化情况如下表:x-∞,0 00,+∞f x +0-f x↗极大值↘f x 的单调递减区间为:0,+∞ ;递增区间为:-∞,0 f x 的极大值为f 0 =-1,无极小值(3)由题意知xe -x-ae x≤e x -1,即a ≥xe -x -e x -1e x,即a ≥x e2x -1e ,设m x =x e 2x -1e ,则mx =e 2x -2xe 2x e 2x2=1-2x e 2x ,令m x =0,解得x =12,当x ∈-∞,12 ,m x >0,m x 单调递增,当x ∈12,+∞ ,m x <0,m x 单调递减,所以m x max =m 12 =12e -1e =-12e,所以a ≥-12e3(2024·陕西安康·模拟预测)已知函数f x =ln x +1,g x =e x -1.(1)求曲线y =f x 与y =g x 的公切线的条数;(2)若a >0,∀x ∈-1,+∞ ,f x +1 ≤a 2g x +a 2-a +1,求a 的取值范围.【解析】(1)设f x =ln x +1,g x =e x -1的切点分别为x 1,f x 1 ,x 2,g x 2 ,则f x =1x,g (x )=e x ,故f x =ln x +1,g x =e x -1在切点处的切线方程分别为y =1x 1x -x 1 +ln x 1+1⇒y =1x 1x +ln x 1,y =e x 2x -x 2 +e x 2-1⇒y =e x 2x -x 2e x 2+e x2-1则需满足;91x 1=ex 2ln x 1=-x 2ex 2+e x 2-1,故ln1ex 2=-x 2e x 2+e x 2-1⇒e x 2-1 x 2-1 =0,解得x 2=0或x 2=1,因此曲线y =f x 与y =g x 有两条不同的公切线,(2)由f x +1 ≤a 2g x +a 2-a +1可得ln x +1 +1≤a 2e x -1 +a 2-a +1,即ln x +1 ≤a 2e x -a 对于∀x ∈-1,+∞ 恒成立,ln 0+1 ≤a 2e 0-a ,结合a >0,解得a ≥1设m (x )=ln x -x +1,,则当x >1时m (x )=1x-1<0,m x 单调递减,当0<x <1时,m (x )>0,m x 单调递增,故当m (x )≤m 1 =0,故ln x ≤x -1,因此ln x +1 ≤x ,x >-1 ,令F x =x -a 2e x +a ,x >-1 ,则F x =1-a 2e x ,令F x =1-a 2e x =0,得x =-2ln a ,当-2ln a ≤-1时,此时a ≥e ,F x =1-a 2e x <0,故F x 在x >-1上单调递减,所以F x <F -1 =-1-a 2e +a =-a 2+ea -e e =-a -e 2 2+e 24-e e≤-e -e 22+e 24+ee=e -2<0,所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,当-2ln a >-1时,此时1<a <e ,令F x =1-a 2e x >0,解得-1<x <-2ln a ,F x 单调递增,令F x =1-a 2e x <0,解得x >-2ln a ,F x 单调递减,故F x ≤F x max =F -2ln a =-2ln a -1+a ,令p a =-2ln a -1+a ,则p a =-2a +1=a -2a ,由于1<a <e ,所以p a =-2a +1=a -2a<0,故p a 在1<a <e 单调递减,故p a <p 1 ,即可p a <0,因此F x ≤F x max =F -2ln a =-2ln a -1+a <0⇒F x <0所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,综上可得a ≥104零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y =k )在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x -1,g x =ln x +b .(1)求函数F x =x -1 f x 的单调区间;10(2)若总存在两条直线和曲线y =f x 与y =g x 都相切,求b 的取值范围.【解析】(1)F x =x -1 f x =x -1 e x -1,F x =xe x -1,令F x >0,得x >0,令F x <0,得x <0,所以函数F x 的单调递增区间为0,+∞ ,单调递减区间为-∞,0 ;(2)∵f x =e x -1∴f x =e x -1在m ,e m -1 处的切线方程为y =e m -1x +1-m e m -1,∵g x =1x,∴g x =ln x +b 在点n ,ln n +b 处的切线方程为y =1nx +ln n +b -1,由题意得e m -1=1n(1-m )e m -1=ln n +b -1,则m -1 e m -1-m +b =0,令h m =m -1 e m -1-m +b ,则h (x )=me m -1-1,令φm =me m -1-1,则φ m =m +1 e m -1,当m <-1时,φ m <0,当m >-1时,φ m >0,所以函数φm 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,即函数h m 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,又h 1 =0,且当m ≤0时,h m <0,所以m <1时,h m <0,h (m )单调递减;当m >1时,h (m )>0,h (m )单调递增,所以h m min =h 1 =b -1,若总存在两条直线和曲线y =f x 与y =g x 都相切,则曲线y =h m 与x 轴有两个不同的交点,则h 1 =b -1<0,所以b <1,此时h b -1 =b -2 e b -2+1>-1e+1>0,h 3-b =2-b e 2-b +2b -3>2-b 3-b =b -322+34>0,所以b 的取值范围为-∞,1 .2(2024·北京房山·一模)已知函数f (x )=e ax +1x.(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)设g (x )=f (x )⋅x 2,求函数g (x )的极大值;(3)若a <-e ,求函数f (x )的零点个数.【解析】(1)当a =0时,f (x )=1+1x ,f x =-1x 2,则f 1 =-1,f 1 =2,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -2=-x -1 ,即y =-x +3;(2)f (x )=ae ax -1x2,则g (x )=f (x )⋅x 2=ax 2e ax -1x ≠0 ,则g x =2axe ax +a 2x 2e ax =ax ax +2 e ax x ≠0 ,当a =0时,g x =-1,此时函数g x 无极值;当a >0时,令g x <0,则x >0或x <-2a ,令g x <0,则-2a<x <0,所以函数g x 在-∞,-2a ,0,+∞ 上单调递增,在-2a ,0 上单调递减,所以g x 的极大值为g -2a =4ae2-1;当a<0时,令g x <0,则x<0或x>-2a,令gx <0,则0<x<-2a,所以函数g x 在-∞,0,-2a,+∞上单调递增,在0,-2a上单调递减,而函数g x 的定义域为-∞,0∪0,+∞,所以此时函数g x 无极值.综上所述,当a≤0时,函数g x 无极大值;当a>0时,g x 的极大值为4ae2-1;(3)令f(x)=e ax+1x =0,则e ax=-1x,当x>0时,e ax>0,-1x<0,所以x>0时,函数f x 无零点;当x<0时,由e ax=-1x,得ax=ln-1x,所以a=-ln-xx,则x<0时,函数f x 零点的个数即为函数y=a,y=-ln-xx图象交点的个数,令h x =-ln-xxx<0,则h x =ln-x-1x2,当x<-e时,h x >0,当-e<x<0时,h x <0,所以函数h x 在-∞,-e上单调递增,在-e,0上单调递减,所以h x max=h-e=1 e,又当x→-∞时,h x >0且h x →0,当x→0时,h x →-∞,如图,作出函数h x 的大致图象,又a<-e,由图可知,所以函数y=a,h x =-ln-xx的图象只有1个交点,即当x<0时,函数f x 只有1个零点;综上所述,若a<-e,函数f(x)有1个零点.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.【解析】(1)由题意知f x 定义域0,+∞,当m=5时,f x =-4x3+5x-1,-4x3+5x-1≥ln xln x,-4x3+5x-1<ln x ,令g x =-4x3+5x-1,g x =-12x 2+5>0⇒0<x <6012,⇒g x 在0,6012 单调递增,6012,+∞ 单调递减,且g 1 =0,令h x =ln x ,则在0,+∞ 单调递增,而f 1 =0=h 1 ,又g 14 =316,h 14 =ln 14<-1,而g 0 =-1,所以当0<x <14时,g x >h x ,当14≤x <1时,g x >0>h x ,所以当0<x <1时,f x =g x ,当x ≥1时,f x =h x ,所以f x =-4x 3+5x -1,0<x <1ln x ,x ≥1,所以f x 在0,6012和1,+∞ 单调递增,在6012,1 单调递减.(ⅰ)当0<x <1时,f x =-12x 2+5,设切点M x 0,-4x 30+5x 0-1 ,则此切线方程为y =-12x 20+5 x -x 0 -4x 30+5x 0-1,又此切线过原点,所以0=-12x 20+5 0-x 0 -4x 30+5x 0-1,解得x 0=12,即此时切线方程是2x -y =0;(ⅱ)当x ≥1时,f x =ln x ,所以f x =1x,设切点为x 0,ln x 0 ,此时切线方程y =1x 0x -x 0 +ln x 0,又此切线过原点,所以0=1x 00-x 0 +ln x 0,解得x 0=e ,所以此时切线方程x -ey =0,综上所述,所求切线方程是:x -ey =0或2x -y =0;(2)(ⅰ)当m =5时,由(1)知,f x 在0,6012 和1,+∞ 单调递增,6012,1单调递减,且f 0 =1,f 14 =316>0,f 1 =0,此时f x 有两个零点;(ⅱ)当m >5时,当0<x <1时,-4x 3+5x -1<-4x 3+mx -1,由(1)知:g x =-4x 3+5x -1在0,6012 递增,6012,1递减,且g 1 =0,所以x ∈6012,+∞ 时,f x >0,而f 0 =-1,所以f x 在0,6012 只有一个零点,6012,+∞ 没有零点;(ⅲ)当0<m <5时,y =-4x 3+mx -1,此时y =-12x 2+m >0得0<x <m 12<6012,由(1)知,当x ≥1时,f x =ln x 只有一个零点x =1,要保证f x 只有一个零点,只需要当0<x <1时,f x =-4x 3+mx -1没有零点,f m12=-4m123+m m 12-1=m 3m 9-1<00<m<1 ,得0<m <3;(ⅳ)当m≤0时,当x∈0,+∞时,g x =-4x3+mx-1<0,此时f x 只有一个零点x=1,综上,f x 只有一个零点时,m<3或m>5 .05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.【解析】(1)因为f x =13x3-12a x2+2cos x+x cos x-sin x,所以f x =x2-ax+a sin x-x sin x=x-ax-sin x.