八下末数学过关练习题
初中数学八年级下期末经典练习题(含答案解析)(2)
一、选择题1.(0分)[ID :10223]下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等 D .如果两个角都是45°,那么这两个角相等2.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,243.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .4.(0分)[ID :10146]为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50 5.(0分)[ID:10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方ab ,形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若8大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.36.(0分)[ID:10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-67.(0分)[ID:10187]某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵8.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√3139.(0分)[ID:10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t (单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m210.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.211.(0分)[ID:10169]直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C.7D.5或712.(0分)[ID:10168]无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限13.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.614.(0分)[ID:10158]下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=15.(0分)[ID:10157]如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.8二、填空题16.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.17.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.18.(0分)[ID :10320]如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=,则E ∠=___.19.(0分)[ID :10315]计算:182-=______. 20.(0分)[ID :10308]如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.21.(0分)[ID :10304]若x <222)x -(﹣x|的正确结果是__.22.(0分)[ID :10288]某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
八下数学期末复习题
罗平县阿岗一中2013——2014学年八年级下学期数学期末复习题一、选择题(每小题3分,共30分)1、已知a <b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a -2、已知1a a+=1a a -的值为( )A.± B .8 C. D .63、12a =-,则A .12a <B .12a ≤C .12a >D . 12a ≥4、下列命题中是真命题的是( )A .两边相等的平行四边形是菱形B .一组对边平行一组对边相等的四边形是平行四边形C .两条对角线相等的平行四边形是矩形D .对角线互相垂直且相等的四边形是正方形 5、已知a 、b 、c 是三角形的三边长,(a -9)2c 15-=0,则三角形的形状是( ) A .底与腰不相等的等腰三角形 B .等边三角形 C .钝角三角形 D .直角三角形 6、到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点7、已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( •)A .y >0B .y <0C .-2<y <0D .y <-28、已知点A (2-a ,a +1)在第四象限,则a 的取值范围是( )A 、a>2B 、-1<a<2C 、a<-1D 、a<19、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( )A :26B :18C :20D :2110、在四边形ABCD 中,若有下列四个条件:①AB//CD ;②AD=BC ;③∠A=∠C ;④AB=CD ,现以其中的两个条件为一组,能判定四边形ABCD 是平行四边形的条件有 ( ) A .3组 B .4组 C .5组 D .6组 二、填空题 (每小题3分,共30分)11、()()=-+201520141011101112、 命题:“全等三角形的对应角相等”的逆命题是_____________________________,这条逆命题是______命题(填“真”或“假”)13、一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距 。
第七章数据的收集整理描述【过关测试基础】-八年级数学下册单元复习过过过(原卷版)(苏科版)
第七章 数据的收集、整理、描述(基础)一.选择题(共10小题)1.为了解某县八年级4000名学生近视的情况,随机抽取了其中200名学生进行视力检查并统计,下列判断不正确的是( ) A .4000名学生的视力是总体B .样本容量是4000C .200名学生的视力是样本D .每名学生的视力是个体2.下列采用的调查方式中,不合适的是( )A .为了了解全国中学生的身高状况,采用抽样调查的方式B .对某型号电子产品的使用寿命采用抽样调查的方式C .某大型企业对生产的产品的合格率进行普查D .为了了解人们保护水资源的意识,采用抽样调查的方式 3.下列调查中,最适合采用全面调查的是( ) A .调查我国初中生的周末阅读时间B .调查“神舟十五号”飞船各零部件的合格情况C .调查某品牌汽车的抗撞击能力D .调查巢湖的水质情况4.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“亚健康”的频率是( )类型 健康 亚健康 不健康 数据(人) 3271A .7B .13C .740D .175.某校举行学雷锋社会实践活动,如图反映了某班9名同学的参加次数,则这9名同学每人平均参加活动的次数为( )A.2次B.3次C.4次D.5次6.要表示一位新冠病毒感染患者由阳转阴的体温变化情况,选择()统计图比较合适.A.统计表B.条形统计图C.折线统计图D.扇形统计图7.如图,整个圆代表八年级全体同学参加数学拓展课的总人数,其中参加“生活数学”拓展课的人数占总人数的38%,则图中表示“生活数学”拓展课人数的扇形是()A.M B.N C.P D.Q8.在实数−217,√8,√−83,π3,0.10101…中,无理数出现的频率是()A.20% B.40% C.60% D.80%9.如图是某班级一次数学考试成绩的频数分布直方图(每组包含最大值,不包含最小值).下列说法不正确的是()A.得分在70﹣80分的人数最多B.组距为10C.人数最少的得分段的频率为5%D.得分及格(>60)的有12人10.如图是某超市2017~2021年的销售额及其增长率的统计图,下列结论正确的是()A.这5年中,销售额先增后减再增B.这5年中,增长率先变大后变小C.2021年比2019年销售额增长了0.5%D.2019年比2017年销售额增长4.09万元二.填空题(共10小题)11.为了解某学校七年级1200名同学的视力情况,调查员从中随机抽取80名同学进行调查,本次调查的样本容量是.12.已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是.13.为了解10000只灯泡的使用寿命,从中抽取40只进行试验,则该考查中的样本容量是.14.小颖调查某超市某一天畅销的4种瓶装品牌酸奶销售量,并把销售量统计如下:酸奶品牌A B C D销售量/瓶450365300470为了更清楚地描述上述数据,还可以选择统计图(填“条形”“折线”“扇形”).15.下列调查中,适宜使用抽样调查方式,“”适宜使用普查方式.(只填序号)①了解全国中小学生每天的零花钱;②调查某校篮球运动员的身高;③了解某校八年级(1)班期末考试总成绩;④调查20~25岁年轻人最崇拜的偶像.16.2022年11月13日,全球首个“国际红树林中心”落地深圳.为了解学生对红树林生态系统的认知水平,龙岗区某校对初中部1200名学生进行了红树林生态系统知识测试,并从中抽取了100名学生的成绩进行统计分析.下列说法正确的是.(填序号)①1200名学生是总体;②100名学生的测试成绩是总体的一个样本;③样本容量是100名学生;④该校初中部每个学生的测试成绩是个体.17.北京2022年冬奥会、冬残奥会的主题口号是“一起向未来”,译成英文为“T ogetherfora S hared F uture”,译文中字母“a”出现的频率是.18.一个不透明的口袋中装着只有颜色不同的红、白两球共10个,搅匀后从中随机摸出一个球,记下它的颜色后放回搅匀,如此这样共摸球100次,发现70次摸到红球,估计这个口袋中有个红球.19.甲、乙两家汽车销售公司根据近几年的销售量分别制作统计图如图,从2020年到2022年的变化趋势可以得出,这两家公司销售量增长较快的是公司.(填“甲”或“乙”)20.如图所示,是单县某校对学生到校方式的情况统计图,若该校骑自行车到校的学生有200人,则步行到校的学生有人.三.解答题(共10小题)21.学校开展“书香校园“活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表,请你根据统计图表中的信息,解答下列问题:借阅图书次数0次1次2次3次4次及以上人数713a103(1)a=,b=;(2)求表示“借阅图书3次”的扇形的圆心角的度数;(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.22.某校为提高学生的综合素质,准备开设“泥塑”“绘画”“书法”“街舞”四门校本课程,为了解学生对这四门课程的选择情况(要求每名学生只能选择其中一门课程),学校从七年级学生中随机抽取部分学生进行问卷调查,根据调查结果绘制成如图所示的两幅不完整的统计图.请你依据图中信息解答下列问题:(1)参加此次问卷调查的学生人数是人;(2)在扇形统计图中,选择“泥塑”的学生所对应的扇形圆心角的度数是;(3)通过计算将条形统计图补充完整;(4)若该校七年级共有800名学生,请估计七年级学生中选择“书法”课程的约有多少人?23.为了了解学校图书馆上个月借阅情况,管理员对学生借阅艺术、经济、科普及生活四类图书的情况进行了统计,并绘制了如下的不完整统计图,请根据图中信息解答下列问题:(1)求上个月借阅图书的学生人次和扇形统计图中“经济”部分的圆心角度数;(2)将条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书共2000册,请你估算“科普”类图书应添置多少册合适?24.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某学校开设了“烹饪、种菜、家用小电器维修、课桌椅维修”4个班级,随机调查了部分学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息.解答下列问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,“课桌椅维修”对应的圆心角为度;(3)将条形统计图补充完整;(4)如果该校初中学生共有2000名,那么选择“种菜”的学生约有多少人?25.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只能选一种),在全校范围内随机调查了部分学生,并将统计结果绘制成如下所示两幅不完整的统计图,请结合图中所给信息,解答下列问题:(1)本次调查问卷共调查了名学生,表示“其它”的扇形圆心角的度数是;(2)请你补充完整条形统计图;(3)如果该校有2100名学生,请估计该校最喜欢用“微信”进行沟通的学生约有多少名?26.某校体育设施向社会免费开放,对一周内到校运动健身的市民人数进行了统计,并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题.(1)一周内到校运动健身的市民总人数为多少?(2)补全条形统计图与扇形统计图.(3)为了给运动健身的市民提供更多的便利,你认为学校可以在哪些运动项目的场地加大投入?请结合数据说明理由.27.如图,是某村农作物种植面积的统计图,看图解答以下各题:(1)在扇形统计图中的括号内填上适当的数据.(2)棉花占40%,则表示它的扇形的圆心角是多少度?(3)如果水稻种了240公顷,那么棉花种了多少公顷?(4)在第(3)小题的条件下,该村农作物种植的总面积是多少公顷?28.为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校也都开展了远程网络教学,历下区某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论.为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据上面提供的信息,回答下列问题:(1)本次接受问卷调查的学生共有人,在扇形统计图中“在线听课”所占的百分比为,在扇形统计图中“在线讨论”所对应扇形圆心角为度.(2)请补全条形统计图;(3)若该校共有800名学生,请你估计该校学生对“在线听课”和“在线答疑”感兴趣的共有多少人?29.某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生调查了他们的平均每周的课外阅读时间t(单位:小时).把调查结果分为四档A档:t≤8;C档9≤t≤10;D档:t≥10.根据调查情况,并绘制成两幅统计图(不完整).根据以上信息解答问题:(1)本次调查的A档次的学生人数有人,并将条形图补充完整;(2)C档所在扇形统计图中圆心角的度数为度;(3)已知全校共1200名学生,请你估计全校B档和A档共有多少人?30.我们的生活中会产生大量垃圾,垃圾分类是实现垃圾减量化、资源化、无害化,避免垃圾围成的有效途径.某城市环保部门为了提高居民垃圾分类的意识,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,按A:可回收物,B:厨余垃圾,C:有害垃圾,D:其他垃圾进行了统计,并绘制了以下统计图:根据统计图解答下列问题:(1)请将条形统计图补充完整;(2)在扇形统计图中,产生的有害垃圾C所对应的圆心角为度;(3)调查发现,在可回收物中塑料类垃圾占10%,每回收1吨塑料类垃圾可获得0.5吨二级原料.假设该城市每月产生的生活垃圾为1000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?。
陕西省铜川市八下数学期末期末模拟试卷2020-2021学年数学八年级第二学期期末达标测试试题含解析
