湖北省咸宁市2015年中考数学试题(扫描版,含答案)

合集下载

2015年湖北省各市中考数学应用题汇编

2015年湖北省各市中考数学应用题汇编

23.(10分)(2015•鄂州)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.(10分)(2015•恩施州)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:甲种原料(千克)乙种原料(千克)原料型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?23.(8分)(2015•黄石)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?23.(8分)(2015•潜江)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A7250。

(完整word版)全国中考数学一元二次方程压轴题

(完整word版)全国中考数学一元二次方程压轴题

3. (2015?宜昌,第22题10分)全民健身和医疗保健是社会普遍关注的问题, 2014年,某社区共投入30万元用于购买健身器材和药品.(1) 若2014年社区购买健身器材的费用不超过总投入的 匸,问2014年最低投入 3多少万元购买药品?(2) 2015年,该社区购买健身器材的费用比上一年增加 50%,购买药品的费用 比上一年减少―,但社区在这两方面的总投入仍与 2014年相同.① 求2014年社区购买药品的总费用;② 据统计,2014年该社区积极健身的家庭达到 200户,社区用于这些家庭的药 品费用明显减少,只占当年购买药品总费用的 2,与2014年相比,如果2015年4社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分 比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材 费用的求2015年该社区健身家庭的户数.4. (2015?湘潭,第24题8分)阅读材料:用配方法求最值.已知x ,y 为非负实数,■ x+y -2^^二(頁)'+ (乔)'- ■石二(V7-V7)2 >0••• x+y >2 ■,当且仅当“x=y ”,等号成立.示例:当x > 0时,求y=x+丄+4的最小值.(1)尝试:当x >0时,求y="='一"的最小值.(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的 交通工具,假设某种小轿车的购车费用为 10万元,每年应缴保险费等各类费用 共计0.4万元,n 年的保养、维护费用总和为―寸万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用 18. 已知关于x 的一元二 次方程x 2- 4x+m=0.(1) 若方程有实数根,求实数 m 的取值范围;(2) 若方程两实数根为X1,X2,且满足5x 什2x2=2,求实数m 的值.19. (2015湖北省咸宁市,第19题8分)已知关于x 的一元二次方程mx 2- (m+2)解: 尸世)+4侯+4=6,当x 4,即x=1时,y 的最小值为6.所有费用之和 ~年数门?最少年平均费用为多少万元?x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.•请阅读下列材料:2 问题:已知方程X + x —1 = 0,求一个一元二次方程,使它的根分别是已知方程 根的2倍.解:设所求方程的根为y ,则y =2x ,所以x =.2把X =代入已知方程,得()+— 1 = 0.2化简,得 y + 2y — 4= 0.2故所求方程为y + 2y — 4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式);2 (1) 已知方程x + x — 2 = 0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为: ____________________ ;2(2) 已知关于x 的一元二次方程ax + bx + c = 0( a ^ 0)有两个不等于零的实数 根,求一个一元二次方程,使它的根分别是已知方程根的倒数._ _________ 2例5.已知关于x 的一元二次方程 x — (a + b + c)x + ab + bc + ca = 0,且a >b >c--i ---.> 0.(1)若方程有实数根,求证:a ,b ,c 不能构成一个三角形的三边长; )若方程有实数根X o ,求证:b + c v X oV a ;(3) 若方程的实数根为6和9,求正整数a ,b ,c 的值.2 2例6.已知方程x + 2ax + a — 4= 0有两个不同的实数根,方程x + 2ax + k = 0也2 有两个不同的实数根,且其两根介于方程 x + 2ax + a — 4= 0的两根之间,求k 的取值范围.(8分)(2014?杭州模拟)阅读下列材料:求函数20.(2015r 2 2 z -+4y =4解:将原函数转化成 x 的一元二次方程,得••• x 为实数,•••△ (/-2 ) -4 -/= - y+4为,• y 詔.因此,y 的最大值的最大值.x 4-x+O.25为4.的最小值.根据材料给你的启示,求函数2014?亳州一模)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元•经调查发现,零售单价每降0.1元,每天可多卖出100只粽子•为了使每天获取的利润更多,该店决定把零售单价下降m (0v m v 1)元.(1)_______________________________________________ 零售单价下降m元后,该店平均每天可卖出________________________________________________________ 只粽子,利润为 _____ 元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?(2002?甘肃)某企业1998年初投资100万元生产适销对路的产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点(即:1999年的年获利率是1998年的年获利率与10%的和).求1998年和1999年的年获利率各是多少?__ ________________________________________________________ 2 22. 已知△ ABC的三边长为a、b、c,关于x的方程x —2(a+ b)x + c + 2ab = 0—.2有两个相等的实数根,又si nA、si nB是关于x的方程(n+ 5)x —(2 m- 5)x+ m-8 = 0的两个实数根.(1)求m的值;(2)若厶ABC的外接圆面积为25 n,求厶ABC的内接正方形的边长.2 ______________________________________________________3. 已知关于x的方程x —(m+ n+ 1)x +0 (n》0)的两个实数根为a、B,尹 ,J } , I ■ Lf 、且 a < B .(1)试用含有a、B的代数式表示m和n;)求证:a < 1< B ;(3)若点P ( a,B )在厶ABC的三条边上运动,且△ ABC顶点的坐标分别为A (1,2),B (,1),C (1,1),问是否存在点P,使m+ n=?若存在,求出点P 的坐标;若不存在,请说明理由.2 25. 已知关于x的一元二次方程x —2x —a —a= 0 (a>0).(1)证明这个方程的一个根比2大,另一个根比2 小;(2)如果当a= 1,2,3,…,2011时,对应的一元二次方程的两个根分别为I - •a 1、B 1,a 2、B 2,a 3、B 3,…,a 2011、B 2011,求+ + + + + + ••• + + 的值.■ .-.j J .. • •. ••26. 已知关于x 的一元二次方程x —(a+ b+ c)x + ab+ bc+ ca = 0,且a>b>c>0.(1)若方程有实数根,求证:a,b,c不能构成一个三角形的三边长;(2)若方程有实数根x o,求证:b+ c v x o v a;(3)若方程的实数根为6和9,求正整数a,b,c的值.2 27. 已知方程x + 2ax+ a —4 = 0有两个不同的实数根,方程x + 2ax + k = 0也有2两个不同的实数根,且其两根介于方程x + 2ax+ a— 4 = 0的两根之间,求k的取值范围.28. 已知关于x的方程x —4| x| + 3= k.(1)当k为何值时,方程有4个互不相等的实数根?(2)当k为何值时,方程有3个互不相等的实数根?(3)当k为何值时,方程有2个互不相等的实数根?(4)是否存在实数k,使得方程只有1个实数根?若存在,求k的值和方程的根;若不存在,请说明理由.2 2 ____________________________________ .9. 已知x i,X2是关于x的一元二次方程4x + 4( nn- 1)x + m = 0的两个非零实数根,则x i与X2能否同号?若能同号,请求出相应的m的取值范围;若不能同号,请说明理由.2 210 .已知a、B为关于X的方程x —2mx^ 3m= 0的两个实数根,且(a—B )2=16,如果关于x的另一个方程x —2mx^ 6m- 9 = 0的两个实数根都在a和B 之间,求m的值.2 211. 已知a为实数,且关于x的二次方程ax + (a + 1)x —a = 0的两个实数根都小于1,求这两个实数根的最大值.212. 求实数a的取值范围,使关于x的方程x + 2(a—1)x + 2a + 6 = 0(1)有两个实根X1、X2,且满足0v X1V 1v X2v4;(2)至少有一个正根.2 _________________________13. 已知X1、X2是方程x —mx- 1 = 0的两个实数根,满足X1 v X2,且X2>2.(1)求m的取值范围;(2)若+= 2,求m的值.214. 已知关于x的方程x —(m- 2)x — = 0 (m^ 0)(1)求证:这个方程总有两个异号实根;(2)若这个方程的两个实根X1、X2满足|x2|=|x" + 2,求m的值及相应的X1、X2.- '1■ ■ 215. 已知△ ABC的一边长为5,另两边长恰是方程2x —12x + m= 0的两个根,求m的取值范围.216. 已知:a, B (a>B )是一元二次方程X —X —1= 0的两个实数根,设S12 2=a + B ,S2= a + B,…,S n= a + B .根据根的定义,有 a — a —1 = 0, B — B —1 = 0,将两式相加,2 2得(a + B ) —( a + B ) — 2 = 0,于是,得S2 —S1 — 2 = 0.根据以上信息,解答下列问题:(1)利用配方法求a,B的值,并直接写出S1,S2的值;(2)猜想:当n A 3时,S n,S n-1,S n-2之间满足的数量关系,并证明你的猜想的正确性;8 8(3)根据(2)中的猜想,求(,2)) + (,2))的值.217.已知方程(x- 1)( x -2x+ m) = 0的三个实数根恰好构成厶ABC勺三条边长.(1)求实数m的取值范围;(2)当厶ABC为直角三角形时,求m的值和△ ABC的面积.。