设g x =x-sin x,则g x =1-cos x≥0,所以g x 在R上单调递增,且g0 =0,所以当x>0时,x-sin x>0;当x<0时,x-sin x<0.当a=0时,f x =x x-sin x≥0,所以f x 在R上单调递增.当a>0时,若x∈0,a,则f x <0,所以f x 单调递减;若x∈-∞,0或x∈a,+∞,则f x >0,所以f x 单调递增.当a<0时,若x∈a,0,则f x <0,所以f x 单调递减;若x∈-∞,a或x∈0,+∞,则f x >0,所以f x 单调递增.综上所述,当a=0时,f x 在R上单调递增;当a>0时,f x 在0,a上单调递减,在-∞,0,a,+∞上单调递增;当a<0时,f x 在a,0上单调递减,在-∞,a,0,+∞上单调递增. (2)①由(1)知,当a>0时,f x 在0,a上单调递减,在a,+∞上单调递增,又f0 =-a<0,所以f a <f0 <0,所以f x 在0,a上没有零点.因为x>0,所以f(x)=13x3-12a x2+2cos x+x cos x-sin x>13x3-12a x2+2-x-1=19x2x-92a+19x x2-9+19x3-a+1所以当x>92ax>3x>39a+9时,f x >0,此时f x 在a,+∞上只有1个零点.综上可得,f x 在0,+∞上只有1个零点.②由a>0,知f x 在0,a上单调递减,在a,+∞上单调递增,所以f x ≥f a =-16a3-sin a,所以f a +16a 3+12a 2+2sin a +π4 -1=12a 2+cos a -1.设h a =12a 2+cos a -1,则h a =a -sin a .由(1)知,当a >0时,a -sin a >0,所以当a >0时,h a >0,所以h a >0在0,+∞ 上单调递增,所以h a >h 0 =0,即f a >1-16a 3-12a 2-2sin a +π4 ,所以f x >1-16a 3-12a 2-2sin a +π4.2(2024·河北沧州·一模)已知函数f x =x ae2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.【解析】(1)当a =2时,f x =x 2e 2xfx =2x ⋅e 2x -x 2⋅e 2x ⋅2e 2x 2=-2x (x -1)e 2x 令f x =0,解得x =0或x =1,所以x 、f (x )、f (x )的关系如下表:x (-∞,0)0(0,1)1(1,+∞)f (x )-0+-f (x )单调递减单调递增1e 2单调递减所以函数f x 的单调递增区间为:(0,1),单调递减区间为:(-∞,0)和(1,+∞);极大值f (1)=1e2,极小值f (0)=0;(2)f (x )-cos ln f (x ) ≥a ln x 2-4x ⇔x a e 2x -cos ln x a e2x≥2a ln x -4x⇔e a ln x -2x -2(a ln x -2x )-cos (a ln x -2x )≥0令g (t )=e t -2t -cos t ,其中t =a ln x -2x ,设F (x )=a ln x -2x ,a >0F (x )=a x -2=a -2xx 令F (x )>0,解得:0<x <a2,所以函数F (x )在0,a 2上单调递增,在a2,+∞ 上单调递减,F (x )max =F a 2 =a ln a2-a ,且当x →0+时,F (x )→-∞,所以函数F (x )的值域为-∞,a ln a2-a ;又g (t )=e t -2+sin t ,设h (t )=e t -2+sin t ,t ∈-∞,a ln a2-a ,则h (t )=e t +cos t ,当t ≤0时,e t ≤1,sin t ≤1,且等号不同时成立,即g (t )<0恒成立;t。
巧解数列、导数和不等式综合性的压轴高考题
巧解数列、导数和不等式综合性的压轴高考题
很多高三同学认为,数学高考试卷的最后一题压轴题很难拿分,往往在答题前,就已经先入为主地认为做不出是意料之内的事情,以至于很多考生在压轴题上得分都很低,这是非常可惜的。
首先同学们要正确认识压轴题。
压轴题主要出在函数,解几,数列三部分内容,一般有两到三小题。
记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!下面我们用一道题来看看高考中所谓的压轴题:看到这道题是不是一头雾水呢,毫无头绪,别忙,仔细看一看,题目中的特征,是不是貌似又有些思路了呢,你要想想出题人的意图,你要相信题目中的数字不是想当然设置的:你能够解出这个问,你必须知道极值点的意义!第二问是不是有点难度呢?你看懂了嘛?看看下面这道行测题,你能在30秒内秒杀吗?留下你的答案,你的秒杀技巧吧!。
2024年高考数学新题型之19题压轴题专项汇编(解析版)
2024新题型之19压轴题1.命题方向2024新题型之19压轴题以大学内容为载体的新定义题型以数列为载体的新定义题型以导数为载体的新定义题型两个知识交汇2.模拟演练题型01以大学内容为载体的新定义题型1(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,n k q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q -n k +1 q =∑m i =0q n -k +i n +ikq.【解】(1)由定义可知,532=5 !23 !22 !2=(1)2(2)2(3)2(4)2(5)2(1)2(2)2(3)2 (1)2(2)2=(4)2(5)2(1)2(2)2=1+2+22+23 1+2+22+23+24 1×1+2=155.(2)因为n kq =n !qk !q n -k !q =(n )q ⋅n -1 !q k !q n -k !q,n -1k -1q +q k n -1kq =n -1 !q k -1 !q n -k !q +q k ⋅n -1 !q k !q n -k -1 !q=n -1 !q k !q n -k !q(k )q +q k⋅(n -k )q .又(k )q +q k ⋅(n -k )q =1+q +⋯+q k -1+q k 1+q +⋯+q n -k -1=1+q +⋯+q n -1=(n )q ,所以n k q =n -1k -1q +q k n -1kq(3)由定义得:对任意k ∈N ,n ∈N *,k ≤n ,n k q =nn -kq.结合(2)可知n k q =n n -kq =n -1n -k -1q +q n -k n -1n -kq=n -1kq +q n -kn -1k -1q即n k q =n -1kq +q n -k n -1k -1q,也即n k q -n -1k q =q n -k n -1k -1q.所以n +m +1k +1q -n +m k +1 q =q n +m -k n +mkq,n +m k +1 q -n +m -1k +1q =q n +m -1-k n +m -1kq,⋯⋯n +1k +1 q -n k +1 q =q n -k nkq.上述m +1个等式两边分别相加得:n +m +1k +1q -n k +1 q =∑m i =0q n -k +i n +ikq.2(2024·广东江门·一模)将2024表示成5个正整数x 1,x 2,x 3,x 4,x 5之和,得到方程x 1+x 2+x 3+x 4+x 5=2024①,称五元有序数组x 1,x 2,x 3,x 4,x 5 为方程①的解,对于上述的五元有序数组x 1,x 2,x 3,x 4,x 5 ,当1≤i ,j ≤5时,若max (x i -x j )=t (t ∈N ),则称x 1,x 2,x 3,x 4,x 5 是t -密集的一组解.(1)方程①是否存在一组解x 1,x 2,x 3,x 4,x 5 ,使得x i +1-x i i =1,2,3,4 等于同一常数?若存在,请求出该常数;若不存在,请说明理由;(2)方程①的解中共有多少组是1-密集的?(3)记S =5i =1x 2i ,问S 是否存在最小值?若存在,请求出S 的最小值;若不存在,请说明理由.【解】(1)若x i +1-x i i =1,2,3,4 等于同一常数,根据等差数列的定义可得x i 构成等差数列,所以x 1+x 2+x 3+x 4+x 5=5x 3=2024,解得x 3=20245,与x 3∈N *矛盾,所以不存在一组解x 1,x 2,x 3,x 4,x 5 ,使得x i +1-x i i =1,2,3,4 等于同一常数;(2)因为x =15x 1+x 2+x 3+x 4+x 5 =20245=404.8,依题意t =1时,即当1≤i ,j ≤5时,max (x i -x j )=1,所以max x i =405,min x j =404,设有y 个405,则有5-y 个404,由405y +4045-y =2024,解得y =4,所以x 1,x 2,x 3,x 4,x 5中有4个405,1个404,所以方程①的解共有5组.(3)因为平均数x =15x 1+x 2+x 3+x 4+x 5 =20245=404.8,又方差σ2=155i =1x i -x 2 ,即5σ2=5i =1x i -x 2 =5i =1x 2i -5x 2,所以S =5σ2+5x 2,因为x 为常数,所以当方差σ2取最小值时S 取最小值,又当t =0时x 1=x 2=x 3=x 4=x 5,即5x 1=2024,方程无正整数解,故舍去;当t =1时,即x 1,x 2,x 3,x 4,x 5 是1-密集时,S 取得最小值,且S min =4×4052+4042=819316.3(2024·江苏四校一模)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D 四点的交比,记为(A ,B ;C ,D ).(1)证明:1-(D ,B ;C ,A )=1(B ,A ;C ,D );(2)若l 1,l 2,l 3,l 4为平面上过定点P 且互异的四条直线,L 1,L 2为不过点P 且互异的两条直线,L 1与l 1,l 2,l 3,l 4的交点分别为A 1,B 1,C 1,D 1,L 2与l 1,l 2,l 3,l 4的交点分别为A 2,B 2,C 2,D 2,证明:(A 1,B 1;C 1,D 1)=(A 2,B 2;C 2,D 2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG 与△E ′F ′G ′的对应边不平行,对应顶点的连线交于同一点,则ΔEFG 与△E ′F ′G ′对应边的交点在一条直线上.【解】证明:(1)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用,设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D 四点的交比,记为(A ,B ;C ,D ).1-(D ,B ;C ,A )=1-DC ⋅BA BC ⋅DA =BC ⋅AD +DC ⋅BABC ⋅AD =BC ⋅(AC +CD )+CD ⋅AB BC ⋅AD,=BC ⋅AC +BC ⋅CD +CD ⋅AB BC ⋅AD =BC ⋅AC +AC ⋅CD BC ⋅AD =AC ⋅BD BC ⋅AD =1(B ,A ;C ,D );(2)(A1,B 1;C 1,D 1)=A 1C 1⋅B 1D 1B 1C 1⋅A 1D 1=S △PA 1C 1⋅S △PB 1D 1S △PB 1C 1⋅S △PA 1D 1=12⋅PA 1⋅PC 1⋅sin ∠A 1PC 1⋅12⋅PB 1⋅PD 1⋅sin ∠B 1PD 112⋅PB 1⋅PC 1⋅sin ∠B 1PC 1⋅12⋅PA 1⋅PD 1⋅sin ∠A 1PD 1=sin ∠A 1PC 1⋅sin ∠B 1PD 1sin ∠B 1PC 1⋅sin ∠A 1PD 1=sin ∠A 2PC 2⋅sin ∠B 2PD 2sin ∠B 2PC 2⋅sin ∠A 2PD 2=S △PA 2C 2⋅S △PB 2D 2S △PB 2C 2⋅S △PA 2D 2=A 2C 2⋅B 2D 2B 2C 2⋅A 2D 2=(A 2,B 2;C 2,D 2);(3)设EF 与E ′F ′交于X ,FG 与F ′G ′交于Y ,EG 与E ′G ′交于Z ,连接XY ,FF ′与XY 交于L ,EE ′与XY 交于M ,GG ′与XY 交于N ,欲证X ,Y ,Z 三点共线,只需证Z 在直线XY 上,考虑线束XP ,XE ,XM ,XE ′,由第(2)问知(P ,F ;L ,F ′)=(P ,E ;M ,E ′),再考虑线束YP ,YF ,YL ,YF ′,由第(2)问知(P ,F ;L ,F ′)=(P ,G ;N ,G ′),从而得到(P ,E ;M ,E ′)=(P ,G ;N ,G ′),于是由第(2)问的逆命题知,EG ,MN ,E ′G ′交于一点,即为点Z ,从而MN 过点Z ,故Z 在直线XY 上,X ,Y ,Z 三点共线.