数据处理及误差分析
实验误差分析及数据处理
u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
或
Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n
∑
i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。
误差分析和数据处理讲解
误差和分析数据处理1 数据的准确度和精度在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测定结果总不会是完全一样。
这说明在测定中有误差。
为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。
1.1 真实值、平均值与中位数(一)真实值真值是指某物理量客观存在的确定值。
通常一个物理量的真值是不知道的,是我们努力要求测到的。
严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。
科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。
故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。
(二)平均值然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值。
一般我们称这一最佳值为平均值。
常用的平均值有下列几种:(1)算术平均值这种平均值最常用。
凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。
n x n x x x x ni in ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察的次数。
(2)均方根平均值n x n x x x x n i in∑=++==1222221 均(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。
∑∑=++++++===n i i n i ii n n n w x w w w w x w x w x w w 11212211式中;n x x x 21、——各次观测值;n w w w 21、——各测量值的对应权重。
误差及误差分析-数据的误差处理
实验数据
X1 x11 x12 x13 x14 x15 x16 X2 x21 x22 x23 x24 x25 x26
1.由测量数据计算直接测量量的最佳估计值 x 1 , x 2 2.由测量式计算间接测量量的最佳估计值 y f(x2,x2)
3.计算直接测量量的不确定度
n
(1)计算X1的A类标准不确定度 uA(x1)s(x1)
测量的精密度、准确度和精确度
精密度:表示测量结果中的随机误差大小的程度。 精密度高即数据的重复性好,随机误差小。
精密度
准确度
精确度
准确度:表示测量结果中的系统误差大小的程度。 准确度高即测量结果接近真值的程度高,系统误差小。
精确度:表示测量结果的重复性及接近真值的程度。。
三、误差的估算
1、偏差(残差)
A
误差及误差分析-数据的误差处理
C
2、测量的分类
按测量方式分:直接测量和间接测量
直接测量:待测物理量的大小可以从选定好的测量仪 器或仪表上直接读出来的测量。相应的待测物理量称 为直接测量量。
间接测量:待测物理量需根据直接测量的值,通过一定 的函数关系,才能计算出来的测量过程。相应的待测 量称为间接测量量。
uB(m )U (k m )0.3 240.08m g
(2) 在缺乏任何信息的情况下,一般使用均匀分布,
k 3 , 而a 则取仪器的最大允许误差(误差限) ( x ) , 所以B 类标准不确定度为
uB(x)
a k
(x) 3
直接测量量的B类标准不确定度的估算流程图
3、直接测量量的合成标准不确定度
(1) 对于形如 Y f ( X 1 , X 2 ,X N ) a X 1 b X 2 c X 3 的函数形式(和差关系), 合成标准不确定度 的计算方法为:
数据分析中常见误差和偏差的处理方法
数据分析中常见误差和偏差的处理方法数据分析是指通过收集、整理、处理和解释数据,以揭示数据中隐藏的模式、关系和趋势,从而支持决策和行动。
然而,由于数据本身的特点和数据收集过程中的不确定性,常常会出现误差和偏差,影响数据分析结果的准确性和可靠性。
