高考导数压轴题各专题解法策略研究

合集下载

高考数学 导数压轴题的破解策略

高考数学  导数压轴题的破解策略
e
倍,故可得
y

x
1 ex
在区间 ,2 ,在区间 2, ,当 x

2
时,
ymin


1 e2

考点 2 乘除导致凹凸反转同构函数
图5
图6
图7
图8
315
如图
5:
y

x ex

x ex
f

x ,即将
f x 关于原点对称后得到
y

x ex
,故可得
考点 3 顺反同构函数
图9
图 10
图 11
图 12
如图 9: x ln x eln x ln x f ln x ,当 ln x ,1 ,即 x 0, 1 ,当 ln x 1,,即 x 1 , ,
e
e
如图 8: y
ex x
1


1 e


x

1
1

e

x
1
1 e
f


1
x

1

x

0 ,属于分式函数,将
f
1
x
关于原点对称后,左
移一个单位,再将纵坐标缩小
1 e
倍,故可得
y

ex x 1
在区间 1,0 ,在区间 0, ,当
x

0
时, y min
1.
x 0,e


ymax

1 e

如图 11:ln x 1 e ln ex ef ln ex ,当 ln ex ,1 ,即 x 1, ,当 ln ex 1, ,即 x 0,1 ,

高考数学复习点拨 高考导数问题的命题研究与备考策略

高考数学复习点拨 高考导数问题的命题研究与备考策略

高考导数问题的命题研究与备考策略1.考查形式与特点(1).高考对函数概念的考查主要有:求函数的定义域、值域及反函数。

这类题型直接通过具体问题找出函数关系,再研究函数的定义域、值域及反函数。

(2).在每年的高考试题中,以中等难度题型设计新颖的试题考查函数的性态——即函数的单调性、奇偶性、周期性和函数图象的对称性等,近两年,以组合形式一题多角度考查函数性质的高考题正成为新的热点。

(3).以比较容易的中档题来考查函数性质的灵活运用,在考查函数内容的同时也考查能否用运动、变化的函数观点观察问题、分析问题、解决问题。

(4).函数的最值问题在高考试卷中几乎年年出现,它们是高考中的重要题型之一.特别是函数在经济生活中的应用问题,大多数都是最值问题,这类考题在近几年考查明显增加.此类考题一要掌握求函数最值的几种常用方法与技巧。

二要灵活、准确地列出模型函数.(5).近几年.为了突出函数在中学数学中的主线地位,高考强化了对函数推理、论证能力(代数推理题是高考的热点题型)及探索性问题的综合考查,加大了以函数为载体的多种方法、多种能力(甚至包括阅读能力、理解能力、表述能力、信息处理能力)的综合程度.这类试题或者是函数与其他知识的糅合,或者是多种方法的渗透,每道考题都具有鲜明的特色,值得深思.(6).函数与解析几何、不等式、方程、数列、参数范围、导数等内容结合在一起,以曲线方程的变换、参数范围的探求及最值问题综合在一起编拟的新颖考题,成为近几年高考中的高档解答题,以综合考查应用函数知识分析、解决问题的能力坝I试对函数思想方法的理解与灵活运用,等价转化及数形结合和分类讨论等解题策略和掌握程度.这类试题每年至少会有一个.(7).高考对导数的考查定位于作为解决初等数学问题的工具出现,侧重于考查导数在函数与解析几何中的应用,主要有以下三个方面:①运用导数的有关知识,研究函数最值问题,一直是高考长考不衰的热点内容.另一方面,从数学角度反映实际问题,建立数学模型,转化为函数的最大值与最小值问题,再利用函数的导数,顺利地解决函数的最大值与最小值问题,从而进一步地解决实际问题.②利用导数的几何意义,研究曲线的切线斜率问题也是导数的一个重要作用,并且也是高考考查的重点内容之一.函数y=f(x)在X=Xo处的导数,表示曲线在点P(x0,f(x0))处的切线斜率.③运用导数的有关知识,研究函数的单调性是导数的又一重点应用,在高考中所占的地位是比较重的.2.命题趋势由于函数在数学中具有举足轻重的地位,它仍必将是高考的一个热点,而且对能力的考查还将高于课程标准.(1)对函数的概念、基本性质及图象的考查主要以小题的形式出现.(2)函数与不等式、数列、向量、解析几何等知识的综合问题会以解答题形式出现,属于理解、灵活运用层次,难度较大.(3)通过函数应用题考查建立函数模型及解读信息的能力,将是高考命题的热点之一.(4)新课程新增内容中与函数有关的内容——函数连续与极限、导数是考查的重点,所占比重将进一步加大.典例剖析例1. 已知函数f(x)=|x2-2ax+b|(x∈R).给出下列命题:①f(x)必是偶函数;②f(0)=f(2)时,f(x)的图象必关于直线x=1对称;③若a 2-b≤0,则f(x)在区间[0,+∞]上是增函数;④f(x)有最大值|a 2-b|.其中正确的命题的序号是_______.解析: ①显然是错误的;②由f(O)=f(2)有|b|=|4-4a+b|,而f(x+1)=|(x+1)2-2a(x+1)+b|=|x 2+(2-2a)x-2a+b+l|,f(1-x)=|(1-x)2-2a(1-x)+b|=|x 2-(2-2a)x-2a+b+1|,f (x+1)≠f(l -x).故f(x)不是关于x=1对称,所以②不对.③f(x)=|(x-a)2+b-a 2|,当a 2-b≤0时,b-a 2≥0,所以f(x)=(x-a)2+b-a 2,故当x≥a 时.f(x)单调递增的.故③正确.④当a 2-b>0时,f(a)=|b-a 2|=a 2-b其图象如图,所以④错误.答案 ③剖析: 函数的性质是高考试题考查的热点之一,本题涉及了函数的单调性、奇偶性、对称性以及最值,综合性较强.对于多项选择填空题,由于各选项相互独立,解答时应逐一检验判断.例2. 已知二次函数y=f(x)经过点(0,10),导函数f /(x)=2x-5,当x∈(n,n+1] (x ∈N *)时,f(x)是整数的个数记为a n .(1)求数列{a n }的通项公式;(2)令b n =14+n n a a ,求数列{a n +b n }的前n 项和S n (n≥3). 解析: (1) 由 f /(x)=2x-5 可以设此二次函数为f(x)=x 2-5x+c(c 为常数).因f(x)图象过(0,10),故c=10,故二次函数为f(x)=x 2-5x+10=(x-25)2+415,又因x∈(n,n+1)(n∈N *)时,f(x)为整数的个数为a nf(x)在(1,2)上的值域为[4,6],a l =2.f(x)在(2,3)上的值域为[415,4],a 2=1. 当n≥3时,f(x)在(n ,n+1)上单调递增,其值城为(f(n),f(n+1))∴a n =f(n+1)-f(n)=2n-4.∴a n =⎪⎩⎪⎨⎧≥-==)3(42)2(1)1(2n n n n(2)令c n =a n +b n ,则c 1=a 1+b 1=4,c 2=a 2+b 2=3, 当n≥3时S n =c 1+c 2+(c 3+…+c n )=7+(a 3+…+a n )+(b 3+…+b n ) =7+2)42(2-+n (n-2)+424⨯+644⨯+…+)22)(42(4--n n=7+(n-1)(n-2)+2(22121--n )=n 2-3n+11110--n n . 剖析: 本题主要体现导数与函数、数列方面的综合应用.3.应试对策(1).由于函数内容固有的重要性,预计在以后高考试题中所占比例仍远远大于在课时和知识点中的比例(约为20%),既可以“低档题”——选择、填空形式出现(如集合、映射、函数基本性质以及反函数多属此类)。

