PolyMUMPs Process - MEMSCAP:PolyMUMPs过程MEMSCAP

合集下载

三重四级杆工作模式

三重四级杆工作模式

三重四级杆工作模式Experiment modes on a triple quadrupole mass spectrometer三重四极杆质谱仪作为售价数倍于普通GCMS或LCMS的高端产品,已经大量进入了我国商检、质检和研究单位。

那么它的优势在哪里呢?我们来根据三重四极杆的工作模式逐一说明。

三重四极杆的基本结构(Sciex QTrap4000)动态扫描,scaning全扫描,full scan全扫描用于检测离子源产生的离子流中,各种离子的m/z和强度。

从全扫描得到的信息可以知道目前色谱中的组分状态。

这时对简单的成份可以直接定量;对于复杂的成分可以做进一步的分析。

由于ESI离子源能够产生许多m/z大于3000的离子,但是三重四极杆的m/z上限一般达不到3000,所以并不是所有离子都被检测出来。

在仪器内部,可以使用Q1或者Q3做全扫描,两者的差别是混合离子的离子束是否通过了碰撞室Q2。

如果使用Q3作为扫描,离子会在Q1、Q2中损失一部分,灵敏度会有一些下降。

通常Q3扫描只是用来标定Q3的质量轴的。

不过我们倒是经常使用Q3做全扫描,因为我们需要把Q1开到高分辨模式,Q3开到Unit,Q3的灵敏度反而高一些。

总结一下,全扫描的作用是:1.做监视,挑选需要进一步分析的离子2.定量简单的组分3.矫正Q1、Q3的质量轴加强型全扫描,enhanced full scan【没写呢】子离子扫描,pruduct ion scan子离子扫描可以得到母离子的碎片信息。

这些信息可以帮助操作者了解母离子的结构信息,区别几种m/z相同的母离子,降低假阳性率。

这时Q1工作在SIM模式,即只允许母离子这一种m/z的离子通过;Q2碰撞室工作在碰撞碎裂模式(CID,Collision Induced Dissociation),气压上升、碰撞能量提高;Q3在做全扫描,检测Q2产生的碎片离子的m/z和强度。

子离子扫描的作用是:1.通过母离子碎片种类和强度的差异来区别m/z相同的母离子2.了解母离子的结构母离子扫描,parent ion scan母离子扫描可以知道离子束中哪些母离子具有我们感兴趣的基团碎片。

基因工程名词解释

基因工程名词解释

基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。

遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。

包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。

狭义:基因工程。

限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。

两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。

BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。

平末端(blunt ends): DNA片段的末端是平齐的。

星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。

易产生星活性的内切酶用*标记。

如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。

连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。

mom电容寄生参数重复提取

mom电容寄生参数重复提取

mom电容寄生参数重复提取
MOM 电容寄生参数是指在电子元器件中,由于元器件结构和制造工艺等原因导致的电容效应。

在实际电路中,这些寄生电容会对电路性能产生影响,如影响信号传输速度、造成信号失真等。

因此,对MOM 电容寄生参数的重复提取具有重要的意义。

重复提取MOM 电容寄生参数的方法主要有以下几种:
首先,可以通过对元器件的结构进行优化,降低寄生电容的产生。

例如,在设计过程中,可以选择合适的元器件尺寸和形状,以减小寄生电容的影响。

其次,可以通过修改制造工艺,降低寄生电容的产生。

例如,采用较低的温度和压力进行制造,可以有效降低寄生电容的产生。

此外,还可以通过电路设计和布局,降低寄生电容的影响。

例如,在电路设计中,可以将信号线布置在电容较小的区域,以减小寄生电容对信号的影响。

重复提取MOM 电容寄生参数的优点主要体现在以下几个方面:
首先,可以提高电路的稳定性和可靠性。

通过重复提取MOM 电容寄生参数,可以有效地降低寄生电容对电路性能的影响,从而提高电路的稳定性和可靠性。

其次,可以提高电路的传输速度和信号质量。

通过重复提取MOM 电容寄生参数,可以减小信号传输过程中的失真,从而提高电路的传输速度和信号质量。

最后,可以提高电路的设计效率和制造效率。

通过重复提取MOM 电容寄生参数,可以有效地降低电路设计和制造过程中的复杂度,从而提高电路的设计效率和制造效率。

基因英语词汇翻译

基因英语词汇翻译

基因英语词汇翻译Aactivation domain 活化结构域adapters 连接物adenine 腺嘌呤adenosine 腺ADP (adenosine diphosphate) 腺二磷酸affinity column 亲和柱AFLP (amplified fragment length polymorphisms) 增值性断片长度多态现象agrobacterium 农杆菌属alanine 丙氨酸allele 等位基因amber mutation 琥珀型突变AMP (adenosine monophosphate) 腺一磷酸ampicillin 氨?青霉素anchor primer 锚状引物annealing 退火annealing temperature 退火温度anticodon 反密码子AP-PCR (arbitrarily primed PCR) 任意引物聚合?链反应arbitrary primer 任意引物ATP (adenosine triphosphate) 腺三磷酸autosome 常染色体腺苷脱氨酶缺乏症 adenosine deaminasedeficiency (ADA) 腺病毒 adenovirusAlagille综合征 Alagille syndrome等位基因 allele氨基酸 amino acids动物模型 animal model抗体 antibody凋亡 apoptosis路-巴综合征ataxia-telangiectasia常染色体显性autosomal dominant常染色体 autosomeBbaculovirus 杆状病毒base pair ..基对base sequence ..基顺序beta-galactosidase ..-半乳糖? beta-glucuronidase ..-葡糖醛酸糖? bioluminescence 生物发光bioremediation 生物降解biotechnology 生物技术blotting 印迹法blue-white selection 蓝白斑筛选细菌人工染色体 bacterial artificial chromosome (BAC)碱基对 base pair先天缺陷birth defect骨髓移植bone marrow transplantation blunt end 平(整末)端Ccatalyst 催化剂cDNA library 反向转录DNA库centromere 着丝体centrosome 中心体chemiluminescence 化学发光chiasma 交叉chromomere 染色粒chromoplast 有色体chromosomal aberration 染色体畸变chromosomal duplication 染色体复制chromosomal fibre 染色体牵丝chromosome 染色体chromosome complement 染色体组chromosome map 染色体图chromosome mutation 染色体突变clone 克隆cloning 无性繁殖系化codon 密码子codon degeneracy 密码简并codon usage 密码子选择cohesive end 黏性末端complementary DNA (cDNA) 反向转录DNA complementary gene 互补基因consensus sequence 共有序列construct 组成cosmids 黏性质粒crossing over 互换cyclic AMP (cAMP) 环腺酸cytosine 胞嘧啶癌 cancer后选基因 candidate gene癌 carcinomacDNA文库 cDNA library 细胞cell染色体 chromosome克隆 cloning密码 codon天生的 congenital重叠群 contig囊性纤维化 cystic fibrosis 细胞遗传图 cytogenetic mapDdark band 暗带deamination 脱氨基作用decarboxylation 脱羧基作用degenerate code 简并密码degenerate PCR 退化性聚合?链反应dehydrogenase 脱氢?denaturation 变性deoxyribonucleoside diphospahte 脱氧核糖核一磷酸deoxyribonucleoside monophospahte 脱氧核糖核二磷酸deoxyribonucleoside triphospahte 脱氧核糖核三磷酸deoxyribose 去(脱)氧核糖dicarboxylic acid 二羧酸digoxigenin 洋地黄毒diploid 二倍体DNA (deoxyribonucleic acid) 去(脱)氧核糖核酸DNA binding domain DNA结合性结构域DNA fingerprinting DNA指纹图谱DNA helicase DNA解螺旋?DNA kinase DNA激?DNA ligase DNA连接?DNA polymer DNA聚合物DNA polymerase DNA聚合?double helix 双螺旋double-strand 双链缺失 deletion脱氧核糖核酸 deoxyribonucleic acid (DNA) 糖尿病 diabetes mellitus二倍体 diploidDNA复制 DNA replicationDNA测序 DNA sequencing显性的 dominant双螺旋 double helix复制 duplicationEelectroporation 电穿孔endonuclease 内切核酸? enhancer 增强子enterokinase 肠激? episome 游离基因ethidium bromide 溴乙锭eukaryotic 真核生物的euploid 整倍体exonuclease 外切核酸?expressed-sequence tags 表达的序列标记片段extron 外含子电泳electrophoresis 酶enzyme外显子exonFF factor F因子FAD (flavine adenine dinucleotide) 黄素腺嘌呤二(双)核酸feedback control 反馈控制feedback inhibition 反馈抑制feedback mechanism 反馈机制first filial (F1) generation 第一子代FISH (fluoresence in situ hybridization) 荧光原位杂交forward mutation 正向突变F-pilus F纤毛functional complementation 功能性互补作用fusion protein 融合蛋白家族性地中海热familial Mediterraneanfever 荧光原位杂交fluorescence in situhybridization (FISH) 脆性X染色体综合征Fragile X syndromeGgel electrophoresis 凝胶电泳gene 基因gene cloning 基因克隆gene conversion 基因转变gene duplication 基因复制gene flow 基因流动gene gun 基因枪gene interaction 基因相互作用gene locus 基因位点gene mutation 基因突变gene regulation 基因调节gene segregation 基因分离gene therapy 基因治疗geneome 基因组/ 染色体组genetic map 基因图genetic modified foods (GM foods) 基因食物genetics 遗传学genetypic ratio 基因型比/ 基因型比值genome 基因组/ 染色体组genomic library 基因组文库genotype 基因型giant chromosome 巨染色体globulin 球蛋白glucose-6-phosphate dehydrogenase 6-磷酸葡萄糖脱氢?GP (glycerate phosphate) 磷酸甘油酸脂GTP (guanine triphosphate) 鸟三磷酸guanine 鸟嘌呤基因扩增gene amplification基因表达gene expression基因图谱gene mapping基因库gene pool基因治疗gene therapy基因转移gene transfer遗传密码genetic code (A TGC)遗传咨询genetic counseling遗传图genetic map遗传标记genetic marker遗传病筛查genetic screening基因组genome基因型genotype种系germ lineHhaploid 单倍体haploid generation 单倍世代heredity 遗传heterochromatin 异染色质Hfr strain 高频重组菌株holoenzyme 全?homologous 同源的housekeeping gene 家务基因hybridization 杂交单倍体haploid造血干细胞hematopoietic stem cell 血友病hemophilia 杂合子heterozygous高度保守序列highly conserved sequence Hirschsprung病Hirschsprung's disease纯合子homozygous人工染色体human artificial chromosome (HAC)人类基因组计划Human Genome Project human immunodeficiency virus (HIV)/ 人类免疫缺陷病毒acquired immunodeficiency syndrome (AIDS) 获得性免疫缺陷综合征huntington舞蹈病Huntington's diseaseIimmunoglobulin 免疫球蛋白in vitro 在体外/ 在试管内in vivio 在体内independent assortment 独立分配induced mutation 诱发性突变induction 诱导initiation codon 起始密码子inosine 次黄insert 插入片段insertional inactivation 插入失活interference 干扰intergenic 基因间的interphase 间期intragenic 基因内的intron 内含子inversion 倒位isocaudarner 同尾酸isoschizomer 同切点?Kkanamycin 卡那毒素klenow fragment 克列诺夫片段Llac operon 乳糖操纵子ligase 连接? ligation 连接作用light band 明带linker 连接体liposome 脂质体locus 位点Mmap distance 图距离map unit 图距单位mature transcript 成熟转录物metaphase 中期methylase 甲基化? methylation 甲基化作用microarray 微列microinjection 微注射missense mutation 错差突变molecular genetics 分子遗传学monoploid 单倍体monosome 单染色体messenger RNA (mRNA) 信使RNA multiple alleles 复(多)等位基因mutagen 诱变剂mutagenesis 诱变mutant 突变体mutant gene 突变基因mutant strain 突变株mutation 突变mutation rate 突变率muton 突变子畸形malformation描图mapping标记marker黑色素瘤melanoma孟德尔Mendel, Johann (Gregor)孟德尔遗传Mendelian inheritance信使RNA messenger RNA (mRNA)[分裂]中期metaphase微阵技术microarray technology线立体DNA mitochondrial DNA单体性monosomy小鼠模型mouse model多发性内分泌瘤病multiple endocrine neoplasia, type 1 (MEN1)NNAD (nicotinamide adenine dinucleotide) 烟醯胺腺嘌呤二核酸NADP (nicotinamide adenine dinucleotide phosphate) 烟醯胺腺嘌呤二核酸磷酸nicking activity 切割活性nonsense codon 无意义密码子nonsense mutation 无意义突变Northern blot Northern印迹法nuclear DNA 核DNAnuclear gene 核基因nuclease 核酸?nucleic acid 核酸nucleoside 核nucleoside triphosphate 核三磷酸nucleotidase 核酸?nucleotide 核酸nucleotide sequence 核酸序列神经纤维瘤病neurofibromatosis尼曼-皮克病Niemann-Pick disease, type C (NPC)RNA印记Northern blot核苷酸nucleotide神经核nucleusOoligonucleotide 寡核酸one gene one polypeptide hypothesis 一个基因学说operon 操纵子oxidative decarboxylation 氧化脱羧作用oxidative phosphorylation 氧化磷酸化作用寡核苷酸oligo癌基因oncogenePpeptide ? peptide bond ?键phagemids 噬菌粒phosphorylation 磷酸化作用physical map 物理图谱plasmid 质粒point mutation 点突变poly(A) tail poly(A)尾polymerase 聚合?polyploid 多倍体positional cloning 位置性无性繁殖系化primary transcript 初级转录物primer 引物probe 探针prokaryotic 原核的promoter 启动子protease 蛋白?purine 嘌呤pyrimidine 嘧啶Parkinson病Parkinson's disease血系/谱系pedigree表型phenotype物理图谱physical map多指畸形/多趾畸形polydactyly聚合酶链反应polymerase chain reaction (PCR)多态性polymorphism定位克隆positional cloning原发性免疫缺陷primary immunodeficiency 原核pronucleus前列腺癌prostate cancerRrandom segregation 随机分离RAPD (rapid amplified polymorphic DNA) 快速扩增多态DNAreading frame 阅读码框recessive gene 隐性基因recombinant 重组体recombinant DNA technology 重组DNA技术recombination 重组regulator (gene) 调控基因replica 复制物/ 印模replica plating 复制平皿(板)培养法replication 复制replication origin 复制起点reporter gene 报道基因repression 阻遏repressor 阻遏物repressor gene 阻遏基因resistance strain 抗药性菌株restriction 限制作用restriction enzyme 限制性内切? restriction mapping 限制性内切?图谱retrovirus 反转录病毒reverse transcription 反转录作用RFLP (restricted fragment length polymorphisms) 限制性断片长度多态现象ribonucleotide 核糖核酸ribose 核糖ribosomal RNA (rRNA) 核糖体RNA ribosome 核糖体RNA (ribonucleic acid) 核糖核酸RNA polymerase I RNA聚合?IRNA polymerase II RNA聚合?IIRNA polymerase III RNA聚合?IIIR-plasmid R质粒/ 抗药性质粒隐性recessive逆转录病毒retrovirus核糖核酸ribonucleic acid (RNA)核糖体ribosomeSsecond filial (F2) generation 第二子代self-ligation 自我连接作用shuttle vectors 穿梭载体sigma factor ..因子single nucleotide polymorphism 单核酸多态性single-stranded DNA 单链DNAsister chromatid 姊妹染色单体sister chromosome 姊妹染色体site-directed mutagenesis 定点诱变somatic cell 体细胞Southern blot Southern印迹法splice 拼接star activity 星号活性stationary phase 静止生长期sticky end 黏性末端stop codon 终止密码子structural gene 结构基因supernatant 上层清液supressor 抑制基因序列标记位点sequence-tagged site (STS) 联合免疫缺陷severe combined immunodeficiency (SCID)性染色体sex chromosome伴性的sex-linked体细胞somatic cellsDNA印记Southern blot光谱核型spectral karyotype (SKY)替代substitution自杀基因suicide gene综合征syndromeTtelophase 末期template 模板terminator 终止子tetracycline 四环素thymine 胸腺嘧啶tissue culture 组织培养transcription 转录作用transfer RNA (tRNA) 转移RNA transformation 转化作用transgene 转基因translation 翻译/ 平移transmembrane 跨膜triplet 三联体triplet code 三联体密码triploid 三倍体技术转让technology transfer转基因的transgenic易位translocation三体型trisomy肿瘤抑制基因tumor suppressor geneVvector 载体WWestern blot Western印迹法Wolfram综合征Wolfram syndromeY 酵母人工染色体yeast artificial chromosome (YAC)。

