高一数学必修2测试题 (参考)

合集下载

人教版高一数学必修2 空间直线的垂直关系练习题(含答案详解)

人教版高一数学必修2 空间直线的垂直关系练习题(含答案详解)

必修2 空间中的垂直关系基础知识点一、选择题:1.若斜线段AB是它在平面α上的射影的长的2倍,则AB与平面α所成的角是( ).A.60°B.45°C.30°D.120°2.直线l⊥平面α,直线m⊂α,则( ).A.l⊥mB.l∥mC.l,m异面D.l,m相交而不垂直3.如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的线段有( ).A.1条B.2条C.3条D.4条4.若平面α⊥平面β,平面β⊥平面γ,则( ).A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能5.已知长方体ABCDA1B1C1D1,在平面AB1上任取一点M,作ME⊥AB于E,则( ).A.ME⊥平面ACB.ME ⊂平面ACC.ME∥平面ACD.以上都有可能6.如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( ).A.平面PAB与平面PBC、平面PAD都垂直B.它们两两垂直C.平面PAB与平面PBC垂直,与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直二、填空题:7.在正方体A1B1C1D1ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心(如图),则EF与平面BB1O的关系是________.8.若a,b表示直线,α表示平面,下列命题中正确的有________个.①a⊥α,b∥α⇒a⊥b; ②a⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.9.α、β是两个不同的平面,m、n是平面α及β外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③m⊥α;④n⊥β.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题________.10.如图,正方体ABCDA1B1C1D1中,截面C1D1AB与底面ABCD所成二面角C1ABC的大小为________.三、解答题:11.如图所示,在Rt △AOB 中,∠ABO=π6,斜边AB=4,Rt △AOC 可以通过Rt △AOB 以直线AO 为轴旋转得到,且二面角BAOC 是直二面角,D 是AB 的中点.求证:平面COD ⊥平面AOB.12.如图,在四棱锥P ­ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F.(1)求证:PA ∥平面EDB ;(2)求证:PB ⊥平面EFD.综合提高1.已知l ,m ,n 为两两垂直的三条异面直线,过l 作平面α与直线m 垂直,则直线n 与平面α的关系是( ).A.n ∥αB.n ∥α或n ⊂αC.n ⊂α或n 与α不平行D.n ⊂α2.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ).A.AB ∥mB.AC ⊥mC.AB ∥βD.AC ⊥β3.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角( ).A.相等B.互补C.相等或互补D.关系无法确定4.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现在沿SE,SF,EF 把这个正方形折成一个四面体,使G1、G2、G3重合,重合后的点记为G.给出下列关系:①SG⊥平面EFG;②SE⊥平面EFG;③GF⊥SE;④EF⊥平面SEG.其中成立的有( ).A.①②B.①③C.②③D.③④5.如果三棱锥的三个侧面两两相互垂直,则顶点在底面的正投影是底面三角形的________心.6.已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,若A1在底面ABC内的射影为△ABC的中心,则AB1与ABC底面所成的角的正弦值等于________.7.