破解导数压轴题中的函数构造问题的七大策略

破解导数压轴题中的函数构造问题的七大策略

破解导数压轴题中的函数构造问题的七大策略问题提出通过对以函数与导数为核心命制的压轴题的分析与研究,发现大多数需构造辅助函数才能顺利解决,构造辅助函数对学生的创造性与创新性思维能力的要求较高,那么辅助函数的构造有规律可循吗?构造辅助函数解决压轴题的具体策略有哪些呢?策略一观察分析构造观察是科学研究的重要方法,也是数学解题的首要心理活动,更是构造辅助函数最为直接的策略.例1 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f (x)的两个零点,证明:x1+x2<2.整体思路是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,把某些式子或图形看成一个整体,进行有目的、有意识的整体处理.整体构造辅助函数就是立足这一思想来解决函数综合题的一种策略.例2 (2017·全国Ⅱ)已知函数f (x)=ax2-ax-x ln x,且f (x)≥0.(1)求a;(2)证明:f (x)存在唯一的极大值点x0,且e-2<f (x0)<2-2.若问题的整体结构比较复杂,使得正面解决很困难时,可以考虑将复杂的整体看成几个部分,实施局部构造辅助函数,从局部突破,从而达到解决问题的目的.例3 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -a x 2(x >0)有最小值.设g (x )的最小值为h (a ),求h (a )的值域.点评 此道压轴题g (x )的导函数结构比较复杂,于是从局部实施突破,构造辅助函数.这种构造方式比较常见,如2016年江苏卷19题,2013年陕西卷理科压轴题等.有时第一次构造辅助函数并不能解决问题,还需要第二次甚至更多次的构造才能解决问题.例4 (2017·全国Ⅲ)已知函数f (x)=ln x+ax2+(2a+1)x.(1)讨论f (x)的单调性;(2)当a<0时,证明f (x)≤-34a-2.和差法常用于比较大小、构造对偶式等,其实也可用来构造辅助函数.例5 设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ; (3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x.点评 和差构造辅助函数的方法在每年高考压轴题中运用广泛,如2016年四川理科压轴、2013年辽宁理科压轴题等.策略六变参分离构造若条件中含有参数,要探究参数的取值范围,此时可以考虑将参数与其他变量分离,然后构造辅助函数求解参数的取值范围.例6 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)略点评此题将主元与参数变参分离后构造辅助函数,再对辅助函数求导探究单调性或最值,参数的范围便自然得到.策略七综合运用例7 已知函数f (x)=1-x1+x2e x.(1)求f (x)的单调区间;(2)证明:当f (x1)=f (x2)(x1≠x2)时,x1+x2<0.点评此道压轴题的压轴问要证的不等式本质上是极值右偏问题,解答时需要灵活的将作差构造和局部构造两种方法综合运用才能顺利解决.掌握数学就意味着必须要善于解题,中学数学教学的首要任务之一就是要加强解题训练,而人的高明之处在于当他碰到一个不能直接克服的障碍时,他就会绕过去,当原来的问题看起来似乎不好解时,就会想出一个合适的辅助问题去解决原问题,这种方法正是解决高考函数综合问题的良策与通法,通过构造辅助函数统一的处理这些问题时,其实我们已经站在了更高的层面,不再仅仅追求千奇百怪“诡异”的解法,而是理解了这些问题的共性.在统一解决的同时,给人一种思维清晰、神清气爽的良好教学感觉.破解导数压轴题中的函数构造问题的七大策略问题提出通过对以函数与导数为核心命制的压轴题的分析与研究,发现大多数需构造辅助函数才能顺利解决,构造辅助函数对学生的创造性与创新性思维能力的要求较高,那么辅助函数的构造有规律可循吗?构造辅助函数解决压轴题的具体策略有哪些呢?策略一观察分析构造观察是科学研究的重要方法,也是数学解题的首要心理活动,更是构造辅助函数最为直接的策略.例1 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f (x)的两个零点,证明:x1+x2<2.(1)解a的取值范围为(0,+∞);(2)证明求导得f′(x)=(x-1)(e x+2a),由(1)知a>0.所以函数f (x)的极小值点为x=1.结合要证结论x1+x2<2,即证x2<2-x1.若2-x1和x2属于某一个单调区间,那么只需要比较f (2-x1)和f (x2)的大小,即探求f (2-x)-f (x)的正负性.于是通过上述观察分析即可构造辅助函数F (x)=f (2-x)-f (x),x<1,代入整理得F (x)=-x e-x+2-(x-2)·e x.求导得F′(x)=(1-x)(e x-e-x+2).即x<1时,F′(x)<0,则函数F (x)是(-∞,1)上的单调减函数.于是F (x)>F (1)=0,则f (2-x)-f (x)>0,即f (2-x)>f (x).由x1,x2是f (x)的两个零点,并且在x=1的两侧,所以不妨设x1<1<x2,则f (x2)=f (x1)<f (2-x1),即f (x2)<f (2-x1).由(1)知函数f (x )是(1,+∞)上的单调增函数,且x 2,2-x 1∈(1,+∞),所以x 2<2-x 1. 故x 1+x 2<2得证.点评 此题的压轴问以函数零点为依托,看似证明不等式,实则是极值右偏问题,解决的核心是通过观察分析构造辅助函数F (x )=f (2-x )-f (x ),建立抽象不等式“f (x 2)<f (2-x 1)”,再由函数的单调性去解决.策略二 整体构建整体思路是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,把某些式子或图形看成一个整体,进行有目的、有意识的整体处理.整体构造辅助函数就是立足这一思想来解决函数综合题的一种策略.例2 (2017·全国Ⅱ)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.(1)解 a =1;(2)证明 由(1)知f (x )=x 2-x -x ln x ,求导得f ′(x )=2x -2-ln x .整体构造辅助函数g (x )=2x -2-ln x ,求导得g ′(x )=2-1x. 当g ′(x )>0时,x ∈⎝ ⎛⎭⎪⎫12,+∞; 当g ′(x )<0时,x ∈⎝ ⎛⎭⎪⎫0,12.即函数g (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,12上单调递减. 又g (e -2)>0,g ⎝ ⎛⎭⎪⎫12<0,g (1)=0,所以g (x )在⎝ ⎛⎭⎪⎫0,12内有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞内有唯一零点1,且当x ∈(0,x 0)时,g (x )>0;当x ∈(x 0,1)时,g (x )<0;当x ∈(1,+∞)时,g (x )>0.因为f ′(x )=g (x ),所以x =x 0是f (x )的唯一极大值点.由f ′(x )=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0).又由x 0∈⎝ ⎛⎭⎪⎫0,12得f (x 0)<14. 又因为x =x 0是f (x )在(0,1)上的最大值点,结合e -1∈(0,1),f ′(e -1)≠0,得f (x 0)>f (e -1)=e -2.所以e -2<f (x 0)<2-2.策略三 局部构造若问题的整体结构比较复杂,使得正面解决很困难时,可以考虑将复杂的整体看成几个部分,实施局部构造辅助函数,从局部突破,从而达到解决问题的目的.例3 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -a x 2(x >0)有最小值.设g (x )的最小值为h (a ),求h (a )的值域.解 (1)略;(2)对g (x )求导得g ′(x )=x +2x 3·⎝ ⎛⎭⎪⎫x -2x +2e x +a . 局部构造辅助函数h (x )=x -2x +2e x +a ,即h (0)=a -1<0,h (2)=a ≥0.由零点定理及第(1)问结论知h (x )在(0,2]上有唯一零点x =m .所以函数g (x )在(0,m )上单调递减,在(m ,+∞)上单调递增.于是x =m 为函数g (x )的极小值点,也为最小值点.即当a ∈[0,1)时,函数g (x )有最小值g (m ).由于m -2m +2e m +a =0,即a =-m -2m +2e m . 所以当a ∈[0,1)时,有m ∈(0,2],于是函数g (x )的最小值g (m )=e m -⎝ ⎛⎭⎪⎫-m -2m +2e m ·(m +1)m 2=e m m +2. 再次引入辅助函数r (m )=e mm +2(m ∈(0,2]),求导得 r ′(m )=m +1(m +2)2e m>0. 所以函数r (m )在(0,2]上单调递增,因此可求得函数h (a )的值域.故函数g (x )的最小值的取值范围为(r (0),r (2)],即⎝ ⎛⎦⎥⎤12,14e 2. 点评 此道压轴题g (x )的导函数结构比较复杂,于是从局部实施突破,构造辅助函数.这种构造方式比较常见,如2016年江苏卷19题,2013年陕西卷理科压轴题等. 策略四 多次构造有时第一次构造辅助函数并不能解决问题,还需要第二次甚至更多次的构造才能解决问题.例4 (2017·全国Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2. (1)解 f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x. 当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎪⎫0,-12a 单调递增, 在⎝ ⎛⎭⎪⎫-12a ,+∞单调递减. (2)证明 第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a+2≤0. 由(1)知,当a <0时,f (x )max =f ⎝ ⎛⎭⎪⎫-12a . 即证ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0 不妨设t =-12a>0,则证ln t -t +1≤0, 令h (t )=ln t -t +1,求导得h ′(t )=1t-1. h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a-2. 策略五 和差构造和差法常用于比较大小、构造对偶式等,其实也可用来构造辅助函数.例5 设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ; (3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x.解 (1),(2)略(3)作差构造辅助函数g (x )=c x -(c -1)x -1, x ∈(0,1),要证原不等式成立,即证g (x )<0.对g (x )求导得g ′(x )=c x·ln c -(c -1)=ln c ·⎝ ⎛⎭⎪⎫c x -c -1ln c . 由c >1,得ln c >0,再根据第(2)问知1<c -1ln c<c . 所以g ′(0)<0且g ′(1)>0,结合g ′(x )是单调递增函数和零点定理可知g ′(x )在区间(0,1)上有唯一零点.所以函数g (x )在区间(0,1)上先单调递减,再单调递增,又g (0)=g (1)=0,从而在区间(0,1)上g (x )<0,故原不等式得证.点评 和差构造辅助函数的方法在每年高考压轴题中运用广泛,如2016年四川理科压轴、2013年辽宁理科压轴题等.策略六 变参分离构造若条件中含有参数,要探究参数的取值范围,此时可以考虑将参数与其他变量分离,然后构造辅助函数求解参数的取值范围.例6 已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(1)求a 的取值范围;(2)略解 (1)显然x =1不是函数f (x )的零点.当x ≠1时,方程f (x )=0变参分离为a =2-x (x -1)2·e x . 引入辅助函数g (x )=2-x (x -1)2·e x , 求导得g ′(x )=-e x·x 2-4x +5(x -1)3. 所以函数g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.因为函数g (x )在(-∞,1)上的取值范围是(0,+∞),而在(1,+∞)上的取值范围是(-∞,+∞).所以当a >0时,函数f (x )有两个零点,故a 的取值范围为(0,+∞).点评 此题将主元与参数变参分离后构造辅助函数,再对辅助函数求导探究单调性或最值,参数的范围便自然得到.策略七 综合运用例7 已知函数f (x )=1-x 1+x 2e x . (1)求f (x )的单调区间;(2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.(1)解 函数f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞).(2)证明 由f (x )=1-x 1+x 2e x ,易知x <1时,f (x )>0;x >1时,f (x )<0. 因为f (x 1)=f (x 2)(x 1≠x 2),不妨设x 1<x 2,结合(1)知x 1∈(-∞,0),x 2∈(0,1). 要证x 1+x 2<0,即证x 1<-x 2,于是作差构造辅助函数F (x )=f (x )-f (-x ),代入化简得F (x )=11+x 2⎣⎢⎡⎦⎥⎤(1-x )e x -1+x e x . 再次局部构造辅助函数G (x )=(1-x )e x -1+x e x ,求导得G ′(x )=-x e -x (e 2x -1).当x ∈(0,1)时,G ′(x )<0,即G (x )是(0,1)上的单调减函数.于是G (x )<G (0)=0,则F (x )<0. 即F (x )=f (x )-f (-x )<0.所以x ∈(0,1)时,f (x )<f (-x ).由x 2∈(0,1),则f (x 2)<f (-x 2).又f (x 1)=f (x 2),即得f (x 1)<f (-x 2). 根据(1)知f (x )是(-∞,0)上的单调增函数,而x 1∈(-∞,0),-x 2∈(-∞,0), 所以x 1<-x 2,故x 1+x 2<0得证.点评 此道压轴题的压轴问要证的不等式本质上是极值右偏问题,解答时需要灵活的将作差构造和局部构造两种方法综合运用才能顺利解决.掌握数学就意味着必须要善于解题,中学数学教学的首要任务之一就是要加强解题训练,而人的高明之处在于当他碰到一个不能直接克服的障碍时,他就会绕过去,当原来的问题看起来似乎不好解时,就会想出一个合适的辅助问题去解决原问题,这种方法正是解决高考函数综合问题的良策与通法,通过构造辅助函数统一的处理这些问题时,其实我们已经站在了更高的层面,不再仅仅追求千奇百怪“诡异”的解法,而是理解了这些问题的共性.在统一解决的同时,给人一种思维清晰、神清气爽的良好教学感觉.。