最新人教版八年级数学上册 专题复习:整式的运算

最新人教版八年级数学上册  专题复习:整式的运算

专题 整式的运算☞2年中考【2015年题组】 1.(2015北海)下列运算正确的是( )A .3412a b a +=B .326()ab ab = C .222(5)(42)3a ab a ab a ab --+=- D .1262x x x ÷=【答案】C . 【解析】试题分析:A .3a 与4b 不是同类项,不能合并,故错误;B .3226()ab a b =,故错误; C .正确;D .1266x x x ÷=,故错误;故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.去括号与添括号;4.同底数幂的除法. 2.(2015南宁)下列运算正确的是( )A .ab a ab 224=÷B .6329)3(x x =C .743a a a =•D .236=÷【答案】C .考点:1.整式的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的乘除法. 3.(2015厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .22xy -B .23xC .32xyD .32x【答案】D . 【解析】试题分析:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A .22xy -系数是﹣2,错误;B .23x 系数是3,错误;C .32xy 次数是4,错误;D .32x 符合系数是2,次数是3,正确; 故选D .考点:单项式.4.(2015厦门)32-可以表示为( )A .2522÷ B .5222÷ C .2522⨯ D .(2)(2)(2)-⨯-⨯-【答案】A . 【解析】试题分析:A .2522÷=252-=2522÷,故正确;B .5222÷=32,故错误; C .2522⨯=72,故错误;D .(2)(2)(2)-⨯-⨯-=3(2)-,故错误;故选A .考点:1.负整数指数幂;2.有理数的乘方;3.同底数幂的乘法;4.同底数幂的除法. 5.(2015镇江)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y + C .2x y -- D .2x y -+ 【答案】A .考点:整式的加减. 6.(2015广元)下列运算正确的是( )A .23222()()ab ab ab -÷=-B .2325a a a +=C .22(2)(2)2a b a b a b +-=-D .222(2)4a b a b +=+【答案】A . 【解析】试题分析:A .23222()()ab ab ab -÷=-,正确;B .325a a a +=,故错误;C .22(2)(2)4a b a b a b +-=-,股错误; D .222(2)44a b a b ab +=++,故错误. 故选A .考点:1.平方差公式;2.合并同类项;3.同底数幂的除法;4.完全平方公式.7.(2015十堰)当x=1时,1ax b ++的值为-2,则()()11a b a b +---的值为的值为( )A .﹣16B .﹣8C .8D .16 【答案】A . 【解析】试题分析:∵当x=1时,1ax b ++的值为﹣2,∴12a b ++=-,∴3a b +=-,∴()()11a b a b +---=(﹣3﹣1)×(1+3)=﹣16.故选A .考点:整式的混合运算—化简求值. 8.(2015黄冈)下列结论正确的是( )A .2232a b a b -= B .单项式2x -的系数是1-C .使式子2+x 有意义的x 的取值范围是2x >-D .若分式112+-a a 的值等于0,则1a =±【答案】B .考点:1.合并同类项;2.单项式;3.分式的值为零的条件;4.二次根式有意义的条件.9.(2015佛山)若n mx x x x ++=-+2)1()2(,则m n +=( ) A .1 B .﹣2 C .﹣1 D .2【答案】C . 【解析】试题分析:∵(2)(1)x x +-=2+2x x -=2x mx n ++,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选C .考点:多项式乘多项式. 10.(2015天水)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 【答案】A .考点:1.整式的混合运算;2.有理数的混合运算;3.新定义. 11.(2015邵阳)已知3a b +=,2ab =,则22a b +的值为( ) A .3 B .4 C .5 D .6 【答案】C . 【解析】试题分析:∵3a b +=,2ab =,∴22a b +=2()2a b ab +-=9﹣2×2=5,故选C .考点:完全平方公式.12.(2015临沂)观察下列关于x 的单项式,探究其规律: x ,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( )A .2015x2015B .4029x2014C .4029x2015D .4031x2015 【答案】C . 【解析】 试题解析:系数的规律:第n 个对应的系数是2n ﹣1.指数的规律:第n 个对应的指数是n .故第2015个单项式是4029x2015.故选C . 考点:1.单项式;2.规律型. 13.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .66【答案】B .考点:1.完全平方公式;2.规律型;3.综合题.14.(2015连云港)已知m n mn +=,则(1)(1)m n --= . 【答案】1. 【解析】试题分析:(1)(1)m n --=mn ﹣(m+n )+1,∵m+n=mn ,∴(m ﹣1)(n ﹣1)=mn ﹣(m+n )+1=1,故答案为:1.考点:整式的混合运算—化简求值.15.(2015珠海)填空:2+10x x + =2(_____)x +.【答案】25;5. 【解析】试题分析:∵10x=2×5x ,∴2+1025x x +=2(5)x +.故答案为:25;5.考点:完全平方式. 16.(2015郴州)在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为 .【答案】12.考点:1.列表法与树状图法;2.完全平方式.17.(2015大庆)若若52=n a ,162=n b ,则()nab = . 【答案】45±. 【解析】试题分析:∵52=n a ,162=n b ,∴2280n na b ⋅=,∴2()80nab =,∴()n ab =45±,故答案为:45±.考点:幂的乘方与积的乘方.18.(2015牡丹江)一列单项式:2x -,33x ,45x -,57x ,…,按此规律排列,则第7个单项式为 . 【答案】213x -.【解析】试题分析:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x 的指数为8,所以,第7个单项式为213x -.故答案为:213x -.考点:1.单项式;2.规律型.19.(2015安顺)计算:201320111(3)()3-⋅-= .【答案】9.考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2015铜仁)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则6()a b += .【答案】654233245661520156a a b a b a b a b ab b ++++++. 【解析】试题分析:6()a b +=654233245661520156a a b a b a b a b ab b ++++++.故本题答案为:654233245661520156a a b a b a b a b ab b ++++++.考点:1.完全平方公式;2.规律型:数字的变化类;3.综合题. 21.(2015南宁)先化简,再求值:(1)(1)(2)1x x x x +-++-,其中12x =.【答案】2x ,1. 【解析】试题分析:先利用乘法公式展开,再合并得到答案,然后把12x =代入计算即可.试题解析:原式=22121x x x -++-=2x ,当12x =时,原式=2×12=1.考点:整式的混合运算—化简求值. 22.(2015无锡)计算: (1)02(5)3)3--+-;(2)2(1)2(2)x x +--. 【答案】(1)1;(2)25x +.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.23.(2015内江)填空:()()a b a b -+= ;22()()a b a ab b -++= ; 3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+. 【答案】(1) 22a b -,33a b -,44a b -;(2) n na b -;(3)342. 【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可; (2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果. 试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -; 3223()()a b a a b ab b -+++=44a b -;故答案为:22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=nna b -,故答案为:nna b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型;3.阅读型;4.综合题.24.(2015咸宁)(1)计算:0 128(2)-++-;(2)化简:2232(2)()a b ab b b a b--÷--.【答案】(1)32;(2)22b-.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.25.(2015随州)先化简,再求值:5322(2)(2)(5)3()a a a ab a b a b+-+-+÷-,其中12ab=-.【答案】42ab-,5.【解析】试题分析:利用平方差公式、单项式乘以多项式法则、单项式除法运算,合并得到最简结果,把ab的值代入计算即可求出值.试题解析:原式=22453a a ab ab-+-+=42ab-,当12ab=-时,原式=4+1=5.考点:整式的混合运算—化简求值.26.(2015北京市)已知22360a a+-=.求代数式3(21)(21)(21)a a a a+-+-的值.【答案】7.【解析】试题分析:利用单项式乘以多项式法则、平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:∵22360a a+-=,即2236a a+=,∴原式=226341a a a+-+=2231a a++=6+1=7.考点:整式的混合运算—化简求值.27.(2015茂名)设y ax=,若代数式()(2)3()x y x y y x y+-++化简的结果为2x,请你求出满足条件的a 值. 【答案】a=﹣2或0. 【解析】试题分析:因式分解得到原式=2()x y +,再把当y ax =代入得到原式=22(1)a x +,所以当2(1)1a +=满足条件,然后解关于a 的方程即可.试题解析:原式=2()x y +,当y ax =时,代入原式得222(1)a x x +=,即2(1)1a +=,解得:a=﹣2或0.考点:1.整式的混合运算;2.平方根. 28.(2015河北省)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式; (2)若16+=x ,求所捂二次三项式的值.【答案】(1)221x x -+;(2)6.考点:整式的混合运算—化简求值.【2014年题组】 1.(2014年百色中考) 下列式子正确的是( ) A .(a ﹣b )2=a2﹣2ab+b2 B . (a ﹣b )2=a2﹣b2 C .(a ﹣b )2=a2+2ab+b2 D .(a ﹣b )2=a2﹣ab+b2 【答案】A . 【解析】试题分析:A .(a ﹣b )2=a2﹣2ab+b2,故A 选项正确;B .(a ﹣b )2≠a2﹣b2,故B 选项错误;C .(a ﹣b )2≠a2+2ab+b2,故C 选项错误;D .(a ﹣b )2≠a2﹣ab+b2,故D 选项错误;故选A .考点:完全平方公式.A.()339x x = B.()332x 6x -=- C.22x x x -= D.632x x x ÷=【答案】A .考点:1.幂的乘方和积的乘方;2.合并同类项;3.同底幂乘除法. 3.(2014年常州中考)下列运算正确的是( ) A. 33a a a⋅= B.()33ab a b= C.()236a a = D. 842a a a ÷=【答案】C .【解析】试题分析:根据同底幂乘法,同底幂乘除法,幂的乘方和积的乘方运算法则逐一计算作出判断: A. 31343a a aa a+⋅==≠,选项错误; B.()3333ab a b a b=≠,选项错误;C.()23326a a a ⨯==,选项正确; D. 848442a a aa a -÷==≠,选项错误.故选C .考点:1.同底幂乘法;2.同底幂乘除法;3.幂的乘方和积的乘方. 4.(2014年抚顺中考)下列运算正确的是( ) A .-2(a-1)=-2a-1B .(-2a )2=-2a2C .(2a+b )2=4a2+b2 D . 3x2-2x2=x2 【答案】D . 【解析】 试题分析:A 、-2(a-1)=-2a+2,故A 选项错误;B 、(-2a )2=4a2,故B 选项错误;C 、(2a+b )2=4a2+4ab+b2,故C 选项错误;D 、3x2-2x2=x2,故D 选项正确. 故选D .考点:1.完全平方公式;2.合并同类项;3.去括号与添括号;4.幂的乘方与积的乘方. 5.(2014年眉山中考)下列计算正确的是( )A .235x x x +=B .236x x x ⋅=C .236()x x =D .632x x x ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.A.a3+a4=a7 B. 2a3•a4=2a7 C.(2a4)3=8a7 D. a8÷a2=a4【答案】B.【解析】试题分析:A、a3和a4不能合并,故A错误;B、2a3•a4=2a7,故B正确;C、(2a4)3=8a12,故C错误;D、a8÷a2=a6,故D错误;故选B.考点:整式的运算.7.(2014年镇江中考)化简:()()x1x11+-+=.【答案】2x.【解析】试题分析:第一项利用平方差公式展开,去括号合并即可得到结果:()()22x1x11x11x+-+=-+=.考点:整式的混合运算.8.(2014年吉林中考)先化简,再求值:x(x+3)﹣(x+1)2,其中x=+1.【答案】x﹣1;2.【解析】试题分析:先利用整式的乘法和完全平方公式计算,再进一步合并化简,最后代入数值即可.试题解析:原式=x2+3x﹣x2﹣2x﹣1=x﹣1,当x=2+1时,原式=2+1﹣1=2.考点:1.整式的运算;2.化简求值.9.(2014年绍兴中考)先化简,再求值:()()()2a a3b a b a a b-++--,其中1a1b2 ==-,.【答案】a2+b2,5 4.考点:整式的混合运算—化简求值.10.(2014年杭州中考)设y kx=,是否存在实数k,使得代数式2222222(x y )(4x y )3x (4x y )--+-能化简为4x ?若能,请求出所有满足条件的k 值,若不能,请说明理由. 【答案】能. 【解析】试题分析:化简代数式,根据代数式恒等的条件列关于k 的方程求解即可 试题解析:∵y kx =,∴222222222222222(x y )(4x y )3x (4x y )(4x y )(x y 3x )(4x y )--+-=--+=- ()2222242(4x k x )x 4k =-=-.∴要使代数式22222224(x y )(4x y )3x (4x y )x --+-=,只要()224k1-=.∴24k 1-=±,解得k=±3或k=±5.考点:1. 代数式的化简;2. 代数式恒等的条件;3.解高次方程.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:整式:单项式与多项式统称整式. (1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数. 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项.2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同. 【例1】下列式子中与3m2n 是同类项的是( ) A.3mn B.3nm2 C.4m D.5n 【答案】B .考点:同类项. 归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:am ·an =am +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(am )n =amn (m ,n 都是整数,a ≠0)(3)积的乘方:(ab )n =an ·bn (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:am ÷an =am -n (m ,n 都是整数,a ≠0) 注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】下列运算正确的是( ) A. 33a a a⋅= B.()33ab a b= C.()236a a = D. 842a a a ÷=【答案】C .考点:幂的运算.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:,实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma+mb ; ②多项式乘多项式:(a +b )(c +d )=ac+ad+bc+bd ③乘法公式:平方差公式:(a+b )(a-b )=a2-b2;完全平方公式:(a ±b )2=a2±2ab+b2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】下列计算正确的是( ) A .2x -x =x B .a3·a2=a6 C .(a -b )2=a2-b2 D .(a +b )(a -b )=a2+b2 【答案】A .【解析】A 、原式=x ,正确;B 、原式=x5,错误;C 、原式=a2-2ab+b2,错误;D 、原式=a2-b2,故选A .考点:整式的运算.【例4】先化简,再求值:()()()22a b a b b a b b +-++-,其中1a =、2b =-.【答案】-1.【解析】原式222222a b ab b b a ab =-++-=+;当1a =、2b =-时,原式()2112121=+⨯-=-=-.考点:整式的混合运算—化简求值.【例5】计算21()(21)(41)2x x x +-÷-【答案】12.【解析】原式=12(2x+1)(2x ﹣1)÷[(2x ﹣1)(2x+1)]=12.考点:整式的混合运算. ☞1年模拟 1、(2015届云南省剑川县九上第三次统一模拟考试数学试卷)下列运算正确的是( )A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=【答案】C .考点:整式的运算. 2.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)下列运算正确的是( ).A .623a a a =⋅ B .6223)(b a ab = C .222)(b a b a -=- D .235=-a a【答案】B . 【解析】试题分析:因为32235a a a a +⋅==,所以A 错误;因为6223)(b a ab =,所以B 正确;因为222()2a b a ab b -=-+,所以C 错误;因为532a a a -=,所以D 错误;故选B .考点:1.幂的运算;2.整式的加减. 3.(2015届重庆市合川区清平中学等九年级模拟联考数学试卷)下列运算正确的是( )A .23a a ⋅=6aB .33()y y x x = C .55a a a ÷= D .326()a a =【答案】D .考点:1.同底数幂的除法;2.幂的乘方与积的乘方;3.同底数幂的乘法. 4.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)下列运算正确的是( )A .642a a a =+ B .523)(a a =C .2328=+D .222))((b ab a b a b a ---=---【答案】C .【解析】试题分析:A .2a 和4a 不能合并,故错误;B .3265()a a a =≠,故错误;C 8222232==D .2222()()()a b a b a b a b ---=--=-+,故错误;故选C .考点:1.二次根式的混合运算;2.整式的混合运算. 5.(2015届山东省日照市中考一模)观察下列各式及其展开式: (a+b )2=a2+2ab+b2(a+b )3=a3+3a2b+3ab2+b3(a+b )4=a4+4a3b+6a2b2+4ab3+b4(a+b )5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 …请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45 C .55 D .66 【答案】B .考点:完全平方公式.6.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)若3223y x mm -与3852y x m +-能够进行加减运算,则21m +=_________________;【答案】-1或9.【解析】试题分析:∵3223y x mm -与3852y x m +-能够进行加减运算,∴2258m m m -=+,即:2340m m --=,解得:1m =-或4m =,①当1m =-时,21m +=-1,②当4m =时,21m +=9.故答案为:-1或9.考点:1、同类项;2、解一元二次方程-因式分解法;3、分类讨论.7.(2015届广东省佛山市初中毕业班综合测试)已知a2-2a-3=0,求代数式2a (a-1)-(a+2)(a-2)的值. 【答案】7.考点:整式的混合运算—化简求值.。