题型02以数列为载体的新定义题型4(2024·安徽黄山·一模)随着信息技术的快速发展,离散数学的应用越来越广泛.差分和差分方程是描述离散变量变化的重要工具,并且有广泛的应用.对于数列a n ,规定Δa n 为数列a n 的一阶差分数列,其中Δa n =a n +1-a n n ∈N * ,规定Δ2a n 为数列a n 的二阶差分数列,其中Δ2a n =Δa n +1-Δa nn ∈N *.(1)数列a n 的通项公式为a n =n 3n ∈N * ,试判断数列Δa n ,Δ2a n 是否为等差数列,请说明理由?(2)数列log a b n 是以1为公差的等差数列,且a >2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求a 的值;(3)各项均为正数的数列c n 的前n 项和为S n ,且Δc n 为常数列,对满足m +n =2t ,m ≠n 的任意正整数m,n,t都有c m≠c n,且不等式S m+S n>λS t恒成立,求实数λ的最大值.【解】(1)因为a n=n3,所以Δa n=a n+1-a n=n+13-n3=3n2+3n+1,因为Δa1=7,Δa2=19,Δa3=37,故Δa2-Δa1=12,Δa3-Δa2=18,显然Δa2-Δa1≠Δa3-Δa2,所以Δa n不是等差数列;因为Δ2a n=Δa n+1-Δa n=6n+6,则Δ2a n+1-Δ2a n=6,Δ2a1=12,所以Δ2a n是首项为12,公差为6的等差数列.(2)因为数列log a b n是以1为公差的等差数列,所以log a b n+1-log a b n=1,故b n+1b n=a,所以数列b n是以公比为a的正项等比数列,b n=b1a n-1,所以Δ2b n=Δb n+1-Δb n=b n+2-b n+1-b n+1-b n=b n+2-2b n+1+b n,且对任意的n∈N*,都存在m∈N*,使得Δ2b n=b m,即b1a n+1-2b1a n+b1a n-1=b1a m-1,所以a-12=a m-n,因为a>2,所以m-n>0,①若m-n=1,则a2-3a+1=0,解得a=3-52(舍),或a=3+52,即当a=3+52时,对任意的n∈N*,都存在m∈N*,使得Δ2b n=b m=b n+1.②若m-n≥2,则a m-n≥a2>a-12,对任意的n∈N*,不存在m∈N*,使得Δ2b n=b m.综上所述,a=3+5 2.(3)因为Δc n为常数列,则c n是等差数列,设c n的公差为d,则c n=c1+n-1d,若d=0,则c n=c m,与题意不符;若d<0,所以当n>1-c1d时,c n<0,与数列c n的各项均为正数矛盾,所以d>0,由等差数列前n项和公式可得S n=d2n2+c1-d2n,所以S n+S m=d2n2+m2+c1-d2n+m,因为m+n=2t,所以S t=d2n+m22+c1-d2n+m2,因为m≠n,故n2+m22>n+m22,所以S n+S m=d2n2+m2+c1-d2n+m>d2×n+m22+c1-d2n+m=2S t则当λ≤2时,不等式S m +S n >λS t 恒成立,另一方面,当λ>2时,令m =t +1,n =t -1,n ∈N *,t ≥2,则S n +S m =d 22t 2+2 +2t c 1-d 2 ,S t =d 2t 2+c 1-d 2t ,则λS t -S n +S m =d 2λt 2+c 1-d 2 λt -d 22t 2+2 -2t c 1-d2=d2λ-dt 2-t +λ-2 c 1t -d ,因为d2λ-d >0,t 2-t ≥0,当t >dλ-2 c 1时,λS t -S n +S m >0,即S n +S m <λS t ,不满足不等式S m +S n >λS t 恒成立,综上,λ的最大值为2.5(2024·辽宁葫芦岛·一模)大数据环境下数据量积累巨大并且结构复杂,要想分析出海量数据所蕴含的价值,数据筛选在整个数据处理流程中处于至关重要的地位,合适的算法就会起到事半功倍的效果.现有一个“数据漏斗”软件,其功能为;通过操作L M ,N 删去一个无穷非减正整数数列中除以M 余数为N 的项,并将剩下的项按原来的位置排好形成一个新的无穷非减正整数数列.设数列a n 的通项公式a n =3n -1,n ∈N +,通过“数据漏斗”软件对数列a n 进行L 3,1 操作后得到b n ,设a n +b n 前n 项和为S n .(1)求S n ;(2)是否存在不同的实数p ,q ,r ∈N +,使得S p ,S q ,S r 成等差数列?若存在,求出所有的p ,q ,r ;若不存在,说明理由;(3)若e n =nS n2(3n-1),n ∈N +,对数列e n 进行L 3,0 操作得到k n ,将数列k n 中下标除以4余数为0,1的项删掉,剩下的项按从小到大排列后得到p n ,再将p n 的每一项都加上自身项数,最终得到c n ,证明:每个大于1的奇平方数都是c n 中相邻两项的和.【解】(1)由a n =3n -1,n ∈N +知:当n =1时,a 1=1;当n ≥2时a n3∈N +,故b n =3n ,n ∈N +,则S n =4∑ni =13n -1=4×1-3n1-3=23n -1 ,n ∈N +;(2)假设存在,由S n 单调递增,不妨设p <q <r ,2S q =S p +S r ,p ,q ,r ∈N +,化简得3p -q+3r -q=2,∵p -q <0,∴0<3p -q<1,∴1<3r -q<2,∴0<r -q <log 23<1,与“q <r ,且q ,r ∈N +”矛盾,故不存在;(3)由题意,e n =nS n 2(3n -1)=n ×2(3n -1)2(3n -1)=n ,则e 3n =3n ,e 3n -2=3n -2,e 3n -1=3n -1,所以保留e 3n -2,e 3n -1,则k 2n -1=3n -2,k 2n =3n -1,n ∈N +,又k 4n +1=6n +1,k 4n +2=6n +2,k 4n +3=6n +4,k 4n +4=6n +5,n ∈N +,将k 4n ,k 4n +1删去,得到p n ,则p 2n +1=6n +2,p 2n +2=6n +4,c 2n +1=6n +2 +2n +1 =8n +3,c 2n +2=6n +4 +2n +2 =8n +6,n ∈N +,即:c 2n -1=8n -5,c 2n =8n -2,n ∈N +,即:c n =4n -1,n =2k -14n -2,n =2k,k ∈N +,记r k =k k +12,下面证明:(2k +1)2=c r k+c r k-1,由r 4m =8m 2+2m ,r 4m +1=8m 2+6m +1,r 4m +2=8m 2+10m +3,r 4m +3=8m 2+14m +6,k =4m 时,r 4m =8m 2+2m ,r 4m +1=8m 2+2m +1,c r 4tm+c r4m -1=48m 2+2m -2 +48m 2+2m +1 -1=64m 2+16m +1=(2×4m +1)2;k =4m +1时,r 4m -1=8m 2+6m +1,r 4m +1=8m 2+6m +2,c r4m -1+c r4m +1-1=48m 2+6m +1 -1 +48m 2+6m +2 -2=64m 2+48m +9=24m +1 +1 2;k =4m +2时,k 4m +2=8m 2+10m +3,k 4m +2+1=8m 2+10m +4,c k4m -2+c k4m -2+1=48m 2+10m +3 -1 +48m 2+10m +4 -2=64m 2+80m +25=24m +2 +1 2;k =4m +3时,r 4m +3=8m 2+14m +6,r 4m +3+1=8m 2+14m +7,c r4m +3+c r4m +3+1=48m 2+14m +6 -2 +48m 2+14m +7 -1=64m 2+112m +49=24m +3 +1 2,综上,对任意的k ∈N +,都有2k +1 2=c r k+c r k+1,原命题得证.6(2024·山东青岛·一模)记集合S =a n |无穷数列a n 中存在有限项不为零,n ∈N * ,对任意a n ∈S ,设变换f a n =a 1+a 2x +⋯+a n x n -1+⋯,x ∈R .定义运算⊗:若a n ,b n ∈S ,则a n ⊗b n∈S ,f a n ⊗b n =f a n ⋅f b n .(1)若a n ⊗b n =m n ,用a 1,a 2,a 3,a 4,b 1,b 2,b 3,b 4表示m 4;(2)证明:a n ⊗b n ⊗c n =a n ⊗b n ⊗c n ;(3)若a n =n +12+1n n +1,1≤n ≤1000,n >100,b n=12203-n,1≤n ≤5000,n >500,d n =a n ⊗b n ,证明:d 200<12.【解】(1)因为f a n ⊗b n =f a n ⋅f b n =a 1+a 2x +a 3x 2+a 4x 3⋯ b 1+b 2x +b 3x 2+b 4x 3⋯ =⋅⋅⋅+a 1b 4+a 2b 3+a 3b 2+a 4b 1 x 3+⋅⋅⋅,且f m n =m 1+m 2x +m 3x 2+m 4x 3+⋯,所以,由a n ⊗b n =m n 可得m 4x 3=(a 1b 4+a 2b 3+a 3b 2+a 4b 1)x 3,所以m 4=a 1b 4+a 2b 3+a 3b 2+a 4b 1.(2)因为f ({a n }⊗{b n })=f ({a n })⋅f ({b n }),所以f ({a n })⋅f ({b n })⋅f ({c n })=f ({a n }⊗{b n })⋅f ({c n })=f (({a n }⊗{b n })⊗{c n })又因为f a n ⋅f b n ⋅f c n =f a n ⋅f b n ⋅f c n =f ({a n })⋅f ({b n }⊗{c n })=f ({a n }⊗({b n }⊗{c n }))所以f (({a n }⊗{b n })⊗f {c n })=f ({a n }⊗({b n }⊗f {c n })),所以a n ⊗b n ⊗c n =a n ⊗b n ⊗c n .(3)对于{a n },{b n }∈S ,因为(a 1+a 2x +⋯+a n x n -1+⋯)(b 1+b 2x +⋯+b n x n -1+⋯)=d 1+d 2x +⋯+d n x n -1+⋯,所以d n x n -1=a 1(b n x n -1)+⋯+a k x k -1(b n +1-k x n -k )+⋯+a n -1x n -2(b 2x )+a n x n -1b 1,所以d n =a 1b n +a 2b n -1+⋯+a k b n +1-k +⋯+a n -1b 2+a n b 1,所以a n ⊗b n =d n =∑nk =1a kb n +1-k ,d 200=200k =1a k b 201-k =100k =1a k b 201-k +200k =101a k b 201-k =100k =1a k b 201-k =100k =1(k +1)2+1k (k +1)2k +2,所以d 200=∑100k =112k +21+2k -1k +1,=∑100k =112k +2+∑100k =11k ⋅2k +1-1k +1 ⋅2k +2=12-102101×2102<12.7(2024·江苏徐州·一模)对于每项均是正整数的数列P :a 1,a 2,⋯,a n ,定义变换T 1,T 1将数列P 变换成数列T 1P :n ,a 1-1,a 2-1,⋯,a n -1.