2025高考数学二轮复习导数应用中的函数构造技巧

2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()

常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2

导数压轴题解题法探讨

导数压轴题解题法探讨
例1 已知 函数, ( )= , ( ) 的单调性. 详细解答 此 函数的定义域为 ( 0 , +∞) , 一( 2 口+1 ) +l n x , 讨论 函数
所 以 ( ) 在 区 间 ( 0 , 1 ) 和 区 间 ( , + ) 上 单 调 递 增 , 在 区 间 ( 1 , 1 ) 上 单 调 递 减 .
得 到正与负 , 单调 区间即得出. ” 怎么样?还算 押韵 吧?只 要解 决 了单调 区 间 问题 , 结 合原 函数 的图像 , 极值、 最值 、 零点 、 不等式 恒成立 等等 问题
都会 迎刃而解.
\ l
A ( ’ ’ ’
0 < < 1 或 > 寺, 得 厂 ( ) > o ; 1 < < 寺, 得 厂 ( ) < o ・
● - 2 \
1的正负 即可. 显然 , 当 ∈(一a 。 ,

1 ) 时, ,( ) < 0 ; 当 ∈( 1 , +∞ ) 时,
- 尸( )> 0 .
_ /
( 1 ‘ ’
增, 在 区间( 1 , +a 。) 上单调递减.

( 下转 1 2 6页)
当a > O时 , 方程 ( 2 似一 1 ) ( 一1 ) = 0的 两个根分 别是
1= 1, 2= 1

所以, 在( 一 ∞, 1 ) 单调递减 , 在( 1 , +*) 单调递增.
数 学 学 习与 研 究
2 0 1 7 . 2 " 1

解题 技巧 与方 法
・ ・
● ●


楚・

解 题 技 巧 与 方法
● ● ’
昌凝属辆题解题法攘
◎李彦 吉 占 ( 麓 山国际实验 学校 高 中部 , 湖南 长沙 4 1 0 0 0 6 )

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法总结很全.
方法 3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。
注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。