湖北省咸宁市初中毕业生学业考试数学试卷及答案

湖北省咸宁市初中毕业生学业考试数学试卷及答案

湖北省咸宁市初中毕业生学业考试数 学 试 卷考生注意: 1.本试卷分试题卷(共 4 页)和答题卷;全卷 24 小题,满分 120 分;考试时间 120 分钟.2.考生答题前,请将自己的学校、姓名、准考据考号填写在试题卷和答题卷指定的地点,同时仔细阅读答题卷上的注意事项.考生答题时,请按题号次序在答题卷上各题目的答题区 域内作答,写在试题卷上无效.试题卷一、精心选一选 (本大题共 8 小题,每题3 分,满分 24 分.每题给出的 4 个选项中只有一个切合题意,请在答题卷大将正确答案的代号涂黑) 1. 3 的绝对值是A .3B . 311C .D .332.以下运算正确的选项是A .236B . 4 2C . a 2 a 3a 5D . 3a 2a 5a 23.一家鞋店对上周某一品牌女鞋的销售量统计以下:尺码 /厘米 22 22.5 23 23.5 24 24.5 25销售量 /双125 117 31该鞋店决定本周进该品牌女鞋时多进一些尺码为 23.5 厘米的鞋,影响鞋店决议的统计量是A .均匀数B .众数C .中位数D .方差4.分式方程x x1的解为 x 3 x 1A . x 1B . x 1C . x 3D . x35.平面直角坐标系中,点 A 的坐标为( 4,3),将线段 OA 绕原点 O 顺时针旋转 90 获取 坐标是 A A .( 4,3) B .( 3 ,4) C .(3, 4) D .(4, 3) CO6.如图,两圆订交于 A ,B 两点,小圆经过大圆的圆心 O ,点 C ,D 分别在两圆上,若 ADB 100 ,则 ACB 的度数为B A . 35B . 40C . 50D . 80ax 2(第 6 题) 7.已知抛物线y bx c ( a <0)过 A ( 2, 0)、 O ( 0, 0)、B ( 3 , y 1 )、C ( 3, y 2 )四点,则 y 1 与 y 2 的大小关系是DA . y 1 > y 2B . y 1 y 2C . y 1 < y 2D .不可以确立OA ,则点 A 的DC8.如图,菱形 ABCD 由 6 个腰长为2,且全等的等腰梯形镶嵌而成,AB则线段 AC 的长为A .3B .6C .3 3(第 8 题)D .6 3二、仔细填一填(本大题共 8 小题,每题 3 分,满分 24 分.请人数 将答案4035 填写在答题卷相应题号的地点)30252015 105球类跳绳踢毽子其余喜爱项目(第 12 题)9.函数 y 2 x 的自变量 x 的取值范围是 .10.一个几何体的三视图完整同样,该几何体能够是.(写出一个即可 )11.上海世博会估计约有69 000 000 人次观光, 69 000 000用科学记数法表示为.12.某学校为认识学生大课间体育活动状况,随机抽取本校y100 名学生进行检查.整理采集到的数据,绘制成如图l 1所示的统计图.若该校共有 800 名学生,估计喜爱“踢2Px毽子”的学生有 人.O al 2 13.如图,直线 l 1 : yx 1 与直线 l 2 : y mx n 订交于点(第 13 题)P ( a ,2),则对于 x 的不等式 x 1 ≥ mx n 的解集为.Al 1 α 14.如图,已知直线 l 1 ∥ l 2 ∥ l 3 ∥ l 4 ,相邻两条平行直线间的BADl 2 距离都是 1,假如正方形 ABCD 的四个极点分别在四条直Cl 3l 4(第 14 题) 线上,则 sin.15.惠民新村分给小慧家一套价钱为12 万元的住宅.按要求,需首期(第一年)付房款3 万元,从第二 年起,每年对付房款 0.5 万元与上一年节余房款的利息的和.假定节余房款年利率为0.4% ,小慧列表计算以下:第一年第二年 第三年应还款(万元) 3 0.5 90.4%0.5 8.5 0.4%节余房款(万元)98.58若第 n 年小慧家仍需还款,则第 n 年应还款万元( n > 1).16.如图,一次函数y ax b 的图象与 x 轴, y 轴交于 A , B 两点, y DkB与反比率函数的图象订交于 C ,D 两点,分别过 C , D 两yxA O点作 y 轴, x 轴的垂线,垂足为 E ,F ,连结 CF ,DE .E Fx有以下四个结论:C①△ CEF 与△ DEF 的面积相等;②△ AOB ∽△ FOE ;③△ DCE ≌△ CDF ; ④ ACBD .(第 16 题)此中正确的结论是.(把你以为正确结论的序号都填上 )三、专心解一解 (本大题共 8 小题,满分 72 分.请仔细读题,沉着思虑.解答题应写出文字说明、证明过程或演算步骤,请将答案写在答题卷相应题号的地点)17.( 此题满分 6 分)先化简,再求值: (11 ) a,此中 a 3 . a 2 1 a 118.( 此题满分 8 分)跟着人们节能意识的加强,节能产品的销售量逐年增添.某商场高效节能灯的年销售量 2008 年为 5 万只,估计 2010 年将达到 7.2 万只.求该商场 2008 年到 2010 年高效节能灯年销售量的均匀增添率.19.( 此题满分 8 分)已知二次函数 y x 2 bx c 的图象与 x 轴两交点的坐标分别为( m , 0),( 3m , 0)( m 0 ).( 1)证明 4c 3b 2 ;( 2)若该函数图象的对称轴为直线x 1,试求二次函数的最小值.F20.( 此题满分 9 分)C如图,在⊙ O 中,直径 AB 垂直于弦 CD ,垂足为 E ,连结 AC ,OEBGA将 △ ACE 沿 AC 翻折获取 △ ACF ,直线 FC 与直线 AB 订交于点 G .( 1)直线 FC 与⊙ O 有何地点关系?并说明原因; D( 2)若 OB BG 2 ,求 CD 的长.(第 20 题)21.( 此题满分 9 分)某联欢会上有一个有奖游戏,规则以下:有5 张纸牌,反面都是喜羊羊头像,正面有 2 张是笑容,其余 3 张是哭脸.现将 5 张纸牌洗匀后反面向上摆放到桌上,若翻到的纸牌中有笑容就有奖,没有笑容就没有奖.( 1)小芳获取一次翻牌时机,她从中随机打开一张纸牌.小芳得奖的概率是 .( 2)小明获取两次翻牌时机,他同时打开两张纸牌.小明以为这样得奖的概率是小芳的两倍,你赞成他的看法吗?请用树形图或列表法进行剖析说明.22.( 此题满分 10 分)问题背景( 1)如图 1,△ ABC 中, DE ∥BC 分别交 AB , AC 于 D ,E 两点, ADS2E过点 E 作 EF ∥AB 交 BC 于点 F .请按图示数据填空:四边形 DBFE 的面积 S ,SS 3 △ EFC 的面积 S 1F, B1C△ ADE 的面积 S 2 .26 图 1研究发现( 2)在( 1)中,若 BF a , FC b ,DE 与 BC 间的距离为 h .请证明 S 24S 1 S 2 .拓展迁徙A( 3)如图 2,□DEFG 的四个极点在 △ABC 的三边上,若DG△ADG 、△ DBE 、△ GFC 的面积分别为 2、 5、3,试利用 ( 2).. .中的结论 求△ ABC 的面积.....BEF C图 223.( 此题满分 10 分)在一条直线上挨次有 A 、 B 、 C 三个港口,甲、乙两船同时分别从 A 、 B 港口出发,沿直线匀速驶向 C 港,最后达到 C 港.设甲、乙两船行驶 x ( h )后,与 B 港的距离 分别为 y 1 、 y 2 ( km ), y 1 、 y 2 与 x 的函. .....数关系以下图.( 1)填空: A 、 C 两港口间的距离为km , a;( 2)求图中点 P 的坐标,并解说该点坐标所表示的实质意义;( 3)若两船的距离不超出 10 km 时能够互相看见,求甲、乙两船能够互相看见时x 的取值范围.y/km90甲乙30 P24.( 此题满分 12 分)如图,直角梯形 ABCD 中, AB ∥ DC ,DAB 90 , AD 2DC 4 , AB 6 .动点 M 以每秒 1 个单位长的速度,从点A 沿线段 AB 向点 B 运动;同时点 P 以同样的速度,从点C 沿折线 C-D -A 向点 A 运动.当点 M 抵达点 B 时,两点同时停止运动.过点 M 作直线 l ∥ AD ,与线段 CD 的交点为 E ,与折线A-C-B 的交点为 Q .点 M 运动的时间为 t (秒).( 1)当 t 0.5 时,求线段 QM 的长;( 2)当 0< t < 2 时,假如以 C 、P 、Q 为极点的三角形为直角三角形,求 t 的值;( 3)当 t > 2 时,连结 PQ 交线段 AC 于点 R .请研究CQ能否为定值, 假如,试求这个定值; 若不是,RQ请说明原因.DEPCDCDCQAl MBA(备用图 BAB(第 24 题)1)(备用图 2)数学试题参照答案及评分说明说明:1.假如考生的解答与本参照答案不一样,可参照本评分说明拟订相应的评分细则评分.2.每题都要评阅究竟,不要由于考生的解答中出现错误而中止对该题的评阅.当考生的解答在某一 步出现错误,影响了后继部分时,假如该步此后的解答未改变这道题的内容和难度,则可视影响的程度决定后边部分的给分,但不得超事后边部分应给分数的一半;假如这一步此后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的计算步骤写得较为详尽,但同意考生在解答过程中,合理地省略非重点性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.一.精心选一选 (每题 3 分,本大题满分24 分)题号 1 2 3 4 5 6 7 8答案ACBDCBAD二.仔细填一填 (每题 3 分,本大题满分 24 分)9. x ≤ 210.球、正方体等( 写一个即可 ) 11. 6.9 10712. 200 13. x ≥ 15 15. 0.540.002n (填 0.5 9 (n2) 0.5 0.4% 或其余正确而未化简的式子也给满分)14.516.①②④( 多填、少填或错填均不给分)三.专心解一解 (本大题满分 72 分)a 2a 117.解:原式2分(a 1)(a 1)aa. 4分a 1 当 a3 时,原式33. 6分3 1 2(未化几乎接代入求值,答案正确给 2 分)18.解:设年销售量的均匀增添率为x ,依题意得:5(1 x) 2 7.2 . 4分解这个方程,得 x 1 0.2 , x 22.2 . 6分由于 x 为正数,所以 x0.2 20% . 7 分答:该商场 2008 年到 2010 年高效节能灯年销售量的均匀增添率为20% . 8 分191m , 3m是一元二次方程 x 2bx c 0的两根..( )证明:依题意,依据一元二次方程根与系数的关系,得 m ( 3m) b , m ( 3m) c . 2分∴ b 2m , c3m 2 . ∴ 4c 3b 212m 2 . 4分( 2)解:依题意, b 1 ,∴ b 2. 5 分2由( 1)得 c3 b 2 3 ( 2) 2 3 . 6分4 4 ∴ y x 22 x3 ( x 1)24 .∴二次函数的最小值为4. 8分20.解:( 1)直线 FC 与⊙ O 相切. 1分原因以下:连结 OC .FC∵OA OC , ∴ 12 2分由翻折得, 1 3 , F AEC90 .3 2∴ 23 . ∴OC ∥AF .1AOE BGD(第 20 题)∴ OCGF 90.∴直线 FC 与⊙ O 相切. 4 分( 2)在 Rt △ OCG 中, cos OC OC 1 COG 2OB,∴ COG 60 . 6分 OG2在 Rt △ OCE 中, CE OCsin60 23 . 8分32∵直径 AB 垂直于弦 CD ,∴ CD 2CE 2 3 . 9分 21.( 1)2(或填 0.4). 2分5( 2)解:不赞成他的看法. 3分用 A 1 、 A 2 分别代表两张笑容, B 1 、 B 2 、 B 3 分别代表三张哭脸,依据题意列表以下:第一张第二张A 1A 2B 1 B 2 B 3A 1A 1, A 2A 1,B 1 A 1, B 2 A 1, B 3 A 2 A 2, A 1 A 2,B 1A 2,B 2 A 2, B 3 B 1 B 1, A 1 B 1, A 2B 1, B 2B 1, B 3 B 2 B 2, A 1 B 2, A 2 B 2,B 1B 2, B 3B 3B 3,A 1B 3, A 2B 3,B 1B 3,B 2(也可画树形图表示 ) 6分由表格能够看出,可能的结果有20 种,此中得奖的结果有14 种,所以小明得奖的概率14 7. 8分P1020由于 7 <22 ,所以小明得奖的概率不是小芳的两倍. 9分10 522.( 1) S 6, S 1 9, S 21 . 3 分( 2)证明:∵ DE ∥BC ,EF ∥AB ,∴四边形 DBFE 为平行四边形, AEDC , ACEF .∴ △ ADE ∽△ EFC . 4分2∴ S 2( DE ) 2 a 2 .S 1FC b∵ S 11bh ,∴ S 2a 2S 1a 2 h. 5分2a 2 h b22b∴ 4S 1S 2 4 1bh (ah)2 .2 2b而 S ah ,∴ S 2 4S 1S 2 6 分( 3)解:过点 G 作 GH ∥AB 交 BC 于 H ,则四边形 DBHG 为平行四边形.∴ GHC B ,BD HG ,DG BH .A∵四边形 DEFG 为平行四边形,∴DGEF .∴BHEF .DG∴ BE HF .∴△DBE ≌△GHF .∴△ GHC 的面积为 5 3 8 . 8 分B HE F C图 2由( 2)得, □DBHG 的面积为 2 2 8 8 . 9分∴△ ABC 的面积为 2 8 8 18 . 10 分(说明:未利用( 2)中的结论,但正确地求出了△ ABC 的面积,给 2 分)23.解:( 1) 120, a 2; 2 分( 2)由点( 3,90)求得, y 2 30x .当 x > 0.5 时,由点( 0.5, 0),( 2, 90)求得, y 1 60x 30. 3分当 y 1 y 2 时, 60x 30 30x ,解得, x1 .此时 y 1y 230 .所以点 P 的坐标为( 1, 30). 5分该点坐标的意义为:两船出发 1 h 后,甲船追上乙船,此时两船离 B 港的距离为 30 km . 6分 求点 P 的坐标的另一种方法:由图可得,甲的速度为3090 30 ( km/h ).60 ( km/h ),乙的速度为0.53则甲追上乙所用的时间为 30 1( h ).此时乙船行驶的行程为 30 1 30 ( km ).60 30所以点 P 的坐标为( 1,30).(3)①当 x ≤0.5 时,由点( 0, 30),(0.5, 0)求得, y 1 60x 30 .依题意, ( 60 x30) 30 x ≤10. 解得, x ≥ 2.不合题意. 7 分3②当 0.5< x ≤1 时,依题意, 30x (60 x 30) ≤10.解得, x ≥ 2 .所以 2≤ x ≤1. 8分33③当 x >1 时,依题意, (60 x 30)30x ≤10.解得, x ≤ 4 .所以 1< x ≤ 4. 9分33综上所述,当 2≤ x ≤ 4时,甲、乙两船能够互相看见.10分3324.解:( 1)过点 C 作 CF AB 于 F ,则四边形 AFCD 为矩形.∴CF 4, AF 2 .此时, Rt △AQM ∽ Rt △ACF . 2分DEPC∴QM CF .AM AF即 QM4 ,∴ QM 1 . 3分 0.52( 2)∵ DCA 为锐角,故有两种状况: ①当 CPQ 90 时,点 P 与点 E 重合. 此时 DECP CD ,即 t t 2 ,∴ t 1. 5分②当 PQC 90 时,如备用图 1,此时 Rt △ PEQ ∽ Rt △QMA ,∴EQMA .PEQM由( 1)知, EQ EM QM 4 2t ,QAM FBl (第 24 题)lD PE CQ而 PE PC CE PC( DC DE ) t (2 t ) 2t 2 , ∴42t 1 . ∴ t5 . 2t 2 23综上所述, t1或 5. 8 分(说明:未综述,不扣分)3( 3)CQ为定值. 9分AMB(备用图 1)RQ当 t > 2 时,如备用图 2,PA DA DP4 (t2) 6 t .由( 1)得, BF AB AF 4 .∴ CF BF .∴ CBF 45. ∴ QMMB 6t .∴ QMPA .∴四边形 AMQP 为矩形. ∴PQ ∥ AB .11分∴ △CRQ ∽△ CAB .∴CQ BC CF 2 BF 24 2 2 2 RQABAB6.12分3DCPRQAF MB (备用图 2)。