分子生物学基本技术课程简介

分子生物学基本技术课程简介

分子生物学前沿技术介绍
讲授内容
LCM(laser capture microdissection) DHPLC(Denaturing High Performance
Liquid Chromatography) MLPA(Multiplex ligation-dependent probe
高处理速度(High Throughput) :MLPA搭配自动化设备,可在三小時内 同时处理96个检测。检测从DNA提取、反应至结果分析,仅需兩个工作 日。此外,因为所使用的反应条件都相同,可以平行处理不同的检验项 目。
MLPA 原理
探针构成
Synthetic oligonucleotide 50-60 bp
P34 DM D
0 300
325
350
375 S iz e ( n t )
400
425
450
475
Dye Signal
连续多外显子缺失突变 连续多外显子重复突变
患者和携带者检测结果
患儿
患儿母亲
患儿和患儿母亲的MLPA结果显示相同的重复区域
荧光显微分析系统
实验课教学团队和教学画面
P34 DM D
338.18 ex66
P34 DM D
10000
371.31
ex27
P34 DM D
412.58
361.90 ex47
ex68 P34 DM D
P34 DM D
405.33
354.78 ex7
ex28 P34 DM D
P34 DM D
380.20 ex67
P34 DM D
397.09 ex48
应用于染色体数目异常(Trisomy13、18 & 21)、遗传疾病基因缺失重 复(如SMA、DMD基因…等)、基因甲基化检测(如Prader-Willi syndrome (PWS) and Angelman syndrome (AS)、抑癌基因诊断(如 Breast cancer、Lung cancer…等)及mRNA分析等。检测探针种类, 已超过上百种。