压轴题型10-导数压轴大题的处理策略(解析版)-2023年高考数学压轴题专项训练

压轴题型10-导数压轴大题的处理策略(解析版)-2023年高考数学压轴题专项训练

压轴题10导数压轴大题的处理策略目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。

掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。

为了帮助大家复习,今天就总结倒数7大题型,让你在高考数学中多拿分,平时基础好的同学逆袭140也不是问题。

○热○点○题○型1分类讨论与极值点偏移问题○热○点○题○型2恒成立问题的处理策略○热○点○题○型3凹凸反转问题的处理策略1.已知函数()e 3xf x a x =--有两个零点.(1)求实数a 的取值范围.(2)函数()()()ln 1g x f x x x =+-+,证明:函数()g x 有唯一的极小值点.【答案】(1)2(0,e )(2)证明过程见解析【分析】(1)对函数()f x 求导,求出函数()f x 的单调区间,再利用函数图像,从而得出()f x 的最小值小于零,进而求出结果.(2)通过函数的极值点的定义,将问题转化成导函数的零点问题,通过对函数()g x 求导,得出导函数()g x '严格单调,进而再利用零点存在性原求出()0g x '=的零点,从而得到证明.2.已知2()e 2xf x x x =--.(1)若()f x 在x =0处取得极小值,求实数a 的取值范围;(2)若()f x 有两个不同的极值点12,x x (12x x <),求证:1202x x f +⎛⎫''< ⎪⎝⎭(()f x ''为()f x 的二阶导数).【答案】(1)(),1-∞3.已知函数()2e a f x x=,0a ≠.(1)讨论函数()f x 的单调性;(2)若()ln ln x xf x a -≤恒成立,求实数a 的取值范围.(1)当12a =时,讨论函数()()()F x f x g x =-的单调性;(2)当a<0时,求曲线()y f x =与()y g x =的公切线方程.【答案】(1)在R 上单调递增.(2)21y x =+【分析】(1)先求函数()F x 的导函数()F x ',再利用导数证明()0F x '≥,由此判断函数()F x 的单调性;()()0,,0x x ∞ϕ∈+>,又e 0x >得,所以()(),0,0x m x ∞∈-'<,()()0,,0x m x ∞∈+'>,所以()m x 在(),0∞-单调递减,在()0,∞+单调递增,所以()()00m x m ≥=,因此函数()y m x =只有一个零点,即()11121e4e 42e 410x x x ax a a -+--+=只有一个解10x =,此时切线方程为21y x =+,所以曲线()y f x =与()y g x =的公切线方程为21y x =+.【点睛】关键点点睛:本题第二小问解决的关键在于利用导数的几何意义确定切点的坐标满足的关系,再通过利用导数研究方程的解,确定切点坐标,由此求出切线方程.5.已知()()222ln 2a f x x a x x =-++.(1)讨论()f x 的单调性;(2)确定方程()22a f x x =的实根个数.(]0,e x ∈时,()g x 取值范围是⎛-∞ ⎝()e,x ∈+∞时,()g x 取值范围是0,⎛ ⎝所以当112e a +>,即22ea >-时,方程当112e a +=或102a +≤,即22e a =-当1012e a <+<,即222e a -<<-时,方程【点睛】方法点睛:利用导数研究函数的单调区间,首先要求函数的定义域,当导函数含有参数时,要对参数进行分类讨论,在确定导函数()f x '的正负时,难点在于分类讨论时标准的确定,主要是按照()0f x '=是否有根,根的大小进行分类求解的.6.已知函数()()()13ln 3R f x a x ax a x=---∈,ln 3 1.1≈.(1)当a<0时,试讨论()f x 的单调性;(2)求使得()0f x ≤在()0,∞+上恒成立的整数a 的最小值;(3)若对任意()4,3a ∈--,当[]12,1,4x x ∈时,均有()()()12ln 43ln 4m a f x f x +⋅>-+成立,求实数m 的取值范围.离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.7.已知函数()ln 2f x x ax =-.(1)讨论函数()f x 的单调性;(2)若()0f x ≤恒成立,求a 的取值范围.是自然对数的底数,函数e ln .(1)若2m =,求函数()()2e 422xx F x x f x =+-+-的极值;(2)是否存在实数m ,1x ∀>,都有()0f x ≥若存在,求m 的取值范围;若不存在,请说明理由.∴()F x 的极大值为()22ln 26F =-;()F x 的极小值为()34ln22F =-.(2)因为0m >,由0mx m ->得1x >,即()f x 的定义域为()1,+∞.当0,1m x >>时,由()()e ln 0xf x m m mx m =+--≥可得,()()e ln ln ln 1x m m mx m m m m x +≥-=+-,不等式两边同时除以m 可得,()1e 1ln ln 1x m x m +≥+-,即()1e ln ln 11x m x m-≥--可得()ln e ln ln 11x mm x --≥--所以()()()()()ln 1ln eln ln 11eln 1x x mx m x x x --+-≥-+-=+-.设()e xh x x =+,则ln ln(1)e (ln )e ln(1)x m x x m x --+-≥+-即()()ln ln 1h x m h x -≥-⎡⎤⎣⎦.易得()e 10xh x '=+>,所以()h x 为单调递增函数.由()()ln ln 1h x m h x -≥-⎡⎤⎣⎦,可得()ln ln 1x m x -≥-,所以()ln ln 1m x x ≤--设()()ln 1H x x x =--,则()12111x H x x x -=-=--'.∴当()1,2x ∈时,()201x H x x '-=<-,即()H x 单调递减;当()2,x ∈+∞时,()201x H x x '-=>-,即()H x 单调递增.即()1,x ∈+∞时,()()min 22H x H ==;由题意可得()min ln 2m H x ≤=,即2e m ≤.∴存在实数m ,且m 的取值范围为(20,e ⎤⎦.【点睛】方法点睛:不等式恒成立求解参数取值范围时,常用的方法是通过构造函数将问题转化成求解函数最大值或最小值问题,即可求得参数取值范围.9.已知函数()()ln ,e e x x f x x g x -=-=-.(1)若[]()()0,1,x g x f a ∃∈>成立,求实数a 的取值范围;(2)证明:()()πcos 2e x h x f x =+有且只有一个零点0x,且20π1e cos e 2e x g -⎛⎫<< ⎝⎭,f x 的导函数为f x 3πππ,π22n n ⎛⎫-- ⎪⎝⎭内的零点为n x ,n *∈N .(1)求函数()f x 的单调区间;(2)证明:1πn n x x +-<.11.已知函数()ln f x m x x x=++.(1)求函数()f x 的单调区间;(2)当1m =时,证明:()23e x x f x x <+.12.已知函数()()()211R 2f x x m x m =+--∈.(1)求函数()f x 在区间[]1,2上的最大值;(2)若m为整数,且关于x的不等式()ln≥恒成立,求整数m的最小值.f x x(1)讨论()f x 在()0,∞+的单调性;(2)是否存在01,,a x x ,且10x x ≠,使得曲线()y f x =在0x x =和1x x =处有相同的切线?证明你的结论.【答案】(1)答案见解析(2)不存在,证明见解析【分析】(1)对()f x 求导,讨论10a -->和10a --≤时,()f x '的正负即可得出答案;(2)假设存在,求出()f x 在()()00,x f x 和()()11,x f x 处的切线方程,建立等式,将等式化简,减少变量,从而构造新的函数,研究新函数的单调性,即可证明.【详解】(1)()()1e x f x x a '=++,故1x a >--时,()0f x ¢>;1x a <--时,()0f x '<,当10a -->,即1a <-时,()f x 在()0,1a --单调递减,在()1,a --+∞单调递增;14.已知函数23()ln f x x x x =+-.(1)若0a =,求()f x 在点()()1,1f 处的切线方程;(2)若12,x x (12x x <)是()f x 的两个极值点,证明:()()121234f x f x x x a-<-.轴上的射影分别为D ,C ,当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率的取值范围.16.已知函数()()1ln e ,xxf xg x m x==-.()m ∈R (1)证明:()1f x x ≥+;(2)若()()f x g x ≥,求实数m 的取值范围;(3)证明:11e e 1knk k =⎛⎫< ⎪-⎝⎭∑.()N n +∈【答案】(1)证明见解析(2)1m ≥-(3)证明见解析17.设函数1e 2,R .(1)讨论()f x 的单调性;(2)若当[2,)x ∈-+∞时,不等式()()213e f x m x x -≥+-恒成立,求m 的取值范围.18.已知函数.(1)当12a =-时,讨论函数()f x 在()0,∞+上的单调性;(2)当0x >时,()1f x <,求实数a 的取值范围.19.讨论函数()()212ln f x ax x a x =+-+的单调性.么称函数()f x 在区间D 上可被()g x 替代.(1)若()()1,14f x x g x x ==-,试判断在区间13,44⎡⎤⎢⎥⎣⎦上,()f x 能否可被()g x 替代?(2)若()()()2sin ,ln cos f x x g x a x ==+,且函数()f x 在x ∈R 上可被函数()g x 替代,求实数a 的取值范围.综上,满足条件的实数a 的取值范围是[]1,e 1-【点睛】思路点睛:常规函数求导问题中,涉及到三角函数的思路一般为两种:一、正常利用求导公式进行计算;二、利用换元法将三角函数换元进行计算。

洛必达法则巧解高考压轴题(好东西)

洛必达法则巧解高考压轴题(好东西)
许多省市的高考试卷的压轴题都是导数应用问 题,其中求参数的取值范围就是一类重点考查的 题型.这类题目容易让学生想到用分离参数的方 法,一部分题用这种方法很凑效,另一部分题在 高中范围内用分离参数的方法却不能顺利解决, 高中阶段解决它只有华山一条路——分类讨论 和假设反证的方法.
3.洛必达法则
虽然这些压轴题可以用分类讨论和假设反证的方 法求解,但这种方法往往讨论多样、过于繁杂, 学生掌握起来非常困难.研究发现利用分离参数
①当
x
0
时,
a
R
;②当
x
0
时,
ex
1
x
ax2
等价于
a
ex
1 x2
x
.

g(x)
ex
1 x2
x
x
(0,+)
,则
g
'( x)
(x
2)ex x3
x
2
.
记 h(x) (x 2)ex x 2 x (0,+) ,则 h '(x) (x 1)ex 1,当 x (0,+) 时, h ''(x) xex 0 ,

当 x 0 ,且 x 1时, f (x) ln x k ,即 ln x 1 ln x k , x 1 x x 1 x x 1 x
也即 k
x ln x x 1
1 x
x ln x x 1
2x ln x 1 x2
1,记
g(x)
2x ln x 1 x2
1,
x
0 ,且
x
1

g
'( x)
2( x 2
1 x
(Ⅰ)设 a 0 ,讨论 y f x 的单调性;

