初中数学2016-2017学年安徽省滁州市全椒县七年级下期中数学试卷
2016-2017学年度安徽第二学期期中考试七年级数学试卷
安徽省2016-2017学年度第二学期七年级数学期中试卷考试时间:100分钟;满分120: 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题。
(本大题共10题,每题3分,共30分)1.下列运算中结果正确的是()2、下列说法正确的是()A 有且只有一条直线垂直于已知直线 B 从直线外一点到这条直线的垂线段。
叫做这点到这条直线距离 C 互相垂直的两条线段一定相交D 直线c 外一点A 与直线c 上各点连接而成的所有线段中最短线段的长是3cm ,则点A 到直线c 的距离是3cm 。
3、下列各式能用平方差公式计算的是()4.体育课上,老师测量跳远成绩的依据是()A 、平行线间的距离相等B.两点之间,线段最短C 垂线段最短D.两点确定一条直线 5.下列多项式中是完全平方式的是()6.图中三角形的个数是( ) A .8 B .9 C .10 D .117.以下各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm9.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。
A 、3个 B 、4个 C 、5个 D 、6个10.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:( )(1) 他们都行驶了18千米;(2) 甲在途中停留了0.5小时; (3) 乙比甲晚出发了0.5小时;(4) 相遇后,甲的速度小于乙的速度; (5) 甲、乙两人同时到达目的地。
初级中学16—17学年下学期七年级期中考试数学试题(附答案)
54D 3E21C B A2016-2017学年第二学期期中考试七年级数学试卷(问卷)(卷面分值:100分;考试时间:100分钟)同学们,半个学期的勤奋,今天将展现在试卷上,老师相信你一定会把诚信答满试卷,......................................也一定会让努力书写成功,答题时记住细心和耐心。
.......................注意事项:本卷由问卷和答卷两部分组成,其中问卷共4页,答卷共2页,在问卷上答题无效。
一.选择题(本大题共8小题,每小题3分,共24分)1. 4的平方根是( )A . ±2B .2C .±D .2.点P (-1,5)所在的象限是( )A .第一象限B .第二象限C.第三象限 D.第四象限3.下列各组图形,可由一个图形平移得到另一个图形的是( )A B C D4.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160 (第4题图)5.已知是二元一次方程4x+ay=7的一组解,则a 的值为( )A .﹣5B .5C .D .﹣6.如右图,下列能判定AB ∥CD 的条件有( )个. (第6题图) (1) ︒=∠+∠180BCD B (2)21∠=∠(3) 43∠=∠ (4) 5∠=∠B A . 1 B .2 C .3D.4 7.下列各组数中,互为相反数的组是( )A .﹣2与B .﹣2和C .﹣与2D .|﹣2|和28.下列命题:①两直线平行,内错角相等;②如果m 是无理数,那么m 是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a 是实数,那么a 是无理数.其中正确的有( )A .1个B .2个C .3个D .4个二.填空(本大题共6小题,每小题3分,共18分)9.若32123=---n m y x 是二元一次方程,则m=____,n=____.10.计算:|3﹣π|+的结果是 .11.已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为 . (第13题图) 13.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为 .14.在平面直角坐标系中,点A 的坐标为(﹣1,3),线段AB ∥x 轴,且AB =4,则点B 的坐标为 .三、计算解答题 (每小题5分,共20分)15.计算:364+2)3(--31- 16.1+2)451(- .17.解二元一次方程组:18.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.四、解答题:(19题6分,20题8分,21题6分,22题8分,23题10分共38分)19. 某工程队承包了修建隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了50米.求甲、乙两个班组平均每天各掘进多少米?20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴∥()∴∠E=∠()又∵∠E=∠3 (已知)∴∠3=∠()∴AD∥BE.()21.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.22.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.A PB 1l 2l 3l 1 2 323如图,已知直线 1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B 两点,点P 在直线AB 上.(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(只写结论)(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3 之间的关系。
中学2016-2017学年七年级(下)期中数学试卷(解析版)
七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3•a2=a6 B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a72.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°3.将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3 B.2x2﹣x﹣3 C.2x2﹣x+3 D.x2﹣2x﹣35.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°6.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°8.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DB,AC=DC9.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高C.这天中小明体温T(℃)的范围是36.5≤T≤37.5D.从5时到24时,小明的体温一直是升高的10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A .B .C.D .二、填空题(每小题3分,共24分) 11.计算:(﹣2xy 3z 2)2= .12.如图,直线AB 、CD 、EF 相交于一点,∠1=50°,∠2=64°,则∠COF=度.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= .14.如果多项式x 2+8x +k 是一个完全平方式,则k 的值是 . 15.若5m =3,5n =2,则52m +n = .16.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系 . 17.已知x +y=﹣5,xy=6,则x 2+y 2= .18.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有 个、 个座位;第n 排有 个座位.三、作图题(每小题5分,共5分)19.(5分)如图,已知∠BAC 及BA 上一点P ,求作直线MN ,使MN 经过点P ,且MN ∥AC .(要求:使用尺规正确作图,保留作图痕迹)四、计算与求值(每小题25分,共25分) 20.(25分)计算与求值(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0 (2)(3x ﹣2)2+(﹣3+x )(﹣x ﹣3) (3)(﹣2x 2y )2•3xy ÷(﹣6x 2y ) (4)1122﹣113×111(用乘法公式计算)(5)[(2x +y )2+(2x +y )(y ﹣2x )﹣6y ]÷2y ,其中x=﹣,y=3.五、解答题(共36分)21.(8分)如图,已知点A 、F 、E 、C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE . (1)从图中任找两对全等三角形,并用“≌”符号连接起来; (2)求证:AB=CD .22.(9分)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?23.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()24.(12分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3•a2=a6 B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a7【分析】A、利用同底数幂的乘法法则计算得到结果,即可作出判断;B、合并同类项得到结果,即可作出判断;C、利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、利用幂的乘方及同底数幂的乘法运算得到结果,即可作出判断.【解答】解:A、a3•a2=a5,本选项错误;B、a5+a5=2a5,本选项错误;C、(﹣3a3)2=9a2,本选项错误;D、(a3)2•a=a6•a=a7,本选项正确.故选D.【点评】此题考查了幂的乘方与积的乘方,合并同类项,去括号与添括号,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.2.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°【分析】本题根据互余和互补的概念计算即可.【解答】解:180°﹣150°=30°,那么这个角的余角的度数是90°﹣30°=60°.故选B.【点评】本题考查互余和互补的概念,和为90度的两个角互为余角,和为180度的两个角互为补角.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3 B.2x2﹣x﹣3 C.2x2﹣x+3 D.x2﹣2x﹣3【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(x﹣1)(2x+3),=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,属于基础题.5.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),所以正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A错误.故选A.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x)(﹣1﹣x),故选C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DB,AC=DC【分析】利用全等三角形的判定方法:SSS、SAS、ASA、AAS、HL分别进行分析即可.【解答】解:A、AB=DC,AC=DB再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;B、∠A=∠D,∠ABC=∠DCB再加公共边BC=BC可利用AAS判定△ABC≌△DCB,故此选项不合题意;C、BO=CO,∠A=∠D再加对顶角∠AOB=∠DOC可利用AAS判定△AOB≌△DOC,可得AO=DO,AB=CD,进而可得AC=BD,再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;D、AB=DB,AC=DC不能判定△ABC≌△DCB,故此选项不合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高C.这天中小明体温T(℃)的范围是36.5≤T≤37.5D.从5时到24时,小明的体温一直是升高的【分析】分析折线统计图,即可求出答案.【解答】解:由折线统计图可知:折线统计图中最底部的数据,则是温度最低的时刻,最高位置的数据则是温度最高的时刻;则清晨5时体温最低,下午5时体温最高;最高温度为37.5℃,最低温度为36.5℃,则小明这一天的体温范围是36.5≤T≤37.5;从5时到17时,小明的体温一直是升高的趋势,而17﹣24时的体温是下降的趋势.所以错误的是从5时到24时,小明的体温一直是升高的,故选D.【点评】读懂统计图,从图中得到必要的信息是解决本题的关键.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A .B .C.D .【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(每小题3分,共24分)11.计算:(﹣2xy3z2)2=4x2y6z4.【分析】根据积的乘方,即可解答.【解答】解:(﹣2xy3z2)2=4x2y6z4,故答案为:4x2y6z4.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方的法则.12.如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=66度.【分析】根据平角意义求得∠EOD,再根据对顶角求得结论.【解答】解:∵∠1=50°,∠2=64°,∴∠EOD=180°﹣∠1﹣∠2=66°∴∠COF=∠EOD=66°,故答案为:66.【点评】本题主要考查了平角的定义,对顶角定理,熟记对顶角定理是解题的关键.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=90°.【分析】过点B作BN∥FG,根据矩形的性质可得BN∥EH∥FG,再根据两直线平行,内错角相等可得∠1=∠3,∠2=∠4,然后求出∠1+∠2=∠ABC,从而得证.【解答】证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.【点评】本题考查了两直线平行,内错角相等的性质,矩形的对边平行,每一个角都是直角的性质,熟记性质并作出辅助线是解题的关键.14.如果多项式x2+8x+k是一个完全平方式,则k的值是16.【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可.【解答】解:∵8x=2×4•x,∴k=42=16.【点评】本题考点是对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是求解的关键.15.若5m=3,5n=2,则52m+n=18.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.16.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系y=.【分析】本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.【点评】此题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意x的取值范围.17.已知x+y=﹣5,xy=6,则x2+y2=13.【分析】把x+y=﹣5两边平方,根据完全平方公式和已知条件即可求出x2+y2的值.【解答】解:∵x+y=﹣5,∴(x+y)2=25,∴x2+2xy+y2=25,∵xy=6,∴x2+y2=25﹣2xy=25﹣12=13.故答案为:13.【点评】本题考查了完全平方公式,完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.18.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有62个、65个座位;第n排有47+3n个座位.【分析】由座位数可以看出后一排的座位数总比前一排的座位数多3,由此得到第n(n >1)排有[50+3(n﹣1)]个座位,问题可以解答.【解答】解:第一排有50个座位,第二排有[50+(2﹣1)×3]=53个座位,第三排有[50+(3﹣1)×3]=56个座位,第四排有[50+(4﹣1)×3]=59个座位,第五排有[50+(5﹣1)×3]=62个座位,第六排有[50+(6﹣1)×3]=65个座位,第n排有[50+3(n﹣1)]=(47+3n)个座位.【点评】解决此类问题需要发现数字的一般规律,问题就容易解决.