二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应

二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应

Vol .28高等学校化学学报No .92007年9月 CHE M I CAL JOURNAL OF CH I N ESE UN I V ERSI TI ES 1690~1695二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应石 慧1,2,4,何晓晓1,2,3,4,王柯敏1,2,4,原 茵1,2,4,谭蔚泓1,2,4(1.湖南大学化学生物传感与计量学国家重点实验室,2.生物医学工程中心,3.生命科学与技术研究院,4.生物纳米与分子工程湖南省重点实验室,长沙410082)摘要 分别将二氧化硅纳米颗粒(Si N Ps )与微米颗粒(Si M Ps )作为固定化载体,选择多聚酶牛肝过氧化氢酶(CAT )和单体酶辣根过氧化物酶(HRP )作为酶模型,通过考察酶固定化后在酶活回收率、热稳定性、酶促反应最适温度以及酶在水2有机溶剂混合体系中催化能力的变化,对载体与酶所产生的生物效应差异进行了系统研究.酶活回收率结果表明,Si N Ps 显示出比Si M Ps 优越的对酶无选择性的高生物亲和性,而Si M Ps 则能使固定于其上的酶热稳定性大幅度提高,且二者都能使固定化酶在有机相中的稳定性得到明显增强.但酶促反应最适温度的变化结果表明,对不同类型的酶所产生的生物效应则表现出无规律性.关键词 二氧化硅纳米颗粒;二氧化硅微米颗粒;固定化载体;酶;生物效应中图分类号 O657 文献标识码 A 文章编号 025120790(2007)0921690206收稿日期:2007201218.基金项目:国家“九七三”计划(批准号:2002CB513110)、国家高科技发展规划项目(批准号:2003AA302250)、国家科技攻关计划项目(批准号:2003BA310A16)、教育部重点科研项目(批准号:107084)、教育部新世纪优秀人才支持计划(批准号:NCET 20620697)、科技部国际合作重点项目(批准号:2003DF000039)、国家自然科学基金(批准号:90606003,20405005)及湖南省杰出青年基金(批准号:06JJ10004)资助.联系人简介:王柯敏,男,博士,教授,博士生导师,主要从事化学生物传感技术及纳米尺度和分子水平上获取生物化学信息的研究.E 2mail:kmwang@hnu .cn目前,关于纳米生物效应的研究主要是从生物整体水平[1,2]、细胞水平[3~5]和分子水平[6~8]等几个层面开展的.其中对于分子水平上的纳米生物效应的研究,能为揭示纳米材料生物效应的产生机制并以此来发展消除纳米物质毒性的物理/化学方法提供直接依据.Ser pone 等[7]发现Ti O 2会使人皮肤细胞的DNA 受损伤,而对其进行表面修饰后可防止紫外辐射,降低对DNA 的损伤.近年来,二氧化硅纳米颗粒在生物医学领域得到了广泛应用,其相关的生物效应研究也受到关注[9~11],其中部分研究工作就是在分子水平上开展的.我们[12]通过研究氨基化二氧化硅纳米颗粒与质粒DNA 的相互作用,发现其能有效结合质粒DNA 与之形成稳定复合物,并可保护结合的质粒DNA 分子免受限制性内切酶的降解;程凡亮等[13]以木瓜蛋白酶为对象研究了氨基化二氧化硅纳米颗粒作为酶固定化载体的可行性,发现该颗粒作为酶固定化载体时可提供更多固定位点,有望作为高效酶固定化载体.本文以研究二氧化硅纳米颗粒(Si N Ps )与微米颗粒(Si M Ps )的分子生物效应为出发点,分别将Si N Ps 与Si M Ps 作为固定化载体,选择多聚酶牛肝过氧化氢酶(CAT )和单体酶辣根过氧化物酶(HRP )作为酶模型,均以酶固定后的特性(包括酶活回收率、热稳定性、酶促反应最适温度以及酶在水2有机溶剂混合体系中的催化能力)变化为考察指标,对Si N Ps 与Si M Ps 这两种材料相同而尺度不同的颗粒固定酶后对酶分子产生的生物效应差异进行了较为系统的比较研究,获得了一些有意义的结果.1 实验部分1.1 试剂与仪器牛肝过氧化氢酶和辣根过氧化物酶(Sig ma 公司);N 2(β2氨乙基)2γ2氨丙基三乙氧基硅烷(AEAPS,武汉大学有机硅材料研究所);正硅酸乙酯(TE OS,上海化学试剂一厂);二氧化硅微米颗粒(Sig ma 公司,平均直径为60μm ,表面孔穴的平均直径为8nm );戊二醛(体积分数50%,上海生物工程有限公司);考马斯亮蓝G250(Sig ma 公司);其它试剂均为市售分析纯.H itachi 2800型透射电子显微镜(日本H itachi 公司);E 2600倒置荧光显微镜(日本尼康公司);DU800型紫外2可见分光光度计(英国Beck man 公司).1.2 氨基化二氧化硅纳米和微米颗粒的制备根据酶固定化的需要,本文所采用的Si N Ps 和Si M Ps 均为氨基化修饰,其中氨基化二氧化硅纳米颗粒(NH 22Si N Ps )参照文献[12]的方法制得,即将环己烷、Trit on X 2100和正己醇按一定体积比例(4∶1∶1)混合均匀,加入水搅拌5m in 后再将TEOS 和AEAPS (3∶1,体积比)加入到微乳液中,20~30m in 后加入氨水,水解24h .反应完毕后收集颗粒并分散于0101mol/L pH =713的P BS 中备用.氨基化二氧化硅微米颗粒(NH 22Si M Ps )则采用文献[14]的方法合成,对购买的Si M Ps 进行氨基化后续修饰制得,即将Si M Ps 分散于水溶液中,加入终体积分数为1%的AE APS 和终浓度为1mmol/L 的醋酸溶液,反应1~115h 后,离心收集颗粒并洗涤数次后分散于0101mol/L pH =713的P BS 中备用.1.3 酶在氨基化二氧化硅纳米和微米颗粒上的固定化1.3.1 牛肝过氧化氢酶(CAT )的固定化 分别向NH 22Si N Ps 和NH 22Si M Ps 悬浮液中加入戊二醛(最终体积分数为2%),室温下振荡培育115h 后用P BS 反复洗涤,随后将其重新悬浮在2mL P BS 中,加入2mL CAT 溶液(2mg/mL ),于4℃摇床中振荡过夜.按该方法分别将Si N Ps 和Si M Ps 作为CAT 的固定化载体,获得了以Si N Ps 为载体的固定化CAT (Si N P 2CAT )和以Si M Ps 为载体的固定化CAT (Si M P 2CAT ).1.3.2 辣根过氧化物酶(HRP )的固定化 分别向NH 22Si N Ps 和NH 22Si M Ps 悬浮液中加入约1mL 戊二醛,室温下振荡培育115h 后用P BS 反复洗涤,随后将其重新悬浮在500μL P BS 中,加入2mg HRP 粉末,于8℃摇床中振荡反应48h .按该方法分别将Si N Ps 和Si M Ps 作为HRP 的固定化载体,获得了以Si N Ps 为载体的固定化HRP (Si N P 2HRP )和以Si M P 为载体的固定化HRP (Si M P 2HRP ).1.4 二氧化硅纳米颗粒与微米颗粒作为固定化酶载体的生物效应考察1.4.1 游离酶和固定化酶的活力测定 在对酶固定化前后各方面特性的变化情况进行考察时均以酶的活力变化为指标,因此在后续的实验中都要测定酶活力,且所有实验结果均经过重复测定和验证.固定化前后的CAT 和HRP 均采用钼酸铵法进行活力测定[15],具体操作如下:取一定浓度的酶液20μL 于反应试管中,加入160μL 0101mol/L pH =713的P BS (对HRP 而言则为011mol/L pH =610的P B ),随后加入20μL H 2O 2(015mol/L )并置于一定温度的水浴中准确反应3m in (CAT )或015h (HRP ),反应完成后加入118mL 硫酸溶液(015mol/L )终止反应,再依次加入1mL 质量分数为6%的柠檬酸和1mL 质量分数为1%的钼酸铵显色,摇匀,在365n m 处比色,计算酶活力.1.4.2 二氧化硅纳米颗粒与微米颗粒固定化后的酶活回收率测定 采用考马斯亮蓝G250染色法分别测定出CAT 和HRP 的浓度标准曲线,并对所得4种固定化酶在固定化完成后的上清液和洗涤液中的酶含量进行测定.通过换算得出颗粒所固定的酶量后,取以上4种固定化酶进行活力测定,并以含相同量酶分子的游离酶活力进行对照,最后按下式计算出活力回收率:酶活回收率(%)=(固定化酶的活力/具有相同酶量的游离酶的活力)×100%1.4.3 二氧化硅纳米颗粒与微米颗粒固定化后的酶的热稳定性测定 对于CAT,实验时分别将CAT,Si N P 2CAT 和Si M P 2CAT 于50℃水浴中预孵育0,10,30,60,120和240m in 后,再于40℃水浴中测定活性,考察其固定前后热稳定性的变化情况.对于HRP,则先分别将HRP,Si N P 2HRP 和Si M P 2HRP 于60℃水浴中预孵育0,10,30,60和120m in 后,于37℃水浴中测定活性,考察其固定前后热稳定性的变化情况.1.4.4 二氧化硅纳米颗粒与微米颗粒固定化后的酶促反应最适温度测定 分别在相同pH (CAT 及其固定化酶反应时pH 为713,HRP 及其固定化酶反应时pH 为610)条件下,于一系列不同温度的水浴中测定每一种酶或固定化酶的活力,得出其相应的温度2活力曲线,从而找到其酶促反应的最适温度.1961 No .9 石 慧等:二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应1.4.5 二氧化硅纳米颗粒与微米颗粒固定化后的酶在水2有机溶剂混合体系中活力变化 对CAT,采用尿素作为有机相,测定尿素在反应体系中的浓度分别为0,2,4,6和8mol/L 时CAT,Si N P 2CAT 及Si M P 2CAT 各自的活力.对HRP,则以乙醇为有机相,测定乙醇在反应体系中的体积百分数分别为0,25%,50%和80%时HRP,Si N P 2HRP,Si M P 2HRP 各自的活力.2 结果与讨论2.1 颗粒的表征采用透射电子显微镜(TE M )对NH 22Si N Ps 的大小形貌进行表征,结果如图1(A )所示,颗粒平均直径为(66±9)n m ,呈规则的球形,且大小均匀、分散性好.采用光学显微镜对NH 22Si M Ps 进行观察,结果见图1(B ),其直径在60μm 左右.由此表明,本文所选择的作为固定化酶载体的生物效应差异的考察比较对象———Si N Ps 和Si M Ps,在尺寸上具有近3个数量级的显著差别.F i g .1 TE M i m age of am i n o 2m od i f i ed sili ca nanoparti cles(A)and the opti ca l i m age ofam i n o 2m od i f i ed m i croparti cles(B)2.2 二氧化硅纳米颗粒与微米颗粒作为固定化酶载体的生物效应比较2.2.1 二氧化硅纳米颗粒与微米颗粒分别作为载体对固定化酶的酶活回收率的影响 分别以Si N Ps F i g .2 Y i elds of enzy m e acti v ity of S i NP 2CAT(A),S i NP 2HRP(B),S i M P 2CAT(C)and S i M P 2HRP(D )和Si M Ps 为载体,对CAT 及HRP 进行固定后的酶活回收率测定结果如图2所示.以Si N Ps为载体形成的Si N P 2CAT 和Si N P 2HRP 的酶活回收率分别为(70143±6187)%和(82191±2143)%;以Si M Ps 作为载体形成的Si M P 2CAT和Si M P 2HRP 的酶活回收率分别为(19163±2177)%和(85196±4102)%.由上述结果可知,无论是以Si N Ps 为载体还是以Si M Ps 为载体,酶经过固定后,活力都有所下降,这也是固定化酶研究中一个较为普遍的现象[16,17],可能是由于酶分子在固定后空间自由度受到限制,影响了活性中心对底物的定位作用等导致的.但在一定的条件下,这两种不同尺度的颗粒作为固定化酶载体,其生物学效应并不是统一的.当以Si N Ps 为载体时,无论是多聚酶CAT 还是单体酶HRP,所形成的固定化酶的酶活回收率均较高,达到了70%以上;而当以Si M Ps 为载体时,Si M Ps 对不同类型的酶所产生的生物效应却截然不同,Si M P 2HRP 的酶活回收率达到了85%,但Si M P 2CAT 的酶活回收率却不到20%,即以Si M Ps 为载体固定单体酶HRP 时能保证较高的酶活回收率,但固定多聚酶CAT 时却会大大损害酶活力.上述结果的产生,一方面可能与CAT 作为多聚酶容易因单体与单体之间解离而造成活力损失有关,另一方面也与载体的尺度和结构有关.总之,在酶活回收率方面,Si M Ps 对不同类型的酶产生了有选择性的各不相同的生物效应,而Si N Ps 却对二者具有相对无选择性的高生物亲和性,表现出比Si M Ps 更好的优越性.2.2.2 二氧化硅纳米颗粒与微米颗粒分别作为载体对固定化酶热稳定性的影响 分别采用Si N Ps 和2961高等学校化学学报 Vol .28 Si M Ps 作为载体对CAT 和HRP 进行固定化,CAT 和HRP 固定前后的热稳定性考察结果如图3和图4所示.F i g .3 Ther m ost ab ility of CAT(a ),S i NP 2CAT(b )and S i M P 2CAT(c)F i g .4 Ther m ost ab ility of S i NP 2HRP(a ),HRP(b )and S i M P 2HRP(c )由图3和图4可见,无论是多聚酶CAT 还是单体酶HRP,其固定化酶产物的活力都会随培育时间的延长而逐渐降低.但在相同的条件下,其降低的程度却各有不同,因此所表现出来的热稳定性也不同.当分别以Si N Ps 和Si M Ps 为载体对CAT 进行固定时,Si N P 2CAT 最终在50℃水浴中预孵育4h 后仅保留初始18196%的活性,这与游离CAT 经相同处理后保留初始17128%的活性相比,结果近似;而Si M P 2CAT 在相同条件下却仍能保持34194%的相对活力,是Si N P 2CAT 的118倍多.当分别以Si N Ps 和Si M Ps 作为载体对HRP 进行固定时,Si P 2HRP 最终在60℃水浴中预孵育2h 后仅保留初始19177%的活性,与游离HRP 经相同处理后保持初始38108%的活性相比,Si N P 2HRP 约为游离HRP 的1/2,热稳定性大大下降;而Si M P 2HRP 在相同条件下却仍能保持高达70196%的相对活力,是Si N P 2HRP 的近316倍.从以上结果可以看出,在热稳定性方面,当以Si N Ps 为载体时,其要么对酶的热稳定性贡献甚微(CAT ),要么会产生负面生物效应使得酶的热稳定性大大降低(HRP );而当以Si M Ps 为载体时,无论是对多聚酶CAT 还是单体酶HRP 而言,Si M Ps 都能使得酶的热稳定性大幅度提高,这可能是由于Si M Ps 表面存在8n m 左右大的孔穴,从而使得CAT 或HRP 除了固定在颗粒表面上之外,还有部分进入到颗粒内部受到外层二氧化硅壳的保护而导致了热稳定性的大幅度提高.总之,在热稳定性方面,Si M Ps 显示出了Si N Ps 所无法比拟的优越性能.2.2.3 二氧化硅纳米颗粒与微米颗粒分别作为载体对固定化酶的酶促反应最适温度的影响 分别考察了以Si N Ps 和Si M Ps 为载体,CAT 固定化后酶促反应最适温度的变化情况.由图5可知,Si N P 2CAT 的酶促反应最适温度较游离酶略有升高,处于44~48℃范围内;而Si M P 2CAT 的酶促反应最适温度则较游离酶略有下降,约为43℃.由此可见,由于酶活回收率和热稳定性的综合影响,Si N Ps 和Si M Ps 这两种载体对CAT 所产生的生物效应都表现得不是非常明显,但相对而言,Si N Ps 作为CAT 的固定化载体在酶促反应最适温度方面的优越性要稍强于Si M Ps.F i g .5 O pti m u m te m pera ture of CAT(a ),S i M P 2CAT(b )and S i NP 2CAT(c)F i g .6 O pti m u m te m pera ture of HRP(a ),S i NP 2HRP(b )and S i M P 2HRP(c )3961 No .9 石 慧等:二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应分别考察了以Si N Ps 和Si M Ps 为载体,HRP 固定化后酶促反应最适温度的变化情况.由图6可知,Si N P 2HRP 的酶促反应最适温度较游离酶下降至30℃左右;而Si M P 2HRP 的酶促反应最适温度却大幅提升至90℃左右,比Si N P 2HRP 提高了60℃.由此可见,Si M Ps 作为HRP 的固定化载体在酶促反应最适温度方面的优越性远远大于Si N Ps .这是由于Si M Ps 能够对HRP 的热稳定性产生强正面生物效应而导致了Si M P 2HRP 酶促反应最适温度的大幅上升.综合来看,在酶促反应最适温度方面,由于酶活回收率和热稳定性二者变化情况的综合影响,使得Si N Ps 和Si M Ps 分别作为固定化酶载体对不同类型的酶所产生的生物效应表现出不统一性和无规律性,即分别以Si N Ps 和Si M Ps 作为载体,对CAT 进行固定化时,Si N Ps 所产生的生物效应要稍优于Si M Ps;而对HRP 进行固定化时,Si M Ps 所产生的生物效应则要远远优于Si N Ps .2.2.4 二氧化硅纳米颗粒与微米颗粒分别作为载体对固定化酶在水2有机溶剂混合体系中催化能力的影响 许多有机试剂都能抑制酶的活性,但也有许多酶促反应在有机相中进行会取得更好的效果[18,19],因此,酶在有机试剂中的稳定性显得非常重要.采用尿素作为有机相,分别以Si N Ps 和Si M Ps 作为载体,CAT 被固定化后在水2尿素混合体系中催化能力的变化情况如图7所示;采用乙醇作为有机相,分别以Si N Ps 和Si M Ps 作为载体,HRP 被固定化后在水2乙醇混合体系中催化能力的变化情况如图8所示.F i g .7 Effects of the urea concen tra ti on on the acti v ityof CAT,S i NP 2CAT and S i M P 2CAT F i g .8 Effects of the volu m e fracti on of a lcohol on the acti v ity of HRP,S i NP 2HRP and S i M P 2HRP由图7和图8可见,随着有机相浓度的增大,酶及其固定化产物的活力都呈现出下降的趋势.但在相同条件下,下降的程度却各有不同,即在水2有机溶剂混合体系中的催化能力和稳定性各不相同.当分别以Si N Ps 和Si M Ps 作为载体对CAT 进行固定时,在相同尿素浓度条件下,Si M P 2CAT 和Si N P 2CAT 的相对活力都明显高于CAT,而相比较而言,前者在多数情况下会稍稍高于后者.特别是当反应体系中的尿素浓度高达8mol/L 时,游离CAT 的活力完全丧失,Si M P 2CAT 和Si N P 2CAT 却仍然分别保留8186%和3167%的相对活力,表现出对尿素较强的抵御能力.当分别以Si N Ps 和Si M Ps 作为载体对HRP 进行固定时,在乙醇体积分数相同的条件下,Si N P 2HRP 和Si M P 2HRP 的相对活力要远远高于HRP,但二者之间没有明显的规律性差异.特别是当乙醇体积分数最终增加至80%时,HRP 仅剩余初始33127%的活力,但固定化HRP 仍保留初始77%左右的活力,是前者的2倍多,表现出在水2乙醇混合反应体系中的高稳定性.总之,从对固定化酶在水2有机溶剂混合体系中催化能力的影响情况来看,无论是以Si N Ps 为载体还是以Si M Ps 为载体,所形成的固定化酶在有机相中的稳定性都得到了明显提高,这一方面可能是由于酶所依赖的载体能在有机溶剂中稳定存在,从而使酶在有机溶剂中的稳定性得以保证,另一方面,还可能是因为载体使固定于其上的酶分子形成一个相对亲水的高生物亲和环境,从而使得其催化能力得到保证.参 考 文 献[1] Chen Z .,Meng H.,Xing G .,et al ..Toxicol ogy Lett .[J ],2006,163(2):109—120[2] HE Xiao 2Xiao (何晓晓).A Study of B i ocompatible Core 2shell Nanoparticles and ItsApp licati on in B i omedicine (生物亲和性核壳纳米颗粒研究及其在生物/医学中的应用)[D ],Changsha:Hunan University,2003:48—544961高等学校化学学报 Vol .28 [3] BottiniM.,B ruckner S .,N ika K .,et al ..Toxicol ogy Lett .[J ],2006,160(2):121—126[4] Kirchner C .,L iedl T .,Kudera S .,et al ..Nano Lett .[J ],2005,5(2):331—338[5] A jay K .G .,Mona G ..B i omaterials[J ],2005,26(13):1565—1573[6] X I N G Geng 2Mei (邢更妹).Pr oceedings of The 243th Xiangshan Science Conference (第243次香山科学会议论文集)[C ],Beijing,2004:38[7] Ser pone N.,Salinar o A.,Emeline A..Pr oceedings of SP I E[J ],2001,4258:86—98[8] P ANG Xiao 2Feng (庞小峰),ZHAO Q iang (赵强),L I U Le 2W ei (刘乐维),et al ..Pr oceedings of The 243th Xiangshan Science Confer 2ence (第243次香山科学会议论文集)[C ],Beijing,2004:39—42[9] L I Du (李杜),HE Xiao 2Xiao (何晓晓),WANG Ke 2M in (王柯敏),et al ..Journal of Hunan University,Natural Sciences Editi on (湖南大学学报,自然科学版)[J ],2002,29(6):1—6[10] HE Xiao 2Xiao (何晓晓),L I U Fang (刘芳),WANG Ke 2M in (王柯敏),et al ..Chinese Sci .Bull .(科学通报)[J ],2006,51(10):1156—1162[11] L I Feng (李峰),ZHUO Ren 2Xi (卓仁禧).Che m.J.Chinese Universities (高等学校化学学报)[J ],2004,25(9):1780—1782[12] He X .X .,W ang K .M.,Tan W.H.,et al ..Journal of American Che m istry Society[J ],2003,125(24):7168—7169[13] CHE NG Fan 2L iang (程凡亮),CHEN L ing 2L i (陈伶俐),WANG W ei (王卫),et al ..Chinease Journal of B i otechnol ogy (生物工程学报)[J ],2004,20(2):287—289[14] Santra S .,W ang K .M.,Tapec R.,et al ..J.B i omedical Op tics[J ],2001,6(2):1—7[15] DONG Si 2J ian (董泗建),L I U Chang 2L ing (刘昌玲),S UN Man 2J i (孙曼霁).Bull .Acad .M il .Med .Sci .(军事医学科学院院刊)[J ],1995,19(2):130—132[16] Betancor L.,H idalgo A.,Ferna ′ndez 2Lorente G .,et al ..B i otechnol .Pr og .[J ],2003,19(3):763—767[17] Ki m J.,Grate J.W..Nano Lett .[J ],2003,3(9):1219—1222[18] YI Ping 2Gui (易平贵),Y U Q ing 2Sen (俞庆森),HU Xin 2Gen (胡新根),et al ..Acta Chi m ica Sinica (化学学报)[J ],2000,58(6):652—655[19] Zaks A.,Klibanov A.M..Science[J ],1984,224:1249—1254B i oeffects of S ili ca Nanoparti cles and S ili ca M i croparti clesa s Carr i ers for Enzy m e I mm ob ili za ti onSH I Hui 1,2,4,HE Xiao 2Xiao 1,2,3,4,WANG Ke 2M in 1,2,43,Y UAN Yin 1,2,4,T AN W ei 2Hong 1,2,4(1.S tate Key L aboratory of Che m o /B iosensing and Che m o m etrics,2.Engineering Center for B io m edicine,3.Institute of L ife Science &B iological Technology,4.Key L aboratory for B io 2N anotechnology andM olecule Engineering of Hunan Province,Changsha 410082,China )Abstract I n this paper,the differences bet w een silica nanoparticles (Si N Ps )and silica m icr oparticles (Si M Ps )in the bi oeffects of the m as carriers for enzy me i m mobilizati on were investigated .By choosing bovine liver catalases and horseradish per oxidases as the multi m eric enzy me model and monoer enzy me model,res pec 2tively,f our kinds of i m mobilized enzy mes were obtained thr ough the covalently binding method .After the characterizati on of above f our i m mobilized enzy mes,the f oll owing conclusi on was stated .Firstly,in the yields of enzy me activity,Si N Ps exhibit non 2selective excellent bi ocompatibility t o both enzy me models;secondly,Si M Ps are superi or t o Si N Ps on ther mostability;thirdly,both Si N Ps and Si M Ps could greatly i m p r ove the sta 2bility of enzy mes in organic s olvents;lastly,there is no obvi ous rule indicated on the op ti m um te mperature of enzy me catalysis,na mely,Si N Ps are better than Si M Ps in the multi m eric enzy me model and Si M Ps possess much more advantages over Si N Ps in the monomer enzy me model .The results would be instructi onal t o the evaluati on of nano materials ′bi oeffcts and the app licati on of nanomaterials f or enzy me i m mobilizati on .Keywords Silica nanoparticles;Silica m icr oparticles;Carriers f or i m mobilizati on;Enzy me;B i oeffect(Ed .:A,G )5961 No .9 石 慧等:二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应。