本文将介绍数据分析中常见的误差和偏差,并探讨如何有效地处理它们,以确保数据分析结果的准确性。
一、抽样误差的处理方法在数据分析中,常常需要从整体数据中选取一个代表性的子集进行分析,这个过程称为抽样。
然而,由于抽样的随机性和有限性,可能导致抽样误差。
为了减小抽样误差,可以采取以下处理方法:1. 增加样本容量:增加样本容量可以减小抽样误差。
当样本容量足够大时,抽样误差趋于零。
因此,根据具体情况,可以适当增加样本容量。
2. 使用层次抽样:层次抽样是指将总体按照一定的规则划分为若干层,然后从每一层随机选取样本进行分析。
这样可以保证各个层次的代表性,减小抽样误差。
二、测量误差的处理方法测量误差是指由于测量设备或测量方法的限制而引入的误差。
为了处理测量误差,可以采取以下方法:1. 校准测量设备:经常对使用的测量设备进行校准,校准的目的是调整测量设备的偏差,提高测量的准确性。
2. 多次测量取平均值:对同一指标进行多次测量,并取平均值作为测量结果。
由于测量误差是随机的,多次测量取平均值可以减小测量误差。
三、样本选择偏差的处理方法样本选择偏差是指在样本选择过程中,样本与总体之间存在系统性差异而引入的偏差。
为了处理样本选择偏差,可以采取以下方法:1. 随机抽样:采用随机抽样的方法可以减小样本选择偏差。
随机抽样可以确保样本具有代表性,并能够反映总体的特征。
2. 控制变量法:在样本选择过程中,控制与研究对象相关的其他变量,以减小样本选择偏差。
通过控制变量,可以消除其他因素对研究结果的影响,使样本选择更加准确。
四、分析偏差的处理方法分析偏差是指在数据分析过程中,由于分析方法、模型选择或统计技术的不合理而引入的偏差。
数据处理及误差分析
数据处理及误差分析1. 引言数据处理及误差分析是科学研究和工程实践中一个至关重要的领域。
在收集和处理数据的过程中,往往会受到各种因素的干扰和误差的影响。
因此,正确地处理这些数据并进行误差分析,对于准确得出结论和进行科学决策至关重要。
2. 数据处理数据处理是指对收集到的数据进行整理、分析和解释的过程。
它包括了数据清洗、数据转换、数据提取和数据集成等步骤。
2.1 数据清洗数据清洗是指对原始数据进行筛选、剔除异常值和填充缺失值等处理。
清洗后的数据更加可靠和准确,能够更好地反映实际情况。
2.2 数据转换数据转换主要是将原始数据转化为符合分析需求的形式。
比如,将连续型数据离散化、进行数据标准化等。
2.3 数据提取数据提取是指从庞大的数据集中挑选出有意义和相关的数据进行分析。
通过合理选择变量和提取特征,可以提高数据分析的效率和准确性。
2.4 数据集成数据集成是指将来自不同数据源的数据进行整合和合并,以满足分析需求。
通过数据集成,可以获得更全面、更综合的数据集,提高分析结果的可信度。
3. 误差分析误差分析是对数据处理过程中产生的误差进行评估和分析。
误差可以分为系统误差和随机误差两种类型。
3.1 系统误差系统误差是由于数据收集和处理过程中的系统性偏差导致的。
它们可能是由于仪器精度不高、实验环境变化等原因引起的。
系统误差一般是可纠正的,但要确保误差产生的原因被消除或减小。
3.2 随机误差随机误差是由于抽样误差、观察误差等随机因素导致的。
它们是不可预测和不可消除的,只能通过多次重复实验和统计方法进行分析和控制。
4. 误差分析方法误差分析通常采用统计学和数学方法进行。
其中,常用的方法有误差传递法、误差平均法、误差椭圆法等。
4.1 误差传递法误差传递法是将各个步骤中产生的误差逐步传递,最终计算出整个数据处理过程中的总误差。
它能够帮助我们了解每个步骤对最终结果的影响程度,并找出影响结果准确性的关键因素。
4.2 误差平均法误差平均法是通过多次实验重复测量,并计算平均值来减小随机误差的影响。
误差分析和数据处理
Ⅱ-1 误差的基本概念
五、不确定度
根据国家计量局《关于表达不确定度的建议 草案》,把不确定度按估计其权值所用的方法不 同归并成两类:
A类分量:对一系统多次重复测量后,用统计方法计 算出的标准偏差。
B类分量:用其他方法估算出的近似的标准偏差。
Ⅱ-1 误差的基本概念
而后用方和根的方法合成A类分量和B类分量, 合成后仍以标准偏差的形式表征,称为合成不确 定度。合成不确定度乘以一系数,从而得到总不 确定度,用下式表示:
误差分析和数据处理是判断科学实验和科学 测试结果质量和水平的主要手段。
Ⅱ-1 误差的基本概念
一、误差的定义和表示方法
(一)误差定义:
测量误差:是指被测量的实测值与其真值的 差别。
Ⅱ-1 误差的基本概念
(二)表示方法 1、绝对误差
绝对误差=测量值-真值