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD 所成的角为60°.其中真命题的编号是________(写出所有真命题的编号).8.如图,A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC=2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,则CD=________.9.如图所示,四边形ABCD为正方形,SA垂直于四边形ABCD所在的平面,过点A且垂直于SC的平面分别交SB,SC,SD于点E,F,G.求证:AE⊥SB,AG⊥SD.10.如图,在四棱锥P-ABCD中,PO⊥面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC.(2)求点A到平面PBC的距离.11.如图,已知平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.12.(创新拓展)已知△BCD 中,∠BCD=90°,BC=CD=1,AB ⊥平面BCD ,∠ADB=60°,E ,F 分别是AC ,AD 上的动点,且AE AC =AF AD=λ(0<λ<1). (1)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(2)当λ为何值时,平面BEF ⊥平面ACD?参考答案基础篇1.答案 A ;解析 斜线段、垂线段以及射影构成直角三角形.如图所示,∠ABO即是斜线AB 与平面α所成的角,又AB=2BO ,所以cos ∠ABO=OB AB =12.所以∠ABO=60°.故选A.2.答案 A ;解析 无论l 与m 是异面,还是相交,都有l ⊥m ,考查线面垂直的定义,故选A.3.答案 D ;解析 ∵PO ⊥平面ABC ,∴PO ⊥AC ,又∵AC ⊥BO ,∴AC ⊥平面PBD , ∴平面PBD 中的4条线段PB ,PD ,PO ,BD 与AC 垂直.4.答案 D ;解析 以正方体为模型:相邻两侧面都与底面垂直;相对的两侧面都与底面垂直;一侧面和一对角面都与底面垂直,故选D.5.答案 A ;解析 由于ME ⊂平面AB 1,平面AB 1∩平面AC=AB ,且平面AB 1⊥平面AC ,ME ⊥AB ,则ME ⊥平面AC.6.答案A;解析∵PA⊥平面ABCD,∴PA⊥BC.又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵BC⊂平面PBC,∴平面PBC⊥平面PAB.由AD⊥PA,AD⊥AB,PA∩AB=A,得AD⊥平面PAB.∵AD⊂平面PAD,∴平面PAD ⊥平面PAB.由已知易得平面PBC与平面PAD不垂直,故选A.7.答案垂直;解析由正方体性质知AC⊥BD,BB1⊥AC,∵E,F是棱AB,BC 的中点,∴EF∥AC,∴EF⊥BD,EF⊥BB1,∴EF⊥平面BB1O.8.答案2;解析由线面垂直的性质定理知①④正确.9.答案①③④⇒②或②③④⇒①;解析如图,PA⊥α,PB⊥β,垂足分别为A、B,α∩β=l,l∩平面PAB=O,连接OA、OB,可证明∠AOB为二面角αlβ的平面角,则∠AOB=90°⇔PA⊥PB.10.答案45°;解析∵AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1ABC的平面角,大小为45°.11.证明:由题意:CO⊥AO,BO⊥AO,∴∠BOC是二面角BAOC的平面角,又∵二面角BAOC是直二面角,∴CO⊥BO,又∵AO∩BO=O,∴CO⊥平面AOB,∵CO⊂平面COD,∴平面COD⊥平面AOB.12.证明:(1)连接AC,AC交BD于点O.连接EO,如图.∵底面ABCD是正方形,∴点O是AC的中点.在△PAC中,EO是中位线,∴PA∥EO.而EO⊂平面EDB且PA⊄平面EDB.所以PA∥平面EDB.(2)∵PD⊥底面ABCD且DC⊂底面ABCD.∴PD⊥DC.∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC.①同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.综合提高1.