对于每项均是非负整数的数列Q :b 1,b 2,⋯,b m ,定义S (Q )=2(b 1+2b 2+⋯+mb m )+b 21+b 22+⋯+b 2m ,定义变换T 2,T 2将数列Q 各项从大到小排列,然后去掉所有为零的项,得到数列T 2Q .(1)若数列P 0为2,4,3,7,求S T 1P 0 的值;(2)对于每项均是正整数的有穷数列P 0,令P k +1=T 2T 1P k ,k ∈N .(i )探究S T 1P 0 与S P 0 的关系;(ii )证明:S P k +1 ≤S P k .【解】(1)依题意,P 0:2,4,3,7,T 1P 0 :4,1,3,2,6,S T 1P 0 =2(4+2×1+3×3+4×2+5×6)+16+1+9+4+36=172.(2)(i )记P 0:a 1,a 2,⋯,a n ,(a 1,a 2,⋯,a n ∈N *),T 1P 0 :n ,a 1-1,a 2-1,⋯,a n -1,S (T 1(P 0))=2[n +2(a 1-1)+3(a 2-1)+⋯+(n +1)(a n -1)]+n 2+(a 1-1)2+(a 2-1)2+⋯+(a n -1)2,S (P 0)=2(a 1+2a 2+3a 3+⋯+na n )+a 21+a 22+⋯+a 2n ,S (T 1(P 0))-S (P 0)=2n +2a 1+2a 2+⋯+2a n -4-6-⋯-2(n +1)+n 2-2a 1-2a 2-⋯-2a n +n =n 2+3n -(2n +6)⋅n2=0,所以S (T 1(P 0))=S (P 0).(ii )设A 是每项均为非负整数的数列a 1,a 2,⋯,a n ,当存在1≤i <j ≤n ,使得a i ≤a j 时,交换数列A 的第i 项与第j 项得到数列B ,则S (B )-S (A )=2(ia j +ja i -ia i -ja j )=2(i -j )(a j -a i )≤0,当存在1≤m <n ,使得a m +1=a m +2=⋯=a n =0时,若记数列a 1,a 2,⋯,a m 为C ,则S (C )=S (A ),因此S T 2(A ) ≤S (A ),从而对于任意给定的数列P 0,由P k +1=T 2T 1P k (k =0,1,2,⋯),S P k +1 ≤S T 1P k ,由(i )知S T 1P k =S P k ,所以S P k +1 ≤S P k .题型03以导数为载体的新定义题型8(2024·广东惠州·一模)黎曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数f x =x s -1e x -1(x >0,s >1,s 为常数)密切相关,请解决下列问题.(1)当1<s ≤2时,讨论f x 的单调性;(2)当s >2时;①证明f x 有唯一极值点;②记f x 的唯一极值点为g s ,讨论g s 的单调性,并证明你的结论.【解】(1)由f x =x s -1e x -1,x ∈0,+∞ ,1<s ≤2可得fx =s -1 ⋅xs -2⋅e x -1 -x s -1⋅e x e x -1 2=x s -2⋅s -1-x ⋅e x -s -1e x -12,令h x =s -1-x ⋅e x -s -1 ,则h x =-e x +s -x -1 ⋅e x =s -x -2 ⋅e x ;又1<s ≤2,x >0,所以s -x -2<0,e x >0,即h x <0恒成立;即函数h x 在0,+∞ 上单调递减,又h 0 =0,所以h x <h 0 =0,可得fx =x s -2⋅s -1-x ⋅e x -s -1e x -12<0恒成立,因此函数f x 在0,+∞ 上单调递减,即当1<s ≤2时,函数f x 在0,+∞ 上单调递减;(2)当s >2时,①由(1)可知令h x =s -x -2 ⋅e x =0,可得x =s -2>0,易知当x ∈0,s -2 时,h x =s -x -2 ⋅e x >0,即函数h x 在0,s -2 上单调递增,当x ∈s -2,+∞ 时,h x =s -x -2 ⋅e x <0,即函数h x 在s -2,+∞ 上单调递减,即函数h x 在x =s -2处取得极大值,也是最大值;注意到h 0 =0,由单调性可得h s -2 >h 0 =0,可知h x 在0,s -2 大于零,不妨取x =2s -2,则h 2s -2 =1-s ⋅e 2s -2-s -1 =1-s e 2s -2+1 <0;由零点存在定理可知h x 存在唯一变号零点x 0∈s -2,+∞ ,所以fx =x s -2⋅s -1-x ⋅e x -s -1 e x -12存在唯一变号零点x 0满足f x 0 =0,由h x 单调性可得,当x ∈0,x 0 时,f x >0,当x ∈x 0,+∞ 时,f x <0;即可得函数f x 在0,x 0 上单调递增,在x 0,+∞ 单调递减;所以f x 有唯一极大值点x 0;②记f x 的唯一极值点为g s ,即可得x 0=g s由h x 0 =s -1-x 0 ⋅e x 0-s -1 =0可得s =x 0⋅e x 0e x 0-1+1,即可得g s 的反函数g -1s =x 0⋅ex 0e x 0-1+1,令φx =x ⋅e x e x -1+1,x ∈s -2,+∞ ,则φx =e x e x -x -1 e x -1 2,构造函数m x =e x -x -1,x ∈0,+∞ ,则m x =e x -1,显然m x =e x -1>0在0,+∞ 恒成立,所以m x 在0,+∞ 上单调递增,因此m x >m 0 =0,即e x >x +1在0,+∞ 上恒成立,而s >2,即s -2>0,所以e x >x +1在s -2,+∞ 上恒成立,即可得φx =e x e x -x -1e x -12>0在s -2,+∞ 上恒成立,因此g -1s 在s -2,+∞ 单调递增;易知函数g s 与其反函数g -1s 有相同的单调性,所以函数g s 在2,+∞ 上单调递增;9(2024·湖北·一模)英国数学家泰勒发现的泰勒公式有如下特殊形式:当f x 在x =0处的n n ∈N * 阶导数都存在时,f x =f 0 +f0 x +f 0 2!x 2+f 30 3!x 3+⋯+f n0 n !x n +⋯.注:f x 表示f x 的2阶导数,即为f x 的导数,f nx n ≥3 表示f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算sin12的值,精确到小数点后两位;(2)由该公式可得:cos x =1-x 22!+x 44!-x 66!+⋯.当x ≥0时,试比较cos x 与1-x 22的大小,并给出证明;(3)设n ∈N *,证明:nk =11(n +k )tan 1n +k>n -14n +2.【解】(1)令f x =sin x,则f (x)=cos x,f (x)=-sin x,f3 x =-cos x,f4 x =sin x,⋯故f0 =0,f (0)=1,f (0)=0,f3 0 =-1,f4 0 =0,⋯由麦克劳林公式可得sin x=x-x33!+x55!-x77!+⋯,故sin 12=12-148+⋯≈0.48.(2)结论:cos x≥1-x22,证明如下:令g x =cos x-1+x22,x≥0,令h x =g x =-sin x+x,h x =-cos x+1≥0,故h x 在0,+∞上单调递增,h x ≥h0 =0,故g x 在0,+∞上单调递增,g x ≥g0 =0,即证得cos x-1+x22≥0,即cos x≥1-x22.(3)由(2)可得当x≥0时,cos x≥1-x22,且由h x ≥0得sin x≤x,当且仅当x=0时取等号,故当x>0时,cos x>1-x22,sin x<x,1n+ktan1n+k =cos1n+kn+ksin1n+k>cos1n+kn+k⋅1n+k=cos1n+k>1-12(n+k)2,而12(n+k)2=2(2n+2k)2<2(2n+2k)2-1=22n+2k-12n+2k+1=12n+2k-1-12n+2k+1,即有1n+ktan1n+k>1-12n+2k-1-12n+2k+1故nk=11(n+k)tan1n+k>n-12n+1-12n+3+12n+3-12n+5+⋯+14n-1-14n+1=n-12n+1+1 4n+1而n-12n+1+14n+1-n-14n+2=14n+1-14n+2>0,即证得nk=11(n+k)tan1n+k>n-14n+2.10(2024·山东菏泽·一模)帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数f(x)在x=0处的[m,n]阶帕德近似定义为:R(x)=a0+a1x+⋯+a m x m1+b1x+⋯+b n x n,且满足:f(0)=R(0),f (0)=R (0),f (0)=R (0),⋯,f(m+n)(0)=R(m+n)(0).(注:f (x)=f (x),f (x)=f(x ) ,f (4)(x )=f (x ) ,f (5)(x )=f (4)(x ) ,⋯;f (n )(x )为f(n -1)(x )的导数)已知f (x )=ln (x +1)在x =0处的1,1 阶帕德近似为R (x )=ax1+bx.(1)求实数a ,b 的值;(2)比较f x 与R (x )的大小;(3)若h (x )=f (x )R (x )-12-m f (x )在(0,+∞)上存在极值,求m 的取值范围.【解】(1)由f (x )=ln (x +1),R (x )=ax1+bx,有f (0)=R (0),可知f (x )=1x +1,f (x )=-1(x +1)2,R (x )=a (1+bx )2,R(x )=-2ab (1+bx )3,由题意,f (0)=R (0),f (0)=R (0),所以a =1-2ab =-1 ,所以a =1,b =12.(2)由(1)知,R (x )=2x x +2,令φ(x )=f (x )-R (x )=ln (x +1)-2xx +2(x >-1),则φ(x )=1x +1-4(x +2)2=x 2(x +1)(x +2)2>0,所以φ(x )在其定义域(-1,+∞)内为增函数,又φ(0)=f (0)-R (0)=0,∴x ≥0时,φ(x )=f (x )-R (x )≥φ(0)=0;-1<x <0时,φ(x )=f (x )-R (x )<φ(0)=0;所以x ≥0时,f (x )≥R (x );-1<x <0时,f (x )<R (x ).(3)由h (x )=f (x )R (x )-12-m f (x )=1x +m ln (x +1),∴h(x )=-1x 2ln (x +1)+1x +m 1x +1=mx 2+x -(x +1)ln (x +1)x 2(x +1).由h (x )=f (x )R (x )-12-m f (x )在(0,+∞)上存在极值,所以h (x )在(0,+∞)上存在变号零点.令g (x )=mx 2+x -(x +1)ln (x +1),则g (x )=2mx +1-ln (x +1)+1 =2mx -ln (x +1),g (x )=2m -1x +1.①m <0时,g (x )<0,g (x )为减函数,g (x )<g (0)=0,g (x )在(0,+∞)上为减函数,g (x )<g (0)=0,无零点,不满足条件.