MEMS_Pro教程[1]

MEMS_Pro教程[1]

Editing toolbar
Layer palette
Command line area
Layout area
Status bar
MEMS Pro toolbar
绘图要点
在绘制图形时,通常先画图形,然后在利用Editing toolbar中的 Editing object按钮对其进行编辑和调整
将左上圆形调整 为圆心为坐标原 点,半径为15um 的圆形 Editing object
L-Edit版图设计教程
2009.5.12
主要内容
版图设计概念; L-Edit版图流程; 数据转换和3D模型
版图设计概念
版图设计是创建器件或者系统的工程制图的 物理描述过程,而这一物理描述遵守有制造工 艺、设计流程以及通过仿真显示为可行的性能 要求所带来的一系列约束。
微热驱动器的版图设计
微梳齿谐振器的版图设计
Ploy2起到旋转轴的作 用,又可以防止转子 从基片上脱落
Pad设计
Ploy0 Metal
Ploy1
Ploy2
Anchor1
Via
微马达芯片
微马达和Pad之间的 引线通过Drawing toolbar/Wire绘制
DRC检查
DRC检查
对准标记
上述微器件是根据PolyMUMPs工艺设计,自己制作还有许多问 题,例如掩膜的对准等; 掩膜版之间需要对准,可以通过掩膜版上的图形进行对准,但精 度不高,这就需要专门设计对准标记,我们自己常用的标记示意 图如下所示:
数据转换和3D模型
所绘制的图形是L-edit的tdb格式,必须转化为机器可读的数据格 式,L-edit可以将文件导出为GDS和CIF两种格式; CIF格式需要首先选择Cell单元,打开Design Navigator窗口,对需 要制版的Cell单元点击右键选择Fabricate,就可以导出该Cell的CIF 数据; 如果在文件中连续复制Cell单元,tdb、GDS以及CIF格式的存储量 大小并不会成倍增大。假如需要绘制百万像素单元,就可以先将 其中一部分Group成成Cell单元,再对其进行复制和排列,可以有 效减小文件的大小