答案A;解析∵l⊂α,且l与n异面,∴n⊄α,又∵m⊥α,n⊥m,∴n ∥α.2.答案D;解析如图,AB∥l∥m,AC⊥l,m∥l⇒AC⊥m,AB∥l⇒AB∥β.故选D.3.答案D;解析如图所示,平面EFDG⊥平面ABC,当平面HDG绕DG转动时,平面HDG始终与平面BCD垂直,所以两个二面角的大小关系不确定,因为二面角HDGF 的大小不确定.4.答案B;解析由SG⊥GE,SG⊥GF,得SG⊥平面EFG,排除C、D;若SE⊥平面EFG,则SG∥SE,这与SG∩SE=S矛盾,排除A,故选B.5.答案垂;解析三棱锥的三个侧面两两相互垂直,则三条交线两两互相垂直,可证投影是底面三角形的垂心.6.答案:23;解析由题意知,三棱锥A1ABC为正四面体(各棱长都相等的三棱锥),设棱长为a ,则AB 1=3a ,棱柱的高A 1O=63a(即点B 1到底面ABC 的距离),故AB 1与底面ABC 所成的角的正弦值为A 1O AB 1=23.' 7.答案 ①②④;解析 本题主要考查了空间直线与直线、直线与平面的夹角.8.答案 2;解析 取AB 的中点E ,连接DE ,CE ,因为△ADB 是等边三角形,所以DE ⊥AB.当平面ADB ⊥平面ABC 时,因为平面ADB ∩平面ABC=AB ,所以DE ⊥平面ABC.又CE ⊂平面ABC 可知DE ⊥CE. 由已知可得DE=3,EC=1,在Rt △DEC 中,CD=DE 2+CE 2=2.9.证明 因为SA ⊥平面ABCD ,所以SA ⊥BC.又BC ⊥AB ,SA ∩AB=A ,所以BC ⊥平面SAB ,又AE ⊂平面SAB ,所以BC ⊥AE.因为SC ⊥平面AEFG ,所以SC ⊥AE.又BC ∩SC=C ,所以AE ⊥平面SBC ,所以AE ⊥SB.同理可证AG ⊥SD.10.(1)证明 因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC.因为∠BCD=90°,所以BC ⊥CD.又PD ∩CD=D ,所以BC ⊥平面PCD.而PC ⊂平面PCD ,所以PC ⊥BC.(2)解 如图,过点A 作BC 的平行线交CD 的延长线于E ,过点E 作PC 的垂线,垂足为F ,则有AE ∥平面PBC ,所以点A 到平面PBC 的距离等于点E 到平面PBC 的距离.又EF ⊥PC ,BC ⊥平面PCD ,则EF ⊥BC.BC ∩PC=C ,所以EF ⊥平面PBC.EF 即为E 到平面PBC 的距离.又因为AE ∥BC ,AB ∥CD ,所以四边形ABCE 为平行四边形.所以CE=AB=2. 又PD=CD=1,PD ⊥平面ABCD ,CD ⊂平面ABCD.所以PD ⊥CD ,∠PCD=45°. 所以EF= 2.即点A 到平面PBC 的距离为 2.11.证明 (1)在平面ABC 内取一点D ,作DF ⊥AC 于F ,∵平面PAC ⊥平面ABC ,且交线为AC ,∴DF ⊥平面PAC.又∵PA ⊂平面PAC ,∴DF ⊥PA.作DG ⊥AB 于G ,同理可证DG ⊥PA.∵DG ∩DF=D ,∴PA ⊥平面ABC.(2)连接BE 并延长交PC 于H.∵E 是△PBC 的垂心,∴PC ⊥BH ,又AE ⊥平面PBC ,故AE ⊥PC ,且AE ∩BE=E ,∴PC ⊥平面ABE.∴PC ⊥AB.又∵PA ⊥平面ABC ,∴PA ⊥AB ,且PA ∩PC=P ,∴AB ⊥平面PAC ,∴AB ⊥AC ,即△ABC 是直角三角形. 12.(1)证明 ∵AB ⊥平面BCD ,∴AB ⊥CD.∵CD ⊥BC 且AB ∩BC=B ,∴CD ⊥平面ABC.又∵AE AC =AF AD=λ(0<λ<1),∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC. 又EF ⊂平面BEF ,∴不论λ为何值恒有平面BEF ⊥平面ABC.(2)解 由(1)知,EF ⊥BE ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC=CD=1,∠BCD=90°,∠ADB=60°,AB ⊥平面BCD ,∴BD=2,AB=2tan 60°= 6.AC=AB 2+BC 2=7, 由AB 2=AE ·AC 得AE=67,∴λ=AE AC =67,故当λ=67时,平面BEF ⊥平面ACD.。