2015年中考数学试题及答案(Word版)

2015年中考数学试题及答案(Word版)

2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。

2015年湖北省咸宁市中考数学调研试卷和答案

2015年湖北省咸宁市中考数学调研试卷和答案

2015年湖北省咸宁市中考数学调研试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)2.(3分)一条公路两次转弯后又回到原来的方向(即AB∥CD,如图).如果第一次转弯时的∠B=140°,那么∠C应是()A.140°B.40°C.100° D.180°3.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.0 B.2 C.4 D.84.(3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.+=C.a6÷a3=a3D.(a+b)2=a2+b25.(3分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°6.(3分)下列说法正确的是()A.一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖B.一组数据6,8,7,9,7,10的众数和中位数都是7C.为了解全国中学生的心理健康情况,应该采用全面调查的方式D.若甲乙两人六次跳远成绩的方差S=0.1,S=0.03,则乙的成绩更稳定7.(3分)若抛物线y=x2﹣2x+c与x轴的一个交点为(3,0),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.关于x的一元二次方程x2﹣2x+c的两个根为﹣1,38.(3分)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个 B.6个 C.8个 D.10个二、填空题(共8小题,每小题3分,满分24分)9.(3分)近三年来我市成功引进央企,省企投资近20000000000元,建设五条高速公路,创造了“咸宁速度”,“咸宁模式”,该数据用科学记数法表示应为.10.(3分)若m+n=1,则代数式m2﹣n2+2n的值为.11.(3分)三棱柱的三视图如图所示,在△EFG中,FG=18cm,EG=14cm,∠EGF=30°,则AB的长为cm.12.(3分)某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中一个餐厅用餐,则甲、乙、丙三人中至少有一人在B餐厅用餐的概率是.13.(3分)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.14.(3分)已知关于x的分式方程=1的解是非正数,则a的取值范围是.15.(3分)平移小菱形“”可以得到美丽的“中国结”图案,左边四个图案是由“”平移后得到的类似“中国结”的图案,按图中规律,第10个图案中,小菱形“”的个数.16.(3分)如图甲,点E为矩形ABCD边AD上一点,点P,Q同时从B点出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图乙(曲线OM为抛物线的一部分),则下列结论:①当0<t≤5时,y=t2②tan∠ABE=③点H的坐标为(11,0)④△ABE与△QBP不可能相似.其中正确的是(把你认为正确结论的序号都填上)三、专心解一解(共8小题,满分72分)17.(8分)(1)计算:|﹣2|﹣()﹣1﹣(2)解方程:2﹣=.18.(7分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(x>0)的图象交于A(m,1)B(1,n)两点(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣≤0的x的取值范围.19.(8分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.20.(8分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).请你根据统计图解答下列问题(1)该班一共有名学生,在扇形统计图中“E”对应扇形的圆心角的度数为(2)将下面的频数分布直方图补充完整(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.21.(9分)如图,在△ABC中,AB=AC,角平分线AE,BD相交于M,点O在AB边上,以OB为半径的圆恰好经过点M,且与AB相交于另一点F.(1)判断AE与⊙O的位置关系,并说明理由.(2)当BC=4,cosC=,求⊙O的半径.22.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售可增加10千克.(1)若该商品销售这种核桃要想平均每天获利2240元①每千克核桃应降低多少元?②在平均每天获利不变的情况下,为尽可能吸引顾客,赢得市场,该店应按原售价的几折出售?(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使平均每天获得的利润最大?23.(10分)【阅读】我们分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.【运用】利用“作差法”解决下列问题:(1)小丽和小颖分别两次购买同一种商品,小丽两次都买了m千克商品,小颖两次购买商品均花费n元,已知第一次购买该商品的价格为a元/千克,第二次购买该商品的价格为b元/千克(a,b是整数,且a≠b),试比较小丽和小颖两次所购买商品的平均价格的高低.(2)奶奶提一篮子玉米到集贸市场去兑换大米,每2kg玉米兑换1kg大米,商贩用秤称得连篮子带玉米恰好20kg,于是商贩连篮子带大米给奶奶共10kg,在这个过程中谁吃了亏?并说明理由.24.(12分)如图甲,已知△ABC,AB=AC=4,∠A=90°,取含45°角的直角三角尺,将45°角的顶点放在BC的中点O处,并绕点O顺时针旋转三角尺,当45°角的两边分别与AB,AC交于点E,F时,连接EF,如图乙.(1)指出图乙中一对相似三角形,并给出证明.(2)设CF=x,BE=y,试求y与x的函数解析式,并指出x为何值时△OEF为等腰三角形;(3)探究在三角尺绕点O旋转的过程中,△AEF的周长是否为定值?若是,试求这个定值;若不是,请说明理由.2015年湖北省咸宁市中考数学调研试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.2.(3分)一条公路两次转弯后又回到原来的方向(即AB∥CD,如图).如果第一次转弯时的∠B=140°,那么∠C应是()A.140°B.40°C.100° D.180°【分析】根据两直线平行,内错角相等可知是140°.【解答】解:∵AB∥CD,∠B=140°,∴∠C=∠B=140°.故选:A.3.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.0 B.2 C.4 D.8【分析】将原方程转化为一元二次方程的一般形式,再根据根与系数的关系x1+x2=﹣就可以求出其值.【解答】解:∵x2=4,∴x2﹣4=0,∴a=1,b=0,c=﹣4,∵x1,x2是方程是x2=4的两根,∴x 1+x2=﹣,∴x1+x2=﹣=0,故选:A.4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.+=C.a6÷a3=a3D.(a+b)2=a2+b2【分析】根据有理数的减法,可判断A,根据合并同类二次根式,可判断B,根据同底数幂的除法,可判断C,根据完全平方公式,可判断D.【解答】解:A、减去一个数等于加上这个数的相反数,故A错误;B、不是同类二次根式不能合并,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.5.(3分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.6.(3分)下列说法正确的是()A.一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖B.一组数据6,8,7,9,7,10的众数和中位数都是7C.为了解全国中学生的心理健康情况,应该采用全面调查的方式D.若甲乙两人六次跳远成绩的方差S=0.1,S=0.03,则乙的成绩更稳定【分析】根据概率的意义,可判断A;根据中位数、众数的定义,可判断B;根据调查方式,可判断C;根据方差的性质,可判断D.【解答】解:A、一个游戏的中奖率是1%,则做100次这样的游戏可能中奖,可能不中奖,故A错误;B、一组数据6,8,7,9,7,10的众数是7,中位数是7.5,故B错误;C、为了解全国中学生的心理健康情况,应该采用抽样调查的方式,故C错误;D、甲乙两人六次跳远成绩的方差S=0.1,S=0.03,则乙的成绩更稳定,故D正确;故选:D.7.(3分)若抛物线y=x2﹣2x+c与x轴的一个交点为(3,0),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.关于x的一元二次方程x2﹣2x+c的两个根为﹣1,3【分析】由二次项系数a=1>0,得出抛物线的开口向上,得出A正确;把(3,0)代入抛物线得出c=﹣3,把抛物线解析式化成顶点式,得出对称轴和最小值,得出B正确,C不正确;由y=0时,解方程x2﹣2x﹣3=0即可得出结果.【解答】解:∵抛物线y=x2﹣2x+c的二次项系数a=1>0,∴抛物线的开口向上,∴A正确;把(3,0)代入抛物线y=x2﹣2x+c得:c=﹣3,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴x=1,∴B正确;∵抛物线的开口向上,∴y有最小值=﹣4,∴C不正确;当y=0时,x2﹣2x﹣3=0,解得:x=﹣1,或x=3,∴方程x2﹣2x﹣3=0的两个根是﹣1,3;∴D正确.故选:C.8.(3分)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个 B.6个 C.8个 D.10个【分析】根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.【解答】解:如图,AB是直角边时,点C共有6个位置,即,有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,△ABC是直角三角形的个数有6+4=10个.故选:D.二、填空题(共8小题,每小题3分,满分24分)9.(3分)近三年来我市成功引进央企,省企投资近20000000000元,建设五条高速公路,创造了“咸宁速度”,“咸宁模式”,该数据用科学记数法表示应为2×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将200 0000 0000用科学记数法表示为:2×1010.故答案为:2×1010.10.(3分)若m+n=1,则代数式m2﹣n2+2n的值为1.【分析】先利用平方差公式把m2﹣n2分解为(m+n)(m﹣n),再利用整式的加减即可解答.【解答】解:m2﹣n2+2n=(m+n)(m﹣n)+2n=1×(m﹣n)+2n=m﹣n+2n=m+n=1.故答案为:1.11.(3分)三棱柱的三视图如图所示,在△EFG中,FG=18cm,EG=14cm,∠EGF=30°,则AB的长为7cm.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EG=14cm,∠EGF=30°,∴EQ=AB=×14=7(cm).故答案为:7.12.(3分)某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中一个餐厅用餐,则甲、乙、丙三人中至少有一人在B餐厅用餐的概率是.【分析】列举出所有情况,让甲、乙、丙三人中至少有一人在B餐厅用餐的情况数除以总情况数即为所求的概率.【解答】解:某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中一个餐厅用餐,共8种情况;甲、乙、丙三人都不在B餐厅,即都在A餐厅用餐的只有1种情况,至少有一人在B餐厅用餐有7种情况,故其概率为.13.(3分)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.14.(3分)已知关于x的分式方程=1的解是非正数,则a的取值范围是a ≤﹣2且a≠﹣3.【分析】首先根据=1,可得x=a+2;然后根据关于x的分式方程=1的解是非正数,求出a的取值范围即可.【解答】解:∵=1,∴x=a+2,∵关于x的分式方程=1的解是非正数,∴a+2≤0,解得a≤﹣2,又∵x=a+2≠﹣1,∴a≠﹣3,∴a的取值范围是:a≤﹣2且a≠﹣3.故答案为:a≤﹣2且a≠﹣3.15.(3分)平移小菱形“”可以得到美丽的“中国结”图案,左边四个图案是由“”平移后得到的类似“中国结”的图案,按图中规律,第10个图案中,小菱形“”的个数200.【分析】仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=10即可求得答案.【解答】解:第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;…第n个图形有2n2个小菱形;第10个图形有2×102=200个小菱形;故答案为:200.16.(3分)如图甲,点E为矩形ABCD边AD上一点,点P,Q同时从B点出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图乙(曲线OM为抛物线的一部分),则下列结论:①当0<t≤5时,y=t2②tan∠ABE=③点H的坐标为(11,0)④△ABE与△QBP不可能相似.其中正确的是①②③(把你认为正确结论的序号都填上)【分析】根据图乙可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】①如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PBsin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2(故②正确);②又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,∴tan∠ABE==,故②正确;③由图象知,在D点时,出发时间为7s,因为CD=4,所以H(11,0),故③正确;④当△ABE与△QBP相似时,点P在DC上,如图2所示:∵tan∠PBQ=tan∠ABE=,∴,即,解得:t=.故④错误;故答案为:①②③.三、专心解一解(共8小题,满分72分)17.(8分)(1)计算:|﹣2|﹣()﹣1﹣(2)解方程:2﹣=.【分析】(1)利用绝对值的性质和负整数指数幂的性质分别化简求出即可;(2)利用一元一次方程的解法,去分母化简求出即可.【解答】解:(1)|﹣2|﹣()﹣1﹣=2﹣﹣2﹣=﹣﹣;(2)2﹣=去分母得:12﹣2(2x+1)=3(x+1)去括号得:12﹣4x﹣2=3x+3,整理得:7x=7解得:x=1.18.(7分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(x>0)的图象交于A(m,1)B(1,n)两点(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣≤0的x的取值范围.【分析】(1)把A、B代入y=(x>0),可得m、n的值,再根据待定系数法,可得一次函数的解析式;(2)根据观察函数图象的交点,可得出答案.【解答】解:(1)由题意,得1=,n=解得m=4,n=4∴A(4,1),B(1,4),∵一次函数y=kx+b(k≠0)经过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+5;(2)由图可知kx+b﹣≤0的x的取值范围是0<x≤1或x≥4.19.(8分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.【分析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得EO=FO,进而利用菱形的判定方法得出结论.【解答】(1)解:如图所示:EF即为所求;(2)证明:如图所示:∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,∵,∴△DEO≌△BFO(ASA),∴EO=FO,∴四边形DEBF是平行四边形,又∵EF⊥BD,∴四边形DEBF是菱形.20.(8分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).请你根据统计图解答下列问题(1)该班一共有50名学生,在扇形统计图中“E”对应扇形的圆心角的度数为36°(2)将下面的频数分布直方图补充完整(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【分析】(1)用C组的人数除以它所占的百分比即可得到全班人数,用E组的所占百分比乘以360°即可得到在扇形统计图中“E”对应扇形的圆心角的度数;(2)先计算出D组和A组的人数,然后补全频数分布直方图;(3)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.【解答】解:(1)根据题意得:该班一共有学生:12÷24%=50(名),在扇形统计图中“E”对应扇形的圆心角的度数为:×360°=36°;故答案为:50,36°;(2)如图,D组人数=18%×50=9;选“A“的人数为50﹣12﹣9﹣7﹣5=17(人),(3)画树状图为:共有12种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占4种,所以选出的2人恰好1人选修篮球,1人选修足球的概率==.21.(9分)如图,在△ABC中,AB=AC,角平分线AE,BD相交于M,点O在AB边上,以OB为半径的圆恰好经过点M,且与AB相交于另一点F.(1)判断AE与⊙O的位置关系,并说明理由.(2)当BC=4,cosC=,求⊙O的半径.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;(2)通过解直角三角形求得AB=6,设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到=,即可解得R=,从而求得⊙O 的半径为.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE=BC,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC,又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)∵AB=AC,∴∠B=∠C,∵cosC=,∴cosB=,∵CE=BE=BC=2,∴=,∴AB=6,设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴=即=,解得R=,∴⊙O的半径为.22.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售可增加10千克.(1)若该商品销售这种核桃要想平均每天获利2240元①每千克核桃应降低多少元?②在平均每天获利不变的情况下,为尽可能吸引顾客,赢得市场,该店应按原售价的几折出售?(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使平均每天获得的利润最大?【分析】(1)①设每千克水果应降价x元,利用销售量×每件利润=2240元列出方程求解即可;②为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折;(2)设每天获得的利润为W,销售价格为x,列出W与x的函数关系式即可解答.【解答】解:(1)①设每千克水果应降价x元,根据题意,得:(60﹣x﹣40)(100+10x)=2240,解得:x1=4,x2=6,答:每千克水果应降价4元或6元;②由①可知每千克水果可降价4元或6元.因为要尽可能让利于顾客,所以每千克水果应降价6元.此时,售价为:60﹣6=54(元),×100%=90%.答:该店应按原售价的九折出售.(2)设每天获得的利润为W,销售价格为x,则W=(x﹣40)[100+10(60﹣x)]=(x﹣40)(﹣10x+700)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴若不考虑其他因素,销售价格定为55时,才能使平均每天获得的利润最大.23.(10分)【阅读】我们分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.【运用】利用“作差法”解决下列问题:(1)小丽和小颖分别两次购买同一种商品,小丽两次都买了m千克商品,小颖两次购买商品均花费n元,已知第一次购买该商品的价格为a元/千克,第二次购买该商品的价格为b元/千克(a,b是整数,且a≠b),试比较小丽和小颖两次所购买商品的平均价格的高低.(2)奶奶提一篮子玉米到集贸市场去兑换大米,每2kg玉米兑换1kg大米,商贩用秤称得连篮子带玉米恰好20kg,于是商贩连篮子带大米给奶奶共10kg,在这个过程中谁吃了亏?并说明理由.【分析】(1)根据题意分别表示出小丽和小颖两次所购买商品的平均价格,利用作差法比较即可;(2)设篮子的质量为xkg,根据题意可得奶奶有的玉米数量为(20﹣x)kg,小贩给小莲的大米数量为(10﹣)kg,再根据玉米大米兑换比例即可得解.【解答】解:(1)∵=,=,∴﹣==>0,∴小丽两次所购买商品的平均价格高.(2)奶奶吃亏.理由:设篮子重xkg,玉米重(20﹣x)kg,应换取kg大米,商贩给奶奶的大米(10﹣x)kg,﹣(10﹣x)=.答:在此过程中奶奶吃亏,吃亏千克.24.(12分)如图甲,已知△ABC,AB=AC=4,∠A=90°,取含45°角的直角三角尺,将45°角的顶点放在BC的中点O处,并绕点O顺时针旋转三角尺,当45°角的两边分别与AB,AC交于点E,F时,连接EF,如图乙.(1)指出图乙中一对相似三角形,并给出证明.(2)设CF=x,BE=y,试求y与x的函数解析式,并指出x为何值时△OEF为等腰三角形;(3)探究在三角尺绕点O旋转的过程中,△AEF的周长是否为定值?若是,试求这个定值;若不是,请说明理由.【分析】(1)根据两个角相等的两个三角形相似证明;(2)根据△EBO∽△OCF,得到=,把x、y代入计算即可,根据对应边相等的相似三角形全等解答;(3)连接OA,在AC上取CH=AE,连接OH,证明△AEO≌△HCO,△EOF≌△HOF即可.【解答】解:(1)△EBO∽△OCF,证明:∵∠EOF=45°,∴∠BOE+∠COF=135°,∵∠B=45°,∴∠BOE+∠BEO=135°,∴∠BEO=∠COF,又∠B=∠C=45°,∴△EBO∽△OCF;(2)∵△EBO∽△OCF,∴=,∴xy=4,即y=,∵AB=AC=4,∠A=90°,∴BC=4,当CF=OB=2时,△EBO≌△OCF,则OE=OF,∴x=2时,△OEF为等腰三角形;(3)连接OA,在AC上取CH=AE,连接OH,在△AEO和△HCO中,,∴△AEO≌△HCO,∴OE=OH,∠EOA=∠HOC,∴∠EOF=∠FOH=45°,在△EOF和△HOF中,,∴△EOF≌△HOF,∴FH=EF,∴△AEF的周长=AE+AF+EF=AF+FH+HC=AB=4,∴△AEF的周长为定值,这个定值是4.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