陕西省铜川市八下数学期末期末模拟试卷2020-2021学年数学八年级第二学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,四边形ABCD中,对角线AC与BD相交于O,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AO=CO B.AB∥DC,∠ABC=∠ADCC.AB=DC,AD=BC D.AB=DC,∠ABC=∠ADC2.某班30名学生的身高情况如下表:身高(m) 1.45 1.48 1.50 1.53 1.56 1.60人数x y6854关于身高的统计量中,不随x、y的变化而变化的有()A.众数,中位数B.中位数,方差C.平均数,方差D.平均数,众数3.如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A 322B2C.2D.24.下列所述图形中,既是中心对称图形,又是轴对称图形的是()A .矩形B .平行四边形C .正五边形D .正三角形5.如图,在ABCD 中,50C ︒∠=,55BDC ︒∠=,则ADB ∠的度数是( )A .105︒B .75︒C .35︒D .15︒6.若实数a 、b 满足ab <0,则一次函数y =ax+b 的图象可能是( )A .B .C .D .7.如图,点E 为菱形ABCD 边上的一个动点,并沿A →B →C →D 的路径移动,设点E 经过的路径长为x ,ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .8.在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,再向下平移2个单位长度,所得到的点坐标为( ) A .(1,0) B .(1,2) C .(5,4) D .(5,0)9.将正比例函数y=2x 的图象向下平移2个单位长度,所得图象对应的函数解析式是( )A .y=2x-1B .y=2x+2C .y=2x-2D .y=2x+110.如图所示,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E ,F 分别在BC 和CD 上.下列结论:①CE CF =;②75AEB ∠=︒;③BE DF EF +=;④23ABCD S =+正方形.其中结论正确的序号是( )A .①②③B .①②④C .①③④D .②③④二、填空题(每小题3分,共24分)11.要使二次根式3x -有意义,则x 的取值范围是________.12.在平行四边形ABCD 中,若∠A +∠C =160°,则∠B =_____.13.如果,m n 是两个不相等的实数,且满足223,3m m n n -=-=,那么代数式2222015n mn m -++=_____. 14.如图,Rt △ABC 中,∠ACB=90°,点D 为斜边AB 的中点,CD=6cm ,则AB 的长为 cm .15.如图,在△ABC 中,∠ACB =90°,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使CD =BD ,连接DM 、DN 、MN .若AB =6,则DN =___.16.小玲在一次班会中参加知识抢答活动,现有语文题5道,数学题6道,综合题7道,她从中随机抽取1道,抽中数学题的概率是_________.17.计算:2112019()2--++-=___________18.若关于x 的一元二次方程(k ﹣1)x 2+3x ﹣1=0有实数根,则k 的取值范围是_____.三、解答题(共66分)19.(10分)在平面直角坐标系xOy 中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=()0()0y x y x -<⎧⎪⎨⎪⎩ ,则称点Q 为点P 的“可控变点”。
最新浙江省2022-2022年八年级下期末数学试卷含答案解析
八年级(下)期末数学试卷一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内. 1.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠12.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6 D.÷=33.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B. C.D.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm28.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第象限.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF 的周长为.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是分.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.21.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B 两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)2022-2022学年河南省周口市周口港区八年级(下)期末数学试卷参考答案与试题解析一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内. 1.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵代数式+有意义,∴,解得x≥0且x≠1.故选D.【点评】本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.2.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6 D.÷=3【考点】二次根式的混合运算.【专题】探究型.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.【解答】解:∵ +不能合并,故选项A错误;∵4﹣3=4﹣6,故选项B错误;∵2×3=18,故选项C错误;∵÷=3,故选项D正确;故选D.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B. C.D.【考点】一次函数的图象.【分析】根据y=kx+b,k<0时,y随x的增大而减小,可得答案.【解答】解:由y=ax﹣a中,y随x的增大而减小,得a<0,﹣a>0,故B正确.故选:B.【点评】本题考查了一次函数图象,利用一次函数的性质是解题关键.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条【考点】线段垂直平分线的性质;正弦定理与余弦定理;角平分线的性质.【分析】由角平分线的性质可得AD=DE,∠ABD=∠DBE,由垂直平分线性质可得BD=DC,∠DBE=∠DCE,已知AD,则结合这些信息可以求得AB,BE,CE的长.【解答】解:∵DE是BC的垂直平分线,∴BD=DC,BE=EC,∠DBE=∠DCE,DE⊥BC,∵∠ABC的平分线BD交AC于点D,∴∠ABD=∠DBE,∵AD⊥AB,DE⊥BE,∴DE=AD=2,∵∠BAC=90°,∴∠DBE=∠DCE=∠ABD=30°,∴AB=AD•tan30°=2.在Rt△ABD和Rt△EBD中,∴△ABD≌△EBD(AAS),即AB=BE,∴AB=BE=EC=2.即图中长为2的线段有3条.故选:C.【点评】此题主要考查了角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±1【考点】分式的值为零的条件;合并同类项;单项式;分式有意义的条件.【分析】根据合并同类项的法则、单项式的定义、分式有意义的条件和分式的值为零的条件进行计算.【解答】解:A、原式=2a2b,故本选项错误;B、﹣x2是单项式,且系数是﹣1,故本选项正确;C、使式子有意义的x的取值范围是a≠﹣1,故本选项错误;D、若分式的值等于0,则a=±1且a+1≠0,即a=1,故本选项错误;故选:B.【点评】本题考查了分式有意义的条件,分式的值是零的条件,合并同类项以及单项式的定义.属于基础题,难度不大.6.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°【考点】直角三角形斜边上的中线;轴对称的性质.【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E 恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CE D=60°,∴∠B=∠CED=30°.故选:C.【点评】本题考查轴对称的性质,直角三角形斜边上的中线的性质、等腰三角形的性质,等边三角形的判定和性质,三角形外角的性质,关键是得到∠CED=60°.7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm2【考点】正方形的性质.【分析】由图形的特点可知,每个阴影部分的面积都等于正方形面积的,据此解题.【解答】解:由正方形的性质可知,每个阴影部分的面积都等于正方形面积的,故图中四块阴影部分的面积和为一个正方形的面积,即22=4cm2.故选:B.【点评】本题主要考查了正方形的特性及面积公式,解答本题的关键是发现每个阴影部分的面积都等于正方形面积的.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是3﹣2.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=﹣2+2=3﹣2.故答案为:3﹣2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为 4.8cm .【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.【考点】一次函数图象与系数的关系.【分析】将A(1,0)和B(0,2)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.【解答】解:将A(1,0)和B(0,2)代入一次函数y=kx+b中得:,解得:,∴一次函数解析式为y=﹣2x+2不经过第三象限.故答案为:三.【点评】此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF 的周长为 5 .【考点】三角形中位线定理.【分析】由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.【解答】解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.【点评】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是90 分.【考点】加权平均数.【分析】先计算孔明数学得分的折算后的分值,然后用综合得分﹣数学得分的折算后的得分,计算出的结果除以40%即可.【解答】解:(93﹣95×60%)÷40%=(93﹣57)÷40%=36÷40%=90.故答案为:90.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.【考点】勾股定理;矩形的判定与性质.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=5,∴∠ABC=30°,BC=AC×tan60°=5,∵AB∥CF,∴BM=BC×sin30°=5×=,CM=BC×cos30°=,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=,∴CD=CM﹣MD=﹣.故答案为:﹣.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 3 .【考点】三角形中位线定理;勾股定理.【专题】压轴题;动点型.【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.【点评】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.【考点】二次根式的混合运算;零指数幂.【分析】(1)根据二次根式的除法、乘法以及合并同类项可以解答本题;(2)根据平方差公式和零指数幂可以解答本题.【解答】解:(1)÷﹣×+=﹣+2=4+;(2)(+1)(﹣1)+﹣()0=3﹣1+2﹣1=1+2.【点评】本题考查二次根式的混合运算、零指数幂,解题的关键是明确二次根式的混合运算的计算方法.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?【考点】矩形的判定与性质.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【解答】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点评】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【考点】中位数;条形统计图;算术平均数;众数;方差.【专题】图表型.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),.【点评】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【考点】勾股定理的应用.【分析】(1)作AD⊥ON于D,求出AD的长即可解决问题.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,求出BC的长,利用时间=计算即可.【解答】解:(1)作AD⊥ON于D,∵∠MON=30°,AO=80m,∴AD=OA=40m,即对学校A的噪声影响最大时卡车P与学校A的距离40m.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=BC,在Rt△ABD中,BD===30m,∴BC=60m,∵重型运输卡车的速度为18千米/时=300米/分钟,∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.【点评】本题考查勾股定理的应用、圆的有关知识,解题的关键是理解题意,学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【考点】勾股定理;等边三角形的判定与性质.【分析】如图,连接BD,构建等边△ABD、直角△CDB.利用等边三角形的性质求得BD=8;然后利用勾股定理来求线段BC、CD的长度.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.【点评】本题考查了勾股定理、等边三角形的判定与性质.根据已知条件推知△CDB是解题关键.21.(10分)(2022•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【考点】一次函数的应用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.【点评】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60 千米/时,t= 3 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【考点】一次函数的应用.【专题】压轴题;推理填空题.【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【解答】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60﹣1﹣1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得∴y=﹣120x+840(4<x≤7).(3)①(480﹣60﹣120)÷(120+60)+1 =300÷180+1==(小时)②当甲车停留在C地时,(480﹣360+120)÷60=240÷6=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x﹣[120(x﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发后两车相距120千米.故答案为:60、3.【点评】(1)此题主要考查了一次函数的应用问题,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= 2 ;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)【考点】三角形综合题.【分析】(1)①在Rt△ABC中,可求得AB,由PB=AB﹣PA可求得PB,过C作CD⊥AB于点D,则可求得CD=AD=DB,可求得PD的长,在Rt△PCD中可求得PC的长;②把AP2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PQ2三者之间的数量关系;(2)过C作CD⊥AB于点D,由(1)中②的方法,可证得结论;(3)分点P在线段AB上和线段BA的延长线上,分别利用=可找到PA和CD的关系,从而可找到PD和CD的关系,在Rt△CPD和Rt△ACD中,利用勾股定理可分别找到PC、AC和CD的关系,从而可求得的值.【解答】解:(1)①∵△ABC是等腰直角三角形,AC=1+,∴AB===+,∵PA=,∴PB=AB﹣PA=,如图1,过C作CD⊥AB于点D,则AD=CD=AB=,∴PD=AD﹣PA=,在Rt△PCD中,PC==2,故答案为:;2;②PA2+PB2=PQ2,证明如下:如图1,∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB,∵PA2=(AD﹣PD)2=(CD﹣PD)2=CD2﹣2CD•PD+PD2,PB2=(BD+PD)2=(CD+PD)2=CD2﹣2CD•PD+PD2,∴PA2+PB2=2CD2+2PD2=2(CD2+PD2),在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,∴PA2+PB2=2PC2,∵△CPQ为等腰直角三角形,且∠PCQ=90°,∴2PC2=PQ2,∴PA2+PB2=PQ2,故答案为:PA2+PB2=PQ2;(2)证明:如图2,过C作CD⊥AB于点D,。