其中真值在以下情况下被认为是已知的。
Ⅱ-1 误差的基本概念
U K信系数; U 总不确定度。
Ⅱ-2 随机误差的性质与处理
一、正态分布规律
在工程应用中,大多数随机误差的分布具有 以下几个特点:
(一)对称性:绝对值相等的正、负误差出现的概 率相等。
(二)单峰性:绝对值得误差出现的概率大, 绝对值大的出现的概率小。
Ⅱ-2 随机误差的性质与处理
次测量,大约有68次的值是落在 的范围的。
Ⅱ-2 随机误差的性质与处理
当置信区间宽为 2时,对应概率为95.4%
当置信区间宽为 3 时,对应概率为99.7%
因此可认为绝对值大于3 的误差几乎不可能
出现,所以通常又把 3 的误差称为单次测量误
差,用lim 表示。
lim 3
(三)算术平均值的概率误差
分析数据时常见的误差与处理方法
分析数据时常见的误差与处理方法数据分析在现代社会中起着至关重要的作用,它帮助人们更好地理解和解释现象,从而指导决策和行动。
然而,在数据分析过程中,常常会出现各种误差,对结果的准确性和可靠性产生负面影响。
本文将从以下六个方面展开详细论述常见的数据分析误差及其处理方法。
一、采样误差采样误差是由于抽样方法不当或样本代表性不足而引起的误差。
例如,在进行社会调查时,如果采样方法不具备随机性,会导致调查结果的偏差。
处理采样误差的方法可以是增加样本的大小,提高样本的代表性以及采用更合理的抽样方法,如随机抽样或分层抽样。
二、测量误差测量误差指的是由于测量仪器的不准确性或被测对象的个体差异而导致的误差。
在进行实验研究或数据收集时,使用的测量工具和方法可能存在不确定性,从而引入测量误差。
要处理这种误差,可以提高测量仪器的精确度和可靠性,对被测对象进行多次测量并取平均值,或者通过使用标准化方法来校正测量结果。
三、数据处理误差数据处理误差是在数据输入、转换和存储过程中产生的误差。
常见的数据处理误差包括数据录入错误、数据丢失和数据转换错误等。
为了减少这种误差,可以使用自动化的数据采集和处理工具,加强对数据的质量控制,以及定期进行数据的核对和修正。
四、样本偏倚误差样本偏倚误差指的是样本在统计特征上与总体存在显著差异所引起的误差。
当样本不具备代表性时,会导致研究结果的偏离真实情况。
为了纠正样本偏倚误差,可以使用加权抽样法或启发式抽样法,以确保样本更接近总体的特征。
五、缺失数据误差缺失数据误差是由于数据的丢失或缺失引起的误差。
在进行数据分析时,常常会遇到数据缺失的情况,如果不处理好这些缺失数据,会导致结果的不准确性。
处理缺失数据误差的方法可以是使用插补法,将缺失数据进行估计和补全,或者通过合理的数据筛选和清洗来剔除缺失数据影响。
六、模型假设误差模型假设误差指的是在建模过程中所做出的假设与真实情况之间存在偏差。
在进行数据分析时,所使用的模型和方法都基于一定的假设前提,如果这些假设与真实情况不符,结果可能会产生误差。
数据分析中常见的偏差和误差处理方法
数据分析中常见的偏差和误差处理方法数据分析是现代社会中不可或缺的一项技能,它帮助我们从海量的数据中提取有用的信息,为决策和问题解决提供支持。
然而,在进行数据分析的过程中,我们常常会遇到各种偏差和误差,这些偏差和误差可能会导致我们得出错误的结论。
因此,了解和处理这些偏差和误差是非常重要的。
一、抽样偏差在数据分析中,我们经常需要从总体中抽取一部分样本进行分析。
然而,由于抽样过程中的偏差,样本可能不能完全代表总体,从而导致分析结果不准确。
为了解决这个问题,我们可以采用以下方法:1.随机抽样:通过随机选择样本,可以降低抽样偏差。
随机抽样可以保证每个个体都有相等的机会被选中,从而更好地代表总体。
2.分层抽样:将总体划分为若干个层次,然后从每个层次中随机选择样本。
这样可以确保每个层次都有足够的样本量,从而更好地代表总体。
3.多次抽样:通过多次抽取样本,可以减小抽样偏差。
每次抽样后,我们可以计算不同样本的分析结果,并观察它们的差异。
如果不同样本的结果差异较大,那么可能存在较大的抽样偏差。
二、测量误差在数据分析中,测量误差是指由于测量工具或测量方法的不准确性而引入的误差。
为了减小测量误差,我们可以采用以下方法:1.校准仪器:定期校准测量仪器,确保其准确性。
如果测量仪器的准确性不可靠,那么测量结果可能会出现较大的误差。
2.重复测量:通过多次重复测量同一样本,可以减小测量误差。
每次测量的结果可能存在一定的差异,通过计算这些差异的平均值,可以更接近真实值。
3.标准化测量方法:使用标准化的测量方法可以减小测量误差。
标准化的测量方法可以确保每个测量者在进行测量时都遵循相同的步骤和标准,从而减小主观因素的影响。