6.高考函数导数压轴题分析及应对策略_李立美

6.高考函数导数压轴题分析及应对策略_李立美

有三个不同的解.设g (x ) =4x3-6x2+t+3, 则 “过点P (1, t ) 存 在3条直线与曲线y=f (x ) 相切” 等价于 “函数g (x ) 有3个不 同零点” . 因为g( ′ x ) =12x2-12x=12x (x-1 ) , 当x变化时, g (x ) 与g( ′ x ) 的变化情况如下:
策略一 、转化与化归的运用
例1 已知函数( f x ) =2x -3x. 若过点 P (1, t ) 存在 3 条
3
直线与曲线y=f (x ) 相切, 求t的取值范围. 解: 设过点P (1, t ) 的直线与曲线y=f (x ) 相切于点 (x0, y0 ) , 则y0=2x3 即切线的斜率为k=6x2 所以切线方 0 -3x0, 0 -3, 程为y-y0= (6x -3 ) (x-x0 ) . 将点 P (1, t ) 代入, 得 t-y0= (6x 2 0 2 0 2 3 ) (1-x0 ) , 整理得4x3 0-6x 0+t+3=0. 于是问题转化为此方程
所以, g (0 ) =t+3是g (x ) 的极大值, g (1 ) =t+1是g (x ) 的 极小值. 当g (0 ) >0 且 g (1 ) <0, 即-3<t<-1时, 因为g (-1 ) =t-7< 0, g (2) =t+ 11 > 0 , 由于 g (x) 在区间 (- ∞ , 0) , (0 , 1) , (1 , +∞ ) 上单调, 故g (x ) 分别在区间 (-1, 0 ) , (0, 1 ) 和 (1, 2 ) 上各有1个零点, 即g (x ) 分别在区间 (-∞, 0 ) , (0, 1 ) , [1, +∞ ) 上各有1个零点. 综上可知, 当过点P (1, t ) 存在3条直线与曲线y=f (x ) 相切时, t的取值范围是 (-3, -1 ) . 在研究、 解决数学问题时, 采用某种手段或方法, 使 问题从一种情形转化为另一种情形, 也就是转化到另一 种情景使问题得到解决, 这种转化是解决问题的有效策 略, 同时也是一种成功的思维方式.转化具有多样性、 层 次性和重复性的特点, 遵循熟悉化、 简单化、 直观化的原 则.本题的转化, 使切线的条数转化为函数的零点个数, 为解题铺平了道路

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

六招破解高考导数压轴题

六招破解高考导数压轴题

破解高考导数压轴题的常见策略纵观近十年高考数学课标全国卷,容易发现导数压轴题有如下特点:主要考查导数的几何意义,利用导 数研究函数的单调性、极值、最值,研究方程和不等式. 试题有一定的综合性,并与数学思想方法紧密结合, 对函数与方程的思想,分类与整合的思想等都进行深入的考查.下面介绍破解高考导数压轴题的六种策略.1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2018 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.2. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

3. 构造函数利用导数解决不等式问题是导数的一个非常重要的应用,其关键是根据不等式的结构特点,构造恰当的 辅助函数,进而通过研究函数的单调性和最值,最终解决问题.运用构造函数法来解题是培养学生创新意识的 手段之一.例3设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.4.合理放缩高考数学压轴题往往涉及函数不等式问题,由于高考命题基本上涉及超越函数,研究其单调区间时一般 涉及解超越不等式,难度非常高,往往陷入绝境.放缩法是解决函数不等式问题的一把利器,关键是如何合理 放缩.常见的一种放缩法是切线放缩法,曲线的切线为一次函数,高中阶段大部分函数的图像均在切线的同侧, 即除切点外,函数的图像在切线的上方或下方,利用这一特性,可以将参与函数放缩成一次函数.例 4设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.5.虚设零点导数在研究函数的单调性、极值和最值方面有着重要的应用,而这些问题都离不开一个基本点——导函 数的零点,因为导函数的零点既可能是原函数单调区间的分界点,也可能是原函数的极值点或最值点.可以说, 抓住了导函数的零点,就抓住了原函数的要点.在高考导数压轴题中,经常会遇到导函数具有零点但求解相对 比较复杂甚至无法求解的问题.此时,不必正面强求,只需要设出零点,充分利用其满足的关系式,谋求一种 整体的代换和过渡,再结合其他统计解决问题,这种方法即是“虚设零点”.例 5(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.6. 多次求导高中函数压轴题一般需要求导,利用导函数的正负来判断原函数的增减.有些试题,当你一次求导后发现 得出的结果还存在未知的东西,导函数的正负没有清晰得表现出来时,就可以考虑二次求导甚至三次求导, 这个时候要非常细心,观察全局,不然做到后边很容易出错.例 6设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. x x 2f (x)x 2-=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x-->()()g x ()h a ()h a教师版1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2017 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1(2015 年高考数学全国乙卷(Ⅰ卷)理 21) 已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 3. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2(2013 年高考数学全国乙卷(Ⅰ卷)理 21)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

专题10 利用导数研究双变量问题(全题型压轴题)试题含解析

专题10 利用导数研究双变量问题(全题型压轴题)试题含解析

专题10利用导数研究双变量问题(全题型压轴题)目录①12()()f x g x =型......................................................1②12()()f x g x ≥型(或12()()f x g x ≤型) (2)③构造函数法 (5)①12()()f x g x =型②12()()f x g x ≥型(或12()()f x g x ≤型)6.(2023春·河南信阳·高一校考期中)已知函数()()2log 221x f x a x ⎡⎤=-+-⎣⎦,函数()22x x g x t -=-⋅.(1)若()g x 是偶函数,求实数t 的值,并用单调性的定义判断()g x 在[)0,∞+上的单调性;(2)在(1)的条件下,若对于[)10,x ∀∈+∞,2x R ∀∈,都有()()1222log 2f x g x a +≤+成立,求实数a 的取值范围.③构造函数法专题10利用导数研究双变量问题(全题型压轴题)目录①12()()f x g x =型......................................................1②12()()f x g x ≥型(或12()()f x g x ≤型) (8)③构造函数法 (15)①12()()f x g x =型对于D 选项,由上述分析可知,()21,x ∈+∞,则()[)2e,f x ∈+∞,1R x ∈,()1g x a ≥,要使“对1x ∀∈R ,()21,x ∃∈+∞,使得()1g x f =则需e a ≥,所以D 选项正确.故选:BD.4.(2023·全国·高二专题练习)已知函数()f x②12()()f x g x ≥型(或12()()f x g x ≤型)③构造函数法。

高考满分数学压轴题22 导数中的参数问题(可编辑可打印)

高考满分数学压轴题22 导数中的参数问题(可编辑可打印)

【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。

而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。

【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。

专题11 导数压轴题之隐零点问题(解析版)

专题11 导数压轴题之隐零点问题(解析版)

导数章节知识全归纳专题11 导数压轴题中有关隐零点问题一.隐零点问题知识方法讲解:1.“隐零点”概念:隐零点主要指在研究导数试题中遇到的对于导函数f ’(x)=0时,不能够直接运算出来或是不能够估算出来,导致自己知道方程有根存在,但是又不能够找到具体的根是多少,通常都是设x=x 0,使得f ’(x)=0成立,这样的x 0就称为“隐藏零点”。