三、作图题(每小题5分,共5分)19.(5分)如图,已知∠BAC及BA上一点P,求作直线MN,使MN经过点P,且MN ∥AC.(要求:使用尺规正确作图,保留作图痕迹)【分析】过点P作PQ⊥AC,再过点P作MN⊥PQ,根据垂直于同一直线的两直线平行,即可得直线MN即为所求.【解答】解:如图,直线MN即为所求.【点评】本题主要考查作图﹣复杂作图,熟练掌握过一点作已知直线的垂线及平行线的判定是解题的关键.四、计算与求值(每小题25分,共25分)20.(25分)计算与求值(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)(3)(﹣2x2y)2•3xy÷(﹣6x2y)(4)1122﹣113×111(用乘法公式计算)(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先算乘法,再合并同类项即可;(3)先算乘方,再算乘除即可;(4)先变形,再根据平方差公式进行计算即可;(5)先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+27﹣1=25;(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)=9x2﹣12x+4+9﹣x2=8x2﹣12x+13;(3)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(4)原式=1122﹣(112+1)(112﹣1)=1122﹣1122+1=1;(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3,把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1.【点评】本题考查了整式的混合运算和求值、零指数幂、负整数指数幂等知识点,能正确根据整式的运算法则进行化简是解此题的关键.五、解答题(共36分)21.(8分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD.【分析】(1)本题有三对三角形全等,分别是△ABE≌△CDF,△ABC≌△CDA,△BEC ≌△DFA(2)先根据AF=CE利用等式的性质得:AE=FC,由AB∥CD得内错角相等,则△ABE≌△CDF,得出结论.【解答】解:(1)△ABE≌△CDF,△ABC≌△CDA,(2)∵AF=CE,∴AF+EF=CE+EF,即AE=CF,∵AB∥CD,∴∠BAC=∠DCA,∵∠ABE=∠CDF,∴△ABE≌△CDF(AAS),∴AB=CD.【点评】本题考查了全等三角形的性质和判定,是常考题型,比较简单;熟练掌握全等三角形的性质和判定是做好本题的关键;从图形中看,要想得出结论,只需证明△ABE ≌△CDF,或是证明四边形ABCD为平行四边形,从已知上看,证明全等有一个条件,所以要再得出两个条件才行,从而得出结论.22.(9分)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?【分析】(1)根据离开家的最大距离就是体育场到张阳家的距离解答;(2)根据纵坐标的两个距离不变时的距离的差为体育场离文具店的距离计算即可得解,再求出距离不变时的时间差即可;(3)根据速度=路程÷时间,列式计算即可得解.【解答】解:(1)体育场离张阳家2.5 km.(2)因为2.5﹣1.5=1(km),所以体育场离文具店1 km.因为65﹣45=20(min),所以张阳在文具店逗留了20 min.(3)文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100﹣65=35(min),所以张阳从文具店到家的速度为1.5÷=(km/h).【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.23.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义)【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.24.(12分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。
安徽省安徽省2016-2017学年度第二学期期中考试七年级数学试题及答案
安徽省2016-2017学年度第二学期期中考试七年级数学试卷(满分150分,时间:120分钟)一 选择题(4分*10)1、 在下列实数3.14 , -33, π,722 ,21- , 0.1313…中,无理数的个数有 ( )(A) 2 (B) 3 (C) 4 (D) 52、和数轴上的点一一对应的数是 ( )(A)整数 (B ) 有理数 (C ) 无理数 (D ) 实数3、对13-5的大小进行估计,正确的是 ( )(A) 在9~10之间 (B) 在10~11之间(C) 在11~12之间 (D) 无法估计4、已知a >b ,则不等式一定成立的是 ( )(A) a +4<b +4 (B) 2a <2b (C) -2a <-2b (D) a -b <05、下列运算正确的是 ( )(A) a 6÷a 2= a 3 (B) (a 6)2= a 8 (C) a 6a=a 7 (D) (ab 2)3= ab 66、 2-3与23的关系是 ( )(A)互为相反数 (B)互为倒数 (C)绝对值相等 (D)相等7、 计算(a +1)2( a -1)2的结果是 ( )(A) a 4-1 (B) a 4+1 (C) a 4+2a 2+1 (D) a 4-2a 2+18、如果x 2+a x -6=( x +b)( x -2), 那么a -b 的值为 ( )(A) 2 (B)-2 (C) 3 (D) -39、如果把分式2xyy x +中的x 和y 都扩大3倍,那么分式的值 ( ) (A)扩大3倍 (B)缩小3倍 (C)缩小6 倍 (D)保持不变10、如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为(A) -1 (B) 0 (C) 1 (D) 2二、填空题(每空3分 共30分)11、 已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 _____ 千克,长城的总长约为6700010米, 这个数用科学记数法表示为 ___米(保留两个有效数字)12、满足2-<x <5的所有整数的和是13、 若23)-(b =b -3, 则 b 3 (填≤,≥,<或>之一)14、若x 2+k x y +25 y 2是关于x 、y 的完全平方式,则k= , 若x 2+3x +m 是关于x 的完全平方式,则m=15、长方形的面积是a b 2- 2a 2+a ,宽是a ,那么它的长是16、当x 满足 时,( x -2)0有意义, 当x 满足 时,3-x 9-x 2值等于0,17、若x 2+a x +15在整数范围内可以进行因式分解,则a 的可能值是 ___三、解答题(每小题6分)18 、① 30127)14.3(249-+--+-π ② (x -3)2-64=0③ 4a 2(a -3 b )-(a +5b )(3a 2-2b )④先化简 再求值(x 2-9y 2)÷(xy +3 y 2) 其中 x= - 4 y=219 、解不等式组⎪⎪⎩⎪⎪⎨⎧<--<-+23)14(212134X X X X 并把解集在数轴上表示出来 (8分)四20、把下列多项式因式分解(每小题6分)① a b2-2ab+a ② x 2-y 2-2 y-121、比较算式结果的大小:(在横线上选填“>”、“<”、“=”)42+322×4×3;(-5)2+122×(-5)×1;22 +22____ 2×2×2;……通过观察归纳,写出能反映这种规律的一般结论(文字或字母符号),并加以证明10分五、22、有A型、B型、C型三种不同的纸板,其中A型是边长为a的正方形 1块,B型是长为a、宽为b的长方形 6块,C型是边长为b的正方形 6块,共13块。
2016-2017学年七年级下数学期中试卷及答案
2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A. B. C. D.2、方程组的解为( ) A.B.C.D.3、在①+y=1;②3x ﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个B .2个C .3个D .4个4、如图所示,图中∠1与∠2是同位角的是( )2(1)1(2)1212(3)12(4)A 、1个B 、2个C 、3个D 、4个5.下列运动属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 6、如图1,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A .1 B .2 C .3 D.47、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离; ②内错角相等;③两点之间线段最短; ④过一点有且只有一条直线与已知直线平行; ⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行. A .2个 B .3个 C .4个 D .5个8、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则54D3E21CB A图1∠AED′=( )A 、50°B 、55°C 、60°D 、65°9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.42B.96C.84D.48 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是,的平方根是 ,如果=3,那么a=,的绝对值是 ,2的小数部分是_______12、命题“对顶角相等”的题设 ,结论13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若,则.14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为_______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 , 点A 2014的坐标为_________三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分)(一)计算:(1)322769----)( (2))13(28323-++-图4图5FEDCB A 音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥(3)2(2-2)+3(3+13). (二)解方程:(1)9x 2=16. (2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.∙∙02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …}; (2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区 地图,如图所示.可是她忘记了在图中标出原点和x 轴. y 轴. 只知道游乐园D 的坐标为(2,-2), 请你帮她画出坐标系,并写出其他各景点的坐标.20、(本小题5分)已知2是x 的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB 、CD 、EF 相交于点O . (1)写出∠COE 的邻补角;(2)分别写出∠COE 和∠BOE 的对顶角;(3)如果∠BOD=60°,EF AB ⊥,求∠DOF 和∠FOC 的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下:因为∠1=∠2(已知),且∠1=∠4()所以∠2=∠4(等量代换)所以CE∥BF()所以∠=∠3()又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴∠= ∠(等量代换)∴AD∥BE()∴∠E=∠DFE()24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.得平行四边形ABDC(1)直接写出点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.2016-2017学年度第二学期期中联考数学科 评分标准一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分) 11. -5 、 ±3 、 9 、﹣2 、 2 -112.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 7.160 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4)三、解答题(本大题共11小题,共80分)17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) ...2 解:原式=232223-++-......2 =0 ........................3 =...233- (3)(3)2(2-2)+3(3+13).解:原式=13222++- (2)=222+ (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4解:x 2=,......1 x ﹣4=2或x ﹣4=﹣2 (1)x=±,......3 x ═6或x=2 (3)题号 12345678910答案CDBCBCAAAD(求出一根给2分)(3),(x+3)3=27,......1 x+3=3,......2 x=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,1.414,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分 19(本小题6分)解:(1)正确画出直角坐标系;……1分(2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0);……6分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0,∴, 解得:, (3)∴==3. (5)21(本小题8分)解:(1)∠COF 和∠EOD (2)(2)∠COE 和∠BOE 的对顶角分别为∠DOF 和∠AOF .……4 (3)∵AB ⊥EF ∴∠AOF=∠BOF=90°∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°. (8)22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h ) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下:因为∠1=∠2(已知),且∠1=∠4(对顶角相等) (1)所以∠2=∠4(等量代换)所以CE∥BF(同位角相等,两直线平行) (2)所以∠ C =∠3(两直线平行,同位角相等) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF∴∠3=∠ADE (3)又∠B=∠3∴∠B=∠ADE∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)。
安徽省2016-2017学年七年级下学期期中考试数学试题
9、下列计算中正确的是( )
A、 B、 C、 D、
10、下列从左到右的变形属于因式分解的是( )
A、 B、
C、 D、8
二、填空题(每题3分,共30分)
1、用科学计数法表示:-0.00108=.
2、如果x2=12 ,那么x=.
3、-64的立方根是.
(1)|1- |+| - |+| -2|;
(2)(2x+7)(3x-4)-(3x+5)(5-3x)
2、先化简,再求值:(10分)
(1)(m-3n)2-(m+3n)2+2,其中mБайду номын сангаас2, n=-3;
(2)已知 + =5,求 4+ 的值.
3、解下列不等式组,并把解集在数轴上表示出来:(10分)
(1)
(2)
1+x+x(x+1)+x(x+1)2
=(1+x)[1+x+x(x+1)]
= (1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是,共应用了次。
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2014,则需应用上述方法
次,结果是。
(3)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)。
4、当x时,二次根式 有意义。
5、比较大小 .
6、不等式-3<x< 的非负整数解为.
7、若x-y = 7, xy=-6,则(x+y)2=.
8、计算:(-5m3n2)2=.
9、计算:(4x3-8x2y+6x)÷2x=.
10、因式分解:x2(m-2)+(2-m)=.