2023年人教版八年级数学下册期末考试题及答案【完美版】
2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
人教版八年级下册数学 第十八章 平行四边形 章末测试题
第十八章平行四边形章末测试题一、选择题1. 下面关于平行四边形的说法不正确的是()A. 对边平行且相等B. 两组对角分别相等C. 对角线互相平分D. 每条对角线平分一组对角2. 如图,在▱ABCD中,EF过对角线的交点,若AB=4,BC=7,OE=3,则四边形EFDC的周长是()A. 14B. 17C. 10D. 113. 已知在▱ABCD中,∠A+∠C=140°,则∠B的度数是()A. 110°B. 120°C. 140°D. 160°4. 在▱ABCD中,∠A:∠B:∠C:∠D的值可能是()A. 1:2:3:4B. 1:2:1:2C. 2:2:1:1D. 1:2:2:15. 如图,已知▱ABCD中,对角线AC与BD相交于点O,下列结论错误的是()A. ∠BAD=∠BCD,∠ABC=∠ADCB. OA=OC,OB=ODC. AD∥BC,AB=CDD. AC=BD,AD=CD6. 如图,E是▱ABCD的一边AD上任意一点,若△EBC的面积为S1,▱ABCD的面积为S,则S与S1的大小关系是()A. S1=SB. S1<SC. S1>SD. 无法确定7. 如图,▱ABCD的对角线AC、BD相较于点O,点E、F分别是线段AO、BO的中点,若EF=3,△COD的周长是18,则▱ABCD的两条对角线的和是()A. 18B. 24C. 30D. 368. 如图,在四边形ABCD中,对角线AC于BD相交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是()A. AB=CD,AD=BCB. AB∥CD,AD=BCC. AB∥CD,AD∥BCD. OA=OC,OB=OD9. 分别过△ABC的3个顶点作对边的平行线,这些平行线相交,则可构成()个平行四边形.A. 1B. 2C. 3D. 410. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A. 6种B. 5种C. 4种D. 3种二、填空题11. 如图,平行四边形ABCD的对角线AC、BD交于一点O,AB=11,△OCD的周长为27,则AC+BD= ______ .12. 如图,过▱ABCD的顶点C作CE⊥AB,交BA的延长线于点E,若∠EAD=50°,则∠BCE 的度数为______ °.12题13题14题13. 如图,O为▱ABCD的对角线交点,E为AB的中点,DE交AC于点F,若S□ABCD=16,则S△DOE的值为______ .14. 如图,▱ABCD中,E是BC延长线上一点,连接AE,DE,若▱ABCD的面积为24,则△ADE的面积为______ .15. 如图,平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2,则AB= ______ cm.15题16题17题16. 如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F 点,CD∥AF,请你添加一个条件:______ ,使四边形ABCD是平行四边形.17. 如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则______ 秒时四边形ADFE是平行四边形.18. 如图,在▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若∠EBF=45°,则∠EDF的度数是______ 度.18题19. 如图,DE∥BC,AE=EC,延长DE到点F,使EF=DE,连接AF,FC,CD,则图中四边形ADCF是______ .19题20题21题20. 如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=11,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为______ 秒.11. 如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=136°,则∠ANM= ______22. 如图,在△ABC中,D,E分别是AB,AC的中点,若DE=8,则BC的长是______ .22题23. 如图,为农村一古老的捣碎器,已知支撑柱AB的高为0.4m,踏板DE长为1.2m,支撑点A到踏脚D的距离为0.6m,现在从捣头点E着地的位置开始,让踏脚D着地,则捣头点E上升______ m.23题24题25题24. 如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= ______ .25. 如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B的方向运动,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t的值为______ 秒.三、解答题26. 如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.27. 已知如图,在▱ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF 是否互相平分?说明理由.28. 如图,在平行四边形ABCD中,点E是AD边的中点,BE的延长线与CD的延长线相交于点F,求证:四边形ABDF是平行四边形.29. 已知,如图,DC∥AB,且DC=AB,E为AB的中点.(1)求证:△AED≌△EBC;(2)观察图形,在不添加辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形(直接写出结果,不要求证明):______ .30. 如图,BD是△ABC的角平分线,点E,F分别在边BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=56°,∠ADB=120°,求∠AFE的度数.31. 如图,△ABC中,D,E,F分别为BC,AC,AB的中点.(1)△ABC有______ 条中位线;(2)若△DEF的面积为4,则△ABC的面积是多少?32. 如图,BM、CN分别平分△ABC的外角∠ABD、∠ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)。
北师大版2020八年级数学下册期末综合复习基础过关测试题C(附答案)
北师大版2020八年级数学下册期末综合复习基础过关测试题C (附答案)1.如图,在平行四边形ABCD 中,∠B=64°,则∠D 等于( )A .26°B .64°C .32°D .116°2.如图,在平面直角坐标系中,□ABCD 的顶点B 、C 在x 轴上,A 、D 两点分别在反比例函数k x y =(k <0,x <0)与1xy =(x >0)的图像上,若□ABCD 的面积为4,则k 的值为( )A .-1B .-2C .-3D .-53.若44x x -=-+,则x 的取值范围是( )A .4x <B .4x ≤C .4x >D .4x ≥4.如图,在△ABC 中,BC >AB >AC ,D 是边BC 上的一个动点(点D 不与点B 、C 重合),将△ABC 沿AD 折叠,点B 落在点B'处,连接BB',B'C ,若△BCB'是等腰三角形,则符合条件的点D 的个数是A .0个B .1个C .2个D .3个 5.若分式23x x +有意义,则x 的取值范围为( ) A .3x >- B .x ≥3- C .3x ≠-D .0x ≠ 6.在□ABCD 中的比值可能是( ) A .1:2:3:4 B .3:4:4:3 C .3:4:3:4 D .1:2:2:17.把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人分到的本数不足3本,则共有学生( )人.A .4B .5C .6D .5或68.如图,由三角形ABC 平移可以得到的三角形的个数是( )A .5B .6C .7D .89.如图,在四边形ABCD 中,3AB =,5BC =,130A ∠=︒,100D ∠=︒,AD CD =.若点E ,F 分别是边AD ,CD 的中点,则EF 的长是( )A .2B .3C .2D .510.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( )A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <211.下列变形:①(x+1)(x ﹣1)=x 2﹣1;②9a 2﹣12a+4=(3a ﹣2)2;③3abc 3=3c•abc 2;④3a 2﹣6a=3a (a ﹣2)中,是因式分解的有 (填序号)12.点P (m -1,2m +3)关于y 轴对称的点在第一象限,则m 的取值范围是_______. 13.分解因式: .14.如果直角三角形的斜边长为12,那么它的重心与外心之间的距离为 . 15.如图,用圆规以直角顶点O 为圆心,以适当半径画一条弧交直角两边于A ,B 两点,若再以A 为圆心,以OA 为半径画弧,与弧AB 交于点C ,则△AOC 的形状为_____.16.不等式(32-)x≥1的解集是_____.17.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.18.已知a、b分别是长方形的长和宽,它的周长为16,面积为10,那么a2b+ab2的值为_____.19.(2012秋•德清县期中)如图,在等腰△ABC中,AB=AC,∠BAC=40°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF为度.20.如图所示,是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是1,则该六边形的周长是________.21.分解因式:(1)x2y﹣4y;(2)(a+2)(a﹣2)+3a.22.(x﹣y)2+16(y﹣x).23.一服装经销商计划购进某品牌的A型、B型、C型三款服装共60套,每款服装至少要购进8套,且恰好用完购服装款61000元.设购进A型服装x套,B型服装y套,三款服装的进价和预售价如下表:服装型号A型B型C型进价(元/套)900 1200 1100预售价(元/套)1200 1600 1300(1)如果所购进的A型服装与B型服装的费用不超过39000元,购进B型服装与C型服装的费用不超过34000元,那么购进三款服装各多少套?(2)假设所购进服装全部售出,综合考虑各种因素,该服装经销商在购进这批服装过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(套)的函数关系式;(注:预估利润P=预售总额﹣购服装款﹣各种费用)②求出预估利润的最大值,并写出此时购进三款服装各多少套.24.某中学的高中部在校区,初中部在校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知校区的每位高中学生往返车费是6元,每人每天可栽植5棵树;校区的每位初中学生往返车费是10元,每人每天可栽植3棵树.要求初高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不得超过210元.要使本次活动植树最多,初高中各有多少学生参加?最多植树多少棵?25.已知:如图∠ABC 及两点M 、N .求作:点P ,使得PM=PN ,且P 点到∠ABC 两边的距离相等.(保留作图痕迹,不写作法)26.如图1,在等边△ABC 中,点P 是边BC 上一动点(点P 不与点B 重合),且BP <PC ,点B 关于直线AP 的对称点为D ,连接CD 、BD .(1)依题意补全图形;(2)若∠BAP =α,则∠BCD =______(用含α的式子表示);(3)过点D 作DE ⊥DC ,交直线AP 于点E ,连接EB 、EC ,判断△ABE 的面积与△CDE的面积之间的数量关系,并证明.27.(1)先化简,再求值:21x 2x 11x 22x 2++-÷++(),其中x=02120202π--+()(). (2)已知:如图,点C 、D ,在线段AB 上,且AC =BD ,AE =BF ,AE ∥BF .试判断FC 与DE 的关系.28.因式分解:(1)-2m+4m2-2m3;(2)a2﹣b2﹣2a+1;(3)(x-y)2-9(x+y)2;29.如图,在△ABC中,AC>BC.(1)尺规作图:在AC上作点P,使点P到点A、B的距离相等.(保留作图痕迹,不写作法和证明);(2)在(1)的条件下,连接PB.若AC=22cm,BC=16cm,AB=25cm,求△BCP的周长.30.(2015秋•乌达区期末)(1)因式分解:(x+2)(x+6)+x2﹣4(2)解方程:﹣1=.参考答案1.B【解析】【分析】根据平行四边形的性质即可判断.【详解】∵平行四边形的对角相等,故∠D=∠B=64°故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知其对角分别相等.2.C【解析】 设1,D a a ⎛⎫ ⎪⎝⎭ ,则1,A ka a ⎛⎫ ⎪⎝⎭ . AD a ka ∴=- .()14ABCD S a ka a=-⨯=Y Q , 3k ∴=-3.B【解析】【分析】由题意可知:|x-4|=4-x ,因为x-4与4-x 互为相反数,且绝对值等于它的相反数的数是非正数,故x-4≤0,解不等式即可求得x 的取值范围.【详解】∵|x−4|=4−x ,∴x−4≤0,解得x ≤4;故选B.【点睛】本题考查利用不等式解决绝对值问题,正数和零的绝对值是它本身,负数的绝对值是它的相反数,即非负数的绝对值等于它本身,非正数的绝对值等于它的相反数,解题关键是熟练掌握4.C【解析】【分析】分三种情况讨论:①当BB’=BC时,②当BB’=B’C时,③当BC=B’C分别作图找到符合题意的点B’,然后可得对应的点D的个数.【详解】解:①当BB’=BC时,如下图,以点A为圆心AB为半径的圆与以B为圆心BC为半径的圆交于点B’1,则此时BB’1=BC,△BCB'1是等腰三角形;②当BB’=B’C时,如下图,以点A为圆心AB为半径的圆与BC的垂直平分线交于点B’2,则此时BB’2= B’2C,△BB'2C是等腰三角形;③当BC=B’C时,如下图,以点A为圆心AB为半径的圆与以C为圆心BC为半径的圆交于点B’3,则此时BC= B’3C且D与点C重合,故此情况不合题意;则符合条件的点D的个数有2个,故选:C.【点睛】本题主要考查了等腰三角形的判定以及翻折变换的性质,运用数形结合的思想通过作图来分析等腰三角形的存在情况是解题关键.5.C分析:分母不为0即可.详解:分式23xx+有意义,则:30.x+≠解得: 3.x≠-故选C.点睛:考查分式有意义.分式有意义的条件:分母不为0.6.C【解析】【分析】根据平行四边形对角相等即可判断选择哪一个.【详解】由于平行四边形对角相等,所以对角的比值数应该相等,其中A,B,D都不满足,只有C满足,故选C.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的对角相等是解本题的关键.7.C【解析】【分析】根据每人分3本,那么余8本,如果前面的每个学生分5本,那么最后一人就分不到3本,得出3x+8≥5(x-1),且5(x-1)+3>3x+8,分别求出即可.【详解】假设共有学生x人,根据题意得出:5(x-1)+3>3x+8≥5(x-1),解得:5<x≤6.5.故选:C.【点睛】本题考查了不等式组的应用,解题关键是根据题意找出不等关系得出不等式组.8.A【解析】【分析】根据平移的性质,结合图形直接求得结果.【详解】平移变换不改变图形的形状、大小和方向,因此由△ABC 平移得到的三角形有5个。