2.“隐零点”解决方向:针对隐零点问题通常解决步骤:1.求导判定是否为隐零点问题,2.设x=x 0,使得f ’(x)=0成立,3.得到单调性,并找到最值,将x 0带入f(x),得到f(x 0),4.再将x 0的等式代换,再求解(注意:x 0的取值范围)二.隐零点问题中的典型例题:典例1.已知函数()ln f x x =,()2sin g x x x =-.(1)求()g x 在()0,π的极值;(2)证明:()()()h x f x g x =-在()0,2π有且只有两个零点.解:(1)由()12cos g x x '=-,()0,x π∈, 当03x π<<时,()0g x '<,此时函数()g x 单调递减, 当3x ππ<<时,()0g x '>,此时函数()g x 单调递增,所以,函数()g x 的极小值为33g ππ⎛⎫=- ⎪⎝⎭ (2)证明:()()()ln 2sin h x f x g x x x x =-=-+,其中02x π<<.则()112cos h x x x '=-+,令()12cos 1x x x ϕ=+-,则()212sin x x xϕ'=--. 当()0,x π∈时,()212sin 0x x x ϕ'=--<,则()x ϕ在()0,π上单调递减, 303πϕπ⎛⎫=> ⎪⎝⎭,2102πϕπ⎛⎫=-< ⎪⎝⎭, 所以,存在0,32x ππ⎛⎫∈ ⎪⎝⎭,使得()()000x h x ϕ'==. 当00x x <<时,()0h x '>,此时函数()h x 在()00,x 上单调递增,当0x x π<<时,()0h x '<,此时函数()h x 在()0,x π上单调递减.()()0h x h x ∴=极大值,而ln 0333h πππ⎛⎫=-+> ⎪⎝⎭,()2ln ln 20h e πππππ=-<-=-<,则()003h x h π⎛⎫>> ⎪⎝⎭,又ln 1666h πππ⎛⎫=-+ ⎪⎝⎭, 令()ln 1m x x x =-+,其中01x <<,则()1110x m x x x-'=-=>, 所以,函数()m x 在()0,1上单调递增,则()()10m x m <=,所以,ln 10666h πππ⎛⎫=-+< ⎪⎝⎭.由零点存在定理可知,函数()h x 在()0,π上有两个零点;当[),2x ππ∈时,2sin 0x ≤,()ln 2sin ln h x x x x x x =-+≤-,设ln y x x =-,则1110x y x x-'=-=<对任意的[),2x ππ∈恒成立, 所以,ln ln 0x x ππ-≤-<,所以,函数()h x 在[),2ππ上没有零点,综上所述,函数()()()h x f x g x =-在()0,2π上有且只有两个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.典例2.已知函数()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行.(1)求k 的值; (2)若()()2cos p x f x x =-,试讨论()p x 在π3π22⎡⎤⎢⎥⎣⎦,上的零点个数.解:(1)()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行, 则有()1πf a '=-,()k f x a x'=-,则(1)ππf k a a k '=-=-⇒= (2)()()2cos πln 2cos 2a p x f x x x ax x ⎛⎫=-=+-- ⎪⎝⎭,π3π,22x ⎡⎤∈⎢⎥⎣⎦, π()2sin p x x a x '=+-,令()()g x p x '=,则2π()2cos g x x x'=-+, 当π3π,22x ⎡⎤∈⎢⎥⎣⎦时,cos 0x ≤且2π0x -<,则2π()2cos 0g x x x '=-+<,则()g x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππ22422g p a a ⎛⎫⎛⎫'==+-=- ⎪ ⎪⎝⎭⎝⎭,3π3π2422233g p a a ⎛⎫⎛⎫'==--=-- ⎪ ⎪⎝⎭⎝⎭, 当4a ≥时,π02p ⎛⎫'≤ ⎪⎝⎭且()()p x g x '=在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≤,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππππππln 2cos πln 0222222a a p ⎛⎫⎛⎫=+--=> ⎪ ⎪⎝⎭⎝⎭,3π3π3π3π3ππln 2cos πln 222222a a p a π⎛⎫⎛⎫=+--=- ⎪ ⎪⎝⎭⎝⎭, 由于4a ≥,则03π2p ⎛⎫< ⎪⎝⎭,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则有一个零点, 当43a ≤-时,3π02p ⎛⎫'≥ ⎪⎝⎭,由于()()=p x g x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≥,()p x在π3π,22⎡⎤⎢⎥⎣⎦单调递增, ππ=πln 022p ⎛⎫> ⎪⎝⎭,则π()02p x p ⎛⎫≥> ⎪⎝⎭,则()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点, 当443a -<<时,π02p ⎛⎫'> ⎪⎝⎭,3π02p ⎛⎫'< ⎪⎝⎭,()p x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则存在0π3π,22x ⎛⎫∈ ⎪⎝⎭使()0p x '=, 当0π,2x x ⎛⎫∈⎪⎝⎭,()0p x '>,()p x 单调递增,当03π,2x x ⎛⎫∈ ⎪⎝⎭,()0p x '<,()p x 单调递减,πππln 022p ⎛⎫=> ⎪⎝⎭,3π3ππln π22p a ⎛⎫=- ⎪⎝⎭, 若3π3π0ln 22p a ⎛⎫>⇒< ⎪⎝⎭,则由0π2p ⎛⎫> ⎪⎝⎭,3π02p ⎛⎫> ⎪⎝⎭及()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,此时43πln 32a -<<, 若3π3π0ln 22p a ⎛⎫≤⇒≥⎪⎝⎭,由0π2p ⎛⎫> ⎪⎝⎭,3π02P ⎛⎫≤ ⎪⎝⎭和()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点,此时3πln 42a ≤<, 综上,当3πln2a <时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,当3πln 2a ≥时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点.【点睛】关键点点睛:本题第二问考查利用导数分析函数的零点个数问题,解答此问题的关键在于多次求导以及分类讨论思想的运用;当原函数()f x 的导函数()f x '无法直接判断出正负时,可先通过将原函数的导函数看作新函数()g x ,利用导数思想先分析()g x '的单调性以及取值正负,由此确定出()g x 的单调性并分析其取值正负,从而()f x '的正负可分析,则根据()f x 的单调性以及取值可讨论零点个数.典例3.已知函数()e sin 1xf x x =+-. (1)判断函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上的零点个数,并说明理由; (2)当[0,)x ∈+∞时,()0f x mx +,求实数m 的取值范围.解:(1)解法一:由题意得,()e cos x f x x '=+, 当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,易得函数()'f x 单调递增, 而()e 10f ππ--=-<',2e 02f ππ-⎛⎫-=> ⎪⎝⎭', 故()00,,02x f x ππ⎛⎫∃∈--= ⎪⎝'⎭, 当[)0,x x π∈-时,()0f x '<; 当0,2x x π⎛⎫∈- ⎪⎝⎭时,()0f x '>, 而2()e 10,e 202f f ππππ--⎛⎫-=-<-=-< ⎪⎝⎭, ∴函数f (x )在,2ππ⎡⎫--⎪⎢⎣⎭上无零点;当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,()e cos 0x f x x =+>', ∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增, 而(0)0f =,∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上有1个零点. 综上所述,函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上有1个零点. (2)令()()e sin 1x g x f x mx x mx =+=++-,[0,)x ∈+∞,则()e cos xg x x m =++'. 0(0)e sin 0010g m =++⨯-=,0(0)e cos02g m m =++=+',令()()e cos x h x g x x m +'==+,()e sin xh x x =-' 因为0x =时,0()e sin 010h x =-=>', 当0x >时,e 1x >,sin 1x ≤,()e sin 110xh x x =>-'-=,所以()e sin 0x h x x -'=>在()0,+∞上恒成立, 则h (x )为増函数,即()'g x 为增函数①当20m +,即2m -时,()(0)20g x g m '='+,∴g (x )在[0,)+∞上为增函数,()(0)0g x g ∴=,即()0g x 在[0,)+∞上恒成立;②当m +2<0,即m <-2时,(0)20g m =+<',0(0,)x ∴∃∈+∞,使()00g x '=,当()()00,,0,()x x g x g x ∞∈+>'为增函数;当[)()000,,0,()x x g x g x <'∈为减函数, ()0(0)0g x g ∴<=,与()0g x 在[0,)+∞上恒成立相矛盾,2m ∴<-不成立.综上所述,实数m 的取值范围是[2,)-+∞.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.典例4.设函数()2ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数;(Ⅰ)证明:当0a >时()22ln f x a a a≥+. 解:(∴)()f x 的定义域为()0+∞,,()2()=20x a f x e x x '->.当0a ≤时,()0f x '>,()f x '没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x '在()0+∞,单调递增.又()0f a '>,当b 满足04a b <<且14b <时,()0f b '<,故当0a >时,()f x '存在唯一零点. (∴)由(∴),可设()f x '在()0+∞,的唯一零点为0x ,当()00x x ∈,时,()0f x '<; 当()0+x x ∈∞,时,()0f x '>. 故()f x 在()00x ,单调递减,在()0+x ∞,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++≥+. 故当0a >时,2()2ln f x a a a≥+. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.典例5.已知函数()()ln 1x a f x e x x a -=--∈R .(1)若1a =,讨论()f x 的单调性;(2)令()()(1)g x f x a x =--,讨论()g x 的极值点个数.解:(1)若1a =,则()1ln 1x f x e x x -=--,其定义域为()0,∞+,()1ln 1x f x e x -'=--.令()()1ln 1x m x f x e x -'==--,则()11x m x e x -'=-, 易知()m x '在()0,∞+上单调递增,且()10m '=,所以当()0,1x ∈时,()0m x '<,()m x 在()0,1上单调递减, 当()1,x ∈+∞时,()0m x '>,()m x 在()1,+∞上单调递增, 因此()()10m x m ≥=,即()0f x '≥,所以()f x 在()0,∞+上单调递增.(2)由题意知,()()ln 11x a g x e x x a x -=----,则()ln x a g x e x a -'=--,由(1)知,1ln 10x e x ---≥,当1a ≤时,()ln ln 10x a x a g x e x a e x --'=--≥--≥, 所以()g x 在()0,∞+上单调递增,此时()g x 无极值点. 当1a >时,令()()ln x a h x g x e x a -'==--,则()1x a h x ex -'=-,易知()h x '在()0,∞+上单调递增, 又()1110a h e -'=-<,()110h a a'=->, 故存在()01,x a ∈,使得()00010x a h x e x -'=-=, 此时有001x a e x -=,即00ln a x x =+, 当()00,x x ∈时,()0h x '<,()h x 在()00,x 上单调递减, 当()0,x x ∈+∞时,()0h x '>,()h x 在()0,x +∞上单调递增,所以()()00000min 01ln 2ln x ah x h x ex a x x x -==--=--. 令()12ln x x x xϕ=--,()1,x a ∈, 易知()x ϕ在()1,a 上单调递减, 所以()0x ϕ<,即()00h x <.因为()0aa eah e e---=>,()23ln 321ln 31ln 32ln 30a h a e a a a a a a =-->+--=+->->,且0013a e x a a -<<<<<,所以存在()10,ax e x -∈,()20,3x x a ∈,满足()()120h x h x ==,所以当()10,x x ∈时,()()0g x h x '=>,()g x 在()10,x 上单调递增, 当()12,x x x ∈时,()()0g x h x '=<,()g x 在()12,x x 上单调递减, 当()2,x x ∈+∞时,()()0g x h x '=>,()g x 在()2,x +∞上单调递增, 所以当1a >时,()g x 存在两个极值点.综上,当1a ≤时,()g x 不存在极值点;当1a >时,()g x 存在两个极值点. 【点睛】关键点点睛:本题第(2)问的关键有:(1)当1a ≤时,合理利用第(1)问中得到的1ln 10x e x ---≥以及不等式的性质得到()0g x '≥;(2)当1a >时,灵活构造函数,并根据等式将a 代换掉,得到()()090min 12ln nh x h x x x x ==--,最后巧妙取点,利用零点存在定理得到()h x 的零点,从而得到结果.变式1.已知函数()()xf x e ax a =-∈R . (1)讨论函数()f x 的单调性;(2)当2a =时,求函数()()cos g x f x x =-在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数. 解:(1)()x f x e ax =-,其定义域为R ,()xf x e a '=-①当0a ≤时,因为()0f x '>,所以()f x 在R 上单调递增, ②当0a >时,令()0f x '>得ln x a >,令()0f x '<得ln x a < 所以()f x 在(),ln a -∞上单调递减,()ln ,a +∞上单调递增, 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞单调递减,()ln ,a +∞单调递增,(2)已知得()2cos xg x e x x =--,,2x π⎛⎫∈-+∞ ⎪⎝⎭则()sin 2xg x e x '=+-①当,02x π⎛⎫∈- ⎪⎝⎭时,因为()()1(sin 1)0xg x e x '=-+-<所以()g x 在,02π⎛⎫- ⎪⎝⎭单调递减,所以()()00g x g >=, 所以()g x 在,02π⎛⎫- ⎪⎝⎭上无零点;②当0,2x π⎡⎤∈⎢⎥⎣⎦时,因为()g x '单调递增,且(0)10g '=-<,2102g e ππ⎛⎫'=-> ⎪⎝⎭,所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使()00g x '= 当()00,x x ∈时,()0g x '<,当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '> 所以()g x 在[)00,x 递减0,2x π⎛⎤⎥⎝⎦递增,且()00g =,所以()00g x <,又因为202g e πππ⎛⎫=-> ⎪⎝⎭所以()002g x g π⎛⎫⋅< ⎪⎝⎭所以()g x 在0,2x π⎛⎫⎪⎝⎭上存在一个零点, 所以()g x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; ③当,2x π⎛⎫∈+∞ ⎪⎝⎭时,2()sin 230x g x e x e π'=+->->,所以()g x 在,2π⎛⎫+∞⎪⎝⎭单调递增 因为02g π⎛⎫>⎪⎝⎭,所以()g x 在,2π⎛⎫+∞ ⎪⎝⎭上无零点;综上所述,()g x 在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数为2个. 【点睛】方法点睛:函数的零点问题常见的解法有:(1)方程法(直接解方程得解);(2)图象法(直接研究函数()f x 的图象得解);(3)方程+图象法(令()0f x =得到()()g x h x =,再研究函数(),()g x h x 图象性质即得解).要根据已知条件灵活选择方法求解.变式2.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明:(1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解:(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减 又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x ∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减 则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x ∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.变式3.已知函数3()sin (),2f x ax x a R =-∈且在,0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-,(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明 解:(1)由已知得f ′(x )=a (sinx +xcosx ),对于任意的x ∴(0,2π), 有sinx +xcosx >0,当a =0时,f (x )=−32,不合题意; 当a <0时,x ∴(0,2π),f ′(x )<0,从而f (x )在(0, 2π)单调递减, 又函数f (x )=axsinx −32 (a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上的最大值为f (0),不合题意; 当a >0时,x ∴(0,2π),f ′(x )>0,从而f (x )在(0, 2π)单调递增, 又函数f (x )=axsinx −32(a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上上的最大值为f (2π)=2πa −32=32π-,解得a =1,综上所述,得3()sin (),2f x x x a R =-∈; (2)函数f (x )在(0,π)内有且仅有两个零点。