湖北省咸宁市2015年中考数学真题试题(含解析)

湖北省咸宁市2015年中考数学真题试题(含解析)

湖北省咸宁市2015年中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从.C题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.23.(3分)(2015•咸宁)一个几何体的三视图如图所示,则这个几何体是()由俯视图为圆可由三视图想象几何体的形状,4.(3分)(2015•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()解:如图,=﹣3,错误;6.(3分)(2015•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC 与△DEF的面积之比为()7.(3分)(2015•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()DM=AD=BD=∵∠ED F=90°,,AB=8.(3分)(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()二、细心填一填(本大题共有8小题,每小题3分,共24分)9.(3分)(2015•咸宁)﹣6的倒数是.)×(﹣)的倒数是﹣10.(3分)(2015•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖 a 元.,得结果.a÷80%=故答案为:11.(3分)(2015•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m= 3 .题考查了配方法的应用,熟练掌握完全平方公12.(3分)(2015•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为﹣.x+y=,﹣,故答案为:﹣13.(3分)(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360 人.14.(3分)(2015•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为8 .﹣﹣15.(3分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000 .解:∵;;∴∴16.(3分)(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD 于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是②③.(把你认为正确的说法的序号都填上)BD,AB=4三、专心解一解(本大题共8小题,满分72分)17.(8分)(2015•咸宁)(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.+1=3;题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.∴∠ABD=∠ABC=36°=∠A,∵∴∠DBC=∠ABC=36°=∠A,19.(8分)(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.x==20.(9分)(2015•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.)班的中位数确定出m=n==21.(9分)(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.进而求出∴△OBD∽△ABC∴,的半径为.∴AF=∴AD==322.(10分)(2015•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.根据题意得:23.(10分)(2015•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.∵tan∠PBC=∴AE=即中,∴.24.(12分)(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x 轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由..,﹣S=(m m+2=﹣m++得,解得y=上,.∴P(,∴PD=﹣S=(m m+2=﹣m++∵a=﹣<时,,<﹣的面积的最大值为;。

【历年中考数学真题精编】2013-2018年湖北省咸宁市中考数学试题汇编(含参考答案与解析)

【历年中考数学真题精编】2013-2018年湖北省咸宁市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年湖北省咸宁市中考数学试题汇编(含参考答案与解析)1、2013年湖北省咸宁市中考数学试题及参考答案与解析 (2)2、2014年湖北省咸宁市中考数学试题及参考答案与解析 (23)3、2015年湖北省咸宁市中考数学试题及参考答案与解析 (48)4、2016年湖北省咸宁市中考数学试题及参考答案与解析 (71)5、2017年湖北省咸宁市中考数学试题及参考答案与解析 (94)6、2018年湖北省咸宁市中考数学试题及参考答案与解析 (121)2013年湖北省咸宁市中考数学试题及参考答案一、选择题(共8小题,每小题3分,满分24分)1.如果温泉河的水位升高0.8m时水位变化记作+0.8m,那么水位下降0.5m时水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m2.2012年,咸宁全面推进“省级战略,咸宁实施”,经济持续增长,全市人均GDP再攀新高,达到约24000元.将24000用科学记数法表示为()A.2.4×104B.2.4×103C.0.24×105D.2.4×1053.下列学习用具中,不是轴对称图形的是()A.B.C.D.4.下列运算正确的是()A.a6÷a2=a3B.3a2b﹣a2b=2 C.(﹣2a3)2=4a6D.(a+b)2=a2+b25.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°6.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.﹣17.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.1732B.12C.1736D.17388.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1 二、填空题(本大题共8小题,每小题3分,满分24分)9.﹣3的倒数为.10.化简211x xx x+--的结果为.11.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是.12.已知21xy=⎧⎨=⎩是二元一次方程组71mx nynx my+=⎧⎨-=⎩的解,则m+3n的立方根为.13.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b的值为.14.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为160.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差(填“变大”、“不变”或“变小”).15.如图,在Rt△AOB中,OA=OB=,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O 的一条切线PQ(点Q为切点),则切线PQ的最小值为.16.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)三、解答题(本大题共8小题,满分72分)17.(10分)(111|22-⎛⎫-- ⎪⎝⎭;(2)解不等式组:634 1213x xxx++⎧⎪+⎨-⎪⎩≤>.18.(7分)在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?19.(8分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线kyx=(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.20.(8分)如图,△ABC内接于⊙O,OC和AB相交于点E,点D在OC的延长线上,且∠B=∠D=∠BAC=30°.(1)试判断直线AD与⊙O的位置关系,并说明理由;(2)AB=O的半径.21.(8分)在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是,众数是;(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由;(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级,如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.22.(9分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元?23.(10分)阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD 的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB 上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM 的边AB上的一个强相似点,试探究AB和BC的数量关系.24.(12分)如图,已知直线113y x=+与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.(1)点C的坐标是线段AD的长等于;(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.参考答案与解析一、选择题(共8小题,每小题3分,满分24分)1.如果温泉河的水位升高0.8m时水位变化记作+0.8m,那么水位下降0.5m时水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m【知识考点】正数和负数.【思路分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【解答过程】解:∵水位升高0.8m时水位变化记作+0.8m,∴水位下降0.5m时水位变化记作﹣05m;故选D.【总结归纳】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.2012年,咸宁全面推进“省级战略,咸宁实施”,经济持续增长,全市人均GDP再攀新高,达到约24000元.将24000用科学记数法表示为()A.2.4×104B.2.4×103C.0.24×105D.2.4×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将24000用科学记数法表示为2.4×104.故选A.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列学习用具中,不是轴对称图形的是()A.B.C.D.【知识考点】轴对称图形.【思路分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.【解答过程】解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选C.【总结归纳】本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.4.下列运算正确的是()A.a6÷a2=a3B.3a2b﹣a2b=2 C.(﹣2a3)2=4a6D.(a+b)2=a2+b2【知识考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【思路分析】根据同底数幂的除法、合并同类项、幂的乘方及完全平方公式,结合各选项进行判断即可.【解答过程】解:A、a6÷a2=a4,原式计算错误,故本选线错误;B、3a2b﹣a2b=2a2b,原式计算错误,故本选线错误;C、(﹣2a3)2=4a6,计算正确,故本选线正确;D、(a+b)2=a2+2ab+b2,计算错误,故本选线错误;故选C.【总结归纳】本题考查了同底数幂的除法、合并同类项、幂的乘方运算,属于基础题,掌握各部分的运算法则是关键.5.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°【知识考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【思路分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答过程】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=(180°﹣108°)÷2=36°,∵l∥BE,∴∠1=36°,故选:B.【总结归纳】此题主要考查了正多边形的内角和定理,以及三角形内角和定理,平行线的性质,关键是掌握多边形内角和定理:(n﹣2).180°(n≥3)且n为整数).6.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.﹣1【知识考点】根的判别式.【思路分析】根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.【解答过程】解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.【总结归纳】此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.7.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.1732B.12C.1736D.1738【知识考点】相似三角形的应用;正方形的性质;几何概率.【思路分析】求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;【解答过程】解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.【总结归纳】本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【知识考点】作图—基本作图;坐标与图形性质;角平分线的性质.【思路分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b 的数量关系.【解答过程】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,。