三、选择偏差选择偏差是指在数据收集过程中,由于选择样本的方式或条件的不合理而引入的偏差。
为了减小选择偏差,我们可以采用以下方法:1.随机选择样本:通过随机选择样本,可以减小选择偏差。
随机选择样本可以确保每个个体都有相等的机会被选中,从而更好地代表总体。
数据处理及误差分析
数据处理及误差分析1.实验操作仪器的使用要严格按照操作规程进行,对于实验操作步骤,通过预习应心中有数。
实验过程中要仔细观察实验现象,严格控制实验条件发现异常现象应仔细查明原因,或请教指导教师帮助分析处理。
2.数据处理物理化学实验数据的表示法主要有如下三种方法:列表法、作图法和数学方程式法。
(1)列表法将实验数据列成表格,排列整齐,使人一目了然。
这是数据处理中最简单的方法,列表时应注意以下几点:a.表格要有名称。
b.每行(或列)的开头一栏都要列出物理量的名称和单位,并把二者表示为相除的形式。
因为物理量的符号本身是带有单位的,除以它的单位,即等于表中的纯数字。
c.数字要排列整齐,小数点要对齐,公共的乘方因子应写在开头一栏与物理量符号相乘的形式,并为异号。
d.表格中表达的数据顺序为:由左到右,由自变量到因变量,可以将原始数据和处理结果列在同一表中,但应以一-组数据为例,在表格下面列出算式,写出计算过程。
表示例:液休饱和蒸气压测定数据表(2)作图法作图法可更形象地表达出数据的特点,如极大值、极小值、拐点等,并可进一步用图解求积分、微分、外推、内插值。
作图应注意如下几点:a.图要有图名。
例如“InP-1/T图I",“V—t图”等。
b.要用市售的正规直角坐标纸。
c.在直角坐标中,一般以横轴代表自变量,纵轴代表因变量,坐标在轴旁须注明变量的名称和单位。
d.适当选择坐标比例,以表达出全部有效数字为准,即最小的毫米格内表示有效数字的最后一位。
如果作直线,应正确选择比例,使直线呈45。
倾斜为好。
e.坐标原点不一定选在零,应使所作直线与曲线匀称地分布于图面中。
在两条坐标轴上每隔ICm或2cm均匀地标上所代表的数值,而图中所描各点的具体坐标值不必标出。
f.描点时,应用细铅笔将所描的点准确而清晰地标在其位置上,可用O,Δ,口,X等符号表示,同一图中表示不同曲线时,要用不同的符号描点,以示区别。
g.作曲线时,应尽量多地通过所描的点,但不要强行通过每一个点。
误差分析和数据处理
误差分析、数据处理和物理实验不同,电子电路基础实验通常采用的是单次测量,对误差处理要求相对较低。
1.误差绝对误差设被测量量的真值为Ao,测量仪器的示值为X,则绝对值为△X=X-Ao在某一时间及空间条件下,被测量量的真值虽然是客观存在的,但一般无法测得,只能尽量逼近它。
故常用高一级标准测量仪器的测量值A代替真值Ao,则△X=X-A相对误差是用绝对误差△X与被测量的实际值A的比值的百分数来表示的相对误差。
在电子电路一般的实验中,由于已经可以利用已有的公式计算,所以一般直接用理论值代替真值A,然后进行误差计算。
2.测量数据处理1.测量结果的数据处理(1)有效数字由于存在误差,所以测量资料总是近似值,它通常由可靠数字和欠准数字两部分组成。
例如,由电流表测得电流为12.6mA,这是个近似数,12是可靠数字,而末位6为欠准数字,即12.6为三位有效数字。
有效数字对测量结果的科学表述极为重要。
对有效数字的正确表示,应注意以下几点:①与计量单位有关的"0"不是有效数字,例如,0.054A与54mA这两种写法均为两位有效数字。
②小数点后面的"0"不能随意省略,例如,18mA与18.00mA是有区别的,前者为两位有效数字,后者则是四位有效数字。
③对后面带"0"的大数目数字,不同写法其有效数字位数是不同的,例如,3000如写成30×10 2,则成为两位有效数字;若写成3×103,则成为一位有效数字;如写成3000±1,就是四位有效数字。
④如已知误差,则有效数字的位数应与误差所在位相一致,即:有效数字的最后一位数应与误差所在位对齐。
如;仪表误差为±0.02V,测得数为3.2832V,其结果应写作3.28V。
因为小数点后面第二位"8"所在位已经产生了误差,所以从小数点后面第三位开始后面的"32"已经没有意义了,写结果时应舍去。
误差分析与数据处理
产生原因-人操作上的粗心大意,外界的强大干扰。
消除方法-当发现粗大误差时,应予以剔除。 结论:在进行误差分析时,粗差剔除,系统误差和随机误 差要用适当的方法进行处理和估算。
课堂提问:
1.请举出生话中的系统误差、随机误差、粗大误差的 实例。 2.第1章讲过一些仪表性能指标,其中就涉及哪个误 差概念?