高考数学函数压轴题方法归纳总结

高考数学函数压轴题方法归纳总结

高考数学函数压轴题方法归纳总结一、利用导数证明不等式1.已知()()21xf x ax e x =-+.(1)当1a =时,讨论函数()f x 的零点个数,并说明理由;(2)若0x =是()f x 的极值点,证明()()2ln 11f x ax x x ≥-+++.【思路引导】(1)由题意1a =时,得()()21xf x x e x =-+,利用导数得到函数的单调性,进而可判定函数的零点个数;(2)求得函数的导数()()12xf x eax a x -'=++,由0x =是()f x 的极值点,得1a =,得到函数的解析式,令1x t -=,转化为证明1ln 2t te t t +≥++,设()()ln 20xh x ex e x x x =⋅--->, 根据导数得到()h x 的单调性和最小值,证得()0h x ≥,即可作出证明. 2.已知函数()()22xf x e ax x a R =--∈.(1)当0a =时,求()f x 的最小值; (2)当12e a <-时,证明:不等式()12ef x >-在()0,+∞上恒成立. 【思路引导】(1)()2xf x e x =-, ()2xf x e '=-,由单调区间及极值可求得最小值。

(2) 由导函数()22xf x e ax =--',及12e a <-, ()12222102e f e a e ⎛⎫=-->---= ⎪⎝⎭, ()010f '=-<,由根的存在性定理可知存在()00,1x ∈使得()00f x '=,只需证()f x 最小值()()0020000022x x f x e ax x e x ax =--=-+>12e -,由隐零点00220x e ax --=回代,即证()12t t g t e t ⎛⎫=-- ⎪⎝⎭12e >-。

3.已知函数()ln f x x =,()()1g x a x =-(1)当2a =时,求函数()()()h x f x g x =-的单调递减区间;(2)若1x >时,关于x 的不等式()()f x g x <恒成立,求实数a 的取值范围; (3)若数列{}n a 满足11n n a a +=+, 33a =,记{}n a 的前n 项和为n S ,求证:()ln 1234...n n S ⨯⨯⨯⨯⨯<.【思路引导】(Ⅰ)求出()h x ',在定义域内,分别令()'0h x >求得x 的范围,可得函数()h x 增区间, ()'0h x <求得x 的范围,可得函数()h x 的减区间;(Ⅱ)当0a ≤时,因为1x >,所以()1ln 0a x x -->显然不成立,先证明因此1a ≥时, ()()f x g x <在()1,+∞上恒成立,再证明当01a <<时不满足题意,从而可得结果;(III )先求出等差数列的前n 项和为()12n n n S +=,结合(II )可得ln22,ln33,ln44,,ln n n <<<⋅⋅⋅<,各式相加即可得结论.4.已知函数()sin xf x e x ax =-.(1)若1a =,求曲线()y f x =在()()0,0f 处的切线方程; (2)若()f x 在0,4π⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的取值范围; (3)当1a ≤时,求证:对于任意的x ∈ 30,4π⎡⎤⎢⎥⎣⎦,均有()0f x ≥. 【思路引导】(1)求出()1x xf x e sinx e cosx '=+-,由()0f 的值可得切点坐标,由()'0f 的值,可得切线斜率,利用点斜式可得曲线()y f x =在点()()1,1f 处的切线方程;(2)函数()f x 在[0,4π]上单调递增⇔ ()f x '在[0,4π]上恒有()0f x '≥.即sin x (4x π+)a ≥恒成立,令()sinxg x =(4x π+),只需求出()g x 的最小值即可得结果;(3)先证明当x ∈ [0,2π]时, ()()0f x g x a '=-≥,()f x 递增,有()()()min 00f x f x f ≥==成立,再讨论两种情况若0a ≤,不等式恒成立,只需分两种情况证明a ∈(0,1]时也恒成立即可. 5.已知函数()2ln f x a x =+且()f x a x ≤.(1)求实数a 的值; (2)令()()xf x g x x a=-在(),a +∞上的最小值为m ,求证: ()67f m <<.【思路引导】由题意知: 2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立, 令()2ln h t a at t =-+,由于()10h =,故2ln 0a at t -+≤ ()()1h t h ⇔≤, 可证: ()h t 在()0,1上单调递增;在()1,+∞上单调递减.故2a =合题意.6.已知函数()1ln xf x x ax-=+(其中0a >, e 2.7≈). (1)当1a =时,求函数()f x 在()()1,1f 点处的切线方程; (2)若函数()f x 在区间[)2,+∞上为增函数,求实数a 的取值范围; (3)求证:对于任意大于1的正整数n ,都有111ln 23n n>+++. 【思路引导】(1)()21x f x x='-, ()10f '=, ()10f =,可求得切线方程。