2015年湖北省咸宁市中考数学试题及解析

2015年湖北省咸宁市中考数学试题及解析

2015年湖北省咸宁市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.(3分)(2015•咸宁)方程2x﹣1=3的解是()A.﹣1 B.﹣2 C.1D.23.(3分)(2015•咸宁)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体4.(3分)(2015•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()A.50°B.40°C.30°D.25°5.(3分)(2015•咸宁)下列运算正确的是()A.a6÷a2=a3B.(a+b)2=a2+b2C.2﹣3=﹣6 D.=﹣36.(3分)(2015•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:67.(3分)(2015•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小8.(3分)(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个二、细心填一填(本大题共有8小题,每小题3分,共24分)9.(3分)(2015•咸宁)﹣6的倒数是.10.(3分)(2015•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖元.11.(3分)(2015•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m=.12.(3分)(2015•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为.13.(3分)(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.14.(3分)(2015•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB 沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为.15.(3分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400=.16.(3分)(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE 交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是.(把你认为正确的说法的序号都填上)三、专心解一解(本大题共8小题,满分72分)17.(8分)(2015•咸宁)(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.18.(6分)(2015•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.19.(8分)(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.20.(9分)(2015•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100 m 93 93 12九(2)班99 95 n 93 8.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.21.(9分)(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.22.(10分)(2015•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.23.(10分)(2015•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.24.(12分)(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.2015年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.考点:正数和负数.分析:求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.解答:解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.点评:本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2.(3分)(2015•咸宁)方程2x﹣1=3的解是()A.﹣1 B.﹣2 C.1D.2考点:解一元一次方程.专题:计算题.分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.(3分)(2015•咸宁)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.(3分)(2015•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()A.50°B.40°C.30°D.25°考点:平行线的性质.分析:由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.解答:解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.5.(3分)(2015•咸宁)下列运算正确的是()A.a6÷a2=a3B.(a+b)2=a2+b2C.2﹣3=﹣6 D.=﹣3考点:同底数幂的除法;立方根;完全平方公式;负整数指数幂.专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式利用完全平方公式化简得到结果,即可做出判断;C、原式利用负整数指数幂法则计算得到结果,即可做出判断;D、原式利用立方根定义计算得到结果,即可做出判断.解答:解:A、原式=a4,错误;B、原式=a2+b2+2ab,错误;C、原式=,错误;D、原式=﹣3,正确,故选D点评:此题考查了同底数幂的除法,立方根,完全平方公式,以及负整数指数幂,熟练掌握公式及法则是解本题的关键.6.(3分)(2015•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6考点:位似变换.分析:利用位似图形的性质首先得出位似比,进而得出面积比.解答:解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.点评:此题主要考查了位似图形的性质,得出位似比是解题关键.7.(3分)(2015•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小考点:扇形面积的计算.分析:作DM⊥AC于M,DN⊥BC于N,构造正方形DMCN,利用正方形和等腰直角三角形的性质,通过证明△DMG≌△DNH,把△DHN补到△DNG的位置,得到四边形DGCH的面积=正方形DMCN的面积,于是得到阴影部分的面积=扇形的面积﹣正方形DMCN的面积,即为定值.解答:解:作DM⊥AC于M,DN⊥BC于N,连接DC,∵CA=CB,∠ACB=90°,∴∠A=∠B=45°,DM=AD=AB,DN=BD=AB,∴DM=DN,∴四边形DMCN是正方形,∴∠MDN=90°,∴∠MDG=90°﹣∠GDN,∵∠EDF=90°,∴∠NDH=90°﹣∠GDN,∴∠MDG=∠NDH,在△DMG和△DNH中,,∴△DMG≌△DNH,∴四边形DGCH的面积=正方形DMCN的面积,∵正方形DMCN的面积=DM2=AB2,∴四边形DGCH的面积=,∵扇形FDE的面积==,∴阴影部分的面积=扇形面积﹣四边形DGCH的面积=(定值),故选C.点评:本题主要考查了等腰直角三角形斜边中线的性质,正方形的性质,全等三角形的判定和性质,能正确作出辅助线构造全等三角形是解题的关键.8.(3分)(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个考点:二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).分析:①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答:解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评:本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.二、细心填一填(本大题共有8小题,每小题3分,共24分)9.(3分)(2015•咸宁)﹣6的倒数是.考点:倒数.分析:根据倒数的定义求解.解答:解:因为(﹣6)×(﹣)=1,所以﹣6的倒数是﹣.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(3分)(2015•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a元.考点:列代数式.分析:8折=80%,把原价当作单位“1”,则现价是原价的80%,根据分数除法的意义原价是:a÷80%=,得结果.解答:解:8折=80%,a÷80%=,故答案为:.点评:本题主要考查了打折问题,找准单位“1”,弄清各种量的关系是解答此题的关键.11.(3分)(2015•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m=3.考点:配方法的应用.专题:计算题.分析:原式配方得到结果,即可求出m的值.解答:解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(x+m)2+n,则m=3,故答案为:3点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.12.(3分)(2015•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为﹣.考点:解二元一次方程组;平方差公式.专题:计算题.分析:方程组第二个方程变形求出x+y的值,原式利用平方差公式化简,将各自的值代入计算即可求出值.解答:解:方程组第二个方程变形得:2(x+y)=5,即x+y=,∵x﹣y=﹣,∴原式=(x+y)(x﹣y)=﹣,故答案为:﹣点评:此题考查了解二元一次方程组,以及平方差公式,熟练掌握运算法则是解本题的关键.13.(3分)(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360人.考点:扇形统计图.分析:根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.解答:解:喜爱科普常识的学生所占的百分比为:1﹣40%﹣20%﹣10%=30%,1200×30%=360,故答案为:360.点评:本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.14.(3分)(2015•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB 沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为8.考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.分析:根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.解答:解:由题意可知,点A移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,﹣x=6,解得x=﹣8,∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′间的距离为8,故答案为:8.点评:本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.15.(3分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.考点:规律型:数字的变化类.分析:首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.解答:解:∵;;;…∴;∴.故答案为:1.6×105或160000.点评:本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.16.(3分)(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE 交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是②④.(把你认为正确的说法的序号都填上)考点:四边形综合题.分析:根据正方形对角线的性质可得出当E移动到与C重合时,F点和D点重合,此时G 点为AC中点,故①错误;求得∠BAE=∠CBF,根据正方形的性质可得AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应角相等可得AE=BF,判断出②正确;根据题意,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,然后求出弧的长度,判断出③错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,根据勾股定理求出最小CG长度.解答:解:∵在正方形ABCD中,BF⊥AE,∴∠AGB保持90°不变,∴G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,∴当E移动到与C重合时,F点和D点重合,此时G点为AC中点,∴AG=GE,故①错误;∵BF⊥AE,∴∠AEB+∠CBF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴故②正确;∵当E点运动到C点时停止,∴点G运动的轨迹为圆,圆弧的长=×2=,故③错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,OC==,CG的最小值为OC﹣OG=﹣1,故④正确;综上所述,正确的结论有②④.故答案为②④.点评:本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出△ABE和△BCF全等是解题的关键,用阿拉伯数字加弧线表示角更形象直观.三、专心解一解(本大题共8小题,满分72分)17.(8分)(2015•咸宁)(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用零指数幂法则计算即可得到结果;(2)原式第一项利用多项式除以单项式法则计算,第二项利用完全平方公式化简,去括号合并即可得到结果.解答:解:(1)原式=﹣1+2+1=3;(2)原式=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.考点:相似三角形的判定;全等三角形的判定.分析:(1)利用相似三角形的性质以及全等三角形的性质得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.解答:解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.点评:此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.19.(8分)(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法.分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.解答:解:(1)△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.20.(9分)(2015•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100 m 93 93 12九(2)班99 95 n 93 8.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.考点:列表法与树状图法;加权平均数;中位数;众数;方差.专题:计算题.分析:(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)画树状图得出所有等可能的情况数,找出另外两个决赛名额落在同一个班的情况数,即可求出所求的概率.解答:解:(1)m=(88+91+92+93+93+93+94+98+98+100)=94;把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,则中位数n=(95+96)=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即10r=6(10﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.22.(10分)(2015•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.考点:一次函数的应用;分式方程的应用.分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.解答:解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)根据题意,得:100x+50y=1800,整理得:y=36﹣2x,∴y与x的函数解析式为:y=36﹣2x.(3)∵甲乙两队施工的总天数不超过26天,∴x+y≤26,∴x+36﹣2x≤26,解得:x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,∵k=0.1>0,∴w随x减小而减小,∴当x=10时,w有最小值,最小值为0.1×10+9=10,此时y=36﹣20=16.答:安排甲队施工10天,乙队施工16天时,施工总费用最低.点评:本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.23.(10分)(2015•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.考点:四边形综合题.分析:(1)根据对等四边形的定义,进行画图即可;(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;(3)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.解答:解:(1)如图1所示(画2个即可).(2)如图2,连接AC,BD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,在Rt△ADB和Rt△ACB中,∴Rt△ADB≌Rt△ACB,∴AD=BC,又∵AB是⊙O的直径,∴AB≠CD,∴四边形ABCD是对等四边形.(3)如图3,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵tan∠PBC=,∴AE=,在Rt△ABE中,AE2+BE2=AB2,即,解得:x1=5,x2﹣5(舍去),∴BE=5,AE=12,∴CE=BC﹣BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,,∴,,综上所述,CD的长度为13、12﹣或12+.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用.24.(12分)(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.。