三、解答题(共60分)
1、计算:(10分)
A、a<0 B、a≤-1 C、a>-1 D、a<-1
2016-2017学年下学期期中七年级数学试卷(word附答案)
2017~2018学年度七年级下学期期中模拟数学试卷()满分:120分时间120分钟一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.下列实数是无理数的是()A.3.14B.13C.D.2.下列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中看作由“基本图案”经过平移得到的是()D.C.B.A.3.实数9的算术平方根是()A.3±B.C. D.34.点A(-2,1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.)A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.下列图形中,由∠1=∠2,能得到AB//CD的是()12GFEA BDCACDB21A. B. C. D.21DCBA7.如图,下列说法不正确的是()A.∠AFE与∠EGC是同位角B.∠AFE与∠FGC是内错角C.∠C与∠FGC是同旁内角D.∠A与∠FGC是同位角8.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,内错角相等;B.相等的角是对顶角;C.所有的直角都是相等的;D.若a=b,则a-1=b-1.9.点P关于x轴的对称点为(,1)a-,关于y轴的对称点为(2,)b-,那么点P的坐标是()A.(,)a b- B.(,)b a C.(1,2)-- D.(2,1)10.△ABC三个顶点坐标(4,3)A--,(0,3)B-,(2,0)C-,将点B向右平移2个长度单位后,再向上平移5个长度单位到D,若设△ABC面积为1S,△ADC的面积为2S,则1S与2S大小关系为()A.1S>2S B.1S=2S C.1S<2S D.不能确定二、仔细填一填,你一定很棒!(每小题3分,共18分)11.=_______.12.写出一个在x轴正半轴上的点坐标________________.13.如图,一把长方形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为_________________.E87654321第13题图FABCD14.在平面直角坐标系中依次描出下列点,(2,3)--,(1,1)--,(0,1),(1,3),⋅⋅⋅,依照此规律,则第7个坐标是_________________.15.已知四边形ABCD,其中AD//BC,AB⊥BC,将DC沿DE折叠,C落于C',DC'交CB于G,且ABGD为长方形(如图1);再将纸片展开,将AD沿DF折叠,使A点落在DC上一点A'(如图2),在两次折叠过程中,两条折痕DE、DF所成的角为____________度.16.在平面直角坐标系中,任意两点A(a,b),B(m,n),规定运算:A B⊗=(-若A(9,-1),且A B⊗=(-6,3).则点B的坐标是______________.三、精心答一答,你一定能超越!(本大题共8小题,共72分)17. (本题8分)如图,∠1=30°,∠B=60°,AB⊥AC.(1)∠DAB+∠B等于多少度?(2)AD与BC平行吗?AB与CD平行吗?18.(每小题4分,共8分)计算:(1(219. (每小题4分,共8分)求下列各式中的x值.(1)2164x-=(2)3(1)64x-=7题B/A/C/DBACF E第15题图2DBACEG第15题图117题1BDAC20. (共8分)完成下面的证明(1)如图,FG //CD ,∠1=∠3,∠B =50°,求∠BDE 的度数. 解:∵FG //CD (已知)∴∠2=_________( ) 又∵∠1=∠3, ∴∠3=∠2(等量代换)∴BC //__________( ) ∴∠B +________=180°( ) 又∵∠B =50°∴∠BDE =________________.21. (本题8分)△ABC 在平面直角坐标系中,且A (2,1)-、B (3,2)--A ,B 的对应点是1A ,1B ,C 的对应点1C 的坐标是(3,1)-. (1)在平面直角坐标系中画出△ABC ;(2)写出点1A 的坐标是_____________,1B 坐标是___________; (3)此次平移也可看作111A B C ∆向________平移了____________ 个单位长度,再向_______平移了______个单位长度得到△ABC .22. (本题10分)已知直线BC //ED .(1)如图1,若点A 在直线DE 上,且∠B =44°,∠EAC =57°,求∠BAC 的度数;(2)如图2,若点A 是直线DE 的上方一点,点G 在BC 的延长线上求证:∠ACG =∠BAC +∠ABC ; (3)如图3,FH 平分∠AFE ,CH 平分∠ACG ,且∠FHC 比∠A 的2倍少60°,直接写出∠A 的度数.AD BCE图1G图2ECBD AHF图3EBDA23. (本题10分)如图,在平面直角坐标系中,点A 、C 分别在x 轴上、y 轴上,CB //OA ,OA =8,若点B 的坐标为(a ,b ),且b 4.(1)直接写出点A 、B 、C 的坐标;(2)若动点P 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,当直线PC 把四边形OABC分成面积相等的两部分停止运动,求P 点运动时间;(3)在(2)的条件下,在y 轴上是否存在一点Q ,连接PQ ,使三角形CPQ 的面积与四边形OABC 的面积相等?若存在,求点Q 的坐标;若不存在,请说明理由.24. (本题12分)在平面直角坐标系中,点A (t +1,t +2),点B (t +3,t +1),将点A 向右平移3个长度单位,再向下平移4个长度单位得到点C .(1)用t 表示点C 的坐标为_______;用t 表示点B 到y 轴的距离为___________;(2)若t =1时,平移线段AB ,使点A 、B 到坐标轴上的点1A 、1B 处,指出平移的方向和距离,并求出点1A 、1B 的坐标;(3)若t =0时,平移线段AB 至MN (点A 与点M 对应),使点M落在x轴的负半轴上,三角形MNB 的面积为4,试求点M 、N 的坐标.第20题图12016~2017学年度下学期七年级数学期中参考答案一、选一选,比比谁细心1. C2.B3.D4.B5. C6. B7. A8.C9.D 10.A 二、仔细填一填,你一定很棒! 11. 2- 12.答案不唯一,例如(3,0)13.55° 14.(4,9) 15. 45 16.(2,27-) 三、精心答一答,你一定能超越!17.解:(1)∵AB ⊥AC ,∴∠BAC =90°,∴∠B +∠BAD =60°+90°+30°=180°. (2)由(1)得AD //BC ,但是无法确定AB 与CD 的关系. 18.解:(1)原式=6-0.9=5.1 (2)原式=1324-+-1=-32+34 19.解:(1)2254x =,∴52x =±; (2)(1)x -=x -1=4, ∴x =5.20. (1)∠1(两直线平行,同位角相等);DE (内错角相等,两直线平行); ∠BDE (两直线平行,同旁内角互补);130°. (2)∠ADC =∠EFC ;EF ;∠2;∠CAD .21.(1)(2)1(0,4)A ,1B (1,1)-(3)下;3;左;2.22.解:(1)∵BC //ED ,∴∠BAE +∠B =180°,∴∠BAC =180°-∠B -∠EAC =79°;(2)F 2F 1方法②方法①G图2E C BDA如图,方法①,作AF //BC ,又∵BC //ED ,∴AF //ED //BC ,∴∠F AC =∠ACG ,且∠ABC =∠F AB ,∴∠ACG =∠F AC =∠BAC +∠F AB =∠BAC +∠ABC . (3)MNyx y xGHF图3E CBDA作AM //BC ,HN //BC , ∴可证AM //BC //ED ,HN //BC //ED ,又设∠ACH =GCH =x , ∠AFH =EFH =y , ∴∠A =2x -2y , ∠FHC =x -y ,∴∠A =2∠FHC ,又∵∠FHC =2∠A -60°,∴∠A =40°.23.(1)A (8,0),B (4,4),C (0.4);(2)设运动时间t 秒,∴OP =2t , ∴12⋅2t ⋅4=(8-2t )⋅4,∴t =83.(3)设Q (0,y ), ∵OABC CPQ S S ∆=四边形,∴12-4y 2t ⋅=12(4+8)⋅4, ∴1y =13,2y =-5,∴1Q (0,13),2Q (0,-5) 24.(1)C (t +4,t -2);3t +(2)当t =1时,A (2,3),B (4,2)将AB 左平移2个单位得1A (0,3);1B (2,2); 将AB 下平移2个单位得1A (2,1);1B (4,0)(3)若t=0,则A(1,2),B(3,1)设A下平移2个单位,再左平移a个单位到达x轴负半轴,∴M(1-a,0),N(3-a,-1),∴(3-1+a)⋅2-12(3-1+a)⋅1-12(3-a-1+a)⋅1-12(3-3+a)⋅2=4,∴a=4,∴M(-3,0),N(-1,-1).(范文素材和资料部分来自网络,供参考。
2016-2017学年度第二学期期中考试七年级数学试卷(word版有答案)
2017~2018学年度七年级下学期期中模拟数学试卷( )一.你一定能选对(每小题3分,共30分) 1.下列选项中能由左图平移得到的是()DCBA2.下列所给数中,是无理数的是 ( ) A. 2 B.27C.0.2•D.3.如图,小手覆盖的点的坐标可能是( ) A. (-1,1) B. (-1,-1) C.(1,1) D. (1,-1)4.如图,直线AB 、CD 相交于点O,OA 平分∠EOC,且∠EOC=70°,则∠BOD 等于( ) A. 40° B. 35° C. 30° D. 20°5.将点A(-3,-5)向右平移2个单位,再向下平移3个单位得到点B,则点B 的坐标为( ) A. (-5,-8) B. (-5,-2) C. (-1,-8) D. (-1,-2)6.下列各式正确的是( )= ±3B.±4C.D.7.下列结论中: ①若a=b,,②在同一平面内,若a ⊥b,b//c,则a ⊥c;③直线外一点到直线的垂线段叫点到直的距离;④正确的个数有( )A. 1个 B .2个 C.3个 D.4个8.如图,下列条件: ①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD//BC 且∠B=∠D, 其中,能推出AB//DC 的是( ) A. ①④ B. ②③ C. ①③ D. ①③④9.如下表:被开方数a,=180,且则被开方数a 的值为( ) A. 32.4 B. 324 C. 32400 D. -324010. 如图,把一张两边分别平行的纸条折成如图所示,EF 为折痕,ED 交BF 于点G,且∠EFB=45°,则下列结论: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°; ④∠DGF=96°,其中正确的个数有( ) A. 4个 B.3个 C.2个 D.1个二.填空题(6小题,每题3分,共18分) 11.计算12.若点M(a-3,a+4)在x 轴上,则a=______;13.如图,DE//AB,若∠A=50°, 则∠ACD=________; 14.如图,以数轴的单位长度线段为边做一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A 和点B,则点A 表示的数是_________.15.已知线段AB//x 轴,且AB=3,若点A 的坐标为(-1,2),则点B 的坐标为_______;16.如图,小明从A 出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是右转__________°. 三.解下列各题(本题共8小题,共72分) 17.(8分)求下列各式的值: (1)x 2-25=0(2)x 3-3=3818.(8分)如图,在三角形ABC 中,D 是AB 上一点,E 是AC 上一点, ∠ADE=60°, ∠B=60°, ∠AED=40°; (1)求证: DE//BC; (2)求∠C 的度数;19.(8分)看图填空,并在括号内注明理由依据, 解: ∵∠1=30°, ∠2=30° ∴∠1=∠2∴_______//________(______________________________________________)又AC ⊥AE(已知)∴∠EAC=90°∴∠EAB=∠EAC+∠1=120°同理: ∠FBG=∠FBD+∠2=_________°.∴∠EAB=∠FBG(________________________________).∴______________//____________(同位角相等,两直线平行)x第4题图BA第8题图B第10题图B13题图D E14题图16题图B G20. (8分)如图,在边长为1的小正方形组成的网格中,A 、B 、C 、D 、E五点都是格点.(1) 请在网格中建立合适的平面直角坐标系,使点A 、B 两点坐标分别 是A(-3,0)、B(2,-1).(2)在(1)条件下,请直接写出C 、D 、E 三点的坐标;(3)则三角形BDE 的面积为_____________.21.(8分) 小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.22.(10分)如图,已知∠A=∠AGE, ∠D=∠DGC. (1)求证:AB//CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数;23.(10分)如图1,已知AB//CD, ∠B=30°,∠D=120°; (1)若∠E=60°,则∠E=______;(2)请探索∠E 与∠F 之间满足的数量关系?说明理由.(3)如图2,已知EP 平分∠BEF,FG 平分∠EFD,反向延长FG 交EP 于点P ,求∠P 的度数;24.(12分)已知,在平面直角坐标系中,AB ⊥x 轴于点B,点A(a,b)平移线段AB 使点A 与原点重合,点B 的对应点为点C.(1)则a=____,b=____;点C 坐标为________; (2)如图1,点D(m,n)在线段BC 上,求m 、n 满足的关系式;(3)如图2,E 是线段OB 上一动点,以OB 为边作∠G=∠AOB,,交BC 于点G ,连CE 交OG 于点F,的当点E 在线段OB 上运动过程中,OFC FCGOEC∠+∠∠的值是否会发生变化?若变化请说明理由,若不变,请求出其值.23题图1C23题图2C第22题图24题图1x2016~2017学年度七年级第二学期期中测试数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.)11.5312.-4 13.50 14.2-215.(-4,2)或(1,2)16.80三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:①x2=25…………(2分)x=5…………(4分)②x2=278…………(6分)∴x=327 8∴x=32…………(8分)18.解:(1)∵∠ADE=∠B=60°…………(2分)∴DE∥BC…………(4分)(2)∵DE∥BC∴∠C=∠AED…………(6分)又∵∠C=40°∴∠AED =40°…………(8分).19.解:∵∠1=30°,∠2=30°(已知),∴∠1=∠2.∴AC∥BD(同位角相等,两直线平行).又∵AC⊥AE(已知),∴∠EAC=90°.(垂直定义)∴∠EAB=∠EAC+∠1=120°.同理:∠FBG=∠FBD+∠2= 120°.∴∠EAB=∠FBG(等式性质).∴AE∥BF(同位角相等,两直线平行).注:(本题每空1分,共8分).20.(1)建立如图所示的平面直角坐标系…………(3分)注:两坐标轴与坐标原点正确各1分,共3分;(2)点C、D、E的坐标分别是C(-2,2)、D(0,-2)、E(2,3)…………(6分)注:每个点的坐标各1分,共3分;(3)则三角形BDE的面积= 4 .…………(8分)21.(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400…………(1分)又∵a>0∴a=20…………(2分)又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)…………(3分)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形…………(4分)注:本题其它解法只要符合题意即可.