高一数学必修2经典习题与答案(复习专用)

高一数学必修2经典习题与答案(复习专用)

数学2(必修)第一章:空间几何体[基础训练A 组] 数学2(必修)第一章:空间几何体[综合训练B 组] 数学2(必修)第一章:空间几何体[提高训练C 组] 数学2(必修)第二章:点直线平面[基础训练A 组] 数学2(必修)第二章:点直线平面[综合训练B 组] 数学2(必修)第二章:点直线平面[提高训练C 组] 数学2(必修)第三章:直线和方程[基础训练A 组] 数学2(必修)第三章:直线和方程[综合训练B 组] 数学2(必修)第三章:直线和方程[提高训练C 组] 数学2(必修)第四章:圆和方程 [基础训练A 组] 数学2(必修)第四章:圆和方程 [综合训练B 组] 数学2(必修)第四章:圆和方程 [提高训练C 组](数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )A. 3B. 23C. 33D. 433.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )A .3:1B .3:2C .2:3D .3:35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。

2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。

人教版高一数学必修2测试题

人教版高一数学必修2测试题

高一数学必修 2 测试题一、选择题( 12×5 分= 60 分)1、以下命题为真命题的是( ) A. 平行于同一平面的两条直线平行; B.与某一平面成等角的两条直线平行; C. 垂直于同一平面的两条直线平行; D.垂直于同向来线的两条直线平行。

2、以下命题中错误的选项是: ( ) A. 假如 α⊥β,那么 α 内必定存在直线平行于平面 β; B. 假如 α⊥β,那么 α 内全部直线都垂直于平面 β; C. 假如平面 α 不垂直平面 β,那么 α 内必定不存在直线垂直于平面 β; D. 假如 α⊥γ,β⊥γ,α∩β= l, 那么 l ⊥γ .D ’C ’’’’’3、右图的正方体 ABCD-A B C DA ’B ’中,异面直线’)AA 与 BC 所成的角是(A. 300B.450C. 600D. 900C ’’’’4、右图的正方体 ABCD- A B C D中,D’)二面角 D -AB-D 的大小是(A. 300B.450C. 600D. 905、直线 5x-2y-10=0 在 x 轴上的截距为 a,在 y 轴上的截距为 b,则()A.a=2,b=5;B.a=2,b= 5;C.a= 2,b=5;D.a= 2,b= A B5.6、直线 2x-y=7 与直线 3x+2y-7=0 的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1)7、过点 P(4,-1) 且与直线 3x-4y+6=0 垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=08、正方体的全面积为 a,它的极点都在球面上,则这个球的表面积是: ( )A. a ;B. a ;C. 2 a ;D. 3 a .3229、已知一个铜质的五棱柱的底面积为高为 4cm ,现将它融化后铸成一个 16cm, 正方体的铜块(不计消耗) ,那么铸成的铜块的棱长是( ) A. 2cm;B.4cm; C.4cm; D.8cm。

高一数学(必修二)向量的加法运算练习题(附答案)

高一数学(必修二)向量的加法运算练习题(附答案)