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

Mumps稀疏矩阵LU分解手册

Mumps稀疏矩阵LU分解手册
MUltifrontal Massively Parallel Solver (MUMPS 4.9.2) Users’ guide ∗
November 5, 2009
Abstract This document describes the Fortran 90 and C user interface to MUMPS 4.9.2 We describe in detail the data structures, parameters, calling sequences, and error diagnostics. Example programs using MUMPS are also given.
1 Introduction 2 Main functionalities of MUMPS 4.9.2 2.1 Input matrix structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Post-processing facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Solving the transposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Reduce/condense a problem on an interface (Schur complement, reduced/condensed RHS) 2.6 Arithmetic versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 The working host processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Sequential version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 Shared memory version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.10 Out-of-core facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Sequence in which routines are called 4 Input and output parameters 4.1 Version number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Control of the three main phases: Analysis, Factorization, Solve . . . . . . . . . . . . . 4.3 Control of parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Matrix type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0 . . . . . . . . . . 4.6 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0 . . . . . . . . . . . . . . . . . . 4.7 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0 . . . . . . . . . . 4.8 Scaling: ICNTL(8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9 Given ordering: ICNTL(7)=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 Schur complement with reduced (or condensed) right-hand side: ICNTL(19), ICNTL(26) 4.11 Out-of-core (ICNTL(22)= 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 Workspace parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13 Right-hand side and solution vectors/matrices . . . . . . . . . . . . . . . . . . . . . . . 4.14 Writing a matrix to a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Control parameters 6 Information parameters 6.1 Information local to each processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Information available on all processors . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Error diagnostics 8 Calling MUMPS from C 8.1 Array indices . . . . . . . . . . . . . . . . . . . . 8.2 Issues related to the C and Fortran communicators . 8.3 Fortran I/O . . . . . . . . . . . . . . . . . . . . . . 8.4 Runtime libraries . . . . . . . . . . . . . . . . . . 8.5 Integer, real and complex datatypes in C and Fortran 8.6 Sequential version . . . . . . . . . . . . . . . . . . 9 Scilab and MATLAB interfaces 10 Examples of use of MUMPS 10.1 An assembled problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 An elemental problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 An example of calling MUMPS from C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 5 5 6 7 7 8 8 8 8 8 9 11 11 11 12 13 13 14 14 15 15 15 17 18 18 20 20 28 28 30 32 34 36 36 36 37 37 37 37 39 39 41 41

流式细胞仪检测细胞凋亡的原理

流式细胞仪检测细胞凋亡的原理

流式细胞仪检测细胞凋亡的原理一、原理在正常细胞中,磷脂酰丝氨酸(PS)只分布在细胞膜脂质双层的内侧,而在细胞凋亡早期,细胞膜中的磷脂酰丝氨酸(PS)由脂膜内侧翻向外侧。

Annexin V是一种分子量为35~36kD 的Ca2+依赖性磷脂结合蛋白,与磷脂酰丝氨酸有高度亲和力,故可通过细胞外侧暴露的磷脂酰丝氨酸与凋亡早期细胞的胞膜结合。

因此Annexin V 被作为检测细胞早期凋亡的灵敏指标之一。

将Annexin V进行荧光素(EGFP、FITC)标记,以标记了的Annexin V作为荧光探针,利用荧光显微镜或流式细胞仪可检测细胞凋亡的发生。

碘化丙啶(Propidium Iodide, PI)是一种核酸染料,它不能透过完整的细胞膜,但对凋亡中晚期的细胞和死细胞,PI能够透过细胞膜而使细胞核染红。

因此将Annexin V与PI匹配使用,就可以将处于不同凋亡时期的细胞区分开来。

二、注意事项1、必须活细胞检测,不能用能破坏细胞膜完整性的固定剂和穿透剂固定或穿膜。

2、特殊细胞的染色方法:在消化或吹打时,有些细胞(如神经元细胞)很容易受到损伤,导致晚期凋亡或坏死比例非常高,不能反映真实结果。

实验的解决方法:先低速离心,吸取细胞培养板中的液体,留少许液体,加入适量PI和Annexin-V染色10min后,将漂浮细胞吸至离心管中,离心洗涤两次,用PBS漂洗贴壁细胞两次,加胰酶消化后将细胞悬液移至另一离心管中,离心洗涤,再与漂浮细胞合并后上流式细胞仪检测。

应用该法可降低晚期凋亡和坏死比例,增加早期凋亡细胞比例。

3、由于Annexin-V为钙离子依赖的磷脂结合蛋白,只有在钙离子存在的情况下与PS的亲和力才大,因而在消化细胞时,建议一般不采用含EDTA的消化液。

4、必须设置阴性对照和补偿对照(分别单染)。

一体化智能孢子捕捉鉴别系统的显微图像采集系统设计原理

一体化智能孢子捕捉鉴别系统的显微图像采集系统设计原理

一体化智能孢子捕捉鉴别系统的显微图像采集系统设计原理本文就是用托普云农一体化智能孢子捕捉鉴别系统的显微图像采集系统对杨树病害孢子进行采集,然后用数字图像处理识别技术进行研究,最后实现对杨树病害孢子的自动识别计数。

此法既提高了计数的准确率和数据收集的速度,又节省了大量的人力和物力,为杨树病害预测预报提供了一种快速先进的手段。

根据孢子测量的要求,在一体化智能孢子捕捉鉴别系统上设计了显微图像采集系统,如图1所示。

它由摄影显微镜、计算机和监视器等组成。

另外还有自行开发的集图像采集、处理与孢子识别计数等功能于一身的软件。

将孢子取样器按一定距离排放在田间现场、定时定期将取样器带回实验室,用托普云农显微图像采集系统对杨树病害孢子进行采集,得到768 X 576像素大小的24位彩色图像。

为了叙述方便,本文选取其中的杨树腐烂病害孢子图片的一部分来说明间题。

1、去除背景光并将图像灰度化为了消除光源光强变化影响及系统中噪声干扰,本文将原始图像减去背景光图像,并利用总亮度公式川将彩色图像变为8位灰度图像:f=0222R+0. 7076+0. 071B (1)式中f为变换后的灰度图像的亮度,即灰度值。

2、IMHS平滑算法为提高孢子识别率,必须进一步去除图像中的噪声。

在研究和比较已有平滑技术的基础上,本文提出一种改进的最大均匀性平滑算法( (1)对图像f(x,y)的(x,y)点重复步骤(2),(3)。

(2)对点((x,y)的17个梯形区域求极差和中值。

(3)判定最小极差区域,将中值赋给点((X,Y)。

(4)结束。

用IMHS算法滤波处理的图像。

为了比较,我们同时给出了经高斯滤波后的图像。

3、闺值分割将孢子从背景中分割出来,这是识别过程中最关键的一步。

研究中采用自动闭值法处理,得到二值图像。

可以看出IMHS法的滤波效果较好,它可以滤除空洞噪声,很好地保持了饱子边界的完整性。

4、膨胀处理经过滤波、二值化处理后,孢子变小了。

为了使识别的效果更佳,本文对分割后的二值图像进行膨胀处理。

高分辨率溶解曲线.pptx

高分辨率溶解曲线.pptx
Rosario Muleo等得出结论: HRM是一种快速、重复性 高、成本低,操作简单,且 可以应用于其他物种的SNP 检测及SSR基因分型的方法。
Rosario Muleo,Marir Chiara Colao,Dario Miano at el. 2009 Genome52:252-260
第35页/共46页
第8页/共46页
Mutation Scanning
未知SNP扫描
第9页/共46页
等对北京油鸡CAPN1基因外显子进行扫描,筛查其潜在SNPs。
第10页/共46页
Bernhard等对Barley的eukaryotic translation
initiation factor 4E (eIF4E) gene基因外显子进行突变扫描结果
— 筛查突变 (mutation scanning) — 基因分型(Mutation Genotyping)
—小片段+内标法( Small Amplicon Genotyping ) —非标记探针法(Unlabeled Probe Genotyping,LunaProbe) —SSR分析 — 检测甲基化 • HRM仪器
内容提示
• 高分辨熔解曲线(High Resolution Melting) • 高分辨熔解曲线在遗传育种中的应用
— 筛查突变 (mutation scanning) — 基因分型(Mutation Genotyping)
—小片段+内标法( Small Amplicon Genotyping ) —非标记探针法(Unlabeled Probe Genotyping,LunaProbe) —SSR分析 — 检测甲基化 • HRM仪器
• 0.3oC/秒 升温速度= 67 pts/ ℃ • 0.05oC/秒 升温速度 = 400 pts/ ℃

Array基板Processflow

Array基板Processflow

N+ doping
PR
Poly
Poly
a-Si NMOS
PMOS
Pad
N+ Doping:高浓度P离子注入,控制形成 NMOS源漏极区,所用气体为PH3. NMOS(N-Mental-Oxide-Semiconductor)意思为N 型金属-氧化物-半导体,拥有这种结构的晶体 管我们
称之为NMOS晶体管。 PMOS即为P型,CMOS 为同时
RTA:活化(修复受损晶格,让杂质进行活性位置) &氢化(多晶硅晶粒间存在粒界态,多晶硅与氧化 层间存在界面态,影响晶体管电性。氢化处理以氢
原子填补多晶硅原子的未結合鍵或未飽和鍵,粒界
态,氧化层缺陷,以及界面态,来减少不稳态数目, 提升电特性:迁移率,阈值电压均匀性等
PEP8(SD)
SD
ILD
SD
PEP3(NCD)
NCD
Poly
a-Si NMOS
Poly
PMOS
Pad
NCD:N Channel doping,调整TFT Vth阈值 电压。所用气体为BF3. Ash目的: 由于implant导致PR表面发生碳 化,膜质变
的致密难剥离。通过对PR表面轰击&蚀 刻将硬化膜
Ash。利于PR剥离。
PEP4(NP)
存在NMOS与PMOS的晶体管
PEP5(GE)
N- doping PR GE
GI N+ N- Poly N- N+
P+
Poly
P+
a-Si NMOS
PMOS
Pad
GI: SiOx/SiNx (连接&隔绝):SiNx具有高的击穿 电压可做为栅极绝缘层,但其与多晶硅界面存在过 多的缺陷,故采用SiOx与SiNx堆叠的方式,同时SiOx 与多晶硅表面的晶界匹配、应力匹配及具有良好的 台阶覆盖性特优点。

惠普(HP)笔记本电脑产品说明书

惠普(HP)笔记本电脑产品说明书

UV Exposure Units Quick Start Guide1.IntroductionDear Customer! Thank you for your purchase in TME! To protect the environment we have prepared for you this quick start guide. Before operating the unit, please read it carefully. Please visit www.tme.eu Illustrations in this manual are only example images and may differ from the actual item. It does not change their main characteristics.2.ApplicationThe device is designed for PCB exposure in the process of mapping geometric pattern from photomask to photosensitive paint.3.Unit setup and operationV -VacuumM -Vacuum markerZ -Vacuum valveC -Remaining timeP -Process time/start programmingT -Working mode: single-/double-sided PCBy Place the device on a stable surface.y y y y y y y y Plug the power cord into the appropriate outlet.Adjust the lid side covers so that they prevent light leakage to the outside. If necessary, loosen side screws holding the side cover.Remove film that protects the photosensitive paint.Place the PCB on the mask.Push and close the lid.Turn on the power.Set the required exposure time.After finishing work, turn off the power and unplug the power cord.4.Precautionsyy yy y y y yy Do not turn on the unit immediately after moving it from a cold to a warm room. Condensation may damage the device.Damaged power cord must be immediately replaced by a qualified technician.Never operate the unit with wet hands or when wires are wet as this could cause a short circuit or electric shock.Do not leave the unit unattended.The unit should be kept out of reach of children.Do not use the exposer unit for purposes other than PCB exposure.After finishing work, turn off the power and unplug the power cord.It is forbidden to make any construction modifications to the device. Unauthorised construction modifications will result in loss of warranty, and may also cause a malfunction or an accident. Worn electrical equipment can not be disposed of with othe household waste. Worn electrical equipment must be stored in places designated for that.。