北师大版2020八年级数学下册第四章因式分解单元过关测试题1(附答案)
北师大版2020八年级数学下册第四章因式分解单元过关测试题1(附答案) 1.下列各式从左到右的变形是因式分解的是( ) A .()a b c ab ac -=- B .()222312x x x -+=-+ C .()()2422x x x -=+-D .2(1)(2)32x x x x ++=++2.下列多项式中,可以提取公因式的是( ) A .ab +cd B .mn +m 2 C .x 2-y 2D .x 2+2xy +y 23.若m -n =-6,mn =7,则mn 2-m 2n 的值是( ) A .-13 B .13 C .42 D .-42 4.下列多项式中,不能因式分解的是( ) A .a 2+1B .a 2﹣6a+9C .a 2+5aD .a 2﹣15.下列等式从左到右的变形,属于因式分解的是 A .(a +b )(a ﹣b )=a 2﹣b 2 B .a 2+4a +1=a (a +4)+1 C .x 3﹣x =x (x +1)(x ﹣1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭6.把多项式x 3-4x 因式分解所得的结果是( ) A .x (x 2-4)B .x (x +4)(x -4)C .x (x +2)(x -2)D .(x +2)(x -2)7.下列变形是因式分解是( ) A .211()x x x x+=+B .24(2)(2)am a a m m -=+-C .2221(2)(1)(1)a ab b a a b b b ++-=+++-D .2224(2)x x x ++=+ 8.下列各式中能用完全平方公式分解因式的是( ) A .22a ab b ++B .294y y -C .2414a a +-D .221q q +-9.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形10.已知a 、b 、c 是△ABC 的三边,且满足a 2﹣b 2+ac ﹣bc =0,则△ABC 的形状是( ). A .直角三角形 B .等边三角形 C .等腰三角形 D .无法确定 11.因式分解:a 2﹣b 2=_____.12.已知a 、b 满足2284200a b a b +--+=,则22a b -=________.13.分解因式0.81x 2-16y 2=(0.9x+4y )(__).14.因式分解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )=__. 15.分解因式:23a a +=_______________. 16.分解因式:2x 3﹣6x 2+4x =__________.17.把多项式m 2(a ﹣2)+m (2﹣a )分解因式等于_____. 18.把x 3y ﹣xy 3分解因式的结果是_____________________. 19.分解因式:b 2-9 =_____.20.分解因式:m 2n ﹣4mn ﹣4n=_____. 21.分解因式: (1)8a 3b 2+12ab 3c ; (2)(2x+y )2﹣(x+2y )2.22.分解因式: (1)a 3-a ;(2)8(x 2-2y 2)-x (7x +y )+xy .23.分解因式:(1)323a b 16a - (2)2x 2y-4xy+2y24.若正整数k 满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,我们称这样的数k 为“言唯一数”,交换其首位与个位的数字得到一个新数k',并记F (k )=11127k k k k -'-'++. (1)最大的四位“言唯一数”是 ,最小的三位“言唯一数”是 ; (2)证明:对于任意的四位“言唯一数”m ,m+m'能被11整除;(3)设四位“言唯一数”n=1000x+100y +10y+1(2≤x≤9,0≤y≤9且y≠1,x 、y 均为整数),若F (n )仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n .25.(1)计算:(a ﹣b )(a 2+ab+b 2)(2)利用所学知识以及(1)所得等式,分解因式:m 3﹣n 3﹣3mn (m ﹣n )26.已知x ≠1,计算: (1-x )(1+x )=1-x 2, (1-x )(1+x +x 2)=1-x 3, (1-x )(1+x +x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x +x 2+…+x n )=________(n 为正整数). (2)根据你的猜想计算:①(1-2)×(1+2+22+23+24+25)=________; ②2+22+23+…+2n =________(n 为正整数); ③(x -1)(x 99+x 98+x 97+…+x 2+x +1)=________. (3)通过以上规律请你进行下面的探索: ①(a -b )(a +b )=________; ②(a -b )(a 2+ab +b 2)=________; ③(a -b )(a 3+a 2b +ab 2+b 3)=________.27.将一个三位正整数n 各数位上的数字重新排列(含n 本身)后,得到新的三位数abc (a <c ),在所有重新排列大的数中,当|a+c ﹣2b|最小时,我们称abc 是n 的“天时数”,并规定F (n )=b 2﹣ac .当|a+c ﹣2b|最大时,我们称abc 是n 的“地利数”,并规定G (n )=ac ﹣b 2.并规定M (n )=()()F nG n 是n 的“人和数”,例如:215可以重新排列为125,152,215,因为|1+5﹣2×2|=2,|1+2﹣2×5|=7,|2+5﹣2×1|=5,且2<5<7,所以125是215的“天时数”F (125)=22﹣1×5=﹣1,152是215的“地利数”,G (152)=1×2﹣52=﹣23,M (215)=112323-=-. (1)计算:F (168),G (168);(2)设三位自然数s=100x+50+y (1≤x≤9,1≤y≤9,且x ,y 均为正整数),交换其个位上的数字与百位上的数字得到t ,若s ﹣t=693,那么我们称s 为“厚积薄发数”;请求出所有“厚积薄发数”中M (s )的最大值. 28.把下列多项式因式分解 (l)x 3=4xy 2; (2)(a-1)(a+3)+4 29.把下列各式分解因式:(1)236x y xy - (2)2332525x y x y -(3)3241626m m m -+- (4)22(3)3a a --+(5)23()2()m x y y x --- (6)2318()12()b a b a b ---(7)1532223520x y x y x y +- (8)6x(x+y)-4y(x+y)(9)()()()a x a b a x c x a -+--- (10)()()()()m n p q m n p q ++-+- 30.(1)分解因式:(p+4)(p-1)-3p ; (2)化简:参考答案1.C【解析】试题解析:A. 右边不是整式积的形式,不是因式分解,故本选项错误;B. 右边不是整式积的形式,不是因式分解,故本选项错误;C. 是因式分解,故本选项正确;D. 右边不是整式积的形式,不是因式分解,故本选项错误;故选C.点睛:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 2.B【解析】【分析】直接利用提取公因式法分解因式的步骤分析得出答案.【详解】解:A.ab+cd,没有公因式,故此选项错误;B.mn+m2=m(n+m),故此选项正确;C.x2﹣y2,没有公因式,故此选项错误;D.x2+2xy+y2,没有公因式,故此选项错误.故选B.【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.3.C【解析】【分析】首先把mn2+m2n分解因式,然后把已知等式代入其中即可求解.【详解】mn2+m2n=mn(n-m)=- mn(m-n),∵m-n=-6,mn=7,∴原式=6×7=42.故选:C.【点睛】此题考查了因式分解的应用,解题时首先通过因式分解把所求代数式变形,然后代入已知数据计算即可求解. 4.A 【解析】分析:利用因式分解的方法判断即可. 详解:A. 原式不能分解,符合题意; B. 原式2(3)a =-, 不合题意; C. 原式=x (x +5),不合题意; D. 原式(1)(1)a a =+-,不合题意, 故选A.点睛:考查因式分解的方法,常见的因式分解的方法有,提取公因式法,公式法,十字相乘法. 5.C 【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D. 没把一个多项式转化成几个整式积的形式,故D 错误; 故选:C. 6.C 【解析】试题解析:()()()324422.x x x x x x x -=-=+-故选C.点睛:先提取公因式,再用公式进行因式分解. 7.B 【解析】解:A .211()x x x x+=+ ,右边不是整式的乘积的形式,不是因式分解,故A 错误;B .24(2)(2)am a a m m -=+-,正确;C .2221(2)(1)(1)a ab b a a b b b ++-=+++-,右边不是整式的乘积的形式,不是因式分解,故C 错误;D .2224(2)x x x ++=+,左右两边不相等,不是恒等变形,故C 错误. 故选B . 8.C 【解析】A 选项中间乘积项不是两底数积的2倍,故本选项错误;B 选项不符合完成平方公式的特点,故本选项错误;C 选项符合完全平方公式的特点;D 选项不符合完成平方公式的特点,故本选项错误, 故选C . 9.C 【解析】 【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状. 【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0, ∵a+b-c≠0, ∴a-b=0,即a=b , 则△ABC 为等腰三角形. 故选C . 【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键. 10.C【解析】a 2−b 2+ac−bc=0, 由平方差公式得: (a+b)(a−b)+c(a−b)=0, (a−b)(a+b+c)=0,∵a 、b 、c 三边是三角形的边, ∴a 、b 、c 都大于0, ∴本方程解为a=b , ∴△ABC 一定是等腰三角形. 故选:C.11.(a+b )(a ﹣b ) 【解析】试题分析:直接应用平方差公式即可:()()22a b a b a b -=+-.12.12 【解析】分析:先根据完全平方公式的特征对等式2284200a b a b +--+=的左边进行因式分解可得:()()22420a b -+-=,再根据非负数的非负性可得:4,2a b ==,然后代入求解即可. 详解:因为2284200a b a b +--+=,所以22816440a a b b -++-+=, 所以()()22420a b -+-=, 所以()()2240,20a b -=-=, 所以4,2a b ==,所以2216412a b -=-=.点睛:本题主要考查利用完全平方公式进行因式分解,解决本题的关键是要熟练掌握利用完全平方公式进行因式分解. 13.0.9x -4y 【解析】试题分析:本题利用的是平方差公式进行因式分解,则原式=()()()()220.940.9x 4y 0.9x 4y x y -=+-. 14.2n (m ﹣n )(p ﹣q ).【解析】解:原式=n (m ﹣n )(p ﹣q )+n (m ﹣n )(p ﹣q )=2n (m ﹣n )(p ﹣q ).故答案为:2n (m ﹣n )(p ﹣q ). 15.(3)a a + 【解析】试题解析:23a a +=a(a+3). 16.2x (x ﹣1)(x ﹣2). 【解析】分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案. 详解:2x 3﹣6x 2+4x =2x (x 2﹣3x+2) =2x (x ﹣1)(x ﹣2). 故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键. 17.:m (a ﹣2)(m ﹣1) 【解析】m 2(a ﹣2)+m (2﹣a )=m 2(a ﹣2)﹣m (a ﹣2)=m (a ﹣2)(m ﹣1). 故答案为m (a ﹣2)(m ﹣1). 18.xy (x +y )(x ﹣y ) 【解析】 【分析】先提公因式3x ,再利用平方差公式分解因式. 【详解】 解:故答案是:【点睛】本题主要利用提公因式法、完全平方公式分解因式,熟记公式结构特点是解题的关键. 19.(b+3)(b-3) 【解析】原式=(3)(3)b b +-. 故答案为:(3)(3)b b +-. 20.n (m 2﹣4m ﹣4) 【解析】 试题解析:244,m n mn n --()244n m m =--.故答案为:()244n m m --.21.(1)4ab 2(2a 2+3bc );(2)3(x+y )(x ﹣y ). 【解析】 【分析】(1)直接提取公因式4ab 2,进而分解因式即可; (2)直接利用平方差公式分解因式得出答案. 【详解】解:(1)8a 3b 2+12ab 3c =4ab 2(2a 2+3bc ); (2)(2x+y )2-(x+2y )2 =(2x+y+x+2y )(2x+y-x-2y ) =3(x+y )(x-y ).22.(1)a (a -1)(a +1);(2)(x +4y )(x -4y ).【解析】试题分析:(1)首先提取公因式,进而利用平方差公式分解因式即可; (2)首先去括号,进而合并同类项,再利用平方差公式分解因式即可. 试题解析:解:(1)原式=a (a 2-1)=a (a -1)(a +1).(2)原式=8x 2-16y 2-7x 2-xy +xy =x 2-16y 2=(x +4y )(x -4y ). 23.(1)a 3(b+4)(b-4) (2)2y 2(1)x - 【解析】试题分析:(1)(2)利用提取公因式和公式法因式分解.试题解析:(1)3233216(16a b a a b -=-)=a 3(b +4)(b -4) .(2)2x 2y -4xy +2y =2y (x 2-2x +1)=2y (x-1)2.24.(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为3221和8551【解析】【分析】根据题目给出的新定义,正整数k 满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的数k 为“言唯一数”,解答即可.