高一数学(必修二)向量的加法运算练习题(附答案)一、选择题1.下列等式不正确的是( )①a +(b +c)=(a +c)+b ;②AB →+BA →=0;③AC →=DC →+AB →+BD →.A.②③B.②C.①D.③2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A.四边形ABCD 是矩形B.四边形ABCD 是菱形C.四边形ABCD 是正方形D.四边形ABCD 是平行四边形3.若向量a 表示“向东航行1 km ”,向量b 表示“向北航行 3 km ”,则向量a +b 表示() A.向东北方向航行2 km B.向北偏东30°方向航行2 kmC.向北偏东60°方向航行2 kmD.向东北方向航行(1+3)km4.已知向量,a ,b 均为非零向量,则下列说法不正确的个数是( )①向量a 与b 反向,且|a|>|b|,则向量a +b 与a 的方向相同;②向量a 与b 反向,且|a|<|b|,则向量a +b 与a 的方向相同;③向量a 与b 同向,则向量a +b 与a 的方向相同.A.0B.1C.2D.35.CB →+AD →+BA →等于( )A.DB →B.CA →C.CD →D.DC →6.向量(AB →+PB →)+(BO →+BM →)+OP →化简后等于( )A.BC →B.AB →C.AC →D.AM →7.(多选)下列各式一定成立的是( )A.a +b =b +aB.0+a =aC.AC →+CB →=AB →D.|a +b|=|a|+|b|8.(多选)对于任意一个四边形ABCD ,下列式子能化简为BC →的是( )A.BA →+AC →B.BD →+DA →+AC →C.AB →+BD →+DC →D.DC →+BA →+AD →9.已知有向线段AB →,CD →不平行,则( )A.|AB →+CD →|>|AB →|B.|AB →+CD →|≥|CD→| C.|AB →+CD →|≥|AB →|+|CD →| D.|AB →+CD →|<|AB→|+|CD →| 二、填空题10.设a 0,b 0分别是a ,b 的单位向量,则下列结论中正确的是________.(填序号)①a 0=b 0;②a 0=-b 0;③|a 0|+|b 0|=2;④a 0∥b 0.11.如图,在平行四边形ABCD 中,DA →+DC →=________12.如图,已知电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N .绳BO 与墙壁垂直,所受拉力|F 2|=12 N ,则F 1与F 2的合力大小为________ N ,方向为________13.如图所示,已知在矩形ABCD 中,|AD →|=43,设AB →=a ,BC →=b ,BD →=c ,则|a +b +c|=________.三、解答题14.如图所示,P ,Q 是△ABC 的边BC 上两点,且BP →+CQ →=0.求证:AP →+AQ →=AB →+AC →.15.在长江某渡口处,江水以12.5 km/h的速度向东流,渡船的速度为25 km/h,渡船要垂直地渡过长江,其航向应如何确定?16.如图,用两根绳子把重10 N的物体W吊在水平杆子AB上,∠ACW=150°,∠BCW=120°,求A和B处所受力的大小(绳子的质量忽略不计).参考答案及解析:一、选择题1.B 解析:②错误,AB →+BA →=0,①③正确.2.D 解析:由AC →=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD 的一组对边平行且相等,故四边形ABCD 为平行四边形.3.B 解析:AB →=a 表示“向东航行1 km ,BC →=b 表示“向北航行 3 km ”,根据三角形法则,∴AC →=a +b ,∵tan A =3,∴A =60°,且AC →=(3)2+12=2(km),∴a +b 表示向北偏东30°方向航行2 km .4.B 解析:对于②,向量a +b 与b 的方向相同,故②说法不正确.分析知①③说法正确.5.C6.D 解析:原式=(AB →+BM →)+(PB →+BO →+OP →)=AM →+0=AM →.7.ABC 解析:A ,B ,C 项满足运算律及运算法则,而D 项向量和的模不一定与向量模的和相等,需满足三角形法则.8.ABD 解析:在A 中,BA →+AC →=BC →;在B 中,BD →+DA →+AC →=BA →+AC →=BC →;在C 中,AB →+BD →+DC →=AD →+DC →=AC →;在D 中,DC →+BA →+AD →=DC →+BD →=BD →+DC →=BC →. 9.D解析:由向量加法的几何意义得||a|-|b||≤|a +b|≤|a|+|b|,等号在a ,b 共线的时候取到,所以本题中,|AB →+CD →|<|AB →|+|CD →|.二、填空题10.答案:③ 解析:单位向量不一定相等或相反,也不一定共线,但其模为1,故只有③正确.11.答案:DB →12.答案:123,竖直向上解析:以OA ,OB 为邻边作平行四边形BOAC ,则F 1+F 2=F ,即OA →+OB →=OC →,则∠OAC =60°,|OA →|=24,|AC →|=|OB →|=12,∴∠ACO =90°,∴|OC →|=123.∴F 1与F 2的合力大小为12 3 N ,方向为竖直向上. 13.答案:8 3解析:a +b +c =AB →+BC →+BD →=AC →+BD →.如图,延长BC 至E ,使CE =BC ,连接DE ,∵CE →=BC →=AD →,∴CE AD ,∴四边形ACED 是平行四边形,∴AC →=DE →,∴AC →+BD →=DE →+BD →=BE →,∴|a +b +c|=|BE →|=2|BC →|=2|AD →|=83.三、解答题14.证明:∵AP →=AB →+BP →,AQ →=AC →+CQ →,∴AP →+AQ →=AB →+AC →+BP →+CQ →.又∵BP →+CQ →=0,∴AP →+AQ →=AB →+AC →.15.解:如图,AB →表示水速,AC →表示渡船实际垂直过江的速度,以AB 为一边,AC 为对角线作平行四边形,AD→就是船的速度.在Rt △ACD 中,∠ACD =90°,|DC →|=|AB →|=12.5,|AD →|=25,所以∠CAD =30°.所以渡船的航向为北偏西30°.16.解:如图所示,设CE →,CF →分别表示A ,B 所受的力,10 N 的重力用CG →表示,则 CE →+CF →=CG →.易得∠ECG =180°-150°=30°,∠FCG =180°-120°=60°. ∴|CE →|=|CG →|·cos 30°=10×32=53,|CF →|=|CG →|·cos 60°=10×12=5. ∴A 处所受的力的大小为5 3 N ,B 处所受的力的大小为5 N .。