②当2m >1,即m >12时,g (x )>0,g (x )为增函数,g (x )>g (0)=0,g (x )在(0,+∞)上为增函数,g (x )>g (0)=0,无零点,不满足条件.③当0<2m <1,即0<m <12时,令g (x )=0即2m =1x +1,∴x =12m-1.当0<x <12m -1时,g (x )<0,g (x )为减函数;x >12m -1时,g (x )>0,g (x )为增函数,∴g min (x )=g 12m -1=2m 12m -1 -ln 12m-1+1 =1-2m +ln2m ;令H (x )=1-x +ln x ,0<x <1,H (x )=-1+1x ,H (x )=-1+1x>0在0<x <1时恒成立,H(x)在0,1上单调递增,H(x)<H(1)=0,∴g12m-1=(1-2m)+ln2m<0恒成立;∵x>0,0<m<1,∴x(m-1)<0,则mx2-1>mx2-1+mx-x=x+1mx-1,∴mx2-1x+1>mx-1,∴1+mx2-1x+1-ln(x+1)>mx-ln(x+1);∵g(x)=(x+1)mx2+xx+1-ln(x+1),令l(x)=mx2+xx+1-ln(x+1)=1+mx2-1x+1-ln(x+1)>mx-ln(x+1)=m(x+1)-ln(x+1)-m,令F x =ln(x+1)-2x+1x>0,F x =1x+1-1x+1=1-x+1x+1<0,则F x 在0,+∞是单调递减,F x <F0 =-2,所以ln(x+1)<2x+1,∴l(x)>m(x+1)-2x+1-m=m2(x+1)-m+m2(x+1)-2x+1,令x=16m2-1,则x+1=16m2,∴m2(x+1)-2x+1≥0,m2(x+1)-m=8m-m>00<m<12.∴l(x)>0,即l16m2-1>0.由零点存在定理可知,l(x)在12m-1,+∞上存在唯一零点x0∈12m-1,16m2-1,又由③知,当0<x<12m-1时,g (x)<0,g (x)为减函数,g (0)=0,所以此时,g (x)<0,在0,12m-1内无零点,∴g(x)在(0,+∞)上存在变号零点,综上所述实数m的取值范围为0,12.题型04两个知识交汇11【概率与数列】(2024·山东聊城·一模)如图,一个正三角形被分成9个全等的三角形区域,分别记作A,B1,P,B2,C1,Q1,C2,Q,C3. 一个机器人从区域P出发,每经过1秒都从一个区域走到与之相邻的另一个区域(有公共边的区域),且到不同相邻区域的概率相等.(1)分别写出经过2秒和3秒机器人所有可能位于的区域;(2)求经过2秒机器人位于区域Q的概率;(3)求经过n秒机器人位于区域Q的概率.【解】(1)经过2秒机器人可能位于的区域为P、Q1,Q,经过3秒机器人可能位于的区域为A,B1,B2,C1,C2,C3;(2)若经过2秒机器人位于区域Q,则经过1秒时,机器人必定位于B2,P有三个相邻区域,故由P→B2的概率为p1=13,B2有两个相邻区域,故由B2→Q的概率为p2=12,则经过2秒机器人位于区域Q的概率为p1p2=13×12=16;(3)机器人的运动路径为P→A∪B1∪B2→P∪Q1∪Q→A∪B1∪B2∪C1∪C2∪C3→P∪Q1∪Q→A∪B1∪B2∪C1∪C2∪C3→P∪Q1∪Q→⋯,设经过n秒机器人位于区域Q的概率P n,则当n为奇数时,P n=0,当n为偶数时,由(2)知,P2=16,由对称性可知,经过n秒机器人位于区域Q的概率与位于区域Q1的概率相等,亦为P n,故经过n秒机器人位于区域P的概率为1-2P n,若第n秒机器人位于区域P,则第n+2秒机器人位于区域Q的概率为1 6,若第n秒机器人位于区域Q1,则第n+2秒机器人位于区域Q的概率为1 6,若第n秒机器人位于区域Q,则第n+2秒机器人位于区域Q的概率为1-2×1 6=23,则有P n+2=23P n+16P n+161-2P n,即P n+2=16+12P n,令P n+2+λ=12P n+λ,即P n+2=12P n-12λ,即有λ=-13,即有P n+2-13=12P n-13,则P n+2-13P n-13=12,故有P n-13P n-2-13=12、P n-2-13P n-4-13=12、⋯、P4-13P2-13=12,故P n-13P n-2-13×P n-2-13P n-4-13×⋯×P4-13P2-13×P2-13=P n-13=12 n2-1×16-13=-13⋅12 n2,即P n=13-13⋅12n2,综上所述,当n为奇数时,经过n秒机器人位于区域Q的概率为0,当n为偶数时,经过n秒机器人位于区域Q的概率为13-13⋅12n2.12【概率与函数】(2024·广东汕头·一模)2023年11月,我国教育部发布了《中小学实验教学基本目录》,内容包括高中数学在内共有16个学科900多项实验与实践活动.我市某学校的数学老师组织学生到“牛田洋”进行科学实践活动,在某种植番石榴的果园中,老师建议学生尝试去摘全园最大的番石榴,规定只能摘一次,并且只可以向前走,不能回头.结果,学生小明两手空空走出果园,因为他不知道前面是否有更大的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设小明在果园中一共会遇到n颗番石榴(不妨设n颗番石榴的大小各不相同),最大的那颗番石榴出现在各个位置上的概率相等,为了尽可能在这些番石榴中摘到那颗最大的,小明在老师的指导下采用了如下策略:不摘前k(1≤k<n)颗番石榴,自第k+1颗开始,只要发现比他前面见过的番石榴大的,就摘这颗番石榴,否则就摘最后一颗.设k=tn,记该学生摘到那颗最大番石榴的概率为P.(1)若n=4,k=2,求P;(2)当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k +1k+1+⋯+1n-1=ln nk)【解】(1)依题意,4个番石榴的位置从第1个到第4个排序,有A44=24种情况,要摘到那个最大的番石榴,有以下两种情况:①最大的番石榴是第3个,其它的随意在哪个位置,有A33=6种情况;②最大的番石榴是最后1个,第二大的番石榴是第1个或第2个,其它的随意在哪个位置,有2A22=4种情况,所以所求概率为6+424=512.(2)记事件A表示最大的番石榴被摘到,事件B i表示最大的番石榴排在第i个,则P B i=1 n,由全概率公式知:P(A)=ni=1P(A|B i)P(B i)=1nni=1P(A|B i) ,当1≤i≤k时,最大的番石榴在前k个中,不会被摘到,此时P(A|B i)=0;当k+1≤i≤n时,最大的番石榴被摘到,当且仅当前i-1个番石榴中的最大一个在前k个之中时,此时P A|B i)=ki-1,因此P(A)=1nkk+kk+1+⋯+kn-1=k n ln n k,令g(x)=xnln nx(x>0),求导得g (x)=1nln nx-1n,由g(x)=0,得x=ne,当x∈0,n e时,g (x)>0,当x∈n e,n时,g (x)<0,即函数g(x)在0,n e上单调递增,在n e,n上单调递减,则g(x)max=gne=1e,于是当k=n e时,P(A)=k n ln n k取得最大值1e,所以P的最大值为1e,此时t的值为1e.13【解析几何与立体几何】(2024·山东日照·一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12经过点F1且倾斜角为θ0<θ<π2的直线l与椭圆交于A,B两点(其中点A在x轴上方),且△ABF2的周长为8.将平面xOy沿x轴向上折叠,使二面角A-F1F2-B为直二面角,如图所示,折叠后A,B在新图形中对应点记为A ,B .(1)当θ=π3时,①求证:A O⊥B F2;②求平面A'F1F2和平面A'B'F2所成角的余弦值;(2)是否存在θ0<θ<π2,使得折叠后△A B F2的周长为152?若存在,求tanθ的值;若不存在,请说明理由.【解】(1)①由椭圆定义可知AF1+AF2=2a,BF1+BF2=2a,所以△ABF2的周长L=4a=8,所以a=2,因为离心率为12,故ca=12,解得c=1,则b2=a2-c2=3,由题意,椭圆的焦点在x轴上,所以椭圆方程为x24+y23=1,直线l:y-0=tan π3⋅x+1,即l:y=3x+1,联立x24+y23=1得15x2+24x=0,解得x=0或-85,当x=0时,y=3×0+1=3,当x=-85时,y=3×-85+1=-335,因为点A在x轴上方,所以A0,3,B-85,-335,故AO⊥F1F2,折叠后有A O⊥F1F2,因为二面角A-F1F2-B为直二面角,即平面A F1F2⊥F1F2B ,交线为F1F2,A O⊂平面A F1F2,所以A O⊥平面F1F2B ,因为F 2B ⊂平面F 1F 2B ,所以A O ⊥F 2B ;②以O 为坐标原点,折叠后的y 轴负半轴为x 轴,原x 轴为y 轴,原y 轴正半轴为z 轴,建立空间直角坐标系,则F 10,-1,0 ,A 0,0,3 ,B 335,-85,0,F 20,1,0 ,A F 2 =0,1,-3 ,BF 2 =-335,135,0 ,其中平面A F 1F 2的法向量为n 1=1,0,0 ,设平面A B F 2的法向量为n 2=x ,y ,z ,则n 2 ⋅AF 2 =x ,y ,z ⋅0,1,-3 =y -3z =0n 2 ⋅B F 2 =x ,y ,z ⋅-335,135,0 =-335x +135y =0,令y =3得x =133,z =1,故n 2 =133,3,1 ,设平面A B F 2与平面A F 1F 2的夹角为φ,则cos φ=cos n 1 ,n 2 =n 1 ⋅n 2n 1 ⋅n 2 =1,0,0 ⋅133,3,1 1699+3+1=13205205,故平面A B F 2与平面A F 1F 2的夹角的余弦值为13205205;(2)设折叠前A x 1,y 1 ,B x 2,y 2 ,折叠后对应的A x 1,y 1,0 ,B x 2,0,-y 2 ,设直线l 方程为my =x +1,将直线l 与椭圆方程x 24+y 23=1联立得,3m 2+4 y 2-6my -9=0,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,在折叠前可知AB =x 1-x 22+y 1-y 2 2,折叠后,在空间直角坐标系中,A B=x 1-x 22+y 21+y 22,,由A F 2 +B F 2 +A B =152,AF 2 +BF 2 +AB =8,故AB -A B =12,所以AB -A B =x 1-x 22+y 1-y 2 2-x 1-x 22+y 21+y 22=12①,分子有理化得-2y 1y 2x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=12,所以x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=-4y 1y 2②,由①②得x 1-x 22+y 1-y 2 2=14-2y 1y 2,因为x 1-x 2 2+y 1-y 2 2=my 1-1-my 2+1 2+y 1-y 2 2=m 2+1y 1-y 2 ,故14-2y 1y 2=m 2+1y 1-y 2 ,即14-2y 1y 2=m 2+1y 1+y 2 2-4y 1y 2,将y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4代入上式得14+183m 2+4=m 2+16m3m 2+42+363m 2+4,两边平方后,整理得2295m 4+4152m 2-3472=0,即45m 2-28 51m 2+124 =0,解得m 2=2845,因为0<θ<π2,所以tan θ=1m =33514.14【导数与三角函数】(2024·山东烟台·一模)如图,在平面直角坐标系xOy 中,半径为1的圆A 沿着x 轴正向无滑动地滚动,点M 为圆A 上一个定点,其初始位置为原点O ,t 为AM 绕点A 转过的角度(单位:弧度,t ≥0).