【详解】(1)最大的四位“言唯一数”是 9991 ,最小的三位“言唯一数”是 221 ;(2)证明:设1000100101m a b b =+++,则'100010010m b b a =+++()'1001220100111912091m m a b a b ∴+=++=++,a b Q 都为正整数,则912091a b ++也是正整数∴对于任意的四位“言唯一数”m ,'m m +能被11整除.(3) Q 1000100101n x y y =+++(29x ≤≤,09y ≤≤且1y ≠,x 、y 均为整数) '1000110n y x ∴=++.则()()11912091''9999991111271127x y n n n n x F n +++--=-+=-+ 91109137371x y x =++-++5420129x y =++()F n Q 仍然为言唯一数, 20y 末尾数字为0,129末尾数字为9则54x 的末尾数字为2,3x ∴=或8x =①当3x =时,542012920291x y y ++=+,2y =时,()331F n =,此时3221n =②当8x =时,542012920561x y y ++=+,5y =时,()661F n =,此时8551n =满足条件的所有的四位“言唯一数”为3221和8551【点睛】本题主要考查了对因式分解的应用,对新定义的理解程度时解答本题的关键.25.(1)a3﹣b3;(2)(m﹣n)3.【解析】【分析】(1)根据多项式乘以多项式的法则进行计算即可;(2)利用分组分解法,先将前两项分为一组,根据(1)的立方差公式分解因式,再提公因式即可.【详解】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=(m﹣n)(m2+mn+n2)﹣3mn(m﹣n)=(m﹣n)(m2﹣2mn+n2)=(m﹣n)3【点睛】本题考查了多项式乘以多项式和因式分解,熟练掌握立方差公式是关键.26.(1)①-63;②2n+1-2;③x100-1.(2)①a2-b2;②a3-b3;③a4-b4【解析】试题分析:(1)根据题意易得(1-x)(1+x+x2+…+x n)=1-x n+1;利用猜想的结论得到①(1-2)(1+2+22+23+24+25)=1-26=1-64=-63;②先变形2+22+23+24+…+2n=2(1+2+22+23+24+…+2n-1)=-2(1-2)(1+2+22+23+24+…+2n-1),然后利用上述结论写出结果;③先变形得到(x-1)(x99+x98+x97+…+x2+x+1)=-(1-x)(1+x+x2+…+x99),然后利用上述结论写出结果;(2)根据规律易得①(a-b)(a+b)=a2-b2;②(a-b)(a2+ab+b2)=a3-b3;③(a-b)(a3+a2b+ab2+b3)=a4-b4.试题解析:(1)由题意知(1−x)(1+x+x2+…+x n)=1−x n+1;所以①(1−2)(1+2+22+23+24+25)=1−26=1−64=−63;②2+22+23+24+…+2n=2(1+2+22+23+24+…+2n−1)=−2(1−2)(1+2+22+23+24+…+2n−1)=−2(1−2n)=2n+1−2;③(x−1)(x99+x98+x97+…+x2+x+1)=−(1−x)(1+x+x2+…+x99)=−(1−x100)=x100−1,(3)①(a−b)(a+b)=a2−b2;②(a−b)(a2+ab+b2)=a3−b3;③(a−b)(a3+a2b+ab2+b3)=a4−b4.故答案为:(1)①-63;②2n+1-2;③x100-1.(2)①a2-b2;②a3-b3;③a4-b4点睛:此题考查了平方差公式,规律型:数字的变化类以及多项式乘多项式,熟练掌握运算法则及公式是解本题的关键.27.(1)28,47;(2)17 39【解析】【分析】(1)将168重新排列为168、186,618,计算出|1+8﹣2×6|=3、|1+6﹣2×8|=98+6﹣2×1|=12,且3<9<12,可得168的天时数与地利数,再根据天时数和地利数的定义计算可得;(2)由s=100x+50+y,t=100y+50+x,根据s﹣t=693可得81xy=⎧⎨=⎩或92xy=⎧⎨=⎩,据此得出s的“厚积薄发数”为851或952,再分别求出这两个数的“人和数”,比较大小即可得.【详解】(1)168重新排列为168、186、618.∵|1+8﹣2×6|=3、|1+6﹣2×8|=9、|8+6﹣2×1|=12,且3<9<12,∴168是168的天时数,F (168)=62﹣1×8=28;618是168的地利数,G(618)=6×8﹣12=47.(2)s=100x+50+y,t=100y+50+x.∵s﹣t=99x﹣99y=693,∴99(x﹣y)=693,x﹣y=7,x=y+7,∴1≤x≤9,1≤y≤9,∴1≤y+7≤9,∴1≤y≤2,∴81xy=⎧⎨=⎩或92xy=⎧⎨=⎩,∴s的“厚积薄发数”为851或952,当s=851时,可以重新排列为158,185,518.∵|1+8﹣2×5|=1,|1+5﹣2×8|=10,|5+8﹣2×1|=11,∴158为851的“天时数”,F(851)=52﹣1×8=17;518为851的“地利数”G(851)=5×8﹣12=39;则M (851)=1739; 当s =952时,可以重新排列为529、295、259.∵|5+9﹣2×2|=10,|2+5﹣2×9|=11,|2+9﹣2×5|=1,∴259为952的“天时数”,F (952)=52﹣2×9=7; 295为952的“地利数”,G (952)=2×5﹣92=﹣71,则M (952)=﹣771; 综上,知所有“厚积薄发数”中M (s )的最大值为1739. 【点睛】本题考查了因式分解的应用,解题的关键是理解题意,灵活运用所学知识解决问题,解题的突破点是学会应用枚举法求出满足条件的天时数、地利数及人和数. 28.(1)()() x x 2y x 2y +- ;(2) ()2a 1+ 【解析】试题分析:(1)先提取公因式,然后再利用平方差公式进行分解即可;(2)先进行乘法运算,合并同类项后利用完全平方公式进行分解即可.试题解析:(1)()3222x 4xy x x 4y-=- ()()x x 2y x 2y =+- ; (2)()()2a 1a 34a 2a 34-++=+-+ 2a 2a 1=++ ()2a 1=+.29.(1)3xy(x-2); (2)225(5)x y y x -; (3)22(2813m m m --+); (4)3)(27)a a --(; (5)()(322)x y m x y --+; (6)26()(52a b b a --);(7) 225314)x y xy y +-(; (8)2(x+y)(3x-2y); (9)()()x a a b c ---; (10)2()q m n +.【解析】试题分析:都利用提公因式法分解因式即可.试题解析:(1)原式=3xy(x-2);(2)原式=()2255x y y x -;(3)原式=22(2813m m m --+);(4)()3)27a a =--原式(;(5)原式=()()322x y m x y --+;(6)原式=()26(52a b b a --);(7)原式= 225314)x y xy y +-(;(8)原式=2(x+y)(3x-2y);(9)原式=()()x a a b c ---;(10)原式=()2q m n +.30.(1)原式=p+2)(p-2);(2)原式=a+6.【解析】试题分析:(1)先计算多项式乘多项式,将原式转化为多项式的形式,然后利用平方差公式进行分解即可;(2)先利用完全平方公式计算乘方,然后计算单项式乘多项式和多项式除单项式,最后合并同类项即可.试题解析:解:(1)原式=p 2+3p -4-3p=p 2-4=(p +2)(p -2);(2)原式=a 2 +4a +4-a 2-2a -a +2=a +6.。
八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期末试卷
八年级数学人教新课标版(2012教材)下学期期末试卷(答题时间:90分钟) 一、选择题 1. 如果2(21)a =1−2a ,则( )A. a <12B. a ≤12C. a >12D. a ≥122. 某次器乐比赛设置了6个获奖名额,共有ll 名选手参加,他们的比赛得分均不相同。
若知道某位选手的得分。
要判断他能否获奖,在下列ll 名选手成绩的统计量中,只需知道( )A. 平均数B. 众数C. 中位数D. 无法判断 3. 计算(2-1)(2+1)2的结果是( ) A. 2+1 B. 3(2-1) C. 1D. -1 4. 如图,正方形OABC 的边长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A. 1B.2 C. 1.5 D. 2 5. 一条直线y =kx +b ,其中k +b =-5、kb =6,那么该直线经过( ) A. 第二、四象限B. 第一、二、三象限C. 第一、三象限D. 第二、三、四象限*6. 你喜欢看篮球比赛吗?美国休斯敦火箭队为了能够重塑昔日辉煌,在这个夏天的转会市场上引爆了一个“重磅炸弹”,他们用弗朗西斯交换来两届得分王麦格雷迪,下表为休斯球龄(年)1 2 3 6 7 9 10 12 13 人数 41 2 3 1 1 2 2 1 A. 1,6 B. 6,1 C. 1,1 D. 6,3*7. 直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A. x >-1B. x <-1C. x <-2D. 无法确定*8. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 对应点为A ′,且B ′C =3,则AM 的长是( )A. 1.5B. 2C. 2.25D. 2.5**9. 把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A. 1<m <7 B. 3<m <4 C. m >1 D. m <4**10. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A. 1B. 2C. 4-22D. 32-4二、填空题 11. 某班七个兴趣小组人数分别为:3,3,4,x ,5,5,6,已知这组数据的平均数是4,则这组数据的中位数是________。
浙教版八下数学一元二次方程期末总复习练习和能力提升测试(附详细的解答过程)
期未总复习练习---一元二次方程一,知识链接:1.把方程033122=+-x x 化成()2x m n +=的形式,则m 、n 的值是( )A. 6,3B. -6,-3C. -6,3D. 6,-32. 某商店一月份的营业额为200万元,三月份的营业额为288万元,如果每月 比上月增长的百分数相同,则平均每月的增长率为( )A.%10B.%15C.%20D.%253.一元二次方程0)5)(3(=--x x 的两根分别为( )A. 3, -5B. -3,-5C. -3,5D.3,5 4.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式 24n mk -的判断正确的是( )A 240n mk -< B.240n mk -= C.240n mk -> D. 240n mk -≥ 5.某企业今年产值为a 万元,比去年增加了25%,则去年产值是( )A 、a-25%万元B 、(1-25%)万元C 、125%a +万元D 、125%a-万元6.已知关于x 的方程x 2+bx+a=0的一个根是-a (a ≠0),则a-b 值为( )A.-1B.0C.1D.27.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A. (1)2070x x -=B. (1)2070x x +=C. 2(1)2070x x +=D. (1)20702x x -= 8.若3是关于方程x 2-5x +c =的一个根,则这个方程的另一个根是( )A .-2B .2C .-5D .59.08)23()1(:22=-+-+-x m m x m 一元二次方程互为相反数根则m=( ) A. 1 B. 2 C. 1或2 D. -1或-210某班同学毕业时都将和每一个同学握一次手,全班共握手1035次,如果全班有x 名同学,根据题意,列出方程为( )A.x(x +1)=1035B.x(x -1)=1035×2C.x(x -1)=1035D.2x(x +1)=103511,关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠512,==+-++-m m m x x m 有一个根为零则一元二次方程0233)2(22( )A. 1或2B. 1C. 2 D,-1或-213,已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为( )A .7-B .3-C .7D .314,如果关于x 的一元二次方程的两根分别为x 1=2,x 2=1,那么这个一元二次方程 可能是( )A.0232=+-x xB. 0232=++x xC. 0232=--x xD. 0232=--x x 15,关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .916.若a 为方程式(x -17)2=100的一根,b 为方程式(y -4)2=17的一根, 且a 、b 都是正数,则a -b 的值为( )A. 5 B). 6 C. 83 D. 10-1717.已知关于x 的一元二次方程01)12=++-x x m (有实数根,则m 的取值范围是 . 18. 若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为____________.19.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,a ≠0).则方程2(2)0a x m b +++=的解是 . 20..已知:205)2)((=+-++y x y x ,那么y x +=21.已知x 1、x 2为方程x 2+3x +1=0的两实根且21x x ,则2221x x +=__________.22.一元二次方程2260x -=的解为___________________.二,能力提升:23..解下列方程:(1)3x 2-9x =O ; (2)(x +1)2-5=0(3)3x 2+4x+1=O ; (4) x 2-2x+1=0056),5(2=--x x 22)2(9)1(),6(+=-x x(7)2x 2-8x+9=0; (8)3x 2+4x -3=0;24.已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。
2020-2021学年北师大版八年级下册数学期末试题含答案