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm…………(5分)∴6x 2=300∴x 2=50…………(6分)又∵x>0∴x=52∴长方形纸片的长为152又∵2152=450>202即:152>20…………(7分)∴小丽不能用这块纸片裁出符合要求的纸片…………(8分)注:本题其它解法参照评分22.证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC…………(1分)∴∠A=∠D…………(2分)∴AB∥CD…………(4分)(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD=∠1∴CE∥FB…………(5分)∴∠C=∠BFD,∠CEB +∠B=180°…………(6分)又∵∠BEC =2∠B+30°∴2∠B +30°+∠B=180°题号 1 2 3 4 5 6 7 8 9 10答案C D D B C C B D C A 第18题图EDCBA第19题图yxOEDCBA第22题图21FHGEDCBA∴∠B =50°…………(7分) 又∵AB ∥CD ∴∠B =∠BFD∴∠C =∠BFD =∠B =50°…………(8分) 注:本题其它解法参照评分23.证:(1)若∠E =60°,则∠F = 90°;…………(2分) (2)如图1,分别过点E ,F 作EM ∥AB ,FN ∥AB ∴EM ∥AB ∥FN …………(3分)∴∠B =∠BEM =30°,∠MEF =∠EFN …………(4分) 又∵AB ∥CD ,AB ∥FN ∴CD ∥FN∴∠D +∠DFN =180° 又∵∠D =120°∴∠DFN =60°…………(5分)∴∠BEF =∠MEF +30°,∠EFD =∠EFN +60° ∴∠EFD =∠MEF +60°∴∠EFD =∠BEF +30°…………(6分)(3)如图2,过点F 作FH ∥EP 由(2)知,∠EFD =∠BEF +30°设∠BEF =2x °,则∠EFD =(2x +30)° ∵EP 平分∠BEF ,GF 平分∠EFD ∴∠PEF =21∠BEF =x °,∠EFG =21∠EFD =(x +15)°…………(7分) ∵FH ∥EP∴∠PEF =∠EFH =x °,∠P =∠HFG …………(8分) ∵∠HFG =∠EFG -∠EFH =15°…………(9分) ∴∠P =15°…………(10分)注:本题其它解法参照评分.24.(1)a = 4 ;b = 2 ;点C 的坐标为(0,-2).…………(3分)(2)如图1,过点D 分别作DM ⊥x 轴于点M , DN ⊥y 轴于点N ,连接OD . ∵AB ⊥ x 轴于点B ,且点A ,D ,C 三点的坐标分别为:(4,2),(m ,n ),(0,-2)∴OB =4,OC=2,MD =-n ,ND =m …………(4分)∴ S △BOC =12错误!未找到引用源。
安徽省滁州市七年级下学期期中数学试卷
安徽省滁州市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2019七上·浙江期中) 下列结论不正确的是()A . 8的立方根是 2B . 9的平方根是±3C . 8的算术平方根是4D . 立方根等于平方根的数是02. (2分) (2017七下·安顺期末) 如果P(a+b,ab)在第二象限,那么点Q(a,﹣b)在第()象限.A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)在π、、﹣、、3.1416中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个4. (2分) (2017八下·云梦期中) 下列计算正确的是()A . 3 +4 =7B . 5 ﹣3 =2C . × =D . 6 ÷2 =35. (2分)下列图形中,直线a与直线b平行的是()A .B .C .D .6. (2分) (2015七下·孝南期中) 如图,能判定AD∥BC的条件是()A . ∠3=∠2B . ∠1=∠2C . ∠B=∠DD . ∠B=∠17. (2分)如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()A . (1,2)B . (2,2)C . (3,2)D . (4,2)8. (2分)(2017·昆都仑模拟) 菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A . (3,1)B . (3,﹣1)C . (1,﹣3)D . (1,3)9. (2分) (2019七下·邱县期末) 如图,给出下列条件:①∠3=∠4,②∠1=∠2,③∠D=∠DCE,④∠B =∠DCE,其中能判断AB∥CD的是()A . ①或④B . ②或④C . ②或③D . ①或③10. (2分)某校足球比篮球数的2倍多3个,足球数与篮球数的比为3:2,求两种球各有多少.若设足球有x个,篮球有y个,由题意得()A .B .C .D .11. (2分) (2019七下·保山期中) 如图,∠1与∠2是对顶角的是()A .B .C .D .12. (2分) (2019八下·简阳期中) 在平面直角坐标系中,将点A(x,y)向右平移1个单位长度,再向下平移1个单位长度后与点B(3,-2)重合,则点A的坐标是()A . (2,-3)B . (4,1)C . (4,-1)D . (2,-1)13. (2分) (2020七下·灌云月考) 已知方程组的解满足方程,则()A . 4B . -3C . 3D . 不能确定14. (2分)(2017·成武模拟) 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣2,3),B (﹣3,1),C(﹣1,2),若将△ABC平移后,点A的对应点A1的坐标为(1,2),则点C的对应点C1的坐标为()A . (﹣1,5)B . (2,2)C . (3,1)D . (2,1)二、填空题 (共4题;共4分)15. (1分)化简=________16. (1分) (2019九上·香坊期中) 一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28km/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东30°方向,此时,灯塔M与渔船的距离是________.17. (1分) (2017八下·南召期中) 如图,A,B两点的坐标分别为(﹣3,5),(3,5),点C在同一坐标系下的坐标为________.18. (1分) (2019七下·嘉兴期末) 某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元,若该店第二天销售香蕉t千克,则第三天销售香蕉________千克.(用含t的代数式表示.)三、解答题 (共8题;共71分)19. (5分)(2020·珠海模拟) 计算:.20. (5分) (2019七下·昌平期中) 解方程组21. (10分)综合题。
安徽省滁州市七年级下学期期中数学试卷
安徽省滁州市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共10题;共20分)1. (2分) (2018七下·福清期中) 如图所示,下列说法错误的是()A . 与是对顶角B . 与是同旁内角C . 与是内错角D . 与是同位角2. (2分) (2020九上·平房期末) 下列运算中,结果正确的是()A .B .C .D .3. (2分)已知是二元一次方程组的解,则4a﹣5b的平方根为()A .B . 2C .D . ±24. (2分)为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a﹣b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A . 3,﹣1B . 1,﹣3C . ﹣3,1D . ﹣1,35. (2分) (2019七下·枣庄期中) 如图,A B∥CD,∠DCE=80°,则∠BEF等于()A . 100°B . 90°C . 80°D . 70°6. (2分)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A .B .C .D . 17. (2分)若是方程组的解,则(a+b)•(a﹣b)的值为()A .B .C . -16D . 168. (2分) (2018七下·宝安月考) 下列四个图形中,不能推出∠2与∠1相等的是()A .B .C .D .9. (2分) (2017七下·宜兴期中) 若(x+3)(2x﹣5)=2x2+bx﹣15,则b的值为()A . ﹣2B . 2C . 1D . ﹣110. (2分)与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是()A . 10x+2y=4B . 4x-y=7C . 20x-4y=3D . 15x-3y=6二、认真填一填 (共6题;共6分)11. (1分)(2016·齐齐哈尔) 某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为________.12. (1分) (2020七上·南召期末) 计算: ________.13. (1分) (2017七下·萧山期中) 已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中正确的是________.(填写序号)14. (1分) (2017七下·广州期末) 如图,将一个宽度相等的纸条按如图所示沿AB折叠,已知,则 =________.15. (1分)若方程组的解x、y互为相反数,则a= ________.16. (1分) 4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x= ________.三、全面答一答 (共7题;共72分)17. (30分) (2020七下·无锡月考) 计算(1)(2)(3)(4)(5)(6);18. (5分) (2019七下·合肥期末) 解方程组19. (5分)(2019·南沙模拟) 如图,已知在四边形ABCD中,点E在AD上,∠B+∠AEC=180°,∠BAC=∠D,BC=CE.求证:AC=DC.20. (5分)化简:(x﹣2)2﹣x(x﹣4)21. (10分) (2020七下·岱岳期中) 如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明:DG∥BC;(2)若,,求的度数.22. (10分)(2017·微山模拟) 2016年12月28日举行了微山县南阳镇北、两城镇南跨湖高速的路线开工仪式,其中的一项工程由A、B两工程队合作,120天可以完成;如果A,B两工程队单独完成此项工程,B工程队所用时间是A工程队的1.5倍.(1)求A,B两工程队单独完成此项工程各需多少天?(2)在施工过程中,该总公司派一名技术人员在现场对施工质量进行全程监督,每天总公司补助技术人员100元,若由A工程队单独施工,平均每天A工程队的费用为0.5万元,现总公司选择了B工程队单独施工,要求总费用不能超过选择A工程队时的总费用,则平均每天B工程队的费用最多为多少?23. (7分)如图,OM是∠AOC的平分线,ON是∠B OC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=________(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=________(直接写出结果).参考答案一、仔细选一选 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、认真填一填 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、全面答一答 (共7题;共72分)答案:17-1、答案:17-2、答案:17-3、答案:17-4、答案:17-5、答案:17-6、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
安徽滁州市初中数学七年级下期中经典测试(含答案解析)
一、选择题1.在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点()2,1,Q -则点P 的坐标是( )A .(32)-,B .()3,4C .()7,4-D .(72)--, 2.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( ) A .()23-, B .()23, C .()32,- D .()32--,3.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒4.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm5.设42-的整数部分为a ,小整数部分为b ,则1a b -的值为( ) A .2- B .2 C .212+ D .212- 6.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠7.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A . B .C .D .8.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④ 9.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( ) A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 10.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ). A .x +1B .x 2+1C .1x +D .21x + 11.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( )A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤12.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个13.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,8 14.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 15.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题16.已知3 1.732, 30 5.477≈≈,则0.3≈______.17.已知关于x 的不等式组()5231138222x x x x a ⎧+>-⎪⎨≤-+⎪⎩有四个整数解,则实数a 的取值范围为______.18.如图4,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 .19.如图,直线a 和b 被直线c 所截,∠1=110°,当∠2=_____时,直线a ∥b 成立20.已知:m 、n 为两个连续的整数,且m 11<n mn _____.21.若不等式(m-2)x >1的解集是x <12m -,则m 的取值范围是______. 22.将点P 向下平移3个单位,向左平移2个单位后得到点Q (3,-1),则点P 坐标为______.23.在整数20200520中,数字“0”出现的频率是_________.24.若264a =3a =______.25.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________三、解答题26.解方程组:41325x y x y +=⎧⎨-=⎩. 27.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩28.已知关于 x 的不等式组 32112x x x +>⎧⎪⎨≤⎪⎩ (1)求该不等式组的解集;(2)若 a ,b 都是该不等式组的正整数解,且 a b >,求 22a b - 的值.29.通过对某校七年级学生体育选修课程的统计,得到以下信息:①参加选课的总人数为300;②参加选课的学生在“足球、篮球、排球、乒乓球”中都选择了一门;③选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍; 选足球和选篮球的人数共占总人数的85%.