第12章-细胞周期-课件

第12章-细胞周期-课件
Minimum number of gamete types = 2n , In humans, n = 23
补充:植物细胞双线期一般较短,许多动物卵细胞中双 线期停留的时间非常长。人的卵母细胞在五个月胎儿中 已达双线期,而一直到排卵都停在双线期,排卵年龄大 约在12-50岁之间。鱼类、两栖类、爬行类、鸟类以及 无脊椎动物的昆虫中,双线期的二阶体解螺旋而形成灯 刷染色体,这一时期是卵黄积累的时期。
5)终变期:二阶体显著变短。由于交叉端化过程的进一 步发展,故交叉数目减少,通常只有一至二个交叉。核仁 此时开始消失,核被膜解体。
2、中期I 3、后期I
二价体的两条同源染色体分开,分别向两极移动。 同源染色体随机分向两极,染色体重组,人类染色体重
组概率有223个。 4、末期I 5、减数分裂间期。
(四)后期
指姊妹染色单体分开并移向两极的时期,当子染色 体到达两极后,标志这一时期结束。
后期A
后期B
(五)末期
末期是从子染色体到达两极,至形成两个新细胞为 止的时期。末期涉及子核的形成和胞质分裂两个方 面。
1、子核的形成
末期子核的形成,大体经历了与前期相反 的过程,即染色体解聚缩,核仁出现和核 膜重新形成。核仁由染色体上的核仁组织 中心形成(NORs),几个NORS共同组成 一个大的核仁,因此核仁的数目通常比 NORs的数目要少。
这一时期合成约0.3%左右的DNA,称为Z-DNA。
3)粗线期:同源染色体的非姊妹染色单体间发生交换的 时期。重组结。合成P-DNA。合成有组蛋白。rDNA扩 增。
4)双线期:联会的同源染色体相互排斥、开始分离,交 叉开始端化。联会复合体消失。形成灯刷染色体。
联会复合体
SC由两条同源染色体沿纵轴形成,外观呈梯子状。 SC 帮 助 交 换 的 完 成 , SC 上 有 重 组 节 (recombination