(1)用t 表示点M 的横坐标x 和纵坐标y ;(2)设点M 的轨迹在点M 0(x 0,y 0)(y 0≠0)处的切线存在,且倾斜角为θ,求证:1+cos2θy 0为定值;(3)若平面内一条光滑曲线C 上每个点的坐标均可表示为(x (t ),y (t )),t ∈[α,β],则该光滑曲线长度为F (β)-F (α),其中函数F (t )满足F(t )=[x(t )]2+[y(t )]2.当点M 自点O 滚动到点E 时,其轨迹OE为一条光滑曲线,求OE的长度.【解】(1)依题意,y =1-cos t ,|OB |=BM=t ,则x =|OB |-sin t =t -sin t ,所以x =t -sin t ,y =1-cos t .(2)由复合函数求导公式yt=y x⋅x t及(1)得y x=y x ⋅x t x t =y t x t=sin t 1-cos t ,因此tan θ=sin t 1-cos t ,而1+cos2θ=2cos 2θ=2cos 2θsin 2θ+cos 2θ=2tan 2θ+1=2sin t 1-cos t 2+1=2(1-cos t )22-2cos t =1-cos t =y 0,所以1+cos2θy 0为定值1.(3)依题意,F (t )=(1-cos t )2+sin 2t =2-2cos t =2sin t 2.由0≤t 2≤π,得sin t 2≥0,则F (t )=2sin t 2,于是F (t )=-4cos t2+c (c 为常数),则F (2π)-F (0)=(-4cosπ+c )-(-4cos0+c )=8,所以OE 的长度为8.15【导数与数列】(2024·山东济宁·一模)已知函数f x =ln x -12ax 2+12a ∈R .(1)讨论函数f x 的单调性;(2)若0<x 1<x 2,证明:对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f (ξ)=f x 2 -f x 1x 2-x 1成立;(3)设a n =2n +1n 2,n ∈N *,数列a n 的前n 项和为S n .证明:S n >2ln (n +1).【解】(1)函数f x 的定义域为0,+∞ ,fx =1x -ax =1-ax 2x ,①若a ≤0,f x >0恒成立,f x 在0,+∞ 上单调递增.②若a >0,x ∈0,1a时,fx >0,f x 单调递增;x ∈1a,+∞时,f x <0,f x 单调递减.综上,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,1a上单调递增,在1a,+∞ 上单调递减.(2)证明:令F x =f x -f x 2 -f x 1x 2-x 1,x >0则F x =1x -ax -ln x 2-12ax 22-ln x 1+12ax 12x 2-x 1=1x -ax -ln x 2-ln x 1x 2-x 1+12a x 2+x 1因为a >0,所以,F x =1x -ax -ln x 2-ln x 1x 2-x 1+12a x 2+x 1 在区间x 1,x 2 上单调递减.F x 1 =1x 1-ax 1-ln x 2-ln x 1x 2-x 1+12a x 2+x 1 =1x 1-ln x 2-ln x 1x 2-x 1+12a x 2-x 1=1x 2-x 1x 2x 1-1-ln x 2x 1+12a x 2-x 1令g t =t -1-ln t ,t >0,则g t =1-1t =t -1t,所以,t ∈0,1 时,g t <0,g t 单调递减,t ∈1,+∞ 时,g t >0,g t 单调递增,所以,g t min =g 1 =0,又0<x 1<x 2,所以,x 2x 1>1,所以g x 2x 1=x 2x 1-1-ln x 2x 1>0恒成立,又因为a >0,x 2-x 1>0,所以,F x 1 >0.同理可得,F x 2 =1x 2-x 11-x 1x 2-ln x 2x 1+12a x 1-x 2 ,由t -1-ln t ≥0(t =1时等号成立)得,1t -1-ln 1t ≥0,即1-1t -ln t ≤0(t =1时等号成立),又0<x 1<x 2,所以0<x 1x 2<1,所以1-x1x 2-ln x 2x 1<0恒成立,又因为a >0,x 1-x 2<0,x 2-x 1>0,所以,F x 2 <0,所以,区间x 1,x 2 上存在唯一实数ξ,使得F ξ =0,所以对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f ξ =f x 2 -f x 1x 2-x 1成立;(3)证明:当a =1时,由(1)可得,f x =ln x -12x 2+12在1,+∞ 上单调递减.所以,x >1时,f x <f 1 =0,即ln x -12x 2+12<0.令x =n +1n ,n ∈N *,则ln n +1n -12n +1n 2+12<0,即n +1n2-1>2ln n +1 -2ln n ,即2n +1n 2>2ln n +1 -2ln n 令b n =2ln n +1 -2ln n ,n ∈N *,则a n >b n ,a 1+a 2+a 3+⋅⋅⋅+a n >b 1+b 2+b 3+⋅⋅⋅+b n=2ln2-2ln1+2ln3-2ln2+⋯+2ln n +1 -2ln n =2ln n +1 所以,S n >2ln n +1 .。
轮复习攻略数列中的创新题型
高三数学 二轮复习 数列创新题型在高考数学中,创新题是一类非常重要的题型,并且经常作为压轴题出现在选择、填空、甚至解答的最后一题,让很多同学望而生畏: 短时间内不仅要学会一个新知识或性质,还需要利用它来解决问题。
常常感觉到无从下手。
高考数学中的创新题具有情景新颖,内涵深刻,负有一定的创造性,这类题目以“问题”为核心,以“探究”为途径,以“应用”为目的,旨在考查学生对数学问题的观察、理解、探究、概括、类比、归纳等诸多方面的综合能力。
可以形象地概括为“现学现卖”,如何处理好高考中的创新题?是数学学习和应用能力等综合素质的集中体现。
这一讲我们主要来看一下数列中的部分创新题。
实际上这一类题型呢也有它们自身的特点和规律,要做好这一类题型,首先要提高“眼力”:善于观察和总结新知识本身的特点和性质,要与已掌握相关知识点联系。
要敢于大胆尝试和猜测归纳。
先来看一个小问题热热身:杰克正看着安妮,而安妮正看着乔治。
杰克已婚,乔治未婚。
请问是否有一位已婚人士正在看着一位未婚人士?A 、是B 、不是C 、无法确定 你知道哪个选项正确吗?为什么?题干中没有给出我们明确的答案,但题目中又又蕴含着正确答案,需要我们主动去探究,去发现。
这就是创新题的特点。
一、创新定义型解题时应将阅读信息与所学知识结合起来,侧重考查信息加工能力。
例:已知数列)}({*N n a n ∈满足:)()2(log *1N n n a n n∈+=+,定义使12...k a a a ⋅⋅⋅为整数的数*()k k N ∈叫做期盼数,则区间[1,2015]内的所有期盼数的和M = 。
对于一个有限数列()12n P P P P =L ,,,,P 的蔡查罗和(蔡查罗为一数学家)定义为()121n S S S n+++L ,其中()121k k S P P P k n =+++≤≤L ,若一个99项的数列()1299P P P L ,,,的蔡查罗和为1000,那么100项数列()12991P P P L ,,,,的蔡查罗和为( )A .991对于各项均为整数的数列{}n a ,如果(1,2,3,)i a i i +=⋅⋅⋅为完全平方数,则称数列{}n a 具有“P 性质”,如果数列{}n a 不具有“P 性质”,只要存在与{}n a 不是同一数列的{}n b ,且{}n b 同时满足下面两个条件:①123,,,,n b b b b ⋅⋅⋅是123,,,,n a a a a ⋅⋅⋅的一个排列;②数列{}n b 具有“P 性质”,则称数列{}n a 具有“变换P 性质”,下面三个数列:①数列1,2,3,4,5; ②数列1,2,3, ,11,12; ③数列{}n a 的前n 项和为2(1)3n n S n =-. 其中具有“P 性质”或“变换P 性质”的有( ) A .③ B .①③ C .①② D .①②③如果有穷数列123,,,,m a a a a L (m 为正整数)满足1m a a =,21m a a -=,…,1m a a =.即1i m i a a -+=(1,2,,i m =L ),我们称其为“对称数列”.例如数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.设{}n b 是项数为2m (1m >,*m N ∈)的“对称数列”,并使得2311,2,2,2,,2m -L 依次为该数列中连续的前m 项,则数列{}n b 的前2010项和2010S 可以是:(1)201021-;(2)100622-;(3)122010221m m +---. 其中正确命题的序号是__________________.若数列{}n a 满足:对任意的n N *∈,只有有限个正整数m 使得m a n <成立,记这样的m 的个数为()n a *,则得到一个新数列{}()n a *.例如,若数列{}n a 是1,2,3,n …,…,则数列{}()n a *是0,1,2,1,n -…,….已知对任意的N n *∈,2nan =,则5()a *= ,(())n a **= .二、性质探求型例:把数列{}12+n 依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43)…则第104个括号内各数之和为B.2048例:已知数列{a n }满足a n+1=a n –a n –1(n ≥2),a 1=a ,a 2=b ,记S n =a 1+a 2+a 3+…+a n ,则下列结论正确的是A .a 2008= – a ,S 2008=2b – aB .a 2008= – b ,S 2008=2b – aC .a 2008= – b ,S 2008=b – aD .a 2008= – a ,S 2008=b – a已知数列{}n a 的各项均为正整数,对于1,2,3,n =L ,有1135,,2n n n n n n k a a a a a k a +++⎧⎪=⎨⎪⎩奇偶,,其中使奇的正整,为数为数为为数数当111a =时,100a =______;若存在*m ∈N ,当m n >且n a 为奇数时,n a 恒为常数p ,则p 的值为________.在数列{}n a 中,*n ∈N ,若211n n n na a k a a +++-=-(k 为常数),则称{}n a 为“等差比数列”. 下列是对“等差比数列”的判断: ①k 不可能为0②等差数列一定是等差比数列 ③等比数列一定是等差比数列④等差比数列中可以有无数项为0其中正确的判断是( ) A .①② B .②③ C .③④ D .①④定义:在数列{}n a 中,若22*1,(2,,)n n a a p n n N p --=≥∈为常数,则称{}n a 为“等方差数列”.下列是对“等方差数列”的有关判断:①若{}n a 是“等方差数列”,则数列1na 是等差数列;②{(2)}n-是“等方差数列”;③若{}n a 是“等方差数列”,则数列*{}(,)kn a k N k ∈为常数也是“等方差数列”; ④若{}n a 既是“等方差数列”,又是等差数列,则该数列是常数数列.其中正确的命题为 .(写出所有正确命题的序号)4.在数列{}n a 中,若对任意的*n ∈N ,都有211n n n na a t a a +++-=(t 为常数),则称数列{}n a 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;②若数列{}n a 满足122n n a n-=,则数列{}n a 是比等差数列,且比公差12t =;③若数列{}n c 满足11c =,21c =,12n n n c c c --=+(3n ≥),则该数列不是比等差数列;④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是 .