咸宁中考数学试题答案Word版

咸宁中考数学试题答案Word版

湖北省咸宁市2011年初中毕业生学业考试数学试题参考答案及评分说明说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.一.精心选一选(每小题3分,本大题满分24分) 题号 1 2 3 4 5 6 7 8 答案 B A A D C D B D二.细心填一填(每小题3分,本大题满分24分) 9.> 10.)2)(2(-+m m11.19 12.︒98(不带单位不扣分)13.(如图) 14.61 15.22 16.②③(多填、少填或错填均不给分)三.专心解一解(本大题满分72分) 17.解:原式9234321-⨯-+-= 4分10-=. 6分18.解:两边同时乘以)2)(1(-+x x ,得3)2)(1()2(=-+--x x x x . 3分 解这个方程,得1-=x . 7分 检验:1-=x 时0)2)(1(=-+x x ,1-=x 不是原分式方程的解,原分式方程无解. 8分 19.解法一:∵BC 是⊙O 的切线, ∴BC AB ⊥.在Rt △ABC 中,∵︒=60tan BC AB, ∴3260tan =︒⨯=BC AB .∴321==AB AO . 3分在Rt △AOD 中,︒=∠-︒=∠3090ACB A , ∴2323330cos =⨯=︒⨯=AO AD . 6分A O BC (第13题)3=ADDE=OD⊥,∴2.8分∵AC解法二:连接BE .∵AB 为直径,∴AC BE ⊥. ∴︒=∠-︒=∠3090ACB EBC .∴121==BC EC . 3分在Rt △ABC 中, ∵︒=∠-︒=∠3090ACB A ,∴42==BC AC . ∴314=-=AE . 6分 ∵AC OD ⊥, ∴23==AD DE . 8分20.解:(1)设样本容量为x ,则5360120=⨯x ,所以15=x . 即样本容量为15. 1分 (补全条形统计图如图所示) 2分(2)样本的众数为4万元; 3分 中位数为6万元; 4分 平均数为4.715315473654=⨯+⨯+⨯+⨯(万元). 5分(3)如果想让一半左右的员工都能达到目标,个人年利润可以定为6万元.因为从样本情况看,个人年利润在6万元以上的有7人,占总数的一半左右.可以估计,如果个人年利润定为6万元,将有一半左右的员工获得奖励. 7分(说明:答对“6万元”得1分,理由大致相同,得1分)如果想确定一个较高的目标,个人年利润可以定为7.4万元.因为在样本的众数,中位数和平均数中,平均数最大.可以估计,如果个人年利润定为7.4万元,大约会有51的员工获得奖励. 9分(说明:答对“7.4万元”得1分,理由大致相同,得1分)21.解:(1))220)(40(x x y +-=8006022++-=x x . 4分(2)1250)15(280060222+--=++-=x x x y . 当15=x 时,y 有最大值1250.因此,每桶柴油降价15元后出售,可获得最大利润. 8分 45020401250=⨯-.因此,与降价前比较,每天销售这种柴油可多获利450元. 9分22.(1)在Rt △ABE 和Rt △AGE 中,AG AB =,AE AE =, ∴△ABE ≌△AGE . ∴GAE BAE ∠=∠. 1分 同理,DAF GAF ∠=∠.∴︒=∠=∠4521BAD EAF . 2分(2)222DH ND MN +=.3分∵DAH BAM ∠=∠,︒=∠+∠45DAN BAM ,∴︒=∠+∠=∠45DAN DAH HAN . ∴MAN HAN ∠=∠.O A C BDE (第19题) 0 246 4 万元 6 万元7 万元 15 万元 利润人数又∵AH AM =,AN AN =, ∴△AMN ≌△AHN . ∴HN MN =.5分∵︒=∠90BAD ,AD AB =,∴︒=∠=∠45ADB ABD . ∴︒=∠+∠=∠90ADB HDA HDN .∴222DH ND NH +=. ∴222DH ND MN +=. 6分(3)由(1)知,EG BE =,FG DF =. 设x AG =,则4-=x CE ,6-=x CF .∵222EF CF CE =+,∴22210)6()4(=-+-x x .解这个方程,得121=x ,22-=x (舍去负根). ∴12=AG . 8分∴2122222==+=AG AD AB BD .在(2)中,222DH ND MN +=,DH BM =,∴222BM ND MN +=. 9分设a MN =,则222)23()23212(+--=a a .∴25=a .即25=MN . 10分 23.解:(1)(说明:描点正确得1分,坐标填写正确得1分) 2分(2)22+-=x y ;42+-=x y ;n x y 22+-=. 5分 (说明:写对一个解析式得1分)(3)设点Q 的坐标为),(y x ,依题意,⎩⎨⎧=+-=.,22x y n x y 解这个方程组,得到点Q 的坐标为)32,32(n n . 7分∵平移的路径长为y x +,∴50≤34n≤56. ∴37.5≤n ≤42. 9分 而点Q 的坐标为正整数,因此点Q 的坐标为)26,26(,)28,28(. 10分 24.解:(1))0,3(-A ,)4,0(B . 1分当2=y 时,2434=+x ,23-=x . 所以直线AB 与CD 交点的坐标为)2,23(-. 2分(2)当0<t <23时,△MPH 与矩形AOCD 重合部分的面积即△MPH 的面积.过点M 作OA MN ⊥,垂足为N .由△AMN ∽△ABO ,得AB AMAO AN =.B C D PyABCFDEG(图①)M N P 从点O 出发平移次数 可能到达的点的坐标1次 2次 )4,0(,)2,1(,)0,2( 3次 )6,0(,)4,1(,)2,2(,)0,3( yx O 1 1∴5353tAN =.∴t AN =. 4分∴△MPH 的面积为t t t 23)3(221-=--⨯.当123=-t 时,1=t . 5分当23<t ≤3时,设MH 与CD 相交于点E ,△MPH 与矩形AOCD 重合部分的面积即 △PEH 的面积.过点M 作AO MG ⊥于G ,HP MF ⊥交HP 的延长线于点F . )(cos HO AO BAO AM AH AG FM --∠⨯=-=32)3(5335-=--⨯=t t t .tt BAO AM GM HF 345435sin =⨯=∠⨯==.由△HPE ∽△HFM ,得HF HP FM PE =.∴t t PE 34232=-.∴t t PE 296-=. 8分 ∴△PEH 的面积为t t t t 296296221-=-⨯⨯. 当1296=-t t 时,49=t . 综上所述,若△MPH 与矩形AOCD 重合部分的面积为1,t 为1或49. 9分 (3)HQ PH BP ++有最小值.连接PB ,CH ,则四边形PHCB 是平行四边形.∴CH BP =. ∴2++=++HQ CH HQ PH BP .当点C ,H ,Q 在同一直线上时,HQ CH +的值最小. 11分∵点C ,Q 的坐标分别为)2,0(,)4,6(--, ∴直线CQ 的解析式为2+=x y , ∴点H 的坐标为)0,2(-. 因此点P 的坐标为)2,2(-. 12分(注:可编辑下载,若有不当之处,请指正,谢谢!)A OBCD M P H x y (第24题)G E F。

湖北省咸宁市中考数学试卷

湖北省咸宁市中考数学试卷

湖北省咸宁市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·金华) 下列各组数中,把两数相乘,积为1的是()A . 2和-2B . -2和C . 和D . 和-2. (2分)(2019·怀集模拟) 下列计算正确的是()A . x2﹣3x2=﹣2x4B . (﹣3x2)2=6x2C . x2y•2x3=2x6yD . 6x3y2÷(3x)=2x2y23. (2分)(2017·常州模拟) 在函数y= 中,自变量x的取值范围是()A . x<2B . x≤2C . x>2D . x≥24. (2分) (2017九上·宁县期末) 二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A . (1,3)B . (﹣1,3)C . (1,﹣3)D . (﹣1,﹣3)5. (2分) (2016九上·肇源月考) 不等式-3x≥6的解集在数轴上表示为()A .B .C .D .6. (2分)(2019·河南模拟) 若一组数据2,x,8,4,2的平均数是6,则这组数据的中位数和众数分别是()A . 8,2B . 3,2C . 4,2D . 6,87. (2分) (2016七下·老河口期中) 下列各语句:①对顶角相等吗?②延长线段AB;③内错角相等;④垂线段最短.其中真命题有()A . 1个B . 2个C . 3个D . 4个8. (2分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A . 2B . 4C .D . 5二、填空题 (共8题;共8分)9. (1分)(2019·黔东南) 分解因式:9x2-y2=________.10. (1分) (2019七上·法库期末) 我国最新研制出的“曙光超级服务器”的峰值速度达到次/秒,数据用科学记数法表示为________.11. (1分)(2018·成都模拟) 已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3 x+8=0,则△ABC 的周长是________.12. (1分) (2019七上·施秉月考) 若x2-3x=-1,则-x2+3x+4的值为________.13. (1分) (2019七上·静安期末) 在小于等于9的正整数中任意取出一个数,取到素数的可能性大小是________.14. (1分)(2019·扬州) 将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=________.15. (1分)(2017·静安模拟) 如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于________.16. (1分) (2019九上·绿园期末) 如图,在平面直角坐标系中,抛物线与抛物线都经过轴正半轴上的点 .过点作轴的平行线,分别与这两条抛物线交于、两点,以为边向下作等边,则的周长为________.三、解答题 (共8题;共91分)17. (5分)计算或化简:(1) 30﹣2﹣3+(﹣3)2﹣()﹣1(2)(﹣2a2b3)4+(﹣a)8•(2b4)3(3)(﹣ x+2y)(﹣ x﹣2y)(4)(2a+1)﹣(1﹣2a)2(5)(3x﹣y)2﹣(2x+y)+5x(y﹣x)(6)(x+5)2﹣(x﹣5)2﹣(2x+1)(﹣2x﹣1)(7)(a+1)(a﹣1)(a2+1)(a4+1)(a8+1)(8)(﹣2a﹣b+3)(﹣2a+b+3)18. (15分) (2016八下·凉州期中) 如图所示,在△ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF为平行四边形.19. (10分)(2013·镇江) 通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.(1)写出点B的坐标,并求a的值;(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).①求n的值;②分别写出平移后的两个图象C′和l′对应的函数关系式;③直接写出不等式的解集.20. (16分)(2018·东营) 2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=________,b=________,c=________,d=________;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21. (5分)(2018·山西) 2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.22. (10分)(2017·广陵模拟) 为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).23. (15分)(2015·舟山) 小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数.(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?24. (15分)(2018·宜宾模拟) 如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共91分)17-1、17-2、17-3、17-4、17-5、17-6、17-7、17-8、18-1、19-1、19-2、20-1、20-2、20-3、20-4、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