SOIMUMPs.dr.v8.0

SOIMUMPs.dr.v8.0

SOIMUMPsDesignHandbooka MUMPs® processAllen Cowen, Greg Hames, DeMaul Monk, Steve Wilcenski, and Busbee HardyMEMSCAP Inc.Revision 8.0Copyright © 2002-2011 by MEMSCAP Inc.,. All rights reserved.Permission to use and copy for internal, noncommercial purposes is hereby granted. Any distribution of this manual or associated layouts or any part thereof is strictly prohibited without prior written consent of MEMScAP.GDSII is a trademark of Calma, Valid, Cadence.L-Edit and Tanner Database are trademarks of Tanner Research Inc.SOIMUMPs Design Handbook, Rev. 8.0Table of ContentsChapter 1: Silicon-on-Insulator (SOI) Micromachining Process (4)1.1 Introduction (4)1.2 Process Overview (6)Chapter 2: SOIMUMPs Design Rules and Considerations (11)2.1 Introduction (11)2.2 Design Rules (12)2.3 Level to Level Overlay Rules (14)2.4 Beyond the Design Rules (17)2.5 Chip Subdicing Options (22)2.5 Film Parameters (23)2.6 Layout Requirements (24)2.7 Layout Submission (25)SOIMUMPs Design Handbook, Rev. 8.0Chapter 1Silicon on Insulator (SOI) Micromachining Process1.1 IntroductionThe Multi-User MEMS Processes, or MUMPs®, is a commercial program that provides cost-effective, proof-of-concept MEMS fabrication to industry, universities, and government worldwide. MEMSCAP offers three standard processes as part of the MUMPs®program: PolyMUMPs, a three-layer polysilicon surface micromachining process: MetalMUMPs, an electroplated nickel process; and SOIMUMPs, a silicon-on-insulator micromachining process.The following is a general process description and user guide for SOIMUMPs, which is designed for general-purpose micromachining of Silicon-on-Insulator (SOI) structures. Chapter 1 of this document explains the process step-by-step, while Chapter 2 outlines the design rules for the process.Though this document is geared toward designers who do not have a strong background in microfabrication, it contains information that is useful to all MUMPs®users. Regardless of the level of the designer, we strongly recommend all users of SOIMUMPs review this document prior to submitting a design.The process is designed to be as general as possible, and to be capable of supporting many different designs on a single silicon wafer. Since the process was not optimized with the purpose of fabricating any one specific device, the thickness of the layers were chosen to suit most users, and the design rules were chosen conservatively to guarantee the highest yield possible.SOIMUMPs Design Handbook, Rev. 8.0FIGURE 1.1. Cross sectional view showing all layers of the SOI-MUMPs process (not to scale).Figure 1.1 is a cross section of the silicon-on-insulator micromachining SOIMUMPs process. This process has the following general features:1. A silicon-on-insulator (SOI) wafer is used as the starting substrate. There are two choices of substratein each run. Customers may request to receive chips from either or both substrate types listed below: •10µm Silicon thicknesso Silicon thickness: 10 ± 1 µmo Oxide thickness: 1 ± 0.05 µmo Handle wafer (Substrate) thickness: 400 ± 5 µm•25µm Silicon thicknesso Silicon thickness: 25 ± 1 µmo Oxide thickness: 2 ± 0.1 µmo Handle wafer (Substrate) thickness: 400 ± 5 µm2.The Silicon layer is doped, then patterned and etched down to the Oxide layer. This layer can be usedfor mechanical structures, resistor structures, and/or electrical routing.3.The Substrate can be patterned and etched from the “bottom” side to the Oxide layer. This allows forthrough-hole structures.4. A shadow-masked metal process is used to provide coarse Metal features such as bond pads, electricalrouting, and optical mirror surfaces.5. A second pad-metal feature that allows finer metal features and precision alignment but limited toareas not etched in the silicon device layer.SOIMUMPs Design Handbook, Rev. 8.01.2 Process OverviewThe SOIMUMPs process is a simple 4-mask level SOI patterning and etching process derived from work performed at MEMSCAP (formerly Cronos Integrated Microsystems and the MCNC MEMS Technology Applications Center). A version of this process flow was originally developed for the fabrication of MEMS variable optical attenuator (VOA) devices based on a patented thermal actuator technology. The process flow described below is designed to introduce users to this micromachining process. The text is supplemented by drawings that show the process flow in the context of building a patented thermal actuator.The process begins with 150mm n-type double-side polished Silicon On Insulator wafers, as specified in section 1.1 of this document. The top surface of the Silicon layer is doped by depositing a phosphosilicate glass (PSG) layer and annealing at 1050°C for 1 hour in Argon (Figure 1.2). This PSG layer is then removed via wet chemical etching.The first deposited layer in the process is the Pad Metal (Figure 1.3). A metal stack of 20 nm of chrome and 500 nm of gold is patterned through a liftoff process. 3 µm lines with 3 µm space features may be patterned with a 3 µm alignment tolerance to the Device layer. This metal area must be covered during the subsequent Deep Reactive Ion Etch(Deep RIE). Hence, it is limited to relatively large areas in the actuator. Because this metal is exposed to high temperature during the subsequent process, surface roughness tends to be higher and not suitable for low-loss optical mirror applications.Silicon is lithographically patterned with the second mask level, SOI, and etched using Deep RIE (Figure 1.4). This etch is performed using Inductively Coupled Plasma (ICP) technology; a special SOI recipe is used to virtually eliminate any undercutting of the Silicon layer when the etch reaches the Buried Oxide.Next, a frontside protection material is applied to the top surface of the Silicon layer. The wafers are then reversed, and the Substrate layer is lithographically patterned from the bottom side using the third mask level, TRENCH (Figure 1.5). This pattern is then etched into the Bottom Side Oxide layer using Reactive Ion Etching (RIE). A DRIE silicon etch is subsequently used to etch these features completely through the Substrate layer. A wet oxide etch process is then used to remove the Buried Oxide layer in the regions defined by the TRENCH mask (Figure 1.6). The frontside protection material is then stripped in a dry etch process. This “releases” any mechanical structures in the Silicon layer that are located over through-holes defined in the Substrate layer. The remaining “exposed” Oxide layer is removed from the wafers using a vapor HF process to minimize stiction. The exposed Oxide layer is removed to allow for electrical contact to the Substrate and to provide an undercut in the oxide layer that will prevent metal shorts between the Silicon layer and the Substrate layer.The Blanket Metal layer, consisting of 50nm Cr+ 600nm Au, is deposited and patterned using a shadow masking technique. The shadow mask is prepared from a separate double side polished silicon wafer. “Standoffs” are incorporated into the side of the shadow mask that will contact the SOI wafer, to avoid any contact with patterned features in the Silicon layer. The shadow mask is then patterned with the BLANKETMETAL mask, and through holes are DRIE etched (Figure 1.8). The shadow mask is then aligned and temporarily bonded to the SOI wafer, and the Metal is evaporated using an E-Beam tool. Metal is deposited on the top surface of the Silicon layer only in the through hole regions of the shadow mask (Figure 1.8). After evaporation, the shadow mask is removed, leaving a patterned Metal layer on the SOI wafer (Figure 1.9). The wafers are then diced using a laser, sorted and shipped to the SOIMUMPs user.SOIMUMPs Design Handbook, Rev. 8.0The following provides a graphical representation of the process steps.Silicon DopingFIGURE 1.2. A phosphosilicate glass layer (PSG) is deposited, and the wafers are annealed at 1050°C for 1 hour in Argonto drive the Phosphorous dopant into the top surface of the Silicon layer. The PSG layer is subsequently removed usingwet chemical etching. Note: A Bottom Side Oxide layer is initially present on the starting substrates.Mask Level: PADMETALPad Metal Liftoffwith light through the first level mask (PADMETAL), and then developing it. A metal stack consisting of20 nm chrome and 500 nm gold is deposited over the photoresist pattern by e-beam evaporation. The photoresist is thendissolved to leave behind metal in the opened areas.SOIMUMPs Design Handbook, Rev. 8.0Silicon PatterningMask Level: SOIphotoresist to UV light through the second level mask (SOI), and then developing it. The photoresist in exposed areas is removed, leaving behind a patterned photoresist mask for etching. Deep reactive ion etching (DRIE) is used to etch the Silicon down to the Oxide layer. After etching, the photoresist is chemically stripped.Mask Level: TRENCHSubstrate Patterningthrough the Substrate layer, stopping on the Oxide layer. After the etch is completed, the photoresist is removed. A wet oxide etch process is then used to remove the Oxide layer in the regions defined by the TRENCH mask.SOIMUMPs Design Handbook, Rev. 8.0SOIMUMPs Design Handbook, Rev. 8.0“Release” – Protection layer and Oxide layer removalFIGURE 1.6. The frontside protection material is then stripped using a dry etch process. The remaining “exposed” Oxide layer is removed from the top surface using a vapor HF process. This allows for an electrical contact to the Substrate layer, and provides an undercut of the Oxide layer.Silicon Substrate Bottom OxideShadow MaskOxide Metal PSG (dopant) Frontside Protection MaterialMetal Shadow Mask Fabrication Mask Level: BLANKETMETALFIGURE 1.7. A separate silicon wafer is used to fabricate a shadow mask for the Metal pattern. Standoffs are pre-fabricated into the shadow mask so that the shadow mask does not come into contact with patterned features in the Silicon layer of the SOI wafer. The shadow mask wafers are then coated with photoresist and the fourth level(BLANKETMETAL) is lithographically patterned. DRIE silicon etching is used to etch completely through the shadow mask wafer, producing through holes for the Metal to be evaporated. After the etch is completed, the photoresist is removedShadow Mask Bonding and Metal DepositionFIGURE 1.8. The shadow mask is aligned and temporarily bonded to the SOI wafer. The Blanket Metal layer, consisting of 50nm Cr + 600nm Au, is deposited through the shadow mask.Shadow Mask RemovalFIGURE 1.9. The shadow mask is removed, leaving a patterned Metal layer on the SOI wafer. The wafers are diced usinga laser, then the chips sorted and packaged for shipment.SOIMUMPs Design Handbook, Rev. 8.0Chapter 2 SOIMUMPs Design Rules and Considerations2.1 IntroductionThe purpose of the design rules is to ensure the greatest possibility of successful fabrication. The rules have evolved through process development and the experience of the MEMSCAP staff. The design rules are a set of requirements that are defined by the limits of the process (i.e. the stable process window) that in turn are defined by the capabilities of the individual process steps. In general, minimum design rules are defined by the resolution and alignment capabilities of the lithography and resolution and uniformity of the etching systems. This section of the document describes the design rules that exist for the SOIMUMPs micromachining process. Design rules in the document define the minimum feature sizes and spaces for all levels and overlay accuracies between relevant levels. The minimum line widths and spaces are mandatory rules. Mandatory rules are given to ensure that all layouts will remain compatible with MEMSCAP MEMS’ lithographic and etch process tolerances. Violation of minimum line/space rules will result in missing, undersized, oversized or fused features. Please note: The minimum geometry allowed should not be confused with the nominal geometry a designer uses. Minimum geometries should only be used where absolutely necessary. MEMSCAP has successfully fabricated to these minimums in certain designs and features however, due to the variety of designs on a MUMPs mask set, the etch tolerances will vary from design to design, and die to die. When size is not an issue, the feature should be designed larger than the minimum allowed value. Successful fabrication is entirely design-dependant; as such, customers should be aware that not all designs will fabricate successfully at the minimum line widths. Users of this process should conservatively plan for more than one design-fabrication cycle to ensure successful fabrication of a particular device. Finally, there are a few things to keep in mind regarding naming conventions. Lithography levels (i.e. names for each masking level) will be written in upper case. When referring to a specific layer of material the material will be typed in lower case with the first letter capitalized. For example SOI refers to the masking level for patterning the Silicon layer (Silicon). Table 2.1 outlines the material layer names, thicknesses and the lithography levels associated with those layers.SOIMUMPs Design Handbook, Rev. 8.0 10Material Layer Pad Metal Silicon Oxide Substrate Blanket MetalThickness (µm) 0.52 10.0 or 25.0 1.0 or 2.0 400 0.65Lithography Level Name PADMETAL SOI TRENCH BLANKETMETALLithography Level Purpose Provide metal for electrical interconnects Define structures in Silicon layer of SOI wafer Define through-hole structures in Substrate layer of SOI wafer Pattern through holes in shadow mask. The shadow mask is then bonded to the SOI wafer so that a patterned Metal layer is achieved when the Metal is deposited.Comments 20 nm Cr 500 nm Au50nm Cr + 600nm AuTABLE 2.1.Layer names, thicknesses and lithography levels2.2 Design RulesTable 2.2 lists the cross-reference between the MEMSCAP descriptive name, the CIF name and the GDS level number. These are the level names and numbers referred to in the process guide and in any communications you may have with MEMSCAP MEMS’ layout support. Please adopt this naming scheme on your own layout system to minimize confusion when you transfer your data file to MEMSCAP for fabrication. The table also lists the associated design rules for that level. These are mandatory rules. Explanations for these rules are discussed in the following sections.Mnemonic level name PADMETAL SOI SOIHOLE TRENCH BLANKETMETAL CIF level name PMETL SOI HOLE TRCH BMETL GDS level number 5 10 11 20 30 Min. feature (µm) 3 2* 3 200 100 Min. space (µm) 3 2* 3 200 100 Max. feature length (µm) 5000 Unlimited for width >6µm (See section 2.2.2) N/A 5000 5000 Max. patterned (etched) area 20 mm2 2 33 mm N/A 20 mm2 20 mm2TABLE 2.2. MEMSCAP level name, CIF and GDSII™ level designation, and associated design rules. See following sections for explanation of design rules.It should be noted that the photo masking process used by MEMSCAP is capable of rendering arcs and nonrectangular polygons. You are welcome and encouraged to include non-Manhattan geometries as part of your submission. Keep in mind, however, that the masks are printed with a 0.25 µm spot size and all features are limited by this registration. To minimize vertex snapping errors in the fracturing of the data, please use a 0.25 micron grid in layout and avoid rotating cells. *Due to pixelation of the 0.25 um resolution photomasks, features and spaces that are drawn on non-orthogonal axes may not print on the wafer at the nominal sizes. In the case of closely spaced SOI features, this can lead to bridging between the features or abnormally small spaces. To minimize the possibility of bridging, it is recommended that for non-orthogonal features, designers default to a 3µm nominal line/space rule for the SOI level rather than the 2µm minimum valuesSOIMUMPs Design Handbook, Rev. 8.0 112.2.1 SOI Hole LayerThe SOI hole level (SOIHOLE) is shown as a separate level in order to make layout of SOI easier. The principal purpose of this level is to provide a simple way to extract holes from a digitized feature. The drawing of the hole in a large digitized level can be difficult with some layout systems. MEMSCAP has chosen to define a unique level for drawing holes to simplify this process.2.2.2 Maximum Feature Length – SOI LevelTable 2.2 indicates that there is no maximum length for features patterned using the SOI layer, as long as those features have a width that is greater than 6µm. Silicon features patterned using the SOI layer that are less than 6µm may be “released” from the Substrate due to the undercutting of the Oxide layer during the HF vapor removal of the exposed Oxide regions. (See section 2.4.2 “Silicon Layer Release and Anchor). “Long” released Silicon structures have a tendency to curl out of plane due to the intrinsic stresses in the Silicon layer, and the surface stress caused by the doping process. The amount of out-of-plane distortion will depend on the length and design of the released structures. For example, 2µm Silicon beams that are anchored at one end will curl out-of-plane to a greater degree than 2µm Silicon beams that are anchored at both ends. To minimize these effects, an initial conservative guideline for SOI patterns that are less than 6µm in width, is to use a maximum length of 100µm if the structure is anchored at one end only and 500µm if the structure is anchored at two (or more) ends. MEMSCAP will continue to analyze this effect, and will update these guidelines as additional data is collected.2.2.3 Maximum Feature Length – TRENCH and METAL LevelsThe maximum feature length rule in Table 2.2 for the TRENCH and both METAL levels is intended to ensure the sturdiness of the SOI wafer and Shadow Mask wafer substrates following the DRIE etching processes. Features longer than the maximum values could compromise the mechanical integrity of the substrates, leading to chip or wafer breakage.2.2.4 Maximum Patterned AreaThe uniformity of the DRIE etching processes is strongly dependent upon feature size and the amount of silicon area that is etched. In order to minimize non-uniformities and ensure that the pattern from one chip design does not influence the etch results of a neighboring chip design, we require that the total area of silicon that is etched (as defined by the relevant mask pattern) be constrained as follows:SOI Mask Layer: TRENCH Mask Layer: BLANKETMETAL Mask Layer: Area of Silicon etched < 33mm (33% of Chip Area) Area of Substrate etched < 20mm (20% of Chip Area) Area of Shadow Mask Silicon etched < 20mm (20% of Chip Area)2 2 2SOIMUMPs Design Handbook, Rev. 8.0 122.3 Level to Level Overlay RulesIn the SOIMUMPs process, both the TRENCH and BLANKETMETAL mask levels are intended for producing coarse features where tight alignment tolerances are not required. In the fabrication process, both the TRENCH and METAL levels are aligned to the SOI mask level. Table 2.3 summarizes the overlay tolerances between these mask levels, and the following sections explain these values.Layer Combination PADMETAL to SOI TRENCH to SOI BLANKETMETAL to SOICenter to Center Overlay Tolerance (µm) ±3 ±5 ± 35Edge to Edge Bias (µm) ±3 < 50 ± 40TABLE 2.3. Level to Level Overlay Rules2.3.1 PADMETAL to SOI OverlayFigure 2.3.1 illustrates the PADMETAL to SOI overlay tolerances described in Table 2.3. The “Edge-to-Edge” overlay tolerance accounts for the lithography alignment between the PADMETAL and SOI. PADMETAL must not extend over the SOI edge during DRIE to avoid masking. This is a mandatory rule. To reiterate, PADMETAL must be enclosed by SOI on all edges by at least 3 microns.Edge to Edge Overlay ±3µmFIGURE 2.3.1. Illustration of the PADMETAL to SOI overlay tolerances given in Table 2.3SOIMUMPs Design Handbook, Rev. 8.0 132.3.2 TRENCH to SOI OverlayFigure 2.3.2 illustrates the TRENCH to SOI overlay tolerances described in Table 2.3. The “Center to Center” overlay tolerance accounts for the bottom side to top side lithography alignment between the TRENCH and SOI mask levels. The TRENCH to SOI “Edge to Edge” bias accounts for the etch profile of the through holes in the Substrate layer and the “blow-out” of the etch profile at the Substrate – Oxide interface.Center to Center Overlay ±5µmEdge to Edge Bias <50µmFIGURE 2.3.2. Illustration of the TRENCH to SOI overlay tolerances given in Table 2.3SOIMUMPs Design Handbook, Rev. 8.0 142.3.3 METAL to SOI OverlayFigure 2.3.3 illustrates the METAL to SOI overlay tolerances described in Table 2.3. The “Center to Center” overlay tolerance accounts for the wafer to wafer bonding alignment between the shadow mask and the SOI wafer. The METAL to SOI “Edge to Edge” bias accounts for the etch profile of the through holes in the Shadow Mask and the dispersion of the Metal layer as it is deposited through the shadow mask onto the SOI wafer.Center to Center Overlay ±35µm Edge to Edge Bias ±40µmFIGURE 2.3.3. Illustration of the METAL to SOI overlay tolerances given in Table 2.3SOIMUMPs Design Handbook, Rev. 8.0 152.4 Beyond the Design RulesSection 2.4 is highly recommended reading for any SOIMUMPs user, novice or experienced. It includes information that will optimize your SOIMUMPs design for success, and should prevent several common design errors.2.4.1 Layout conventionFor the SOI and PAD METAL levels, the mask is light field. For this level, draw (i.e. digitize) the feature you want to keep. The TRENCH and BLANKET METAL levels are dark field. For the TRENCH, draw the trench you want to etch and for the BLANKET METAL, draw where you want Metal. It is imperative that these conventions be followed for your devices to be fabricated correctly.2.4.2 Silicon Layer Release and AnchorThe “release” of structures in the Silicon layer is accomplished by placing the structures to be released over a TRENCH feature in the substrate. Following the DRIE etch to remove the Substrate in the TRENCH features, the Oxide layer is wet-etched, thus freeing any structures in the Silicon layer that are placed over the TRENCH. The protective material is then removed from the frontside, and the remaining “exposed” Buried Oxide layer is removed using an HF vapor process. (See Section 1.2). However, the HF vapor etch of the Buried Oxide layer also results in a lateral undercut of the Silicon layer. As a result, a length of about 1.8-2.0µm of Oxide is removed from below any exposed Silicon feature edges, including features that are not placed over a TRENCH structure, as shown in Figure 2.4.2.1.8 µmSiliconOxideSubstrateFIGURE 2.4.2 SEM images showing the undercut of the Silicon layer after HF vapor etching of the exposed Oxide layer. The amount of undercutis about 1.8µm per side.SOIMUMPs Design Handbook, Rev. 8.0 16To ensure anchoring of Silicon features to the substrate, the SOI feature size should be greater than 10µm on a side, and should be placed greater than 50µm from the edge of a TRENCH feature (to account for the DRIE etch profile and bias illustrated in Figure 2.3.1). These rules are summarized in Table 2.4.Desired Effect Release of Silicon Structure Anchoring of Silicon Structure to Substrate SOI to TRENCH Relationship SOI feature enclosed by TRENCH SOI edge > 50µm from TRENCH edge SOI Feature Size < TRENCH size > 10µmTABLE 2.4. Silicon Layer Release and Anchor Rules2.4.3 Shadow Mask (BLANKETMETAL) Pattern ConstraintsThe use of shadow masking to provide Metal layer patterning places constraints on the types of BLANKET METAL patterns that are allowed. The patterns defined by the BLANKET METAL level produce holes that are etched completely through the shadow mask. As such, no pattern is allowed that would result in “donut” type features being fabricated in the shadow mask, since these features would “fall out” once that etch step was completed. Figure 2.4.2 illustrates allowable and unallowable patterns.Allowable METAL PatternUnallowable METAL Pattern“Donut” FeatureFIGURE 2.4.3. Allowable and unallowable pattern types for the METAL masking level.SOIMUMPs Design Handbook, Rev. 8.0 172.4.4 Electrical Isolation and RoutingBecause there is no insulating layer between the Metal and the Silicon, two adjacent BLANKET METAL or PAD METAL features on the top surface of the Silicon layer will be electrically connected due to the surface doping of the Silicon. As such, patterns in the SOI mask level should be used for electrical isolation between adjacent structures. Undercutting of the Oxide layer during the release etch will prevent Metal step coverage between adjacent SOI features. Figure 2.4.3 illustrates proper and improper patterning of the SOI and BLANKET METAL or PAD METAL levels for electrical isolation. It is acceptable to overlay patterns in the BLANKET METAL or PAD METAL mask levels with routing patterns in the SOI mask level to lower the overall resistance of electrical routing paths.Proper Patterning for Electrical Isolation Improper Patterning for Electrical IsolationPlan View Electrically ConnectedCross-Section ViewFIGURE 2.4.4. Proper and Improper patterning for electrical isolationSilicon OxideSubstrate MetalBottom Oxide PSG (dopant)Shadow Mask Frontside Protection MaterialSOIMUMPs Design Handbook, Rev. 8.0 182.4.5 Design Features to Avoid Lateral Stiction of Released Silicon StructuresClosely-spaced, long, narrow beams in the Silicon layer may have a tendency to stick together in the release process. For these types of structures, this lateral stiction can often be avoided by incorporating “dimple-like” features into the design. Dimple protrusions reduce the amount of surface area that can come into contact during the release process. (For experienced MUMPs® users, this is analogous to the dimple structures that are used in the polysilicon surface micromachining process to avoid stiction of polysilicon structures to the substrate). Figure 2.4.4 illustrates an example of incorporating dimple features in the SOI mask level to reduce lateral stiction effects in adjacent beams.Plan ViewDimpleFIGURE 2.4.4. Example of dimple features in the SOI Mask level to reduce lateral stiction affects during release.2.4.6 TRENCH Pattern Constraints and Full Thickness Suspended StructuresThe patterns defined by the TRENCH level produce holes that are etched completely through the Substrate layer. As such, no pattern is allowed that would result in “donut” type features being fabricated in the substrate, since these features would “fall out” after the etch step completed. Figure 2.4.6a illustrates an unallowable pattern in the TRENCH level.“Donut” FeatureFIGURE 2.4.6A Example of unallowable pattern in TRENCH Level which results in a “donut” feature.Although it is possible to design a “donut” feature in the TRENCH level that would result in a portion of the Substrate that was supported by the Silicon layer, these “Full Thickness Suspended Structures” typically do not survive the fabrication process. As such, full thickness suspended structures are not allowed in SOIMUMPs. Figure 2.4.6b illustrates a top down and cross sectional view of an unallowable full thickness suspended structure.Silicon OxideSubstrate MetalBottom Oxide PSG (dopant)Shadow Mask Frontside Protection MaterialSOIMUMPs Design Handbook, Rev. 8.0 19。