2020-2021学年北师大新版八年级下册数学期末试题一.选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.在中,分式的个数为()A.1B.2C.3D.43.下列各式,从左到右变形是因式分解的是()A.a(a+2b)=a2+2ab B.x﹣1=x(1﹣)C.x2+5x+4=x(x+5)+4D.4﹣m2=(2+m)(2﹣m)4.如图,在▱A BCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F.若AE:AF=2:3,▱AB CD的周长为10,则AB的长为()A.2B.2.5C.3D.3.55.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OC B.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BC D.∠ABD=∠BDC,∠BAD=∠DCB 6.将点A(2,﹣3)沿x轴向左平移3个单位长度后得到的点A′的坐标为()A.(﹣1,﹣6)B.(2,﹣6)C.(﹣1,﹣3)D.(5,﹣3)7.如图,线段AB的长为10,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH 的对角线交点为O,连接OB,则线段BO的最小值为()A.4B.5C.3D.48.如图,Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A′BC′,若点C′在AB上,则AA′的长为()A.B.4C.2D.59.若顺次连接四边形ABCD各边中点所得的四边形是正方形,则四边形ABCD一定是()A.矩形B.正方形C.对角线互相垂直的四边形D.对角线互相垂直且相等的四边形10.若把分式中的x与y都扩大3倍,则所得分式的值()A.缩小为原来的B.缩小为原来的C.扩大为原来的3倍D.不变11.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=912.已知:如图,D、E、F分别是△ABC的三边的延长线上一点,且AB=BF,BC=CD,AC=AE,S△ABC =5cm2,则S△DEF的值是()A.15cm2B.20cm2C.30cm2D.35cm2二.填空题13.若分式的值为零,则x=.14.已知x+y=8,xy=2,则x2y+xy2=.15.若,则代数式的值是.16.如图,在直角三角形ABC中,∠C=90°,∠A=30°,AB=10,点E、F分别为AC、AB的中点,则EF=.17.若一个菱形的周长为200cm,一条对角线长为60cm,则它的面积为.18.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(5,0),点C的坐标是(1,3),则点B的坐标是.三.解答题19.分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x).20.先化简,再求值:÷(x+2﹣),其中x=.21.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F,求证:DE=BF.22.解方程:(1)=;(2)=+1.23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,得到△A1B1C1,画出图形,并直接写出点A1、B1、C1的坐标.24.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?25.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE=,求AE的长.26.中国古贤常说万物皆自然.而古希腊学者说万物皆数.小学我们就接触了自然数,在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,比如奇数、偶数、质数、合数等,今天我们来研究另一种特殊的自然数﹣﹣“欢喜数”.定义:对于一个各数位不为零的自然数,如果它正好等于各数位数字的和的整数倍,我们就说这个自然数是一个“欢喜数”.例如:24是一个“欢喜数”,因为24=4×(2+4),125就不是一个“欢喜数”因为1+2+5=8,125不是8的整数倍.(1)判断28和135是否是“欢喜数”?请说明理由;(2)有一类“欢喜数”,它等于各数位数字之和的4倍,求所有这种“欢喜数”.27.如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC 的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.四.填空题28.若关于x的分式方程=2a无解,则a的值为.29.如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线AP交DE 于点P.若AE=AP=1,PB=,则正方形ABCD的面积为.30.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案与试题解析一.选择题1.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.解:在所列代数式中,分式有,,共2个,故选:B.3.解:A.从左边到右边变形是整式乘法,不是因式分解,故本选项不符合题意;B.等式的右边不是整式积的形式是整式乘法,不是因式分解,故本选项不符合题意;C.从左边到右边变形不是因式分解,故本选项不符合题意;D.从左边到右边变形是因式分解,故本选项符合题意;故选:D.4.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴BC+CD=10÷2=5,根据平行四边形的面积公式,得BC:CD=AF:AE=3:2.∴BC=3,CD=2,∴AB=CD=2,故选:A.5.解:A、∵∠ABD=∠BDC,OA=OC,又∠AOB=∠COD,∴△AOB≌△COD,∴DO=BO,∴四边形ABCD是平行四边形,故此选项不合题意;B、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;C、∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=∠ADC,∴∠ADC+∠BAD=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵∠ABD=∠BDC,∠BAD=∠DCB,∴∠ADB=∠CBD,∴AD∥CB,∵∠ABD=∠BDC,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;故选:B.6.解:点A(2,﹣3)沿x轴向左平移3个单位长度后得到的点A′的坐标为(2﹣3,﹣3),即(﹣1,﹣3),故选:C.7.解:连接AO,∵四边形CDGH是矩形,∴CG=DH,OC=CG,OD=DH,∴OC=OD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,在△ACO和△ADO中,,∴△ACO≌△ADO(SSS),∴∠OAB=∠CAO=30°,∴点O一定在∠CAB的平分线上运动,∴当OB⊥AO时,OB的长度最小,∵∠OAB=30°,∠AOB=90°,∴OB=AB=×10=5,即OB的最小值为5.故选:B.8.解:根据旋转可知:∠A′C′B=∠C=90°,A′C′=AC=4,AB=A′B,根据勾股定理,得AB===5,∴A′B=AB=5,∴AC′=AB﹣BC′=2,在Rt△AA′C′中,根据勾股定理,得AA′===2.故选:C.9.解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是正方形,即EF⊥FG,FE=FG,∴AC⊥BD,AC=BD,故选:D.10.解:原式==,故选:A . 11.解:由题意得:180(n ﹣2)=360×3,解得:n =8,故选:C .12.解:连接AD ,EB ,FC ,如图所示:∵BC =CD ,三角形中线等分三角形的面积,∴S △ABC =S △ACD ;同理S △ADE =S △ADC ,∴S △CDE =2S △ABC ;同理可得:S △AEF =2S △ABC ,S △BFD =2S △ABC ,∴S △EFD =S △CDE +S △AEF +S △BFD +S △ABC =2S △ABC +2S △ABC +2S △ABC +S △ABC =7S △ABC ; 故答案为:S △EFD =7S △ABC =7×5=35cm 2故选:D .二.填空题13.解:由题意得:x 2﹣1=0,且x ﹣1≠0,解得:x =﹣1,故答案为:﹣1.14.解:∵x +y =8,xy =2,∴x2y+xy2=xy(x+y)=2×8=16.故答案是:16.15.解:∵,∴设x=2t,y=3t,∴===﹣.故答案为﹣.16.解:在Rt△ABC中,∠C=90°,∠A=30°,∴BC=AB=5,∵点E、F分别为AC、AB的中点,∴EF=BC=2.5,故答案为:2.5.17.解:已知AC=60cm,菱形对角线互相垂直平分,∴AO=30cm,又∵菱形ABCD周长为200cm,∴AB=50cm,∴BO===40cm,∴AC=2BO=80cm,∴菱形的面积为×60×80=2400(cm2).故答案为:2400cm2.18.解:∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,∵A(5,0),∴OA=BC=5,∵C(1,3),∴B(6,3),故答案为(6,3).三.解答题19.解:(1)原式=﹣3(a2﹣2ab+b2)=﹣3(a﹣b)2;(2)原式=(x﹣y)(3a+2b)(3a﹣2b).20.解:原式=÷=•=,当x=时,原式==.21.证明:∵▱ABCD的对角线AC,BD交于点O,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA),∴DE=BF.22.解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3x=2x+3x+3,解得:x=﹣,经检验x=﹣是分式方程的解.23.解:(1)点A关于点O对称的点的坐标为(2,﹣3);故答案为:(2,﹣3)(2)如图,△A1B1C1即为所求,A1(﹣3,﹣2),B1(0,﹣6),C1(0,﹣1).24.解:(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,依题意得:=2×,解得:x=70,经检验,x=70是原方程的解,且符合题意,∴x+20=90.答:每个A种书包的进价为70元,每个B种书包的进价为90元.(2)设购进A种书包m个,则购进B种书包(2m+5)个,依题意得:,解得:18≤m≤20.又∵m为整数,∴m可以为18,19,20,∴该商场有3种进货方案,方案1:购进18个A种书包,41个B种书包;方案2:购进19个A种书包,43个B种书包;方案3:购进20个A种书包,45个B种书包.(3)设该商场销售A,B两种书包获利w元,则w=(90﹣70)m+(130﹣90)(2m+5)=100m+200,∵100>0,∴w随m的增大而增大,∴当m=20时,w取得最大值,即购进20个A种书包,45个B种书包.设赠送的书包中A种书包有a个,销售的A种书包中有b个样品,则赠送的书包中B种书包有(5﹣a)个,销售的B种书包中有(4﹣b)个样品,依题意得:90(20﹣a﹣b)+90×0.5b+130[45﹣(5﹣a)﹣(4﹣b)]+130×0.5(4﹣b)﹣70×20﹣90×45=1370,整理得:2a+b=4.又∵a为非负整数,b为正整数,∴当a=0时,b=4,此时4﹣b=0不合题意,舍去;当a=1,b=2.∴5﹣a=4,4﹣b=2,∴赠送的书包中A种书包有1个,B种书包有4个,样品中A种书包有2个,B种书包有2个.25.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AB=13,∴BC=AB=13,AC⊥BD,OA=OC=AC,OB=OD=BD,∵AE⊥BC,∴∠AEC=90°,∴OE=AC=OA=2,AC=2OE=4,∴OB===3,∴BD=2OB=6,∵菱形ABCD的面积=BD×AC=BC×AE,即×6×4=13×AE,解得:AE=12.26.解:(1)∵2+8=10,28不是10的整数倍,∴根据“欢喜数”的概念,28不是“欢喜数”;∵1+3+5=9,135=15×9是9的倍数,∴根据“欢喜数”的概念,135是“欢喜数”;(2)①设这个数为一位数a,且a为自然数,a≠0,根据题意可知a=4a,又a≠0,∴这种情况不存在;②设这个数为两位数,a,b为整数,∴10a+b=4(a+b),即b=2a,∴或或或,∴这种欢喜数为12,24,36,48;③设这个数为三位数,a,b,c为整数,∴100a+10b+c=4(a+b+c),则96a+6b=3c,又a,b,c为0到9的整数,且a≥1,∴这种情况不存在;④设这个数为四位数,a,b,c,d为0到9的整数,且a≥1,∴1000a+100b+10c+d=4(a+b+c+d),∴996a+96b+6c=3d,故没有0到9的整数a,b,c,d使等式成立,由此类推,当这个数的位数不断增加时,更加无法满足等式,∴当一个欢喜数等于各数位数字之和的4倍时,这个数为:12或24或36或48.27.解:(1)AC=,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC﹣PC=()a;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=()a,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.四.填空题28.解:=2a,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x==3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.29.解:如图,过点B作BF⊥AE,交AE的延长线于F,连接BD,在Rt△AEP中,AE=AP=1,∴EP=,∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,在△APD和△AEB中,,∴△APD≌△AEB(SAS),∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED,又∵PB=,∴BE==2,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,∴EF=BF=,在Rt△ABF中,AB2=(AE+EF)2+BF2=5+2,∴S=AB2=5+2,正方形ABCD方法二:BD2=BE2+DE2=4+(+2)2=10+4,∴S=DB2=5+2,正方形ABCD故答案为5+2.30.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
丰台区2022-2023学年八年级下学期数学期末试题(解析版)
丰台区2022~2023学年度第二学期期末练习八年级数学注意事项1.本练习卷共8 页,共三道大题,27 道小题,满分100分。
考试时间2.在练习卷和答题卡上准确填写学校名称、姓名和教育ID号。
3.练习题答案一律填涂或书写在答题卡上,在练习卷上作答无效。
4.在答题卡上,选择题和作图题用2B铅笔作答,其他题用黑色字迹签字。