系统误差: 与真值之差。 随机误差:某一测量值与 的差值。 2.对称性:xi大致地分布于 两侧。 剩余误差(残差)Vi= xi - 残差基本互相抵消。残差总和:
3.有界性:在一定的条件下, xi有一定的分布范围,超过这个范围的可能性很 小,一般作为粗大误差处理。
当n→∞时,测量列xi的算术平均值 可认为是测量值的最可信值,但无 法表达出测量值的误差范围和精度高低。一般用下式表示存在随机误差时的 测量结果:
解: 1.按照测量读数的顺序列成表格。 2.计算测量列xi的算术平均值: =(633.97/16)=39.623 mm。 3.算出每个测量读数的残差Vi ,填写在xi的右边。并验证了 。 4.在每个残差旁算出 和 必须的中间过程值 , 然后求出 =2.140mm2 5.计算出方均根误差 =0.378mm
2.2.1随机误差的统计特性
单次测量具有随机性,但多次测量其总体误差具有规律性特征。 测量列:保持测量条件不变,对同一测量对象进行多次重复测量得到一系列包含 随机误差的读数x1、x2、…,xn。 统计直方图:以测得的数据为横坐标,出现的次数为纵坐标。 正态分布曲线(随机误差的概率密度,高斯误差):当测量次数n→∞ 时,则无 限多的直方图的顶点中线的连线就形成一条光滑的连续曲线。有如下规律: 1.集中性:大量的测量值集中分布于算术平均值 附近。
2.随机误差-在同一条件下,多次测量同一被测量,有时 会发现测量值时大时小,机误差。随机误差反映了测 量值离散性的大小。 产生原因(随机效应)-随机误差是测量过程中许多独立 的、微小的、偶然的因素引起的综合结果。 消除方法-单个测量值误差是随机的,难以消除或修正; 但误差的整体服从正态分布统计规律,因此可以增加测量 次数,并对测量结果进行数据统计处理。 3.粗大误差-明显偏离真值的误差称为粗大误差(过失误 差)。
1误差分析与数据处理
26
再例如:
某电阻值为 20000(欧姆),保留三位有效数字时写 成 2.00104
又 如 数 据 为 0.0000325m , 使 用 科 学 记 数 法 写 成 3.2510-5m
980cm / s2 9.80m / s2 0.00980km/ s2 9.8m / s2
(4)缓变误差: 是指数值上随时间缓慢变化的误差,一般它是由零部件的
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
7
➢发现系统误差的简单方法
通过观察偏差发现系统误差
1)将观测值依次排列,如偏差的大小有规则地向一个方向变化,即前面 为负号,后面为正号,且符号为(一一一一一十++十+)或相反(+ 十++十一一一一一),则说明该组观测值含有累进的系统误差。如中 间有微小波动,则说明有随机误差的影响。
2)将观测值依次排列,如偏差符号作有规律交替变化,则测量中含有周期 性误差。如中间有微小波动,则说明有随机误差的影响。
1) 直接测量和间接测量
➢ 直接测量: 凡是使用仪器 ➢间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
V hd 2
h
4
M V
4M
d 2h
1
2)等精度测量和非等精度测量
计量基础知识(数据处理及误差分析)
一、测量
测量就是借助一定的仪器或量具,通过一 定的实验方法来实现标准量与待测量的比较。
1.直接测量
被测量与标准量相比较而得出测量结果
2.间接测量
利用被测量之间的函数关系,通过计算而得出测量结果
例:
测量铜柱的密度时,我们可以用米尺量出它的高h 和直径d, 算出体积
V
d 2 h
处理方法:
①取多次测量的平均值为测量结果的最佳估计值
②研究其分布,找出其特征值,归入A类不确定度
三、对误差大小的评价
实验中常用精密度、准确度和精确度来评价实验结果中误差的大小。这 三个概念的涵义不同,应加以区别。 1.精密度: 表示测量结果中偶然误差大小的程度。精密度高是指在多次 测量中,数据的离散性小,偶然误差小。 2.准确度: 表示测量结果中系统误差大小的程度。准确度高表示多次测 量数据的平均值偏离真值的程度小,系统误差小。
2.不确定度的估计方法: 依据国内外规范,在物理实验中采用以下的不确定度简 化评定方法: 总不确定度Δ 从评定方法上分为两类分类: A类分量Δ A-----多次重复测量时用统计学方法估算的分量; B类分量Δ B-----用其他方法(非统计学方法)评定的分量;
不确定度用它的两个分量采用“方和根”的方法合成
x , y , z ,
x , y , z ,
间接测量量的测量值为
F ( x , y , z...)