设选足球的人数为x ,选排球的人数为y ,试列出二元一次方程组,分别求出选择足球、篮球、排球、乒乓球各门课程的人数.30.如图,已知//BC GE 、//AF DE 、150∠=︒.(1)AFG ∠=________°.(2)若AQ 平分FAC ∠,交直线BC 于点Q ,且15Q ∠=︒,求ACQ ∠的度数.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A2.A3.A4.A5.D6.C7.A8.D9.B10.D11.A12.C13.C14.B15.D二、填空题16.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出【详解】解:故答案为:05477【点睛】本题考查了算术平方根的应用注意:当被开方数的小数点每向左或向右移动两位平方根的小数点就向左或向17.﹣3≤a<﹣2【解析】【分析】分别求出不等式组中两不等式的解集根据不等式组有四个整数解即可确定出a的范围【详解】解不等式组解不等式①得:解不等式②得:x≤a+4∵不等式组有四个整数解∴1≤a+4<218.【解析】∵将△ABC沿直线AB向右平移后到达△BDE的位置∴AC∥BE∴∠CAB=∠EBD=50°∵∠ABC=100°∴∠CBE的度数为:180°-50°-100°=30°19.70°【解析】【分析】根据平行的判定要使直线a∥b成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠320.【解析】【分析】利用无理数的估算先取出mn的值然后代入计算即可得到答案【详解】解:∵∴∵mn为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn21.m<2【解析】【分析】根据不等式的性质和解集得出m-2<0求出即可【详解】∵不等式(m-2)x>1的解集是x<∴m-2<0即m<2故答案是:m<2【点睛】考查对不等式的性质解一元一次不等式等知识点的22.(52)【解析】【分析】设点P的坐标为(xy)然后根据向左平移横坐标减向下平移纵坐标减列式进行计算即可得解【详解】设点P的坐标为(xy)根据题意x-2=3y-3=-1解得x=5y=2则点P的坐标为(23.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键24.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数25.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC长得到C点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据向左平移横坐标减,向上平移纵坐标加即可求解,注意始点和终点的区别.【详解】解:由题意可知点P 的坐标为()25,13-+-,即P ()3,2-;故选:A .【点睛】本题考查了平移,熟记平移中点的变化规律:横坐标右移加,坐移减;纵坐标上移加,下移减是解题的关键. 2.A解析:A【解析】【分析】根据点A 在x 轴的下方,y 轴的右侧,可知点A 在第四象限,根据到x 轴的距离是3,到y 轴的距离是2,可确定出点A 的横坐标为2,纵坐标为-3,据此即可得.【详解】∵点A 在x 轴的下方,y 轴的右侧,∴点A 的横坐标为正,纵坐标为负,∵到x 轴的距离是3,到y 轴的距离是2,∴点A 的横坐标为2,纵坐标为-3,故选A.【点睛】本题考查了点的坐标,熟知点到x 轴的距离是点的纵坐标的绝对值,到y 轴的距离是横坐标的绝对值是解题的关键.3.A解析:A【解析】【分析】先由直线a ∥b ,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a ∥b ,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A .【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.4.A解析:A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm , 则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm .故选:A .【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.5.D解析:D【解析】【分析】【详解】解:∵1<2<4,∴1<2,∴﹣2<<﹣1,∴2<43,∴a=2,b=422=2-∴1222122a b +-==-=-. 故选D .【点睛】本题考查估算无理数的大小.6.C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解: A.180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意; B. 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意; D. CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.7.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 8.D解析:D【解析】【分析】根据同位角的定义(在截线的同侧,并且在被截线的同一方的两个角是同位角),即可得到答案;解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选D.【点睛】本题主要考查了同位角的概念,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.9.B解析:B【解析】【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【详解】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.因此,第一次与第二次拐的方向不相同,角度要相同,故只有B选项符合,故选B.【点睛】此题主要考查了平行线的性质,注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.10.D解析:D【解析】x则它后面一个数的算术平方根是一个自然数的算术平方根是x,则这个自然数是2,21x .故选D.11.A解析:A【解析】【分析】先根据一元一次不等式组解出x的取值范围,再根据不等式组只有三个整数解,求出实数a的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.C解析:C【解析】【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.14.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.15.D解析:D【解析】【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.二、填空题16.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出【详解】解:故答案为:05477【点睛】本题考查了算术平方根的应用注意:当被开方数的小数点每向左或向右移动两位平方根的小数点就向左或向解析:5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出.【详解】 解:30 5.477≈,0.5477≈≈故答案为:0.5477.【点睛】本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.17.﹣3≤a<﹣2【解析】【分析】分别求出不等式组中两不等式的解集根据不等式组有四个整数解即可确定出a 的范围【详解】解不等式组解不等式①得:解不等式②得:x≤a+4∵不等式组有四个整数解∴1≤a+4<2解析:﹣3≤a <﹣2【解析】【分析】分别求出不等式组中两不等式的解集,根据不等式组有四个整数解,即可确定出a 的范围.【详解】解不等式组 ()5231138222x x x x a ⎧+>-⎪⎨≤-+⎪⎩①② 解不等式①得:52x >-, 解不等式②得:x≤a+4, ∵不等式组有四个整数解,∴1≤a+4<2,解得:-3≤a<-2.【点睛】本题考查了一元一次不等式组的整数解,解题关键是熟练掌握运算法则.18.【解析】∵将△ABC 沿直线AB 向右平移后到达△BDE 的位置∴AC∥BE∴∠CAB=∠EBD=50°∵∠ABC=100°∴∠CBE 的度数为:180°-50°-100°=30°解析:30︒【解析】∵将△ABC 沿直线AB 向右平移后到达△BDE 的位置,∴AC ∥BE ,∴∠CAB=∠EBD=50°, ∵∠ABC=100°,∴∠CBE 的度数为:180°-50°-100°=30°.19.70°【解析】【分析】根据平行的判定要使直线a ∥b 成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a ∥b 成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠3解析:70°【解析】【分析】根据平行的判定,要使直线a ∥b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a ∥b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.【点睛】本题主要考查了平行的判定(同位角相等,两直线平行),掌握直线平行的判定方法是解题的关键.20.【解析】【分析】利用无理数的估算先取出mn 的值然后代入计算即可得到答案【详解】解:∵∴∵mn 为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn解析:【解析】【分析】利用无理数的估算,先取出m 、n 的值,然后代入计算,即可得到答案.【详解】<<,∴34<<,∵m 、n 为两个连续的整数,∴3m =,4n =,===;故答案为:【点睛】本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到m 、n 的值.21.m <2【解析】【分析】根据不等式的性质和解集得出m-2<0求出即可【详解】∵不等式(m-2)x >1的解集是x <∴m -2<0即m <2故答案是:m <2【点睛】考查对不等式的性质解一元一次不等式等知识点的解析:m<2【解析】【分析】根据不等式的性质和解集得出m-2<0,求出即可.【详解】∵不等式(m-2)x>1的解集是x<12m,∴m-2<0,即m<2.故答案是:m<2.【点睛】考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-2<0是解此题的关键.22.(52)【解析】【分析】设点P的坐标为(xy)然后根据向左平移横坐标减向下平移纵坐标减列式进行计算即可得解【详解】设点P的坐标为(xy)根据题意x-2=3y-3=-1解得x=5y=2则点P的坐标为(解析:(5,2)【解析】【分析】设点P的坐标为(x,y),然后根据向左平移,横坐标减,向下平移,纵坐标减,列式进行计算即可得解.【详解】设点P的坐标为(x,y),根据题意,x-2=3,y-3=-1,解得x=5,y=2,则点P的坐标为(5,2).故答案是:(5,2).【点睛】考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.23.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【解析】【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12. 故答案为:12. 【点睛】此题主要考查了频率的求法,正确把握定义是解题关键. 24.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a =,∴a=±8.2 故答案为±2 【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..25.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC 长得到C 点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查解析:(0,4)或(0,4) -【解析】【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4 ∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.三、解答题26.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键. 27.(1)1010x y =⎧⎨=⎩(2)64x y =⎧⎨=⎩【解析】试题分析:(1)①×2后,利用加减消元法进行求解即可得; (2)整理后,利用加减消元法进行求解即可得.试题解析:(1)430210x y x y -=⎧⎨-=-⎩①②, ①×2-②,得7x=70,x=10, 把x=10代入①,得40-y=30,y=10,所以1010x y =⎧⎨=⎩;(2)整理得4312342x y x y -=⎧⎨-=⎩①②, ①×4-②×3,得7x=42,x=6,把x=6代入②得18-4y=2,y=4,所以64x y =⎧⎨=⎩. 28.(1)12x -<≤;(2)3【解析】【分析】(1)分别求出两个不等式的解集,再求出其公共解集即可;(2)根据(1)中解集及a ,b 取值条件确定a ,b 的值,再进行代值计算即可.【详解】解:(1)32112x x x +>⎧⎪⎨≤⎪⎩①②, 由①得:1x >-,由②得:2x ≤,所以不等式组的解集为:12x -<≤,故答案为:12x -<≤;(2)由(1)知,不等式的解集为12x -<≤,∵a ,b 都是该不等式组的正整数解,且a b >,∴21a b =⎧⎨=⎩, ∴2222213a b =--=,故答案为:3.【点睛】本题考查解一元一次不等式组及根据不等式组解集取正整数解,熟练掌握解不等式组的方法及正整数的定义是解题关键.29.135;120;15;30【解析】【分析】设选足球的人数为x ,选排球的人数为y ,根据“选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍;选足球和选篮球的人数共占总人数的85%”列出方程组并解答.【详解】解:设选足球的人数为x ,选排球的人数为y ,根据题意,得30050%150230085%x y x y +=⨯⎧⎨+-=⨯⎩ 解这个方程组,得13515x y =⎧⎨=⎩ 当135x =,15y =时,230y =;1502120y -=.答:选择足球、篮球、排球、乒乓球课程的人数分别为135、120、15、30.【点睛】本题考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.30.(1)50;(2)100°【解析】【分析】(1)根据//AF DE 可知∠AFG=∠E ,再根据//BC GE 即可求得∠AFG=∠1=50°, (2)先根据三角形内角和求出∠DHQ ,再根据//AF DE 求出∠FAH ,根据角平分线可知∠CAQ ,再根据三角形内角和即可求出ACQ ∠.【详解】解:(1)∵//AF DE ,∴∠AFG=∠E ,∵//BC GE ,∴∠E=∠1,又150∠=︒,∴∠AFG=∠1=50°.(2)解:在HDQ ∆中∵1180Q DHQ ∠+∠+∠=︒,15Q ∠=︒,150∠=︒,∴18011801550115DHQ Q ∠=︒-∠-∠=︒-︒-︒=︒;∵AEE ∠与DHQ ∠为对顶角,∴115AHE DHQ ∠=∠=︒,∵//AF EH ,∴180FAQ AHE ∠+∠=︒,∴65FAQ ∠=︒;∵AQ 平分FAC ∠,∴65CAQ FAQ ∠=∠=︒,∴1801806515100ACQ CAQ Q ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查的平行线的性质,用到的知识点为:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补等.。
2016-2017学年安徽省滁州市全椒县七年级(下)期中数学试卷(解析版)