若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,现给出以下命题: ①若34a =,则m 可以取3个不同的值②若m ={}n a 是周期为3的数列③T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列④Q m ∃∈且2m ≥,数列{}n a 是周期数列.其中所有真命题的序号是 .我们知道,如果定义在某区间上的函数()f x 满足对该区间上的任意两个数1x 、2x ,总有不等式1212()()()22f x f x x xf ++≤成立,则称函数()f x 为该区间上的向上凸函数(简称上凸). 类比上述定义,对于数列{}n a ,如果对任意正整数n ,总有不等式:212n n n a a a +++≤成立,则称数列{}n a 为向上凸数列(简称上凸数列). 现有数列{}n a 满足如下两个条件: (1)数列{}n a 为上凸数列,且1101,28a a ==;(2)对正整数n (*,101N n n ∈<≤),都有20n n a b -≤,其中2610n b n n =-+. 则数列{}n a 中的第五项5a 的取值范围为 .3.已知数列{}n a 满足(,01)n n a n k n k *=⋅∈<<N 下面说法正确的是( ) ①当12k =时,数列{}n a 为递减数列; ②当112k <<时,数列{}n a 不一定有最大项; ③当102k <<时,数列{}n a 为递减数列; ④当1kk-为正整数时,数列{}n a 必有两项相等的最大项. A .①② B .②④ C .③④ D .②③三、规律发现型将自然数不清,2,3,4……排成数陈(如右图),在2处转第一个弯,在3转第二个弯,在5转第三个弯,….,则第2005个转弯处的数为____________。
【高考数学二轮压轴微专题】用导数研究和解决新颖性问题与盘点近年数列与不等式热点考题-原卷版
第31讲 用导数研究和解决新颖性问题高考中经常出现新定义的具有某种特殊性质的函数,提出若干需要解决的问题,由于不是数学学习中出现过的常见函数,往往给人以陌生的感觉,这类新情景题旨在考查学生当场理解并加以运用的能力.还有一些考题,虽然题设中给出的函数是常见函数的组合,由于其形态特殊,具有新颖的特点,如指数函数与一次或二次函数的联袂型,对数函数与一次或二次函数的联袂型,不是常规解法就能解决的,本讲通过实例讲解用导数作为解题工具研究和解决这些新颖性问题.典型例题【例1】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足()()00f x g x =且()()00f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”;(2)若函数2()1f x ax =-与()ln g x x =存在"S 点”,求实数a 的值; (3)已知函数2e (),().xb f x x a g x x =-+=对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”?并说明理由.【例2】已知函数()2()2ln(1)2f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;(2)若0x =是()f x 的极大值点,求a .强化训练1.若函数()f x 在(0,)+∞上恒有()()xf x f x '>成立(其中()f x '为()f x 的导函数),则称这类函数为A 类函数.(1)若函数2()1g x x =-,试判断()g x 是否为A 类函数;(2)若函数1()3ln a h x ax x x-=---是A 类函数,求函数()h x 的单调区间; (3)若函数()f x 是A 类函数,当120,0x x >>时,证明:()()()1212f x f x f x x +>+.第32讲 盘点近年数列与不等式热点考题数列知识与各章知识交汇的综合题,以其新颖性,综合性而“门亮登场”,且常常和函数、方程、不等式、复数、解析几何等有关知识结合起来灵活运用,理所当然地充任高考中“压轴”的角色,而数列与不等式的综合是其中频频出现的热点,题型有数列知识参与的不等式恒成立问题,有数列参与的不等式的证明问题,探索性问题、新情景问题,试题更显精彩纷呈.解题时要注意沟通数列与不等式以及其他知识点的内在联系,灵活运用常用的思想方法来解,正如柏拉图所言:“我认为,只有当所有这些研究提高到彼此互相结合、互相关联的程度,并且能够对它们的相互关系得到一个总括的、成熟的看法时,我们的研究才算是有意义的,否则便是白费力气,毫无价值.”只有按照这种思想方法学习数学,才能把数学学活.本讲通过几道典型例题,剖析数列综合题的分析,盘点数列与不等式交汇的热点考题.典型例题【例1】已知等比数列{}n a 的公比1q >,且345428,2a a a a ++=+是35,a a 的等差中项,数列{}n b 满足11b =,数列(){}1n n n b b a +-的前n 项和为22n n +.(1)求q 的值;(2)求数列{}n b 的通项公式.【例2】已知数列{}n x 满足()()*111:1,ln 1n n n x x x x n ++==++∈N . 证明:当*n ∈N 时,(1)10;n n x x +<<(2)112;2n n n nx x x x ++-(3)112n n x -212n -强化训练1.已知{}n x 是各项均为正数的等比数列,且12323,2.x x x x +=-=(1)求数列{}n x 的通项公式;(2)如图39-所示,在平面直角坐标系xOy 中,依次联结点()()1122,1,,2,,P x P x ()11,1n n P x n +++得到折线12PP 1n P +.求由该折线与直线110,,n y x x x x +===所围成的区域的面积.n T。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学 导数、数列压轴题的破解策略 数列创新试题例1. (2015高考浙江,理)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N ) (1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ). 【解析】(1)首先根据递推公式可得12n a ≤,再由递推公式变形可知 211[1,2]1n n n n n n a a a a a a +==∈--,从而得证;(2)由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n n a a +≤-≤,从而可得*111()2(1)2n a n N n n +≤≤∈++,即可得证. 试题解析:(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=- 得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得, 211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤; (2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n na a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++. 例2:将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的01-三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ………………………………………【解析】第1次全行的数都为1的是第121-行, 第2次全行的数都为1的是第221-行, 第3次全行的数都为1的是第321-行, ……,第n 次全行的数都为1的是第21n-行(可用数学归纳法或递推关系证明);第62163-=行数都为1,从而逆推出第61行为1,1,0,0,1,1,0,0,1,1,,1,1,0,0,1,1L ,共有32个1.例3:(2015高考安徽,理)设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=L ,证明14n T n≥. 【解析】(Ⅰ)对题中所给曲线的解析式进行求导,得出曲线221n y x +=+在点(12),处的切线斜率为22n +.从而可以写出切线方程为2(22)(1)y n x -=+-.令0y =.解得切线与x 轴交点的横坐标1111n nx n n =-=++. (Ⅱ)要证14n T n≥,需考虑通项221n x -,通过适当放缩能够使得每项相消即可证明.思路如下:先表示出22222213211321()()()242n n n T x x x n --==L L ,求出初始条件当1n =时,114T =.当2n ≥时,单独考虑221n x-,并放缩得222222122221(21)(21)1441()2(2)(2)(2)n n n n n n n xn n n n n-------==>==,所以 211211()2234n n T n n ->⨯⨯⨯⨯=L ,综上可得对任意的*n N ∈,均有14n T n≥. 试题解析:(Ⅰ)解:2221'(1)'(22)n n y xn x ++=+=+,曲线221n y x +=+在点(12),处的切线斜率为22n +.从而切线方程为2(22)(1)y n x -=+-.令0y =,解得切线与x 轴交点的横坐标1111n nx n n =-=++. (Ⅱ)证:由题设和(Ⅰ)中的计算结果知22222213211321()()()242n n n T x x x n--==L L . 当1n =时,114T =. 当2n ≥时,因为222222122221(21)(21)1441()2(2)(2)(2)n n n n n n n x n n n n n-------==>==, 所以211211()2234n n T n n->⨯⨯⨯⨯=L . 综上可得对任意的*n N ∈,均有14n T n≥. 例4:将杨辉三角中的每一个数rn C 都换成1(1)rn n C +,就得到一个如右图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出1111(1)(1)r x rn n n n C n C nC -+=++,其中x = ;令()22111113121n n na nC n C -=+++++L ,则lim n n a →∞= . 【解析】∵11111(1)(1)r r rn n n n C n C nC +-+=++ ∴1x r =+; ∵()()()212111n n n C n n n -=++- 111111n n n n ⎛⎫⎛⎫=--- ⎪ ⎪-+⎝⎭⎝⎭, ∴012234111345n a C C C =+++L ()321111n n n nnC n C ---+++ 111121n n =--++, ∴1lim 2n n a →∞=. 例5:(2015江苏高考)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得k n k n k n n a a a a 342321,,,+++依次成等比数列,并说 明理由.