间接测量量的不确定度为
F F F 2 2 2 y z x x z y
二、测量不确定度:
定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。 1、此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 2、测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布 估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假 定概率分布估算,也可用标准偏差表征。 3、测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献 给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准 有关的)分量。
如何进行测量数据处理和误差分析
如何进行测量数据处理和误差分析测量数据处理和误差分析是科学研究和实验设计中至关重要的一环。
在各个学科领域,准确地测量和分析数据对于取得可靠的研究结果和科学发现至关重要。
本文将介绍测量数据处理和误差分析的基本原理、方法以及应用。
一、测量数据处理的基本原理测量数据处理是对实验数据进行整理和分析的过程,其主要目的是为了获取可靠、准确的测量结果。
测量数据处理的基本原理包括:1. 数据采集:在实验或观测中,通过各种测量装置和方法,获取数据。
数据的正确采集是测量数据处理的第一步。
2. 数据整理:将采集到的数据按照一定的规则进行整理和分类,使其更易于分析和理解。
包括数据的录入、筛选、排序等。
3. 数据分析:对整理好的数据进行统计和分析,包括计算平均值、标准差、相关系数等。
4. 结果展示:将分析后的数据和结果以适当的形式进行展示,如制作图表、表格等,便于读者理解和参考。
二、误差分析的基本原理误差是测量中不可避免的因素,准确地评估和分析误差对于获得可靠的结果至关重要。
误差分析的基本原理包括:1. 系统误差:由于测量仪器、方法或操作等方面的不准确引起,是一种固定的误差。
系统误差可以通过校准仪器、改进测量方法等方式进行减小。
2. 随机误差:由于种种无法控制的因素所引起,是一种无规律的误差。
随机误差可以通过多次测量并取平均值来减小。
3. 误差来源分析:对于实验和测量过程中的误差来源进行分析,包括仪器误差、环境误差、人为误差等,并寻求适当的处理方法。
4. 不确定度评定:通过计算和评估测量结果的不确定度,准确地表示测量结果的可靠程度。
三、测量数据处理和误差分析的方法测量数据处理和误差分析的方法包括:1. 统计分析方法:包括平均值、标准差、相关系数等统计参数的计算和分析,通过统计学方法来处理和分析数据。
2. 敏感度分析方法:通过改变输入数据或模型参数的数值,评估其对测量结果的影响程度,找出影响结果稳定性的因素。
3. 不确定度评定方法:通过考虑测量装置精度、测量方法可靠性等,对测量结果的不确定度进行计算和评估。
工程测量中的数据处理与误差分析
工程测量中的数据处理与误差分析工程测量是工程领域中非常重要的一项工作,它涉及到测量数据的采集、处理和分析。
在测量过程中,获取准确的数据,进行合理的数据处理,并对可能出现的误差进行分析,对于工程的设计、施工和质量控制都具有重要意义。
本文将就工程测量中的数据处理与误差分析进行详细讨论。
一、数据处理方法在工程测量中,数据处理通常包括数据采集、数据预处理和数据后处理三个环节。
数据采集是通过测量仪器对被测对象进行测量,得到一系列测量数据。
数据采集的准确性直接影响到后续数据处理的可靠性。
在数据采集之后,需要对原始数据进行预处理。
预处理的目的是对原始数据进行加工和清理,消除或减小数据中的噪音和随机误差。
常用的预处理方法包括滤波、平滑和插值等。
滤波是在信号处理中常用的方法,可以通过去除高频部分来减小数据的噪音干扰。
平滑技术可以用来减少数据的波动,使得数据更加平稳。
插值则是通过已知数据点来推测未知数据点的值,从而填补数据中的空缺部分。
数据预处理完成后,需要进行数据后处理。
数据后处理是对预处理后的数据进行分析、计算和评估,最终得到所需的测量结果。
常用的数据后处理方法有统计分析、回归分析和误差分析等。
统计分析可以从整体上对数据进行描述性分析,包括均值、标准差、方差和偏度等。
回归分析可以通过已知数据点来建立数学模型,并拟合出未知数据点的值,用于预测和估计。
误差分析是对数据误差进行量化和评估,通过计算误差的大小和分布来评估测量结果的可靠性。
二、误差分析方法误差是工程测量中不可避免的问题,它来源于多方面的因素,包括仪器精度、环境条件、人为因素等。
误差的存在会影响到测量结果的准确性和可靠性,因此对误差进行分析和控制是工程测量的关键。
常用的误差分析方法包括误差源分析、误差传递分析和误差评定分析。
误差源分析是对误差产生的原因进行分析和归纳。
误差可以分为系统误差和随机误差两类。
系统误差是由于系统的固有特性而产生的误差,主要影响测量结果的准确性和偏差。
分析误差及数据处理
正确的做法是:
修约前是:15.4546
修约后是:15
不正确的做法是:
修约前:15.4546
一次修约:15.455
二次修约:15.46
三次修约:15.5
四次修约:16
四、有效数字及其运算规则
在分析过程中,记录和计算分析结果时,要使记录数字及计算结果的准确程度与计量仪器的准确度相适应。
标准中极限数值的表示形式及书写位数应该适当。它的有效位数应全部给出,应能保证或其它标准化对象的应用性能和质量,从而也规定了为检测实际标准化对象而得到的测定值或其计算应具有的相应精确程度。
2、表达极限数值的用语及其涵义
基本用语
符号
特定情形下的基本用语
涵义
大于A
<A
(不足A)
多于A
高于A
A值不符合标准要求