5.练习结束、将本练习卷和答题卡一并交回。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下列二次根式中,是最简二次根式的是()A. 13B. 0.5C. 3D. 12【答案】C【解析】【分析】根据最简二次根式的定义,逐一判断即可解答.【详解】解:A 11333333⨯==⨯,故A不符合题意;B120.522==,故B不符合题意;C3C符合题意;D124323=⨯=,故D不符合题意.故选:C.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.2. 下列各组数中,能够组成直角三角形的是()A. 3,4,5B. 4,5,6C. 5,6,7D. 6,7,8【答案】A【解析】【详解】解:A、∵32+42=9+16=25;52=25,∴32+42=52,则此选项线段长能组成直角三角形;B 、∵42+52=16+25=41;62=36,∴42+52≠62,则此选项线段长不能组成直角三角形;C 、∵52+62=25+36=61;72=49,∴52+62≠72,则此选项线段长不能组成直角三角形;D 、∵62+72=36+49=85;82=64,∴62+72≠82,则此选项线段长不能组成直角三角形.故选:A .3. 下列各点中,在直线21y x =-上的点是( )A. ()2,3--B. ()1,1--C. ()0,1D. ()1,1【答案】D【解析】【分析】分别将四个选项中的点的坐标代入已知解析式进行验证,即可得出答案.【详解】解:A. 当2x =-时,5y =-,则()2,3--不在直线21y x =-上,故该选项不正确,不符合题意;B. 当=1x -时,=3y -,则()1,1--不在直线21y x =-上,故该选项不正确,不符合题意;C. 当0x =时,1y =-,则()0,1不在直线21y x =-上,故该选项不正确,不符合题意;D. 当1x =时,1y =,则()1,1在直线21y x =-,故该选项正确,符合题意;故选:D .【点睛】本题考查了一次函数图像上的点的坐标的特点,熟练掌握函数图像上的点的坐标满足函数解析式是解题关键.4. 如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若5EF =,则菱形的周长为( )A. 10B. 20C. 30D. 40【解析】【分析】根据三角形中位线的性质得出210AB EF ==,进而根据菱形的性质即可求解.【详解】解:∵E ,F 分别是AD ,BD 的中点,5EF =,∴210AB EF ==,∴菱形的周长为440AB =,故选:D .【点睛】本题考查了三角形中位线的性质,菱形的性质,熟练掌握菱形的性质以及三角形中位线的性质与判定是解题的关键.5. 如表是某公司员工月收入的资料: 月收入/元 45000 18000 10000 5500 5000 3400 3300 1000人数 1 1 1 3 6 1 11 1能够反映该公司全体员工月收入水平的统计量是( )A. 众数和中位数B. 平均数和中位数C. 平均数和众数D. 平均数和方差【答案】A【解析】【分析】结合表格数据差异较大分析即可得解【详解】∵这组数据中有差异较大的数据,求平均数会导致平均数较大,∴利用中位数与众数可以更好地反映这组数据的集中趋势.故选择:A【点睛】本题考查了众数,中位数,解题的关键是分析数据特征,理解并掌握中位数及众数的定义. 6. 如图,点A 在数轴上,其表示的数为2,过点A 作AB OA ⊥,且3AB =,以点O 为圆心,OB 为半径作弧,与数轴正半轴交于点P ,则点P 表示的实数为( )A. 5B. 3.6C. 13D. 4【答案】C【分析】勾股定理求得OB 的长,结合数轴即可求解.【详解】解:在Rt OBA 中,2,3OA AB ==, ∴22222313OB OA AB =+=+=∴以点O 为圆心,OB 为半径作弧,与数轴正半轴交于点P ,则点P 13故选:C .【点睛】本题考查了勾股定理,实数与数轴,熟练掌握勾股定理是解题的关键.7. 某学校为了让学生更好地体会中国传统节日的文化内涵,在端午节到来之际,组织“端午诗词朗诵会”、邀请两位学生和两位教师担任评委,比赛评分规则为:每位评委先按十分制对参赛选手独立打分,然后将两位学生评委和两位教师评委的评分按照2233∶∶∶的比,计算出选手的最终成绩.下表是四位评委给某位选手的打分成绩: 学生评委教师评委 评委1 评委2 评委3 评委410分 9分 8分 9分则该选手的最终成绩是( )A. 8.8分B. 8.9分C. 9分D. 9.1分【答案】B【解析】【分析】根据加权平均数的计算公式进行计算即可求解.【详解】解:依题意,该选手的最终成绩是2233109898.92233223322332233⨯+⨯+⨯+⨯=++++++++++++分, 故选:B .【点睛】本题考查了求加权平均数,熟练掌握求加权平均数的计算方法是解题的关键.8. 下面的三个问题中都有两个变量:①将游泳池中的水匀速放出,直至放完,游泳池中的剩余水量y 与放水时间x ;②用弹簧测力计测量物体的质量,弹簧挂重物后的长度y 与重物的质量x ;③汽车从甲地匀速向乙地行驶,汽车距离乙地的路程y 与行驶时间x .其中,变量y 与变量x 之间的函数关系可以用如图所示的图像表示的是( )A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】 【分析】①根据游泳池中的剩余水量y 随放水时间x 的增大而减小判断即可;②根据弹簧挂重物后的长度y 随重物的质量x 增大而增大判断即可;③根据汽车从甲地匀速向乙地行驶,汽车距离乙地的路程y 与行驶时间x 增大而减小判断即可.【详解】解:将游泳池中的水匀速放出,直至放完,根据游泳池中的剩余水量y 随放水时间x 的增大而减小,故①符合题意;用弹簧测力计测量物体的质量,弹簧挂重物后的长度y 随重物的质量x 增大而增大,故②不符合题意; 汽车从甲地匀速向乙地行驶,汽车距离乙地的路程y 随行驶时间x 的增大而减少,故③符合题意. 故选:B .【点睛】本题考查了函数的图像,掌握函数图像表示的意义是解题的关键.二、填空题(本题共 16分,每小题2分)9. 1x -在实数范围内有意义,则x 的取值范围是_______.【答案】1x ≥【解析】【分析】先根据二次根式有意义条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解:1x -∴x -1≥0,解得x ≥1.故答案为:x ≥1.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.10. 62=___________. 3【解析】【分析】利用二次根式的除法法则进行运算即可.的62623=÷=, 3 a b a b =÷,熟记二次根式的除法法则是解题的关键. 11. 写出一个图象位于第二、四象限正比例函数的解析式是______.【答案】y =-x【解析】【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k 的符号,再写出符合条件的正比例函数即可.【详解】解:设此正比例函数的解析式为y =kx (k ≠0),∵此正比例函数的图象经过二、四象限,∴k <0,∴符合条件的正比例函数解析式可以为:y =-x (答案不唯一).故答案为:y =-x (答案不唯一). 【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k <0时函数的图象经过二、四象限. 12. 甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)【答案】乙【解析】【分析】根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.【详解】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S 2甲>S 2乙.故答案是:乙.的【点睛】考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 13. 如图,在矩形ABCD 中,对角线AC BD 、相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______,使矩形ABCD 是正方形.【答案】AC ⊥BD (答案不唯一)【解析】【分析】根据正方形的判定定理可直接进行求解.【详解】解:∵四边形ABCD 是矩形,∴根据“一组邻边相等的矩形是正方形”可添加:AB AD =或AB CB =或BC CD =或AD CD =, 根据“对角线互相垂直的矩形是正方形”可添加:AC ⊥BD ,故答案为AC ⊥BD (答案不唯一).【点睛】本题主要考查正方形的判定定理,熟练掌握正方形的判定是解题的关键.14. 如图,在Rt ABC △中,90B ??,3AB =,4BC =,将ABC 折叠,使点B 恰好落在边AC 上,与点B '重合,AE 为折痕,则BE 的长等于__________.【答案】1.5【解析】【分析】根据折叠得到BE EB '=,AB AB 3'==,设BE EB x '==,则4EC x =-,根据勾股定理求得AC 的值,再由勾股定理可列方程求解即可.【详解】解:根据折叠可得BE EB '=,AB AB 3'==,设BE EB x '==,则4EC x =-,在Rt ABC △中,90B ??,3AB =,4BC =225AC AB BC ∴=+=532B C AC AB ''∴=-=-=在Rt B EC '△中,由勾股定理得,()222x 24x +=-解得 1.5x =故答案为:1.5【点睛】本题考查的是翻折变换的性质,解题的关键是掌握折叠前后图形的形状和大小不变,对应边和对应角相等,能熟练运用勾股定理列方程解决问题.15. 如图,直线1:2l y x =与直线2:4l y kx =+相交于点P ,则方程24x kx -=的解为_____________.【答案】1x =【解析】【分析】将2y =代入2y x =,得出()1,2P ,根据直线1:2l y x =与直线2:4l y kx =+相交于点P ,即可求解.【详解】解:将2y =代入2y x =,解得:1x =,∴()1,2P ,∴直线1:2l y x =与直线2:4l y kx =+相交于点P ,则方程24x kx -=的解为1x =,故答案为:1x =.【点睛】本题考查了两直线交点坐标与方程组的解的关系,数形结合解题的关键.16. 由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.某公司设计了一款新型汽车,需要对它的刹车性能进行测试∴设汽车的刹车距离为(s 单位:m),车速为(v 单位:km /h),根据测得的数据,s 与v 的函数关系如图所示∴(1)若该款汽车某次测试的刹车距离为50m,估计该车的速度约为____________km/h;(2)在测试中发现该款汽车在车速达到某一数值时,其刹车距离的数值恰好是车速数值的13,则此时的车速约为_______________km/h(结果取整数).【答案】∴. 120∴. 63【解析】【分析】(1)根据函数图象即可求解;(2)画出13s v=图象,根据函数图象的交点的横坐标即可求解.【详解】解:(1)根据函数图象可得,刹车距离为50m,估计该车的速度约为120km/h;故答案为:120;(2)解:如图所示,13s v=与函数图象的交点的横坐标为63故答案为:63.【点睛】本题考查了函数图象,从函数图象获取信息是解题的关键.三、解答题(本题共68分,第17-18题,每小题5分,第19-22 题,每小题6分,第23题7分,第24-25题,每小题6分,第26题8分,第27题7分)17. 计算:132726 3【答案】3【解析】【分析】先化简二次根式,再算乘除,最后算加减. 【详解】解:1327263=3333263⨯+⨯3333+=3【点睛】本题考查二次根式的混合运算,掌握二次根式混合运算的运算顺序和计算法则,理解二次根式的性质,准确化简各数是解题关键.18. 若32,2x y ==2x xy +的值. 【答案】36【解析】【分析】先将代数式,提公因式x ,因式分解,然后将字母的值代入进行计算即可求解. 【详解】解:∵32,2x y ==∴()2x xy x x y +=+ 23232= 36=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.19. 如图,在ABCD Y 中,点,E F 分别在,AB CD 边上,BE DF =,求证:AF CE =.【答案】见解析【解析】【分析】利用平行四边形的性质,根据SAS 证明ADF CBE △≌△,得出AF CE =即可.【详解】证明:∵四边形ABCD 为平行四边形,∴AD BC =,B D ∠=∠,∵BE DF =,∴()SAS ADF CBE ≌△△,∴AF CE =.【点睛】本题主要考查了平行四边形的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定证明ADF CBE △≌△.20. 如图,在77⨯的正方形网格中,网格线的交点称为格点,B 在格点上,每一个小正方形的边长为1. (1)以AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.【答案】(1)答案不唯一,见解析;(2)6或8或10(答案不唯一)【解析】【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意,菱形ABCD 即为所求(2)图1中AC =2,BD =6∴图1中菱形面积12662=⨯⨯=. 图2中,AC 224442+=BD 222222+=∴图2中菱形面积1224282=⨯=. 图3中,222425AC BD ==+=∴图3菱形面积12525102=⨯=. 【点睛】本题考查菱形的性质,掌握菱形的概念准确作图是关键.21. 在平面直角坐标系xOy 中,一次函数2y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)画出该函数图象;(3)当03y <<时,直接写出x 的取值范围.【答案】(1)()()2002A B -,,, (2)见解析 (3)2<<1x -【解析】【分析】(1)在2y x =+中,求出当0x =时y 的值和当20y x =+=时x 的值即可得到答案; (2)先描点,再连线画出函数图象即可;(3)先求出当23y x =+=时,1x =,再根据函数图象进行求解即可.【小问1详解】解:在2y x =+中,当0x =时,2y =,当20y x =+=时,2x =-,∴()()2002A B -,,, 【小问2详解】解:如图所示,即为所求;【小问3详解】解:在2y x =+中,当23y x =+=时,1x =,∴由函数图象可知,当03y <<时,x 的取值范围为2<<1x -.【点睛】本题主要考查了画一次函数图象,求一次函数图象与坐标轴的交点,根据图象法求自变量的取值范围等等,熟知一次函数的相关知识是解题的关键.22. 下面是证明直角三角形的一个性质的两种添加辅助线的方法,选择其中一种,完成证明. 性质:直角三角形斜边上的中线等于斜边的一半.已知:如图,在ABC中,90ABC ∠=︒,BO 是斜边AC 的中线.求证:12BO AC =. 方法一证明:如图,延长BO 至点D ,使得OD OB =,连接AD CD ,. 方法二 证明:如图,取BC 的中点D ,连接OD .【答案】见解析【解析】【分析】方法一:先证明四边形ABCD 是平行四边形,进而证明四边形ABCD 是矩形,则由矩形的性质可得1122OB BD AC ==; 方法二:证明OD 是ABC 的中位线,得到OD AB ∥,则OD 垂直平分BC ,由线段垂直平分线的性质可得12OB OC AC ==. 【详解】证明:方法一:∵点O 是AC 边的中点,∴OA OC =,又∴OD OB =,∴四边形ABCD 是平行四边形,∴90ABC ∠=︒,∴四边形ABCD 是矩形,∴AC BD =, ∴1122OB BD AC ==; 方法二:∴BO 是斜边AC 的中线,∴点O 是AC 的中点,∵BC 的中点D ,∴OD 是ABC 的中位线,∴OD AB ∥,∴90ODC ABC ∠=∠=︒,∴OD 垂直平分线BC ,∴OB OC =, ∴12OC AC =, ∴12BO AC =. 【点睛】本题主要考查了矩形的性质与判定,三角形中位线的性质,线段垂直平分线的性质与判定等等,灵活运用所学知识是解题的关键.23. 2023年5月30日神舟十六号载人飞船发射取得圆满成功,某校准备以此为契机,开展一次“普及航天知识,弘扬航天精神”的科普讲座. 为了获悉学生对航天知识的了解程度,讲座前学校从七、八两个年级各随机抽取40名学生,进行了航天知识问卷测试,获得学生的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息:a.七年级40名学生成绩的频数分布直方图如下(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤):b .七年级成绩在7080x ≤<这一组的是:707171727273747576777879 79c .七、八两个年级成绩的平均分、中位数如下: 年级平均分 中位数 七73.8 m 八 73.8 74.5根据以上信息,回答下列问题:(1)写出表中m 的值;(2)在七年级抽取的学生中,记成绩高于抽取学生平均分的学生人数为1p .在八年级抽取的学生中,记成绩高于抽取学生平均分的学生人数为2p .比较1p ,2p 的大小,并说明理由;(3)假设该校七年级共有200名学生参加测试,估计参加测试的学生成绩不低于80 分的人数.【答案】(1)72.5(2)12p p <,理由见解析(3)该校七年级共有200名学生参加测试,估计参加测试的学生成绩不低于80 分的人数为60人【解析】【分析】(1)根据频数直方图可得,各组数据分别为3,12,13,11,1,进而根据中位数的定义即可求解;(2)根据中位数的意义,可得120p <,220p >,即可求解;(3)根据样本估计总体,用2000乘以分数高于80分的占比即可求解.【小问1详解】根据频数直方图可得,各组数据分别为3,12,13,11,1,则中位数在7080x ≤<这组的第5个数,和第6个数的平均数,∴七年级成绩在7080x ≤<这一组的是:70? 71? 71? 72? 72? 73? 74? 75? 76? 77? 78? 79? 79 ∴中位数727372.52m +==; 【小问2详解】∴七年级的中位数为72.5,低于平均分,则120p <,八年级的中位数为74.5,高于平均分,则220p >,∴12p p <【小问3详解】该校七年级共有200名学生参加测试,估计参加测试的学生成绩不低于80 分的人数为1112006040+⨯=(人)答:该校七年级共有200名学生参加测试,估计参加测试的学生成绩不低于80 分的人数为60人.