2016-2017学年安徽省滁州市全椒县七年级(下)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下列都是无理数的是()A. ,,B. ,,C. ,,D. ,,2.估计21的算术平方根的大小在()A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间3.如图所示的不等式的解集是()A. B. C. D.4.不等式组的解集是()A. B. C. D.5.已知x>y,则下列不等式成立的是()A. B. C. D.6.计算(-2xy)2的结果是()A. B. C. D.7.下列分解因式正确的是()A. B.C. D.8.下列说法中,正确的个数有不带根号的数都是有理数;无限小数都是无理数;任何实数都可以进行开立方运算;不是分数.A. 0个B. 1个C. 2个D. 3个9.下列各式中能用完全平方公式进行因式分解的是()A. B. C. D.10.已知x2-2(m-3)x+16是一个完全平方式,则m的值是()A. B. 1 C. 或1 D. 7或二、填空题(本大题共4小题,共20.0分)11.分解因式-a2+4b2=______.12.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,则[-]=______.13.m的平方根是n+1和n-5,那么mn=______.14.若关于x的一元一次不等式组无解,则m的取值范围为______.三、计算题(本大题共1小题,共8.0分)15.计算:-1100+()-2+-(2-)0.四、解答题(本大题共8小题,共82.0分)16.解不等式:1->.17.先化简,再求值:(2+3x)(-2+3x)-5x(x-1)-(2x-1)2,其中x=-.18.当x取何值时,式子的值不小于的值.19.当n为整数时,(n+1)2-(n-1)2能被4整除吗?请说明理由.20.已知整数x满足不等式3x-4≤6x-2和不等式-1<.并且满足方程3(x+m)-5m+2=0,求m的值.21.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一名同学就得不到3本,问共有几名同学,有多少本书?22.某旅行社带一旅游团来宜春明月山游玩,晚上入住温汤某酒店,现需要订9个房间,酒店房间分为两种:A种房间200元/间,B种房间160/间,在费用不超过1700元的情况下,要求A种房间的数量不少于B种房间数量的一半.若设订A种房间x 间,请你解答下列问题:(1)共有几种符合题意的订房方案?写出解答过程.(2)根据计算判断:哪种订房方案更省钱?23.如图1是一个长为2a,宽为2b的长方形(a>b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形(1)你认为图2中大正方形的边长为______;小正方形(阴影部分)的边长为______.(用含a、b代数式表示)(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式:(a-b)2,(a+b)2,4ab之间的等量关系(3)利用(2)中得出的结论解决下面的问题:已知a+b=7,ab=6,求代数式(a-b)的值.答案和解析1.【答案】C【解析】解:,,π是无理数,故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】C【解析】解:4<5,故选:C.先估算的大小,即可得出选项.本题考查了估算无理数的大小的应用,能估算无理数的大小是解此题的关键.3.【答案】D【解析】解:∵数轴上2处是实心原点,且折线向左,∴不等式的解集是a≤2.故选:D.根据在数轴上表示不等式解集的方法解答即可.本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.【答案】C【解析】解:,由①得:x>-1,则不等式组的解集为x>2,故选C分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】【分析】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变,根据不等式的性质逐项分析即可.【解答】解:A、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D、不等式两边乘(或除以)同一个正数,等式两边加(或减)同一个数(或式子),不等号方向不变,故本选项错误.故选C.6.【答案】A【解析】【分析】此题主要考查了积的乘方运算法则,正掌握运算法则是解题关键.直接利用积的乘方运算法则求出答案即可.【解答】解:(-2xy)2=4x2y2.故选A.7.【答案】B【解析】【分析】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式是解题关键.根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A.x2+y2不能因式分解,所以此选项不正确;B.a2-9=(a+3)(a-3),所以此选项正确;C.(a+3)(a-3)=a2-9属于整式的乘法,所以此选项不正确;D.x3-x=x(x2-1)=x(x+1)(x-1),所以此选项不正确;故选B.8.【答案】C【解析】解:①不带根号的数也可以无限不循环的数,即也可以是无理数,错误;②无限小数不一定都为无理数,例如是有理数,错误;③任何实数都可以进行开立方运算,正确;④不是分数,正确;正确的个数有2个;故选C.根据实数的知识,无理数的定义,立方根的定义对各小题分析判断后利用排除法求解.此题考查了实数的定义、平方根、立方根的知识,属于基础题,注意实数的分类.9.【答案】B【解析】解:A、x2+x+1无法用完全平方公式分解因式,故此选项错误;B、x2-6x+9=(x-3)2,故此选项正确;C、x2-1=(x+1)(x-1),故此选项错误;D、x2+2x-1无法用完全平方公式分解因式,故此选项错误;故选:B.利用完全平方公式:a2±2ab+b2=(a±b)2,进而判断得出答案.此题主要考查了公式法因式分解,熟练应用乘法公式是解题关键.10.【答案】D【解析】【分析】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的特征判断即可得到结果.【解答】解:∵x2-2(m-3)x+16是一个完全平方式,∴-2(m-3)=8或-2(m-3)=-8,解得:m=-1或7,故选D.11.【答案】(2b+a)(2b-a)【解析】【分析】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.直接利用平方差公式分解因式得出答案.【解答】解:-a2+4b2=4b2-a2=(2b+a)(2b-a).故答案为(2b+a)(2b-a).12.【答案】-3【解析】解:∵[1.2]=1,[3]=3,-3<-<-2,∴[-]=-3.故答案为:-3.直接利用[x]表示不大于x的最大整数,再结合3<-<-2,进而得出答案.此题主要考查了估算无理数大小,正确得出3<-<-2是解题关键.13.【答案】18【解析】解:∵m的平方根是n+1和n-5,∴n+1+n-5=0,解得:n=2,则n+1=3,故m=9,则mn=18.故答案为:18.直接利用平方根的定义得出n的值进而求出m的值,即可得出答案.此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.14.【答案】m≤0【解析】【分析】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.首先解每个不等式,然后根据不等式组无解即可得到一个关于m的不等式,从而求得m的范围.【解答】解:,解(1)得x<2,解(2)得x>2-m,根据题意得:2≤2-m,解得:m≤0.故答案是m≤0.15.【答案】解:-1100+()-2+-(2-)0=-1+4-4-1=-2【解析】首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.【答案】解:去分母得6-2(x-2)≥3(x+1)去括号得6-2x+4≥3x+3移项得-2x-3x≥3-6-4合并同类项得-5x≥-7,系数化为1得x≤.【解析】去分母,去括号,移项合并同类项,系数化为1即可求得.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.17.【答案】解:(2+3x)(-2+3x)-5x(x-1)-(2x-1)2,=9x2-4-5x2+5x-4x2+4x-1=9x-5,当x=-时,原式=9×(-)-5=-8.【解析】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.先算乘法,再合并同类项,最后代入求出即可.18.【答案】解:根据题意,得:,去分母,得:x-8≥2x+8,系数化为1,得:x≤-16.【解析】先根据题意列出不等式,再根据解不等式的基本步骤求解可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.【答案】解:(n+1)2-(n-1)2=(n+1+n-1)(n+1-n+1)=4n,∵n为整数,∴4n为4的整数倍,所以当n为整数时,(n+1)2-(n-1)2能被4整除.【解析】利用平方差公式得到原式=4n,然后根据整除性可判断(n+1)2-(n-1)2能被4整除.本题考查了因式分解的应用:用因式分解解决求值问题.利用因式分解解决证明问题.利用因式分解简化计算问题.20.【答案】解:两不等式组成不等式组:<∵解不等式得:x≥-,解不等式得:x<1,∴整数x=0,∴3(0+m)-5m+2=0,3m-5m+2=0,m=1.【解析】求得两个不等式的公共部分,从而求得整数x的值,代入方程3(x+m)-5m+2=0,即可求得m的值.本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能求出不等式组的解集,难度适中.21.【答案】解:设共有x名学生,则图书共有(3x+8)本,由题意得,,解得:5<x≤6.5,∵x为非负整数,∴x=6.∴书的数量为:3×6+8=26.答:共有6名同学,有26本书.【解析】设共有x名学生,根据每人分3本,那么余8本,可得图书共有(3x+8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.22.【答案】解:(1)设A种房间的数量为x,则B种房间的数量为(9-x).依题意可得,解得:3≤x≤.∵x为整数,∴x=3或x=4或x=5或x=6.∴共有4种方案:3间A,6间B;4间A,5间B;5间A,4间B;6间A,3间B.(2)∵当A种房间越少,所需费用最低,∴当x=3时,时,最低费用为3×200+6×160=1560元.【解析】(1)设A种房间的数量为x,则B种房间的数量为(9-x),然后依据A种房间的数量不少于B种房间数量的一半;总费用不超过1700元列不等式组可求得x 的范围,然后由x为正整数,从而可确定出所有的方案;(2)由于A种房间的单间较高,故此x越小费用越低,从而可得到当x=3时,总费用最低,然后求得最低费用即可.本题主要考查的是一元一次不等式组的应用,根据题意列出不等式组是解题的关键.23.【答案】解:(1)(a+b);(a-b);(2)三个代数式之间的等量关系是:(a+b)2=(a-b)2+4ab;(3)(a-b)2=(a+b)2-4ab=25,所以a-b=5;【解析】【分析】本题主要考查公式变形能力,如何准确地确定三个代数式之间的等量关系是解题的关键.(1)本题可以直接求阴影部分正方形的边长,计算面积;也可以用正方形的面积减去四个小长方形的面积,得阴影部分的面积;(2)由(1)即可得出三个代数式之间的等量关系;(3)将a+b=7,ab=6,代入三个代数式之间的等量关系即可求出(a-b)2的值.【解答】解:(1)图2中大正方形的边长为(a+b);小正方形(阴影部分)的边长为(a-b);故答案为(a+b);(a-b).(2)见答案;(3)见答案.。
滁州市七年级下学期期中数学试卷
滁州市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七下·宜昌期中) 如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A . 360°B . 180°C . 120°D . 902. (2分)如图,已知直线AB∥CD,直线EF与AB、CD相交于N,M两点,MG平分∠EMD,若∠BNE=30°,则∠EMG等于()A . 15°B . 30°C . 75°D . 150°3. (2分) (2020七下·覃塘期末) 下列运算结果正确的是()A .B .C .D .4. (2分)如图,不能判断l1∥l2的条件是()A . ∠1=∠3B . ∠2+∠4=180°C . ∠4=∠5D . ∠2=∠35. (2分)(2020·昆明模拟) 下列运算正确的是()A .B .C .D .6. (2分)若x2+mx+16是一个完全平方式,则m的取值是()A . 8B . -8C . ±8D . ±47. (2分)已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=400 ,那么∠BOD为()A . 40°B . 50°C . 60°D . 70°8. (2分) (2019七下·昌平期中) 下列计算正确是()A . + =B .C . =D . ÷ =9. (2分) (2017七下·东明期中) 小翠利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的恒等式为()A . (a﹣b)2+4ab=(a+b)2B . (a﹣b)(a+b)=a2﹣b2C . (a+b)2=a2+2ab+b2D . (a﹣b)2=a2﹣2ab+b210. (2分) (2015七下·威远期中) 某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)(2019·五华模拟) 工匠绝技,精益求精,中国船舶重工的钳工顾秋亮凭着精到丝级的手艺,为海底探索者7000米级潜水器“蛟龙号”安装观察窗玻璃,成功地将玻璃与金属窗座之间的缝隙控制在0.2丝米以下已知1丝米=0.0001,0.2丝米=0.00002米,则用科学记数表示数据0.00002为________.12. (1分) (2020七下·江阴期中) 若的乘积中不含的一次项,则常数 ________.13. (1分) (2018八上·孝南月考) 已知 , ,那么 ________.14. (1分)(2018·黔西南模拟) 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成________个.15. (1分)如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为________.16. (1分) (2017七下·防城港期中) 如图所示,请写出能判定CE∥AB的一个条件________.三、全面答一答 (共7题;共57分)17. (10分) (2020七下·涡阳月考) 计算或化简:(1)(-1)2012++-(2)(3x2y)2(-15xy3)÷(-9x4y2)18. (5分)计算:(﹣)﹣2﹣| ﹣2|+(π﹣2016)0﹣﹣tan60°.19. (10分) (2017八上·莒县期中) 化简求值。
安徽省滁州市七年级下学期数学期中考试试卷
安徽省滁州市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列运算正确的是()A . a2•a3=a6B . (3a)3=9a3C . a3﹣2a3=﹣1D . (a2)3=a62. (2分) (2019七下·黄梅期末) 方程组的解为,则被遮盖的两个数分别为()A . 5,1B . 1,3C . 2,3D . 2,43. (2分) (2016七下·东台期中) 下列各式能用平方差公式计算的是()A . (﹣a+b)(a﹣b)B . (a﹣b)(a﹣2b)C . (x+1)(x﹣1)D . (﹣m﹣n)(m+n)4. (2分) (2020七下·兴化期中) 下列从左到右的变形属于因式分解的是()A .B .C .D .5. (2分) (2015八上·南山期末) 为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A . 1种B . 2种C . 3种D . 4种6. (2分) (2017七下·苏州期中) 如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A . a2-b2=(a+b)(a-b)B . (a+b)2=a2+2ab+b2C . (a-b)2=a2-2ab+b2D . a2-ab=a(a-b)二、填空题 (共10题;共10分)7. (1分)(2016·济南) 计算:2﹣1+ =________.8. (1分) (2019八上·施秉月考) 计算: (-4x2)(3x+1)=________.9. (1分) (2019七下·吉安期末) 将0.0000025用科学记数法表示为________.10. (1分)多项式12x3y2z3+18x2y4z2﹣30x4yz3各项的公因式是________.11. (1分) (2018七下·腾冲期末) 由﹣3y=6可以得到用x表示y的式子是________.12. (1分)计算:(﹣a3)2•a4=________。