过表达及敲除细胞系建立及所需材料详细

过表达及敲除细胞系建立及所需材料详细
2 ×SDS(甘油,DTT,Tris 6.8,SDS配置);Bradford(康为);溴酚蓝(ameresico); 电泳液(甘氨酸、SDS、Tris配置10 × ,使用时稀释成1 × );转膜液(甘氨酸、Tris配 置10 × ,使用时稀释成1 × 并加入甲醇) marker(thermo);antibody(abcam、CST、 MBL、Sigma);SDS(sigma)PAGE、Tris6.8、8.8(生工);APS、TEMED (ameresico);0.22及0.45µmPVDF膜(minipore)
Step4 : confirm by mRNA expression: 1days
1. VSV-G是一种包膜蛋白(病毒正是通过包膜蛋白与宿主细胞识别,然后进入细 胞),全称是疱疹性口腔炎病毒糖蛋白G,因为这个蛋白具有广泛的宿主范围, 因此我们在改造病毒载体的时候经常用这种包膜蛋白代替原来病毒中宿主范围 较小的包膜蛋白。 2. 受体介导的内吞作用,不会破坏细胞膜。 3. 通常将VSVG基因克隆到特定载体上作为包装质粒,与目的基因同时转染293T, 产生的病毒颗粒可以感染多种人的细胞。 4. gag(核心蛋白基因),pol(复制、整合酶基因)都是病毒的组成部分。
质粒鉴定
15000bp 10000bp 7500bp
5000bp 2500bp 1000bp
250bp
酶切鉴定
Pbabe -3flag
PSIREN
PCR验证
?上样量少或是载 体放置时间过长
2000bp 1000bp
750bp 500bp 250bp 100bp
+++ --+--+
在质粒提取过程中,由于机械力、酸碱度、试剂等的原因,可能使质粒DNA链发 生断裂。所以,多数质粒粗提取物中含有三种构型的质粒:(1)共价闭合环状: DNA质粒的两条链没有断裂,超螺旋;(2) 开环:DNA质粒的一条链断裂,松弛 的环状分子;(3)线形:DNA质粒的两条链均断裂,线性分子。

超大孔聚 苯乙烯 甲基丙烯酸缩水甘油酯 共聚微球的 制备及 …

超大孔聚 苯乙烯 甲基丙烯酸缩水甘油酯 共聚微球的 制备及 …

3.1 表面活性剂含量对微球孔结构的影响 图 2 为不同 Span-80 用量下微球的形貌和孔径,从
图可见,Span-80 含量对聚合物微球的形貌和孔径起关 键作用. Span-80 量为 1.6 g 时,孔径较小,约为 100 nm; Span-80 量增加到 2.0 g 时,孔径增大至 720 nm,说明 表面活性剂对大孔形成起关键作用. 在研究聚苯乙烯体 系微球内孔道形成机理的工作中[24],通过共聚焦显微镜 和光学显微镜观察到了油相内表面活性剂反胶团吸水 进而形成连续通道的过程,吸水前表面活性剂相零散分 散于油相,吸水后油相内的反胶团能把水吸入其极性区 域内并被水溶胀,进而发生聚集,并形成连续孔道;通 过测定吸水量,考察了表面活性剂用量的影响,发现最 大吸水量随表面活性剂含量增加而增大,同时,聚合物 微球孔径也随之增加,当表面活性剂用量从 1.2 g 增至 1.6 g 时,最大吸水量由 20%增至 30%;通过电导率− 吸水量曲线的测定研究了表面活性剂用量对油包水微 乳液结构的影响,确定了乳液由小液滴相互碰撞、随吸 水量增大形成双连续结构的过程,连续水通道的大小和 数量主要由表面活性剂用量决定. 随 Span-80 用量增 加,反胶团数增多,进而从外水相吸收的水分增多,形 成的孔道也会增大.
(1. 中国科学院过程工程研究所生化工程国家重点实验室,北京 100190;2. 中国科学院研究生院,北京 100049)
摘 要:使用表面活性剂反胶团法制备超大孔聚(苯乙烯−甲基丙烯酸缩水甘油酯)[P(ST−GMA)]共聚微球,考察了功能
单体 GMA 含量、油溶性表面活性剂、稀释剂、交联剂对微球孔径的影响. 结果表明,随 GMA 含量增加,微球孔径
用 JEM-6700F 扫描电子显微镜观察微球表面形态, 微球粒径分布采用激光粒度仪测定,微球孔隙率、孔径 分布、比表面积等由 AutoPore IV9500 压汞仪测定.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• ANCHOR 2
– Opens points-of-contact between second polysilicon and substrate/nitride
• POLY 2
– Defines second polysilicon features
• METAL
– Defines location of metal features
• Metal
– Provides electrical connection to package
4
Eight Lithography Levels
• POLY ZERO
– Defines the polysilicon zero features
• ANCHOR 1
– Opens points-of-contact between first polysilicon and substrate (nitride or poly 0)
12
PolyMUMPs Process
• Heavily doped N+ layer diffused into surface of starting wafer
– Minimizes charge feed-through on wafer surface
POCl3 diffusion Silicon Substrate
– a lithographic level used to pattern a physical layer. It may or may not correspond with a physical layer
• e.g. poly1= POLY1, but Second oxide is patterned by both ANCHOR2 and POLY1_POLY2_VIA
• Poly 1
– First mechanical layer
• Second oxide
– Second sacrificial oxide layer, provides gap between second and first polysilicon
• Poly 2
– Second mechanical layer
Poly 0 Nitride POCl3 diffusion
15
PolyMUMPs Process
• The photoresist is stripped in solvent after etch.
Introduction to Prototyping Using PolyMUMPs
Steve Wilcenski
About MUMPs®
• The baseline process of the the MUMPs® program is the 3-layer polysilicon surface micromachining process (“polysurf”) known as PolyMUMPs
5
Common Layout Terminology
• Layer
– a physical layer of material deposited during the fabrication process
• Always represented in mixed-case letters
• LEVEL
– a dry physical or chemical etching method which removes specific material through the interaction of gas and plasma with the wafer surface
8
Common Layout Terminology
• Always represented in CAPITAL letters
6
Common Layout Terminology
• Dimples
– small, shallow features in the underside of the lower polysilicon layer to minimize the area of contact between the polysilicon and the substrate
2
PolyMUMPs Process
Nitride
Poly 0 1st Oxide
Poly 1
2nd Oxide Poly 2
Metal
3
Seven Physical Layers
• Nitride
– Isolation between substrate and electrical surface layers
• CVD: Chemical Vapor Deposition
– a method of depositing layers of material through the interaction of gases at low vacuum and increased temperature
• A CVD deposition is generally conformal - follows closely the underlying topography
• DIMPLE
– Generates 'bumps' in under-surfacetion
• POLY 1
– Defines first polysilicon features
• POLY1_POLY2_VIA
– Opens points-of-contact between first and second polysilicon
• The basic process includes 8* lithography levels, and 7 physical layers
– 2 mechanical and 1 electrical layer of polysilicon – 2 sacrificial layers – 1 electrical conduction – 1 electrical isolation layer
• A few rules are mandatory and may not be violated
– Minimum line and spaces - determined by lithographic resolution
– A few interlevel interactions - required by process window
– Minimum resolution of the lithography system – Alignment between levels – Topography effects of multiple layers – Etch requirements
• Selectivity between materials • Etch rates
• The exposed polysilicon is then removed by RIE etching, transferring the POLY0 pattern onto the wafer.
Reactive Ion Etch (RIE)
Silicon Substrate
Photoresist
9
Common Layout Terminology
• Release
– the last step of the process where the sacrificial layers are removed by submersion into HF
• Stiction
– the sticking effect between polysilicon and the substrate which occurs during the removal of the sacrificial oxide. Many attempts to limit stiction, including dimples, special release chemicals and processes, are tried, some successfully
• Sacrificial oxide
– a layer of fast etching silicon dioxide used to define the separation between the mechanical layers and the substrate
• RIE: Reactive Ion Etching
7
Common Layout Terminology
• PSG: Phospho-silicate-glass
– a phosphorous containing silicon dioxide layer generated by CVD and used for its fast etching properties
11
MUMPs® Design Rules
• Most process rules in MUMPs® are "advisory"
– warn of possible negative interactions – must be taken in context of the design – violations are at User’s risk
13
PolyMUMPs Process
• Low stress nitride and poly zero layers are deposited (blanket). Wafer is spin coated with photoresist, a UV photo-imagable material.
相关文档
最新文档