咸宁市中考数学试卷含解析

咸宁市中考数学试卷含解析

咸宁市2015年中考数学试卷(含解析)咸宁市2015年中考数学试卷(含解析)一、选择题(共8小题,每小题3分,满分24分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.考点:正数和负数..分析:求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.解答:解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.点评:本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2.(3分)(2015咸宁)方程2x﹣1=3的解是()A.﹣1B.﹣2C.1D.2考点:解一元一次方程..专题:计算题.分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.(3分)(2015咸宁)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体考点:由三视图判断几何体..分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.(3分)(2015咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()A.50°B.40°C.30°D.25°考点:平行线的性质..分析:由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.解答:解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.5.(3分)(2015咸宁)下列运算正确的是()A.a6÷a2=a3B.(a+b)2=a2+b2C.2﹣3=﹣6D.=﹣3考点:同底数幂的除法;立方根;完全平方公式;负整数指数幂..专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式利用完全平方公式化简得到结果,即可做出判断;C、原式利用负整数指数幂法则计算得到结果,即可做出判断;D、原式利用立方根定义计算得到结果,即可做出判断.解答:解:A、原式=a4,错误;B、原式=a2+b2+2ab,错误;C、原式=,错误;D、原式=﹣3,正确,故选D点评:此题考查了同底数幂的除法,立方根,完全平方公式,以及负整数指数幂,熟练掌握公式及法则是解本题的关键.6.(3分)(2015咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2B.1:4C.1:5D.1:6考点:位似变换..分析:利用位似图形的性质首先得出位似比,进而得出面积比.解答:解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.点评:此题主要考查了位似图形的性质,得出位似比是解题关键.7.(3分)(2015咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小考点:扇形面积的计算..分析:作DM⊥AC于M,DN⊥BC于N,构造正方形DMCN,利用正方形和等腰直角三角形的性质,通过证明△DMG≌△DNH,把△DHN补到△DNG的位置,得到四边形DGCH的面积=正方形DMCN的面积,于是得到阴影部分的面积=扇形的面积﹣正方形DMCN的面积,即为定值.解答:解:作DM⊥AC于M,DN⊥BC于N,连接DC,∵CA=CB,∠ACB=90°,∴∠A=∠B=45°,DM=AD=AB,DN=BD=AB,∴DM=DN,∴四边形DNCN是正方形,∴∠MDN=90°,∴∠MDG=90°﹣∠GDN,∵∠EDF=90°,∴∠NDH=90°﹣∠GDN,∴∠MDG=∠NDH,在△DM G和△DNH中,,∴△DMG≌△DNH,∴四边形DGCH的面积=正方形DMCN的面积,∵正方形DMCN的面积=DM2=AB2,∴四边形DGCH的面积=,∵扇形FDE的面积==,∴阴影部分的面积=扇形面积﹣四边形DGCH的面积=(定值),故选C.点评:本题主要考查了等腰直角三角形斜边中线的性质,正方形的性质,全等三角形的判定和性质,能正确作出辅助线构造全等三角形是解题的关键.8.(3分)(2015咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个考点:二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组)..分析:①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答:解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评:本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.二、细心填一填(本大题共有8小题,每小题3分,共24分)9.(3分)(2015咸宁)﹣6的倒数是.考点:倒数..分析:根据倒数的定义求解.解答:解:因为(﹣6)×(﹣)=1,所以﹣6的倒数是﹣.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(3分)(2015咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a元.考点:列代数式..分析:8折=80%,把原价当作单位“1”,则现价是原价的80%,根据分数除法的意义原价是:a÷80%=,得结果.解答:解:8折=80%,a÷80%=,故答案为:.点评:本题主要考查了打折问题,找准单位“1”,弄清各种量的关系是解答此题的关键.11.(3分)(2015咸宁)将x2+6x+3配方成(x+m)2+n 的形式,则m=3.考点:配方法的应用..专题:计算题.分析:原式配方得到结果,即可求出m的值.解答:解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(x+m)2+n,则m=3,故答案为:3点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.12.(3分)(2015咸宁)如果实数x,y满足方程组,则x2﹣y2的值为﹣.考点:解二元一次方程组;平方差公式..专题:计算题.分析:方程组第二个方程变形求出x+y的值,原式利用平方差公式化简,将各自的值代入计算即可求出值.解答:解:方程组第二个方程变形得:2(x+y)=5,即x+y=,∵x﹣y=﹣,∴原式=(x+y)(x﹣y)=﹣,故答案为:﹣点评:此题考查了解二元一次方程组,以及平方差公式,熟练掌握运算法则是解本题的关键.13.(3分)(2015咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360人.考点:扇形统计图..分析:根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.解答:解:喜爱科普常识的学生所占的百分比为:1﹣40%﹣20%﹣10%=30%,1200×30%=360,故答案为:360.点评:本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.14.(3分)(2015咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为8.考点:一次函数图象上点的坐标特征;坐标与图形变化-平移..分析:根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.解答:解:由题意可知,点A移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,﹣x=6,解得x=﹣8,∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′间的距离为8,故答案为:8.点评:本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.15.(3分)(2015咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400=1.6×105或160000.考点:规律型:数字的变化类..分析:首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.解答:解:∵;;;…∴;∴.故答案为:1.6×105或160000.点评:本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.16.(3分)(2015咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是②③.(把你认为正确的说法的序号都填上)考点:四边形综合题..分析:根据正方形对角线的性质可得出当E移动到与C重合时,AG=GE,故①错误;求得∠BAE=∠CBF,根据正方形的性质可得AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应角相等可得AE=BF,判断出②正确;根据题意,G点的轨迹是以A为圆心以AB长为半径的圆弧BD的长,然后求出弧BD的长度,判断出③正确;正方形的对角线减去圆弧的半径就是CG的最小值,通过计算从而判断出④错误.解答:解:∵在正方形ABCD中,AE、BD垂直平分,∴当E移动到与C重合时,AG=GE,故①错误;∵BF⊥AE,∴∠AEB+∠CBF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴故②正确;根据题意,G点的轨迹是以A为圆心以AB长为半径的圆弧BD的长,∴圆弧BD的长==π,故③正确;CG的最小值为AC﹣AB=4﹣2,故④错误;综上所述,正确的结论有②③.故答案为②③.点评:本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出△ABE和△BCF全等是解题的关键,用阿拉伯数字加弧线表示角更形象直观.三、专心解一解(本大题共8小题,满分72分)17.(8分)(2015咸宁)(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.考点:整式的混合运算;实数的运算;零指数幂..专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用零指数幂法则计算即可得到结果;(2)原式第一项利用多项式除以单项式法则计算,第二项利用完全平方公式化简,去括号合并即可得到结果.解答:解:(1)原式=﹣1+2+1=3;(2)原式=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.考点:相似三角形的判定;全等三角形的判定..分析:(1)利用相似三角形的性质以及全等三角形的性质得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.解答:解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.点评:此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.19.(8分)(2015咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法..分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.解答:解:(1)△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0&#8660;方程有两个不相等的实数根;△=0&#8660;方程有两个相等的实数根;△<0&#8660;方程没有实数根是解题的关键.20.(9分)(2015咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100 九(2)班:89,93,93,93,95,96,96,98,98,99 通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班9995n938.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.考点:列表法与树状图法;加权平均数;中位数;众数;方差..专题:计算题.分析:(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)画树状图得出所有等可能的情况数,找出另外两个决赛名额落在同一个班的情况数,即可求出所求的概率.解答:解:(1)m=(88+91+92+93+93+93+94+98+98+100)=94;把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,则中位数n=(95+96)=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)(2015咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质..分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=ACAF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即8r=6(8﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=ACAF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.22.(10分)(2015咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.考点:一次函数的应用;分式方程的应用..分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.解答:解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)根据题意,得:100x+50y=1800,整理得:y=36﹣2x,∴y与x的函数解析式为:y=36﹣2x.(3)∵甲乙两队施工的总天数不超过26天,∴x+y≤26,∴x+36﹣2x≤26,解得:x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,∵k=0.1>0,∴w随x减小而减小,∴当x=10时,w有最小值,最小值为0.1×10+9=10,此时y=36﹣20=16.答:安排甲队施工10天,乙队施工16天时,施工总费用最低.点评:本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.23.(10分)(2015咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.考点:四边形综合题..分析:(1)根据对等四边形的定义,进行画图即可;(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;(3)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.解答:解:(1)如图1所示(画2个即可).(2)如图2,连接AC,BD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,在Rt△ADB和Rt△ACB中,∴Rt△ADB≌Rt△ACB,∴AD=BC,又∵AB是⊙O的直径,∴AB≠CD,∴四边形ABCD是对等四边形.(3)如图3,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵tan∠PBC=,∴AE=,在Rt△ABE中,AE2+BE2=AB2,即,解得:x1=5,x2﹣5(舍去),∴BE=5,AE=12,∴CE=BC﹣BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,,∴,,综上所述,CD的长度为13、12﹣或12+.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用.24.(12分)(2015咸宁)如图1,已知直线y=x+3与x 轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.考点:反比例函数综合题..分析:(1)根据一次函数的性质,结合函数图象可写出新函数的两条性质;求新函数的解析式,可分两种情况进行讨论:①x≥﹣3时,显然y=x+3;②当x<﹣3时,利用待定系数法求解;(2)①先把点C(1,a)代入y=x+3,求出C(1,4),再利用待定系数法求出反比例函数解析式为y=.由点D 是线段AC上一动点(不包括端点),可设点D的坐标为(m,m+3),且﹣3<m<1,那么P(,m+3),PD=﹣m,再根据三角形的面积公式得出△PAD的面积为S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,然后利用二次函数的性质即可求解;②先利用中点坐标公式求出AC的中点D的坐标,再计算DP,DE的长度,如果DP=DE,那么根据对角线互相平分的四边形是平行四边形可得四边形PAEC为平行四边形;如果DP≠DE,那么不是平行四边形.解答:解:(1)如图1,均是正整数新函数的两条性质:①函数的最小值为0;②函数图象的对称轴为直线x=﹣3;由题意得A点坐标为(﹣3,0).分两种情况:①x≥﹣3时,显然y=x+3;②当x<﹣3时,设其解析式为y=kx+b.在直线y=x+3中,当x=﹣4时,y=﹣1,则点(﹣4,﹣1)关于x轴的对称点为(﹣4,1).把(﹣4,1),(﹣3,0)代入y=kx+b,得,解得,∴y=﹣x﹣3.综上所述,新函数的解析式为y=;(2)如图2,①∵点C(1,a)在直线y=x+3上,∴a=1+3=4.∵点C(1,4)在双曲线y=上,∴k=1×4=4,y=.∵点D是线段AC上一动点(不包括端点),∴可设点D的坐标为(m,m+3),且﹣3<m<1.∵DP∥x轴,且点P在双曲线上,∴P(,m+3),∴PD=﹣m,∴△PAD的面积为S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,∵a=﹣<0,∴当m=﹣时,S有最大值,为,又∵﹣3<﹣<1,∴△PAD的面积的最大值为;②在点D运动的过程中,四边形PAEC不能为平行四边形.理由如下:当点D为AC的中点时,其坐标为(﹣1,2),此时P点的坐标为(2,2),E点的坐标为(﹣5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.点评:本题是反比例函数综合题,其中涉及到利用待定系数法求反比例函数、一次函数的解析式,反比例函数、一次函数图象上点的坐标特征,三角形的面积,二次函数最值的求法,平行四边形的判定等知识,综合性较强,难度适中.利用数形结合、分类讨论是解题的关键.。

2015年全国中考数学试卷分类汇编专题1 有理数

2015年全国中考数学试卷分类汇编专题1 有理数

2015年全国中考数学试卷解析分类汇编专题1 有理数一.选择题1.(2015•安徽, 第1题4分)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B. 2 C.﹣1D. 3 2.(2015•安徽, 第3题4分)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B. 1.62×106C. 1.62×108D.0.162×109 3.(2015•海南, 第1题3分)﹣2015的倒数是()A.﹣ B. C.﹣2015 D. 20154.(2015•海南,第6题3分)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是() A. 4 B. 5 C. 6 D. 75.(2015•鄂州, 第1题3分)﹣的倒数是()A. B. 3 C.﹣3 D.﹣6.(2015•鄂州, 第2题3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. 3.9×104 B. 3.94×104 C.39.4×103 D. 4.0×1047.(2015•大连, 第1题3分)﹣2的绝对值是()A. 2 B.﹣2 C. D.8.(2015•湖北, 第2题3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A. 3.7×106 B. 3.7×105 C.37×104 D. 3.7×1049.(2015•宜昌,第3题3分)陆地上最高处是珠穆朗玛峰顶,高出海平面8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为4m记作+4m,那么向左运动4m记作()14. (2015江苏常州第1题2分)-3的绝对值是A .3B .-3C .31D .-31 15. (2015江苏淮安第1题)2的相反数是( )A 、21B 、21- C 、2 D 、-2 16. (2015江苏连云港第1题3分)-3的相反数是( )A .3B .-3C .13D .-1317. (2015江苏连云港第3题3分)2014年连云港高票当选全国“十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约18 000元.其中“18 000”用科学记数法表示为( )A .0.18×105B .1.8×103C .1.8×104D .18×10318. (2015江苏扬州第2题3分)2015年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( )A 、71049.7⨯B 、61049.7⨯C 、6109.74⨯D 、710749.0⨯ 020、(2015年浙江省义乌市中考,1,4分)计算3)1(⨯-的结果是A. -3B. -2C. 2D. 321、(2015年浙江省义乌市中考,2,4分)据报道,2015年第一季度,义乌电商实现交易额约为26 000 000 000元,同比增长22%,将26 000 000 000用科学计数法表示为A. 2.6×1010B. 2.6×1011C. 26×1010D. 0.26×101122、(2015年浙江舟山1,3分) 计算23-的结果是【 】A. -1B. 2-C. 1D. 223、(2015年浙江舟山3,3分) 截至今年4月10日,舟山全市蓄水量为84 327000m 3,数据84 327 000用科学计数法表示为【 】A. 0.8437×108B. 8.437×107C. 8.437×108D. 8437×10324.(2015•东营,第1题3分)|﹣|的相反数是()A. B.﹣C. 3 D.﹣3A.﹣2 B. 2 C.﹣ D.27.(2015•云南,第4题3分) 2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104C. 1.758×105D.1.758×10428.(2015•山东德州,第1题3分) ||的值是()A.B.1/2 C.﹣2 D. 229.(2015•山东德州,第3题3分)2014年德州市农村中小学校含标准化工程开工学校项目356个,开工面积56.2万平方米,开式面积量创历年最高,56.2万平方米用科学记数法表示正确的是()A.5.62×104m2 B. 56.2×104m2C. 5.62×105m2D.0.562×104m2 30.(2015•山东德州,第4题3分)下列运算正确的是()A.﹣=B.b2•b3=b6C.4a﹣9a=﹣5 D.(ab2)2=a2b4 31.(2015•山东莱芜,第1题3分)﹣3的相反数是()A. 3 B.﹣3 C. D.﹣32.(2015•山东莱芜,第2题3分)将数字2.03×10﹣3化为小数是()A. 0.203 B. 0.0203 C. 0.00203 D. 0.00020333.(2015•山东莱芜,第3题3分)下列运算正确的是()A.(﹣a2)•a3=﹣a6 B. a6÷a3=a2 C. a2+a3=a5 D.(a3)2=a634.(2015•山东泰安,第1题3分)若()﹣(﹣2)=3,则括号内的数是()A.﹣1 B. 1 C. 5 D.﹣535.(2015•山东泰安,第2题3分)下列计算正确的是()A.a4+a4=a8B.(a3)4=a7C.12a6b4÷3a2b﹣2=4a4b2D.(﹣a3b)2=a6b236.(2015•山东泰安,第4题3分)地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B. 5.1×109C. 5.1×108D.0.51×10737.(2015•四川巴中,第1题3分)﹣2的倒数是()A. 2 B. 1/2 C.-1/2 D.﹣238.(2015•四川巴中,第2题3分)下列计算正确的是()A.(a3)3=a6B. a6÷a3=a2C. 2a+3b=5ab D.a2•a3=a5 39.(2015•四川巴中,第4题3分)若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A. a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 40.(2015•四川成都,第1题3分)﹣3的倒数是()A.﹣1/3 B 1/3 C.﹣3 D.341.(2015•四川成都,第3题3分)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米,用科学记数法表示为()A.126×104B. 1.26×105C. 1.26×106D.1.26×10742.(2015•四川成都,第4题3分)下列计算正确的是()A.a2+a2=a4B. a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1 43.(2015•四川成都,第7题3分)实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()A.a+b B. a﹣b C. b﹣a D.﹣a﹣b44.(2015•怀化,第1题4分)某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃ B. 10℃ C. 14℃ D.﹣14℃45.(2015•娄底,第1题3分)2015的倒数为()A.﹣2015 B. 2015 C.﹣ D.46.(2015•娄底,第2题3分)若|a﹣1|=a﹣1,则a的取值范围是() A.a≥1 B.a≤1 C. a<1 D. a>147.(2015•长沙,第3题3分)2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线每天承动力约为185000人次,则数据185000用科学记数法表示为()A. 1.85×105 B. 1.85×104 C. 1.8×105 D.18.5×104 48.(2015•本溪,第1题3分)实数﹣的相反数是()A.1/2 B.-1/2 ﹣C. 2 D.﹣249.(2015•昆明第1题,3分)﹣5的绝对值是()A.5 B.﹣5 C.1/5 D.±550.(2015•曲靖第1题,3分)﹣2的倒数是()A.﹣1/2 B.﹣2 C.1/2 D.251。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档