例:
项目
极限数值
测定值
或写成
符合(否)
例1
NaOH含量,%
≧97%
97.01
97.00
96.98
96.94
97.0(+)
97.0
97.0(-)
96.9(+)
符合
符合
不符合
不符合
例2
硅含量,%
≦0.05
0.049
0.050
0.051
0.056
0.05(-)
0.05
0.05(+)
0.06
符合
符合
不符合
不符合
减免方法:
加强基本功练习
2.偶然误差:偶然因素,如温度、压力、振动、湿度、操作丢失、玷污等不被发现特点,误差数值不恒定,大小、正负,无法避免,影响精密度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理实验课的基本程序物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。
§1 实验前的预习为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。
实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。
预习报告包括下列栏目:实验名称 写出本次实验的名称。
实验目的 应简单明确地写明本次实验的目的要求。
实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。
若讲义与实际所用不符,应以实际采用的原理图为准。
实验内容 简明扼要地写出实验内容、操作步骤。
为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。
注意要正确地表示出有效数字和单位。
§2 课堂操作进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分尺调零、天平调水平和平衡、光路调同轴等高等)。
准备就绪后开始测量。
测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。
数据之间要留有间隙,以便补充。
发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。
实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。
运算的错误可以修改,原始数据则不能擅自改动。
全部数据必须经老师检查、签名,否则本次实验无效。
两人同作一个实验时,要既分工又协作,以便共同完成实验。
实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。
§3 实验报告实验报告是实验工作的总结。
要用简明的形式将实验报告完整而又准确地表达出来。
实验报告要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。
应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。
完整的实验报告应包括下述几部分内容:数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签名的原始数据记录纸要附在本次报告一起交)。
数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。
按照实验要求计算待测的量值、绝对误差及相对误差。
书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。
而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。
结果表达 按下面格式写出最后结果:)N ()(N )N (总绝对误差测量结果待测量∆±=..%100(⨯∆=NN )Er 相对误差 结果分析 对本次实验的结果及主要误差因数作简要的分析讨论,并完成课后的思考题。
还可以谈谈实验的心得体会。
如果实验是为了观察某一物理现象或者观察某一物理规律,可只扼要地写出实验结论。
以上是对报告的一般性要求。
不同的实验,可以根据具体情况有所侧重和取舍,不必千篇一律。
误 差 处 理物理实验的任务,不仅仅是定性地观察物理现象,也需要对物理量进行定量测量,并找出各物理量之间的内在联系。
由于测量原理的局限性或近似性、测量方法的不完善、测量仪器的精度限制、测量环境的不理想以及测量者的实验技能等诸多因素的影响,所有测量都只能做到相对准确。
随着科学技术的不断发展,人们的实验知识、手段、经验和技巧不断提高,测量误差被控制得越来越小,但是绝对不可能使误差降为零。
因此,作为一个测量结果,不仅应该给出被测对象的量值和单位,而且还必须对量值的可靠性做出评价,一个没有误差评定的测量结果是没有价值的。
下面介绍测量与误差、误差处理、有效数字、测量结果的不确定度评定等基本知识,这些知识不仅在后面的实验中要经常用到,而且也是今后从事科学实验工作所必须了解和掌握的。
§1 测量与误差一、 测量及其分类所谓测量,就是借助一定的实验器具,通过一定的实验方法,直接或间接地把待测量与选作计量单位的同类物理量进行比较的全部操作。
简而言之,测量是指为确定被测对象的量值而进行的一组操作。
按照测量值获得方法的不同,测量分为直接测量和间接测量两种。
直接从仪器或量具上读出待测量的大小,称为直接测量。
例如,用米尺测物体的长度,用秒表测时间间隔,用天平测物体的质量等都是直接测量,相应的被测物理量称为直接测量量。
如果待测量的量值是由若干个直接测量量经过一定的函数运算后才获得的,则称为间接测量。
例如,先直接测出铁圆柱体的质量m 、直径D 和高度h ,再根据公式hD m 24πρ=计算出铁的的密度ρ,这就是间接测量,ρ称为间接测量量。