安徽省滁州市七年级下学期期中数学试卷
安徽省滁州市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)能说明命题“关于x的一元二次方程x2+mx+4=0,当m<﹣2时必有实数解”是假命题的一个反例为()A . m=﹣4B . m=﹣3C . m=﹣2D . m=42. (2分)(2012·淮安) 下列运算正确的是()A . a2•a3=a6B . a3÷a2=aC . (a3)2=a9D . a2+a3=a53. (2分)下列运算正确的是()A . (x+1)(x+1)=x2+1B . (x﹣1)(x﹣1)=x2﹣1C . (x+1)(x﹣1)=x2﹣1D . (x+1)(x﹣1)=x2+14. (2分)若方程(m﹣3)x|m|﹣2=3yn+1+4是二元一次方程,则m,n的值分别为()A . 2,﹣1B . ﹣3,0C . 3,0D . ±3,05. (2分)如图,直线a、b都与c相交,由下列条件能推出a∥b的是()①∠1=∠2②∠3=∠6③∠1=∠8④∠5+∠8=180°.B . ①②C . ①②③D . ①②③④6. (2分) (2017七下·萧山期中) 方程组的解为则被遮盖的两个数分别为()A . 2,1B . 5,1C . 2,3D . 2,47. (2分)下列等式由左边到右边的变形中,属于因式分解的是()A . (a+1)(a﹣1)=a2﹣1B . a2﹣6a+9=(a﹣3)2C . x2+2x+1=x(x+2)+1D . ﹣18x4y3=﹣6x2y2•3x2y8. (2分)(2017·黄冈模拟) 下列各式变形中,正确的是()A . x2•x3=x6B . =|x|C . (x2﹣)÷x=x﹣1D . x2﹣x+1=(x﹣)2+9. (2分) (2019八上·天台月考) 下面运算结果为a6的是()A . a3+a3B . a8÷a2C . a2·a3D . (-a2)310. (2分)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A . 68°B . 32°D . 16°二、填空 (共6题;共9分)11. (1分)小数0.00000108用科学记数法可表示为________ .12. (1分)若a﹣b=1,ab=3,则代数式(a+1)(b﹣1)的值为________13. (1分)多项式2a2b3+6ab2的公因式是________14. (1分) (2020七上·海曙期末) 若关于 x 的多项式的值与 x 的取值无关,则 a-b 的值是________15. (4分)(2017·浙江模拟) 有下列四个结论:①a÷m+a÷n=a÷(m+n);② 某商品单价为a元。
安徽省滁州市七年级下学期数学期中考试试卷
安徽省滁州市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八上·盐城月考) 若点P(m,n)在第二象限,则点Q(n,m)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) (2017七下·朝阳期中) 下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等。
其中真命题的个数是()A . 1个B . 2个C . 3个D . 4个3. (2分)在﹣1.732,,π,3.14,2+,3.212212221…,3.14这些数中,无理数的个数为()A . 1B . 2C . 3D . 44. (2分) (2016七下·仁寿期中) 方程2x﹣3y=7,用含x的代数式表示y为()A . y=B . y=C . x=D . x=5. (2分) (2017七下·枝江期中) 点P(﹣2,3)所在象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分) (2019八上·平川期中) 下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数;⑤无理数包括正无理数、零、负无理数;⑥无理数都可以用数轴上的点来表示;⑦一个数的算术平方根一定是正数;⑧一个数的立方根一定比这个数小.其中正确的有()A . 3个B . 4个C . 5个D . 6个7. (2分)(2018·河南模拟) 在平面直角坐标系中,已知点P( t,2﹣t)在第二象限,则t的取值范围在数轴上可表示为()A .B .C .D .8. (2分) (2017七下·萧山期中) 下列命题正确的是()A . 相等的角是对顶角B . 两条直线被第三条直线所截,同位角相等C . 在同一平面内,垂直于同一条直线的两条直线平行D . 同旁内角互补9. (2分)如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A . 6cmB . (6﹣2)cmC . 3cmD . (4﹣6)cm10. (2分)若∠a=79°25′,则∠a的补角是()A . 100°35′B . 11°35′C . 100°75′D . 101°45二、填空题 (共7题;共7分)11. (1分) (2019八上·黄冈月考) 0.25的算术平方根是________,﹣的立方根是________.12. (1分) (2017七下·常州期末) 写出有一个解是的二元一次方程:________.(写出一个即可)13. (1分) (2017七下·三台期中) 如图,长方形ABCD中,AB=3,BC=4,则图中四个小长方形的周长之和为________.14. (1分)(2018·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于 CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为________.15. (1分) (2018八上·天台期中) 在平面直角坐标系中,将点A(﹣5,﹣3)向右平移8个单位长度得到点B,则点B关于y轴的对称点C的坐标是________.16. (1分) (2015七下·龙口期中) 一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度为________17. (1分)如图,已知AD⊥BC,EG⊥BC,若∠E=∠3.则AD平分∠BAC.(填空)证明:∵AD⊥BC,EG⊥BC(已知)∴AD∥EG(________)∴∠1=∠E(________)∠2=________(________)∵∠E=∠3(已知)∴∠1=________(等量代换)即AD平分∠BAC.三、解答题 (共8题;共60分)18. (5分) (2019八下·石泉月考)(1)若,求的平方根;(2)实数x,y使成立,求的值.19. (5分) (2017八上·西安期末) 计算题(1).(2).20. (5分) (2019七下·宜兴月考) 如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.①补全△A′B′C′,利用网格点和直尺画图;________②图中AC与A′C′的关系是:________;③画出△ABC中AB边上的中线CE;④平移过程中,线段AC扫过的面积是:________.21. (5分) (2017七下·柳州期末) 如图,已知AB∥CD,BC∥E D,请你猜想∠B与∠D之间具有什么数量关系,并说明理由.22. (5分) (2020八上·辽阳期末) 用二元一次方程组求解:某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定由顾客抽签确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元.两种商品原销售价之和为490元.则两种商品进价分别为多少元?23. (10分)如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.24. (10分)如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)25. (15分)如图,在平面直角坐标系xOy中,A(-1,0),B(-3,-3),若BC∥OA,且BC=4OA.(1)求点C的坐标;(2)求△ABC的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共60分)18-1、18-2、19-1、19-2、20-1、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、第11 页共11 页。
安徽省滁州市七年级下学期期中数学试卷
安徽省滁州市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题,下列各题中只有一个选项是正确的,请将正确答案的番号选 (共12题;共24分)1. (2分) (2018八上·汪清期末) 如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A . 60°B . 50°C . 40°D . 30°2. (2分) -27的立方根等于()A . ±3B . -3C . 3D . 813. (2分)(2016·达州) 下列各数中最小的是()A . 0B . ﹣3C . ﹣D . 14. (2分)若-7xay4与3x2yb是同类项,则a-b的值为()A . 2B . –2C . 4D . -45. (2分)点P(﹣4,3)在哪个象限()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数a,则所得的图案与原来图案相比()A . 形状不变,大小扩大到原来的a倍B . 图案向右平移了a个单位C . 图案向上平移了a个单位D . 图案向右平移了a个单位,并且向上平移了a个单位7. (2分)(2017·东河模拟) 如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A .B .C .D .8. (2分)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()A .B .C .D .9. (2分)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1 ,第2次碰到矩形的边时的点为P2 ,…,第n 次碰到矩形的边时的点为Pn ,则点P2015的坐标是()A . (1,4)B . (3,0)C . (7,4)D . (5,0)10. (2分)下列各数:0.458,3.,﹣,, -,中无理数有()A . 1个B . 2个C . 3个D . 4个11. (2分)(2018·安徽模拟) 如图,AB∥CD,CE与AB交于E点,∠1=50°,∠2=15°,则∠CEB的度数为()A . 50°B . 60°C . 65°D . 70°12. (2分) (2017七下·湖州月考) 如图,在图形M到图形N的变化过程中.下列描述正确的是()A . 先向下平移3个单位,再向左平移3个单位B . 先向下平移3个单位,再向右平移3个单位C . 先向上平移3个单位,再向左平移3个单位D . 先向上平移3个单位,再向右平移3个单位二、填空题 (共6题;共6分)13. (1分) (2016八下·宝丰期中) 已知关于x,y的方程组的解满足x+y>0,则a的取值范围是________14. (1分) (2017七下·武清期中) 如图,AD∥BC,AB⊥AC,若∠B=60°,则∠1的大小是________度.15. (1分)已知a、b为两个连续的整数,且,则a+b=________.16. (1分) (2019七下·南京月考) 如图,直线a经过平移后得到直线b,若∠3=30°,则∠1+∠2=________°.17. (1分) (2017七下·云梦期中) 已知(x﹣2)2=1,则x=________.18. (1分) (2016七下·滨州期中) 如图所示的象棋盘上,若帅位于点(1,﹣2)上,相位于点(3,﹣2)上,则炮所在点的坐标是________.三、用心解一解 (共7题;共61分)19. (5分) (2017七下·柳州期末) 解方程组:.20. (5分) (2017七下·巨野期中) 甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为x=5,y=4.试计算a2014+(﹣b)2013的值.21. (5分)国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?22. (15分)(2016·巴中) 如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出将△ABC向右平移2个单位得到△A1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;(3)求△A1B1C1与△A2B2C2重合部分的面积.23. (10分) (2017七下·抚宁期末) 小文在甲、乙两家超市发现他看中的篮球的单价相同,书包单价也相同,一个篮球和三个书包的总费用是400元.两个篮球和一个书包的总费用也是400元.(1)求小文看中的篮球和书包单价各是多少元?(2)某一天小文上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市乙全场购物满100元返30元购物券(不足100元不返券,购物券全场通用),如果他只能在同一家超市购买他看中的篮球和书包各一个,应选择哪一家超市购买更省钱?并说明理由.24. (5分)已知:如图,∠B=∠ADE,∠EDC=∠GFB,GF⊥AB.求证:CD⊥AB.25. (16分) (2015七下·石城期中) 如图1,已知直线l1∥l2 ,且l1、l2分别相交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.点P在线段AB上.(1)若∠1=22°,∠2=33°,则∠3=________.(2)试找出∠1、∠2、∠3之间的等量关系,并说明理由.(3)应用(2)中的结论解答下列问题:如图2,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数.(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合),直接写出结论即可.参考答案一、选择题,下列各题中只有一个选项是正确的,请将正确答案的番号选 (共12题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、用心解一解 (共7题;共61分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、25-3、25-4、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年安徽省滁州市全椒县七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)下列都是无理数的是()A.0.07,,B.0.7,,C.,,πD.3.14,,2.(4分)估计21的算术平方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间3.(4分)如图所示的不等式的解集是()A.a>2 B.a<2 C.a≥2 D.a≤24.(4分)不等式组的解集是()A.x>﹣1 B.x<2 C.x>2 D.﹣1<x<25.(4分)已知x>y,则下列不等式成立的是()A.x﹣1<y﹣1 B.3x<3y C.﹣x<﹣y D.6.(4分)计算(﹣2xy)2的结果是()A.4x2y2B.4xy2C.2x2y2D.4x2y7.(4分)下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.a2﹣9=(a+3)(a﹣3)C.(a+3)(a﹣3)=a2﹣9 D.x3﹣x=x(x2﹣1)8.(4分)下列说法中,正确的个数有()①不带根号的数都是有理数;②无限小数都是无理数;③任何实数都可以进行开立方运算;④不是分数.A.0个B.1个C.2个D.3个9.