高中数学必修一必修二综合测试题(含答案)

高中数学必修一必修二综合测试题(含答案)

Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。

高一数学必修二期末测试题及答案解析

高一数学必修二期末测试题及答案解析

(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4(B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.数学必修二期末测试题及答案CA一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径22(52)(62)5R -+-=, ……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NM BD CA16-8×165+5×m +85=0,解之得m =85. (3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面P AD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。

高一数学必修1,2,3,4,5试题及答案

高一数学必修1,2,3,4,5试题及答案

高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。

A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。

17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。

21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。

高一数学必修二《平面向量》单元综合测试卷(答案)

高一数学必修二《平面向量》单元综合测试卷(答案)

高一数学必修二《平面向量》单元综合测试卷(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)【答案】 A2.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( )A .-32B .-53C .53D .32【答案】 A3.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( )A .-32a 2B .-34a 2C .34a 2D .32a 2 【答案】 D4.对任意向量a ,b ,下列关系式中不恒成立....的是( ) A .|a·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2 D .(a +b )·(a -b )=a 2-b 2【答案】 B5.已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a +b ),则a 与b 的夹角为( )A .π3B .π2C .2π3D .5π6【答案】 C6.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC →【答案】 D7.已知向量a =(2,1),a·b =10,|a +b|=50,则|b|=( )A .0B .2C .5D .25【答案】 C8.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( )A .43a +23bB .23a +43bC .23a -43bD .-23a +43b 【答案】 B9.设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( )A .150°B .120°C .60°D .30°【答案】 B10.在矩形ABCD 中,AB =3,BC =1,E 是CD 上一点,且AE →·AB →=1,则AE →·AC →的值为( )A .3B .2C .32D .33【答案】 B11.已知向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P ,使AP →·BP →有最小值,则P 点坐标为( )A .(-3,0)B .(3,0)C .(2,0)D .(4,0)【答案】 B12.在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →·AC →|AB →||AC →|=12,则△ABC 是( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________.【答案】 -614.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.【答案】 -315.已知向量a =(1,-1),b =(6,-4).若a ⊥(t a +b ),则实数t 的值为________.