按照测量条件的不同,测量又可分为等精度测量和不等精度测量。
在相同的测量条件下进行的一系列测量是等精度测量。
例如,同一个人,使用同一仪器,采用同样的方法,对同一待测量连续进行多次测量,此时应该认为每次测量的可靠程度相同,故称之为等精度测量,这样的一组测量值称为一个测量列。
在不同测量条件下进行的一系列测量,例如不同的人员,使用不同的仪器,采用不同的方法进行测量,则各次测量结果的可靠程度自然也不相同,这样的测量称为不等精度测量。
处理不等精度测量的结果时,需要根据每个测量值的“权重”,进行“加权平均”,因此在一般物理实验中很少采用。
等精度测量的误差分析和数据处理比较容易,下面所介绍的误差和数据处理知识都是针对等精度测量的。
二、误差与偏差1.真值与误差任何一个物理量,在一定的条件下,都具有确定的量值,这是客观存在的,这个客观存在的量值称为该物理量的真值。
测量的目的就是要力图得到被测量的真值。
我们把测量值与真值之差称为测量的绝对误差。
设被测量的真值为χ0,测量值为χ,则绝对误差ε为ε = χ – χ0 (1)由于误差不可避免,故真值往往是得不到的。
所以绝对误差的的概念只有理论上的价值。
2.最佳值与偏差在实际测量中,为了减小误差,常常对某一物理量x 进行多次等精度测量,得到一系列测量值1x ,2x ,…,n x ,则测量结果的算术平均值为∑==+++=n i i nn n 1211χχχχχΛ (2) 算术平均值并非真值,但它比任一次测量值的可靠性都要高。
系统误差忽略不计时的算术平均值可作为最佳值,称为近真值。
我们把测量值与算术平均值之差称为偏差(或残差):χχ-=i i v (3)三、误差的分类正常测量的误差,按其产生的原因和性质可分为系统误差和随机误差两类,它们对测量结果的影响不同,对这两类误差处理的方法也不同。
1.系统误差在同样条件下,对同一物理量进行多次测量,其误差的大小和符号保持不变或随着测量条件的变化而有规律地变化,这类误差称为系统误差。
系统误差的特征是具有确定性,它的来源主要有以下几个方面:仪器因素 由于仪器本身的固有缺陷或没有按规定条件调整到位而引起误差。
例如,仪器标尺的刻度不准确,零点没有调准,等臂天平的臂长不等,砝码不准,测量显微镜精密螺杆存在回程差,或仪器没有放水平,偏心、定向不准等。
理论或条件因素 由于测量所依据的理论本身的近似性或实验条件不能达到理论公式所规定的要求而引起误差。
例如,称物体质量时没有考虑空气浮力的影响,用单摆测量重力加速度时要求摆角θ→0,而实际中难以满足该条件。
人员因素 由于测量人员的主观因素和操作技术而引起误差。
例如,使用停表计时,有的人总是操之过急,计时比真值短;有的人则反应迟缓,计时总是比真值长;再如,有的人对准目标时,总爱偏左或偏右,致使读数偏大或偏小。
对于实验者来说,系统误差的规律及其产生原因,可能知道,也可能不知道。
已被确切掌握其大小和符号的系统误差称为可定系统误差;对于大小和符号不能确切掌握的系统误差称为未定系统误差。
前者一般可以在测量过程中采取措施予以消除,或在测量结果中进行修正。
而后者一般难以做出修正,只能估计其取值范围。
2.随机误差在相同条件下,多次测量同一物理量时,即使已经精心排除了系统误差的影响,也会发现每次测量结果都不一样。
测量误差时大时小,时正时负,完全是随机的。
在测量次数少时,显得毫无规律,但是当测量次数足够多时,可以发现误差的大小以及正负都服从某种统计规律。
这种误差称为随机误差。
随机误差的特征是它的不确定性,它是由测量过程中一些随机的或不确定的因素引起的。
例如,人的感受(视觉、听觉、触觉)灵敏度和仪器稳定性有限,实验环境中的温度、湿度、气流变化,电源电压起伏,微小振动以及杂散电磁场等都会导致随机误差。
除系统误差和随机误差外,还有过失误差。
过失误差是由于实验者操作不当或粗心大意造成的,例如看错刻度、读错数字、记错单位或计算错误等。
过失误差又称粗大误差。
含有过失误差的测量结果称为“坏值”,被判定为坏值的测量结果应剔除不用。
实验中的过失误差不属于正常测量的范畴,应该严格避免。
3.精密度、正确度和准确度评价测量结果,常用到精密度、正确度和准确度这三个概念。
这三者的含义不同,使用时应注意加以区别。
精密度反映随机误差大小的程度。
它是对测量结果的重复性的评价。
精密度高是指测量的重复性好,各次测量值的分布密集,随机误差小。
但是,精密度不能确定系统误差的大小。
正确度反映系统误差大小的程度。
正确度高是指测量数据的算术平均值偏离真值较少,测量的系统误差小。
但是,正确度不能确定数据分散的情况,即不能反映随机误差的大小。
准确度反映系统误差与随机误差综合大小的程度。
准确度高是指测量结果既精密又正确,即随机误差与系统误差均小。
现以射击打靶的弹着点分布为例,形象地说明以上三个术语的意义。
如图1所示,其中图(a )表示精密度高而正确度低,图(b )表示正确度高而精密度低,图(c )表示精密度和正确度均低,即准确度低,图(d )表示精密度和正确度均高,即准确度高。
通常所说的“精度”含义不明确,应尽量避免使用。
精密度高,正确度低 正确度高,精密度低 精密度和正确度均低 精密度和正确度均高 图1 精密度、正确度和准确度示意图§2 误 差 处 理一、处理系统误差的一般知识1.发现系统误差的方法系统误差一般难于发现,并且不能通过多次测量来消除。
人们通过长期实践和理论研究,总结出一些发现系统误差的方法,常用的有:理论分析法 包括分析实验所依据的理论和实验方法是否有不完善的地方;检查理论公式所要求的条件是否得到了满足;量具和仪器是否存在缺陷;实验环境能否使仪器正常工作以及实验人员的心理和技术素质是否存在造成系统误差的因素等。
实验比对法 对同一待测量可以采用不同的实验方法,使用不同的实验仪器,以及由不同的测量人员进行测量。
对比、研究测量值变化的情况,可以发现系统误差的存在。