(4分)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2﹣6x+9 C.x2﹣1 D.x2+2x﹣110.(4分)已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7 B.1 C.﹣7或1 D.7或﹣1二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)分解因式﹣a2+4b2= .12.(5分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,则[﹣]= .13.(5分)m的平方根是n+1和n﹣5,那么mn= .14.(5分)若关于x的一元一次不等式组无解,则m的取值范围为.三、解答题(本大题共2小题,每小题8分,共16分)15.(8分)计算:﹣1100+()﹣2+﹣(2﹣)0.16.(8分)解不等式:1﹣.四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)先化简,再求值:(2+3x)(﹣2+3x)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.18.(8分)当x取何值时,式子﹣2的值不小于+2的值.五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)当n为整数时,(n+1)2﹣(n﹣1)2能被4整除吗?请说明理由.20.(10分)已知整数x满足不等式3x﹣4≤6x﹣2和不等式﹣1<.并且满足方程3(x+m)﹣5m+2=0,求m的值.六、解答题(本大题共12分)21.(12分)把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一名同学就得不到3本,问共有几名同学,有多少本书?七、解答题(本大题共12分)22.(12分)某旅行社带一旅游团来宜春明月山游玩,晚上入住温汤某酒店,现需要订9个房间,酒店房间分为两种:A种房间200元/间,B种房间160/间,在费用不超过1700元的情况下,要求A种房间的数量不少于B种房间数量的一半.若设订A种房间x间,请你解答下列问题:(1)共有几种符合题意的订房方案?写出解答过程.(2)根据计算判断:哪种订房方案更省钱?八、解答题(本大题共14分)23.(14分)如图1是一个长为2a,宽为2b的长方形(a>b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形(1)你认为图2中大正方形的边长为;小正方形(阴影部分)的边长为.(用含a、b代数式表示)(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式:(a ﹣b)2,(a+b)2,4ab之间的等量关系(3)利用(2)中得出的结论解决下面的问题:已知a+b=7,ab=6,求代数式(a ﹣b)的值.2016-2017学年安徽省滁州市全椒县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017春•全椒县期中)下列都是无理数的是()A.0.07,,B.0.7,,C.,,πD.3.14,,【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,π是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(4分)(2017春•全椒县期中)估计21的算术平方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先估算的大小,即可得出选项.【解答】解:4<5,故选C.【点评】本题考查了估算无理数的大小的应用,能估算无理数的大小是解此题的关键.3.(4分)(2017春•全椒县期中)如图所示的不等式的解集是()A.a>2 B.a<2 C.a≥2 D.a≤2【分析】根据在数轴上表示不等式解集的方法解答即可.【解答】解:∵数轴上2处是实心原点,且折线向左,∴不等式的解集是a≤2.故选D.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.(4分)(2016•昭阳区二模)不等式组的解集是()A.x>﹣1 B.x<2 C.x>2 D.﹣1<x<2【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.【解答】解:,由①得:x>﹣1,由②得:x>2,则不等式组的解集为x>2,故选C【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.(4分)(2016春•龙口市期末)已知x>y,则下列不等式成立的是()A.x﹣1<y﹣1 B.3x<3y C.﹣x<﹣y D.【分析】根据不等式的性质逐项分析即可.【解答】解:A、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D、不等式两边乘(或除以)同一个正数,等式两边加(或减)同一个数(或式子),不等号方向不变.故本选项错误.故选C.【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(4分)(2016•渝中区校级二模)计算(﹣2xy)2的结果是()A.4x2y2B.4xy2C.2x2y2D.4x2y【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣2xy)2=4x2y2.故选:A.【点评】此题主要考查了积的乘方运算法则,正掌握运算法则是解题关键.7.(4分)(2017春•全椒县期中)下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.a2﹣9=(a+3)(a﹣3)C.(a+3)(a﹣3)=a2﹣9 D.x3﹣x=x(x2﹣1)【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、x2+y2不能因式分解,所以此选项不正确;B、a2﹣9=(a+3)(a﹣3),所以此选项正确;C、(a+3)(a﹣3)=a2﹣9属于整式的乘法,所以此选项不正确;D、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),所以此选项不正确;故选B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式是解题关键.8.(4分)(2017春•全椒县期中)下列说法中,正确的个数有()①不带根号的数都是有理数;②无限小数都是无理数;③任何实数都可以进行开立方运算;④不是分数.A.0个B.1个C.2个D.3个【分析】根据实数的知识,无理数的定义,立方根的定义对各小题分析判断后利用排除法求解.【解答】解:①不带根号的数也可以无限不循环的数,即也可以是无理数,错误;②无限小数不一定都为无理数,例如0.是有理数,错误;③任何实数都可以进行开立方运算,正确;④不是分数,正确;正确的个数有2个;故选C.【点评】此题题考查了实数的定义、平方根、立方根的知识,属于基础题,注意实数的分类.9.(4分)(2015秋•宜城市期末)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2﹣6x+9 C.x2﹣1 D.x2+2x﹣1【分析】利用完全平方公式:a2±2ab+b2=(a±b)2,进而判断得出答案.【解答】解:A、x2+x+1无法用完全平方公式分解因式,故此选项错误;B、x2﹣6x+9=(x﹣3)2,故此选项正确;C、x2﹣1=(x+1)(x﹣1),故此选项错误;D、x2+2x﹣1无法用完全平方公式分解因式,故此选项错误;故选:B.【点评】此题主要考查了公式法因式分解,熟练应用乘法公式是解题关键.10.(4分)(2015秋•山西校级期末)已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7 B.1 C.﹣7或1 D.7或﹣1【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵x2﹣2(m﹣3)x+16是一个完全平方式,∴﹣2(m﹣3)=8或﹣2(m﹣3)=﹣8,解得:m=﹣1或7,故选D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)(2015秋•山西校级期末)分解因式﹣a2+4b2= (2b+a)(2b﹣a).【分析】直接利用平方差公式分解因式得出答案.【解答】解:﹣a2+4b2=4b2﹣a2=(2b+a)(2b﹣a).故答案为:(2b+a)(2b﹣a).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.12.(5分)(2017春•全椒县期中)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,则[﹣]= ﹣3 .【分析】直接利用[x]表示不大于x的最大整数,再结合3<﹣<﹣2,进而得出答案.【解答】解:∵[1.2]=1,[3]=3,﹣3<﹣<﹣2,∴[﹣]=﹣3.故答案为:﹣3.【点评】此题主要考查了估算无理数大小,正确得出3<﹣<﹣2是解题关键.13.(5分)(2017春•全椒县期中)m的平方根是n+1和n﹣5,那么mn= 18 .【分析】直接利用平方根的定义得出n的值进而求出m的值,即可得出答案.【解答】解:∵m的平方根是n+1和n﹣5,∴n+1+n﹣5=0,解得:n=2,则n+1=3,故m=9,则mn=18.故答案为:18.【点评】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.14.(5分)(2017春•全椒县期中)若关于x的一元一次不等式组无解,则m的取值范围为m≤0 .【分析】首先解每个不等式,然后根据不等式组无解即可得到一个关于m的不等式,从而求得m的范围.【解答】解:,解①得x<2,解②得x>2﹣m,根据题意得:2≤2﹣m,解得:m≤0.故答案是:m≤0.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.三、解答题(本大题共2小题,每小题8分,共16分)15.(8分)(2017春•全椒县期中)计算:﹣1100+()﹣2+﹣(2﹣)0.【分析】首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣1100+()﹣2+﹣(2﹣)0=﹣1+4﹣4﹣1=﹣2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.(8分)(2017春•全椒县期中)解不等式:1﹣.【分析】去分母,去括号,移项合并同类项,系数化为1即可求得.【解答】解:去分母得6﹣2(x﹣2)≥3(x+1)去括号得6﹣2x+4≥3x+3移项得﹣2x﹣3x≥3﹣6﹣4合并同类项得﹣5x≥﹣7,系数化为1得x≤.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)(2017春•全椒县期中)先化简,再求值:(2+3x)(﹣2+3x)﹣5x(x ﹣1)﹣(2x﹣1)2,其中x=﹣.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(2+3x)(﹣2+3x)﹣5x(x﹣1)﹣(2x﹣1)2,=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当x=﹣时,原式=9×(﹣)﹣5=﹣8.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)(2017春•全椒县期中)当x取何值时,式子﹣2的值不小于+2的值.【分析】先根据题意列出不等式,再根据解不等式的基本步骤求解可得.【解答】解:根据题意,得:﹣2≥+2,去分母,得:x﹣8≥2x+8,移项、合并,得:﹣x≥16,系数化为1,得:x≤﹣16.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)(2017春•全椒县期中)当n为整数时,(n+1)2﹣(n﹣1)2能被4整除吗?请说明理由.【分析】利用平方差公式得到原式=4n,然后根据整除性可判断(n+1)2﹣(n﹣1)2能被4整除.【解答】解:(n+1)2﹣(n﹣1)2=(n+1+n﹣1)(n+1﹣n+1)=4n,∵n为整数,∴4n为4的整数倍,所以当n为整数时,(n+1)2﹣(n﹣1)2能被4整除.【点评】本题考查了因式分解的应用:用因式分解解决求值问题.利用因式分解解决证明问题.利用因式分解简化计算问题.20.(10分)(2017春•全椒县期中)已知整数x满足不等式3x﹣4≤6x﹣2和不等式﹣1<.并且满足方程3(x+m)﹣5m+2=0,求m的值.【分析】求得两个不等式的公共部分,从而求得整数x的值,代入方程3(x+m)﹣5m+2=0,即可求得m的值.【解答】解:两不等式组成不等式组:∵解不等式①得:x≥﹣,解不等式②得:x<1,∴整数x=0,∴3(0+m)﹣5m+2=0,3m﹣5m+2=0,m=1.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能求出不等式组的解集,难度适中.六、解答题(本大题共12分)21.(12分)(2015春•咸丰县期末)把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一名同学就得不到3本,问共有几名同学,有多少本书?【分析】设共有x名学生,根据每人分3本,那么余8本,可得图书共有(3x+8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【解答】解:设共有x名学生,则图书共有(3x+8)本,由题意得,,解得:5<x≤6.5,∵x为非负整数,∴x=6.∴书的数量为:3×6+8=26.答:共有6名同学,有26本书.【点评】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.七、解答题(本大题共12分)22.(12分)(2016春•宜春期末)某旅行社带一旅游团来宜春明月山游玩,晚上入住温汤某酒店,现需要订9个房间,酒店房间分为两种:A种房间200元/间,B种房间160/间,在费用不超过1700元的情况下,要求A种房间的数量不少于B种房间数量的一半.若设订A种房间x间,请你解答下列问题:(1)共有几种符合题意的订房方案?写出解答过程.(2)根据计算判断:哪种订房方案更省钱?【分析】(1)设A种房间的数量为x,则B种房间的数量为(9﹣x),然后依据A 种房间的数量不少于B种房间数量的一半;总费用不超过1700元列不等式组可求得x的范围,然后由x为正整数,从而可确定出所有的方案;(2)由于A种房间的单间较高,故此x越小费用越低,从而可得到当x=3时,总费用最低,然后求得最低费用即可.【解答】解:(1)设A种房间的数量为x,则B种房间的数量为(9﹣x).依题意可得,解得:3≤x≤.∵x为整数,∴x=3或x=4或x=5或x=6.∴共有4种方案:①3间A,6间B;②4间A,5间B;③5间A,4间B;④6间A,3间B.(2)∵当A种房间越少,所需费用最低,∴当x=3时,时,最低费用为3×200+6×160=1560元.【点评】本题主要考查的是一元一次不等式组的应用,根据题意列出不等式组是解题的关键.八、解答题(本大题共14分)23.(14分)(2016秋•内江期末)如图1是一个长为2a,宽为2b的长方形(a >b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形(1)你认为图2中大正方形的边长为(a+b);小正方形(阴影部分)的边长为(a﹣b).(用含a、b代数式表示)(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式:(a ﹣b)2,(a+b)2,4ab之间的等量关系(3)利用(2)中得出的结论解决下面的问题:已知a+b=7,ab=6,求代数式(a ﹣b)的值.【分析】(1)本题可以直接求阴影部分正方形的边长,计算面积;也可以用正方形的面积减去四个小长方形的面积,得阴影部分的面积;(2)由(1)即可得出三个代数式之间的等量关系;(3)将a+b=7,ab=6,代入三个代数式之间的等量关系即可求出(a﹣b)2的值.【解答】解:(1)图2中大正方形的边长为(a+b);小正方形(阴影部分)的边长为(a﹣b);(2)三个代数式之间的等量关系是:(a+b)2=(a﹣b)2+4ab;(3)(a﹣b)2=(a+b)2﹣4ab=25,所以a﹣b=5;故答案为:(a+b);(a﹣b).【点评】本题主要考查公式变形能力,如何准确地确定三个代数式之间的等量关系是解题的关键.。