【解析】(1)根据等比数列定义只需验证每一项与前一项的比值都为同一个不为零的常数即可(2)本题列式简单,变形较难,首先令1dt a =将二元问题转化为一元,再分别求解两个高次方程,利用消最高次的方法得到方程:27+430t t +=,无解,所以不存在(3)同(2)先令1dt a =将二元问题转化为一元,为降次,所以两边取对数,消去n,k 得到关于t 的一元方程4ln(13)ln(1)ln(13)ln(12)3ln(12)ln(1)0t t t t t t ++-++-++=,从而将方程的解转化为研究函数()4ln(13)ln(1)ln(13)ln(12)3ln(12)ln(1)g t t t t t t t =++-++-++零点情况,这个函数需要利用二次求导才可确定其在(0,)+∞上无零点试题解析:(1)证明:因为112222n n n na a a d a ++-==(1n =,2,3)是同一个常数,所以12a ,22a ,32a ,42a 依次构成等比数列.(2)令1a d a +=,则1a ,2a ,3a ,4a 分别为a d -,a ,a d +,2a d +(a d >,2a d >-,0d ≠). 假设存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列, 则()()34a a d a d =-+,且()()6422a d a a d +=+. 令d t a =,则()()3111t t =-+,且()()64112t t +=+(112t -<<,0t ≠), 化简得32220t t +-=(*),且21t t =+.将21t t =+代入(*)式,()()21212313410t t t t t t t t +++-=+=++=+=,则14t =-.显然14t =-不是上面方程得解,矛盾,所以假设不成立, 因此不存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列. (3)假设存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列,则()()()221112n kn k n a a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++, 且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦.令()()21t t ϕϕ'=,则()()()()212011213t t t t ϕ'=>+++.由()()()()1200000g ϕϕϕ====,()20t ϕ'>,知()2t ϕ,()1t ϕ,()t ϕ,()g t 在1,03⎛⎫- ⎪⎝⎭和()0,+∞上均单调.故()g t 只有唯一零点0t =,即方程(**)只有唯一解0t =,故假设不成立. 所以不存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列.例6:若数列{}n a 满足212n na p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【解析】取{}n a 为1,2,4,8,---L ,2124n na a +=,则数列{}n a 是等方比数列,但,不是等比数列;若数列{}n a 是等比数列,设公比为q ,则222112n n nn a a q a a ++⎛⎫== ⎪⎝⎭为正常数,则数列{}n a 是等方比数列,故选B . 例7:对数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中()1n n n a a a n N ++∆=-∈;对正整数k ,规定{}k n a ∆为数列{}n a 的k 阶差分数列,其中111k k k n n n a a a --+∆=∆-∆()1k n a -=∆∆.(1)已知数列{}n a 的通项公式()2n a n n n N +=+∈,试判断{}{}2n n a a ∆∆、是否为等差数列或等比数列?为什么?(2)数列{}n a 首项11a =,且满足212nn n n a a a +∆-∆+=-,求数列{}n a 的通项公式.【解析】(1)∵()2n a n n n N +=+∈, ∴()121n n n a a a n +∆=-=+,212n n n a a a +∆=∆-∆=,∴数列{}n a ∆是等差数列,{}2n a ∆是常数列,既是等差数列,又是等比数列.(2)∵212nn n n a a a +∆-∆+=-,∴()112nn n n n a a a a ++∆-∆-∆+=-,∴122nn n a a +=+,两边同时除以12n +,得:111222n n n n a a ++=+ 令2n n na b =,则:112n n b b +-=,∴2n n b =,即12n n a n -=⋅.例8:若有穷数列12,...n a a a (n 是正整数),满足1211,,....,n n n a a a a a a -===,即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”.(1)已知数列{}n b 是项数为7的“对称数列”,且1234,,,b b b b 成等差数列,142,11b b ==,试写出{}n b 的每一项;(2)已知{}n c 是项数为()211k k -≥的对称数列,且121,...k k k c c c +-构成首项为50,公差为4-的等差数列,数列{}n c 的前21k -项和为21k S -,则当k 为何值时,21k S -取到最大值?最大值为多少?(3)对于给定的正整数1m >,试写出所有项数不超过2m 的对称数列,使得211,2,2...2m -成为数列中的连续项;当1500m >时,试求其中一个数列的前2008项和2008S .【解析】(1)设数列{}n b 的公差为d ,则:1132314=+=+=d d b b ,解得: 3=d ,∴数列{}n b 为25811852,,,,,,. (2)由对称数列的定义知:12121k k k k c c c c c c +-+++=+++L L ,∴()211212k k k k k S c c c c -+-=+++-L()()12504502k k k -⎡⎤=⨯+⨯--⎢⎥⎣⎦2410450k k =-+-()2413626k =--+,∴当13k =时,21k S -取到最大值626. (3)∵211,2,2 (2)m -成为项数不超过2m 的对称数列中的连续项,∴该数列只可能是:21121,2,,2,2,2,2,,2,1m m m m ----L L ;或2121,2,,2,2,2,,2,1m m m ---L L ;或12212,2,,2,1,1,2,,2,2m m m m ----L L ; 或12212,2,,2,1,2,,2,2m m m m ----L L ;下面计算2121,2,,2,2,2,,2,1m m m ---L L 的前2008项和2008S :①当15002008m <<时,()()2009232008222m m m m m S S ----=++++L ()()1220092122mm m --=-+-1220093221m m --=⨯--;②当2008m ≥时,2008200821S =-;故2121,2,,2,2,2,,2,1m m m ---L L 的前2008项和为:()()20082008122009212008322115002008m m m S m --⎧-≥⎪=⎨⨯--<<⎪⎩ . 例9:在()2m m ≥个不同数的排列12n p p p L 中,若1i j m ≤<≤时i j p p >(即前面某数大于后面某数),则称i p 与j p 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为n a ,如排列21的逆序数11a =,排列321的逆序数36a =.(Ⅰ)求45a a 、,并写出n a 的表达式; (Ⅱ)令nn n n n a aa ab 11+++=,证明: 32221+<++<n b b b n n Λ.【解析】(Ⅰ)15,1054==a a ,2)1(12)1(+=+++-+=n n n n a n Λ (Ⅱ) ∵1122n n n n n a a n n b a a n n+++=+=++2>=,1,2,n =L ∴n b b b n 221>+++Λ.又∵222222n n n b n n n n +=+=+-++, ∴12n b b b +++L111122[()()]132n n n =+-++-+L=32221232+<+-+-+n n n n . 综上,12223n n b b b n <++<+L .例10:已知11211222,,,a A a A A ==+L L12n n n n n a A A A =+++L L ,当,2n N n *∈≥时,求证:(1))1(1+=-n n a n a ; (2)12111(1)(1)(1)3na a a +++<L L . 证明:(1)当2n k ≥≥时, ()!!kn n A n k =- ()()()111!11!k n n n nA n k ---==---⎡⎤⎣⎦,∴12nn n n n a A A A =+++L()121111n n n n n n A A A ----=++++L)1(1-+=n a n ;(2)由(1)na a nn =+-11, ∴12311111111n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭L nn a a a a a a a a 1111332211+⨯⨯+⨯+⨯+=Λ)!1()1(32112312+=+⨯⨯⨯=++n a a n a a a a a n n n Λ ()1211111(1)!n n n n A A A n ++++=++++L 11111!(1)!2!n n =+++++-L 11121223(1)n n<++++⨯⨯-⨯L313112<-=-+=nn . 例11:若定义在区间D 上的函数()f x 对于D 上的任意n 个值1231,,,,,n n x x x x x -L ,总满足:()()()12n f x f x f x n+++L12n x x x f n +++⎛⎫≤ ⎪⎝⎭L称函数()f x 为D 上的凸函数,则在锐角三角形ABC ∆中,cos cos cos A B C ++的最大值是.解:∵函数()cos f x x =为0,2π⎛⎫⎪⎝⎭上的凸函数, ∴cos cos cos 3A B C++1cos 32A B C ++≤=,故3cos cos cos 2A B C ++≤.例12:在)(n m f ,中,m 、n 、)(n m f ,均为非负整数,且对任何n m ,有: ①1)0(+=n n f ,; ②)1()01(,,m f m f =+;③()()111f m n f m f m n ++=+⎡⎤⎣⎦,,,;试求: (1))01(,f 的值; (2))1(n f ,关于n 的表达式;(3))3(n f ,关于n 的表达式. 解:(1))01(,f )10(,f =211==+;(2)))11(0()1(-=n f f n f ,,,()(11)11f n n =-+≥,,故数列{}()(11)1f n n -≥,成等差数列,其中首项2)01(=,f ,公差11=d ,∴2)01()1(1+=+=⋅n d n f n f ,,. (3)))12(1()2(-=n f f n f ,,, ()(21)21f n n =-+≥,,故数列{}()(21)1f n n -≥,也成等差数列,其中首项(20)(11)213f f ==+=,,,公差22=d , ∴322)02()2(+=+=⋅n n f n f ,,. ∵))13(2()3(-=n f f n f ,,,()2(31)31f n n =-+≥⋅,,可变形为:()(3)32[(31)3]1f n f n n +=-+≥,,.故数列{}3)13(+-n f ,n (≥)1成等比数列,其中首项为8353)12(3)03(=+=+=+,,f f ,公比2=q .∴32)3(3-=+n n f ,。