高考数学导数答题技巧及策略

高考数学导数答题技巧及策略

高考数学导数答题技巧及策略
高考数学导数答题技巧及策略
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的`。

以下是店铺整理的高考数学导数答题技巧及策略,仅供参考,大家一起来看看吧。

一、专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:
1、导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2、关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3、导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

二、知识整合
1、导数概念的理解。

2、利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3、要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

高考数学复习历年压轴题归类专题讲解: 利用导数研究不等式问题(原卷版)

高考数学复习历年压轴题归类专题讲解: 利用导数研究不等式问题(原卷版)

高考数学复习历年压轴题归类专题讲解 利用导数研究不等式问题(原卷版)1.已知函数()()322361f x x ax a x =++-(a R ∈)(1)讨论函数()f x 的单调性;(2)若()15f =,4m <,求证:当1x >时,()()2ln 1mx x f x +≤.2.已知函数1()2ln x f x e x x -=-+. (1)求()f x 的单调区间;(2)证明:3()(2)3(2)f x x x ---.3.已知()1xf x e ax =--(a R ∈)(1)若()0f x ≥对x ∈R 恒成立,求实数a 范围;(2)求证:对n N *∀∈,都有111112311111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.4.已知函数()()ln f x x x a =-,()3F x x x m =-+,若()f x 在()(),e f e 处的切线斜率为1.(1)若()()f x F x <在()1,+∞上恒成立,求m 的最小值M ;(2)当m M =,(]0,1x ∈时,求证:()()xf x e F x >⋅.5.已知函数()2xa f x x e x a ⎛⎫=-- ⎪⎝⎭.(1)讨论函数()f x 的单调性;(2)若0a e <<,求证:0x >时,()ln 12x f x ax x x ⎛⎫>-- ⎪⎝⎭. 6.已知函数()a 1f x ax 12a lnx x-=++--,a∈R. (I )若a=-1,求函数f (x )的单调区间;(Ⅱ)若f (x )≥0在x∈[1,+∞)上恒成立,求正数a 的取值范围;(Ⅲ)证明:()()()*111n 1ln n 1n N 23n 2n 1+++⋯+++∈+>. 7.已知函数()f x 满足()()()2221202x f f x e x f x -'=+-,()()21124x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R .(1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x ex e a x x--<+-. 8.已知函数()ln a xf x bx x=+在1x =处的切线方程为1y x =-. (1)求函数()y f x =的解析式;(2)若不等式()f x kx ≤在区间()0,∞+上恒成立,求实数k 的取值范围; (3)求证:444ln 2ln 3ln 1232n n e+++<. 9.已知函数()ln 1f x x x ax =++,a R ∈.(1)如果关于x 的不等式()0f x ≥在0x >恒成立,求实数a 的取值范围;(2)当1≥x 时,证明:()()21sin 11ln xx x e x x e≤≤----. 10.已知函数()2ln f x x x x ax =+-(1)若函数()f x 在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)当2n ≥,(n *∈N )时,求证:22211111123e n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)若函数()f x 有两个极值点1x ,2x ,求证:2121e x x >(e 为自然对数的底数)11.已知函数1()ln ()f x a x x a R x=-+∈(1)讨论函数()f x 的单调性; (2)求证:当n *∈N 时,有23521ln(1)41222n n n n++<++⋯++. 12.已知函数()ln 1xf x ax =+(a ∈R ,且a 为常数). (1)若函数()y f x =的图象在x e =处的切线的斜率为()211e e -(e 为自然对数的底数),求a 的值;(2)若函数()y f x =在区间()1,2上单调递增,求a 的取值范围;(3)已知(),1,2x y ∈,且3x y +=.求证:()()23ln 23ln 011x x y y x y --+≤--.13.已知函数2()ln(1)f x a x x(1)讨论()f x 的单调性;(2)当0x ≥时,()21x e x f x --≥恒成立,求a 的取值范围.14.已知函数()2x e x f x a =-,其中常数a R ∈.(1)若1a =,令()()g x f x '=,求()g x 的单调递增区间;(2)当()0,x ∈+∞时,不等式()0f x >恒成立,求实数a 的取值范围;(3)若1a =,且[)0,x ∈+∞时,求证:()2414f x x x >+-.15.已知函数()f x 满足222(1)()2(0)2x f f x x f x e -'=+-,21()(1)24x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R .(1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x ex e a x x--<+-. 16.已知函数()sin cos f x x x x =+,()cos xg x x=. (1)判断函数()f x 在区间()0,-∞上零点的个数;(2)设函数()g x 在区间()0,∞+上的极值点从小到大分别为1x ,2x ,3x ,4x ,…,n x .证明:①()()120g x g x +<;②对一切*n N ∈,()()()()1230n g x g x g x g x ++++<成立.17.已知函数()()ln xf x xe a x x =-+,若对任意0x >,恒有不等式()1f x ≥成立.(1)求实数a 的值;(2)证明:2 2ln 2sin x x x x +>+. 18.已知函数()ln af x x x=-. (1)讨论()f x 的单调性;(2)令()(1)g x f x =+,当2a =,11x e >-时,证明:23ln(1)()1ln(1)e x g x x -+++<++.19.设0a >,两个函数()e ax f x =,g()ln x b x =的图像关于直线y x =对称. (1)求实数a ,b 满足的关系式;(2)当a 取何值时,函数()()()h x f x g x =-有且只有一个零点;(3)当1a =时,在1,2⎛⎫+∞⎪⎝⎭上解不等式2(1)()f x g x x -+<. 20.已知函数()()()ln 1f x x a x ax =++-,f x 为()f x 的导数.(1)若2a =,求函数()y f x ='的零点;(2)在(1)的条件下,判断()f x 的单调性;(3)若2a =-,10x -<<,求证:()()21xf x x e ->-.21.已知函数()1x f x e ax =--.(1)当2a =时,求曲线()f x 在点(0,(0))f 处的切线方程;(2)如()0f x ≥对任意的[0,)x ∈+∞恒成立,求实数a 的取值范围;(3)当0x ≥时,求证:ln(1)x e x x +≥.22.已知()()1xf x e ax a R =--∈.(1)若()0f x ≥对x ∈R 恒成立,求实数a 的范围;(2)求证:对*n N ∀∈,都有111112311111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.23.已知函数()(sin cos )e x f x x x x =+-,()'f x 为()f x 的导函数. (1)设()()()g x f x f x '=-,求()g x 的单调区间; (2)若0x ≥,证明:()1f x x ≥-. 24.已知函数()ln x f x x e =-.(1)求曲线()y f x =在点(1, (1))P f 处的切线方程; (2)证明:()20f x +<.25.已知函数()ln f x ax x x =+在2x e -=处取得极小值. (1)求实数a 的值;(2)当1x >时,求证()()31f x x >-. 26.已知函数()()1(0)f x xln x a a =++<.(1)若函数()f x 在定义域上为增函数,求a 的取值范围; (2)证明:()sin x f x e x <+. 27.已知函数()ln 1f x x x =-+.(1)求函数()f x 的单调区间;(2)证明:当1a ≥时,23ln 0ax x x +-≥. 28.已知函数()2ln 2a f x x x x =-(a R ∈). (Ⅰ)若0x >,恒有()f x x ≤成立,求实数a 的取值范围;(Ⅱ)若函数()()g x f x x =-有两个相异极值点1x ,2x ,求证:12112ln ln ae x x +>. 29.已知函数()ln 2f x x ax =-+. (1)求()f x 在(]0,1上的最大值;(2)当1a =时,证明:对任意0x >,()0xf x e x -+<恒成立.30.已知函数()ln 1a x bf x x x=++曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求,a b 的值;(2)证明:当0x >且1x ≠时,()ln 1xf x x >-.。

导数压轴处理策略

导数压轴处理策略

导数专题目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85) 书中常用结论(zhongdianzhangwo) ⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122xax x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x xa ,即12x x <.又∵1122x a x ≠,∴a x a x x a x xa x x =⋅>+=+=11111212222222所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档