【点睛】本题考查了频数直方图,求中位数,以及中位数的意义,样本估计总体,从统计图表中获取信息是解题的关键.24. 甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.节日期间两家草莓采摘园均推出优惠促销方案:甲采摘园:游客进园需购买100元的门票,采摘的草莓按照六折计费;乙采摘园:游客进园不需购买门票,采摘的草莓达到一定重量后,超过部分按照优惠价格计算. 设游客在乙采摘园采摘的草莓重量为x 千克,所花的费用为y 元,y 与x 之间的函数关系如图所示.(1)优惠前草莓的销售价格为 元/千克;(2)当10x ≥时,求y 与x 的函数解析式;(3)当游客采摘草莓的重量为15千克时,在哪家草莓园采摘更划算,并说明理由.【答案】(1)30(2)()1218010y x x =+≥(3)在乙草莓园采摘更划算,理由见解析【解析】【分析】(1)根据函数图象,用30010÷即可求解;(2)根据待定系数法求解析式即可求解;(3)分别求得甲、乙两家草莓园的收费,比较大小即可求解.【小问1详解】优惠前草莓的销售价格为3001030÷=元/千克,故答案为:30.【小问2详解】解:设10x ≥时y 与x 的函数解析式为y kx b =+,将点()()10,300,25,480代入,得,3001048025k b k b =+⎧⎨=+⎩, 解得:12180k b =⎧⎨=⎩∴()1218010y x x =+≥【小问3详解】甲采摘园:10015300.6370+⨯⨯=元,乙采摘园:1215180360⨯+=元,∵360370<,∴在乙草莓园采摘更划算.【点睛】本题考查了一次函数的应用,根据题意列出函数关系是解题的关键.25. 在平面直角坐标系xOy 中,已知一次函数()0y kx b k =+≠的图像由函数12y x =图像平移得到,且经过点()2,2.(1)求函数()0y kx b k =+≠的解析式;(2)当2x >-时,对于x 的每一个值,函数y x n =+的值大于函数()0y kx b k =+≠的值,直接写出n 的取值范围.【答案】(1)112y x =+ (2)2n ≥【解析】【分析】(1)先根据直线平移时k 的值不变得出12k =,再将点()2,2代入()0y kx b k =+≠,求出b 的值,即可求得一次函数的解析式;(2)根据点()2,0-结合图像即可求得.【小问1详解】 解:一次函数y kx b =+的图像由直线12y x =平移得到, 12k ∴= 将点()2,2代入12y x b =+,得1222b =⨯+ 解得:1b = ∴一次函数的解析式为112y x =+; 【小问2详解】将2x =-代入112y x =+,得()12102y =⨯-+=即直线112y x =+过点()2,0- 把点()2,0-代入y x n =+,可得2n =当2x >-时,对于x 的每一个值,函数y x n =+的值大于函数112y x =+的值, 2n ∴≥.【点睛】本题考查了一次函数图像与几何变换,一次函数与系数的关系,数形结合是解题的关键. 26. 在正方形ABCD 中,P 是射线CB 上的一个动点,过点C 作CE AP ⊥于点E ,射线CE 交直线AB 于点F ,连接BE .(1)如图1,当点P 在线段CB 上时(不与端点B ,C 重合),∴求证:BCF BAP ∠=∠;∴求证:2EA EC EB =;(2)如图2,当点P 在线段CB 的延长线上时(BP BA <),依题意补全图2并用等式表示线段EA ,EC ,EB 之间的数量关系.【答案】(1)∴见解析;∴见解析;(2)图形见解析,2EC EA EB =+【解析】【分析】(1)∴根据正方形的性质可得∠F +∠BCF =90°,再由CE AP ⊥,可得∠F +∠BAP =90°,即可求证;∴在AP 上取点Q ,使AQ =CE ,可证得△ABQ ≌CBE ,从而得到BQ =BE ,∠ABQ =∠CBE ,进而得到△EBQ 为等腰直角三角形,可得到2QE BE =,即可求证;(2)先依题意补全图形,先证明∠BAP =∠BCF ,然后在CE 上截取CG =AE ,可证得△ABE ≌△CBG ,从而得到∠ABE =∠CBG ,BE =BG ,进而得到△EBG 等腰直角三角形,可得到2EG BE =,即可求解.【小问1详解】证明∶ ∴在正方形ABCD 中,AB =CB ,∠ABC =∠CBF =90°,∴∠F +∠BCF =90°,∵CE AP ⊥,∴∠AEF =90°,∴∠F +∠BAP =90°,∴∠BCF =∠BAP ;∴如图,在AP 上取点Q ,使AQ =CE ,在正方形ABCD 中,AB =CB ,∠ABC =∠CBF =90°,∵∠BCF =∠BAP ,∴△ABQ ≌CBE ,∴BQ =BE ,∠ABQ =∠CBE ,∵∠ABQ +∠CBQ =∠ABC =90°,∴∠CBE +∠CBQ =∠EBQ =90°,∴△EBQ等腰直角三角形, ∴22222QE BQ BE BE BE =+==, ∴2EA AQ QE EC EB =+=+;【小问2详解】解: 依题意补全图形,如下:在正方形ABCD 中,AB =CB ,∠ABC =∠ABP =90°,∴∠BAP +∠APB =90°,∵CE ⊥AP ,∴∠CEP =90°,∴∠BCF +∠APB =90°,∴∠BAP =∠BCF ,在CE 上截取CG =AE ,∵∠BAP =∠BCF ,AB =CB ,∴△ABE ≌△CBG ,∴∠ABE =∠CBG ,BE =BG ,∴∠EBG =∠ABE +∠FBG =∠CBG +∠FBG =∠ABC =90°,∴△EBG 为等腰直角三角形, ∴22222EG BE BG BE BE =+==, ∴2EC CG EG EA EB =+=.【点睛】本题主要考查了全等三角形的判定和性质,正方形的性质,等腰三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质,正方形的性质,等腰三角形的性质,勾股定理,作适当辅助线构造全等三角形是解题的关键.27. 在平面直角坐标系xOy 中,如果点A ,C 为某个菱形一组对角的顶点,且点A ,C 在直线y x =上,那么称该菱形为点A ,C 的“关联菱形”. 例如,图1中的四边形ABCD 为点A ,C 的“关联菱形”∴ 已知点()1,1M ,点(),P a a ∴(1)当3a =时,∴在点()2,1E ,()1,3F ,()1,5G -中,点 能够成为点 M ,P 的“关联菱形”的顶点; ∴当点M ,P 的“关联菱形”MNPQ 的面积为8时,求点N 的坐标;(2)已知直线2y x b =-+与x 轴交于点A ,与y 轴交于点.B 若线段5AB ≤,且点A 是点M ,P 的“关联菱形”的顶点,直接写出a 的取值范围∴【答案】(1)①,F G ;②()0,4N 或()4,0N(2)5151a --≤≤-且1,1a ≠- 【解析】【分析】(1)①根据“关联菱形”的定义,即可求解.②根据菱形的性质可得点 M ,P 的“关联菱形”的顶点在直线4y x =-+上,根据面积可得4TN =,勾股定理列出方程即可求解;(2)根据题意求得一次函数与坐标轴的交点为,02b A ⎛⎫ ⎪⎝⎭,()0,B b ,根据5AB ≤,得出2525b -≤≤,0,4b ≠,进而分别求得25b =25b =-点A 的坐标,根据菱形的性质可得菱形对角线的交点坐标,进而求得a 的值,结合图形即可求解.小问1详解】解:①如图所示, ∴()1,1M ,()3,3P ∴则PM 的中点坐标为()2,2,∵菱形的对角线互相垂直,则与y x =垂直的直线为y x =-, 根据菱形的性质可得点 M ,P 的“关联菱形”的顶点在直线y x t =-+上,将点()2,2代入,解得4t =, 则4y x =-+,将()2,1E ,()1,3F ,()1,5G -分别代入4y x =-+,可得()1,3F ,()1,5G -在直线4y x =-+上,∴点()2,1E ,()1,3F ,()1,5G -中,点()1,3F ,()1,5G -能够成为点 M ,P 的“关联菱形”的顶点; 故答案为:,F G .②解:如图所示,设PM 的中点为T ,则()2,2T ,∴()()2221212MT =-+-=∴点M ,P 的“关联菱形”MNPQ 的面积为8 ∴111822422MTN S MT TN TN =⨯==⨯=,则22TN =设(),4N a a -+,则216TN =,即()()222428a a -+-+-=,解得:0a =或4a =, 【则()0,4N 或()4,0N【小问2详解】解:∴直线2y x b =-+与x 轴交于点A ,与y 轴交于点B ∴,02b A ⎛⎫ ⎪⎝⎭,()0,B b ∴22522b AB b b ⎛⎫=+= ⎪⎝⎭∵5AB ≤, 552b ≤, 解得:2525b -≤≤,∵()1,1M ,则M ,P 的“关联菱形”的顶点过直线2y x =-+,∴当A 在2y x =-+上时,不能构成菱形, 将,02b A ⎛⎫ ⎪⎝⎭代入得022b =-+,解得4b = ∵点A 是点M ,P 的“关联菱形”的顶点,∴0b ≠, ∴2525b -≤≤0,4b ≠; 当25b =依题意,A 在y x d =-+上, 则)5,0A ,代入y x d =-+得,5d =, ∴5y x =-,5y x y x ⎧=-+⎪⎨=⎪⎩解得:552x y ⎧=⎪⎪⎨⎪=⎪⎩ 则菱形的对角线交点为5522⎛⎫ ⎪ ⎪⎝⎭,∵()1,1M ,(),P a a ∴1522a +=,解得51a =-, 当4b =时,()2,2A ,则,M P 重合,此时1a =,当0b =时,,A P 重合,此时1a =-, 当5b =-时,同理可得()5,0A ,则菱形的对角线交点为55,22⎛⎫-- ⎪ ⎪⎝⎭,∵()1,1M ,(),P a a∴1522a +=-,解得51a =-, 综上所述,5151a ≤≤且1,1a ≠- 【点睛】本题考查了菱形的性质,坐标与图形,一次函数交点问题,勾股定理求两点距离,熟练掌握菱形的性质是解题的关键.。
山东省德州市第一中学附属中学2022-2023学年八年级下学期末测试数学模拟卷3
2022-2023年德州一中附属中学八下期末测试模拟卷一、单选题(本大题共12小题,共48分。
在每小题列出的选项中,选出符合题目的一项)A.B.C.D.二、填空题(本大题共6小题,共24分)15.一射击运动员一次射击练习的成绩是(单位:环):9,7,10,8 ,9,10 ,8,这位运动员这次射击成绩的中位数是________环.16.如图,一次函数y=mx+n与一次函数y=kx+b的图像交于点A(1,2),则关于x的不等式mx+n>kx+b 的解集是_____.17.长方体敞口玻璃罐,长、宽、高分别为16cm、6cm和6cm,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方2cm处,则蚂蚊到达饼干的最短距离是_______cm.18.如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长度是________cm.三、解答题请根据所给信息,解答下列问题:a________,b=________;(1)=(2)请补全频数分布直方图;(3)样本中,抽取的部分学生成绩的中位数落在第________段;(4)已知该年级有500名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?22.如图,点C在线段AB上,△DAC和△DBE都是等边三角形.(1)求证:△DAB≌△DCE(2)求证:DA∥EC.23.为参加学校艺术节闭幕演出,八年级一班欲租用男、女演出服装若干套以供演出时使用,已知4套男(2)点P 为线段AB 上一点,点Q 为线段BC 上一点,BQ AP =,连接PQ ,设点P 的横坐标为t ,PBQ V 的面积为()0S S ≠,求S 与t 之间的函数关系式(不要求写出自变量t 的取值范围);。
鲁教版2020八年级数学期末复习综合练习题2(基础过关 含答案)
本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.
8.B
【解析】
【分析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,5x﹣1≥0,
解得,x≥ ,
故选B.
【点睛】
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.
∴ ,
∴ ,
∵∠CDP=∠BDE,
∴△DPC∽△DEB,
∴ ,
∴BE:PA= ,
故答案为 .
【点睛】
本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
16.6
【解析】
【分析】
把x=-2代入x2+(a-1)x+a=0即可求出a的值.
【详解】
把x=-2代入x2+(a-1)x+a=0,得
故答案为:2026.
【点睛】
本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.
14.
【解析】
【分析】
根据根式的计算法则计算即可.
【详解】
解:原式 ,
故答案为: .
【点睛】
本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视.
24.解方程:(1)(2x﹣1)2=(x﹣3)2;(2)x2﹣2 x﹣1=0
25.计算:
(1) × -3 +
(2)( -1)2-( - ) ( + )
八下期末数学试卷必刷题
一、选择题(每题4分,共20分)1. 已知等腰三角形ABC中,AB=AC,∠B=40°,则∠C的度数是()A. 40°B. 80°C. 100°D. 140°2. 在直角坐标系中,点A(-3,2),点B(3,-2),则线段AB的长度是()A. 2B. 4C. 6D. 83. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x1=2,x2=3B. x1=3,x2=2C. x1=-2,x2=-3D. x1=-3,x2=-24. 若sinθ=3/5,则cosθ的值为()A. 4/5B. -4/5C. 3/5D. -3/55. 已知函数y=kx+b,其中k≠0,当x=1时,y=2;当x=2时,y=4,则该函数的图像经过()A. 第一、二、四象限B. 第一、二、三象限C. 第一、二、四象限D. 第一、二、三象限二、填空题(每题5分,共25分)6. 在直角坐标系中,点P(2,-3),则点P关于x轴的对称点坐标为______。
7. 已知等腰三角形ABC中,AB=AC,∠B=50°,则∠A的度数为______。
8. 已知一元二次方程x^2 - 4x + 3 = 0,则该方程的解为______。
9. 若sinθ=1/2,则cosθ的值为______。
10. 已知函数y=2x+1,当x=3时,y=______。
三、解答题(每题10分,共40分)11. (1)已知等腰三角形ABC中,AB=AC,∠B=40°,求∠A的度数。
(2)在直角坐标系中,点P(2,-3),点Q(-4,5),求线段PQ的中点坐标。
12. (1)已知一元二次方程x^2 - 5x + 6 = 0,求该方程的解。
(2)已知函数y=2x+1,当x=3时,求y的值。
13. (1)若sinθ=3/5,求cosθ的值。
(2)已知函数y=kx+b,其中k≠0,当x=1时,y=2;当x=2时,y=4,求该函数的图像经过的象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八下末过关练习题
某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
试题解析:设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,
90
15040x x
=- ,x =15, 经检验x =15是原方程的解.∴40﹣x =25.甲,乙两种玩具分别是15元/件,25元/件;
(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,
481525
(48)1000<y y y y -+-≤⎧⎨⎩,解得20≤y <24. 因为y 是整数,甲种玩具的件数少于乙种玩具的件数,
∴y 取20,21,22,23,
共有4种方案.。