【答案】 -516.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.【答案】 12 -16三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)不共线向量a ,b 的夹角为小于120°的角,且|a|=1,|b|=2,已知向量c =a +2b ,求|c|的取值范围.【解】 |c|2=|a +2b|2=|a|2+4a·b +4|b|2=17+8cos θ(其中θ为a 与b 的夹角).因为0°<θ<120°,所以-12<cos θ<1,所以13<|c|<5,所以|c |的取值范围为(13,5).18.(本小题满分12分)设OA →=(2,-1),OB →=(3,0),OC →=(m,3).(1)当m =8时,将OC →用OA →和OB →表示; (2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件.【解】 (1)m =8时,OC →=(8,3),设OC →=λ1OA →+λ2OB →,∴(8,3)=λ1(2,-1)+λ2(3,0)=(2λ1+3λ2,-λ1),∴⎩⎨⎧ 2λ1+3λ2=8,-λ1=3,解得⎩⎪⎨⎪⎧ λ1=-3,λ2=143,∴OC →=-3OA →+143OB →. (2)若A ,B ,C 三点能构成三角形,则有AB →与AC →不共线,又AB →=OB →-OA →=(3,0)-(2,-1)=(1,1),AC →=OC →-OA →=(m,3)-(2,-1)=(m -2,4),则有1×4-(m -2)×1≠0,∴m ≠6.19.(本小题满分12分)设i ,j 是平面直角坐标系中x 轴和y 轴正方向上的单位向量,AB →=4i -2j ,AC →=7i +4j ,AD →=3i +6j ,求四边形ABCD 的面积.【解】 因为AB →·AD →=(4i -2j )·(3i +6j )=3×4-2×6=0,所以AB →⊥AD →.又因为AC →=7i +4j =4i -2j +3i +6j =AB →+AD →,所以四边形ABCD 为平行四边形,又AB →⊥AD →,所以四边形ABCD 为矩形,所以S 四边形ABCD =|AB →|×|AD →|=16+4×9+36=30.20.(本小题满分12分)已知a ,b ,c 在同一平面内,且a =(1,2).(1)若|c |=25,且c ∥a ,求c ; (2)若|b |=52,且(a +2b )⊥(2a -b ),求a 与b 的夹角. 【解】 (1)∵c ∥a ,∴设c =λa ,则c =(λ,2λ).又|c |=25,∴λ=±2,∴c =(2,4)或(-2,-4).(2)∵(a +2b )⊥(2a -b ),∴(a +2b )·(2a -b )=0.∵|a |=5,|b |=52,∴a ·b =-52,∴cos θ=a ·b |a ||b |=-1,又θ∈[0°,180°],∴θ=180°.21.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.【解】 (1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎨⎧cos α+cos β=0, ①sin α+sin β=1, ②由①得,cos α=cos(π-β),由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.22.(本小题满分12分)已知⊙O 的直径为10,AB 是⊙O 的一条直径,长为20的线段MN 的中点P 在⊙O 上运动(异于A ,B 两点).(1)求证:AM →·BN →与点P 在⊙O 上的位置无关;(2)当MN →与AB →的夹角θ取何值时,AM →·BN →有最大值?【解】 (1)证明:∵AB 为⊙O 的直径,P 为圆上一点,∴AP ⊥BP ,∴AP →⊥BP →,即AP →·BP →=0.∵P 为MN 的中点,且|MN →|=20,∴MP →=PN →,|MP →|=|PN →|=10,∴AM →·BN →=(AP →+PM →)·(BP →+PN →)=(AP →-PN →)·(BP →+PN →)=AP →·BP →+AP →·PN →-PN →·BP →-PN →·PN →=PN →·(AP →-BP →)-100=12MN →·AB →-100,∴AM →·BN →仅与MN →,AB →的夹角有关,而与点P 在⊙O 上的位置无关.(2)由(1)得,AM →·BN →=12MN →·AB →-100=100cos θ-100. ∵0≤θ≤π,∴当θ=0时,AM →·BN →取得最大值0.。

高一数学必修2测试题及答案教学内容

高一数学必修2测试题及答案教学内容

( 19)(本小题满分 12 分)
A
证明:取 CD 的中点 E ,连结 AE, BE ,
Q AC AD , BC BD
∴ AE CD , BE CD …………………4 分…
B
Q AE 面 ABE , BE 面 ABE, AE I BE E
∴ CD 面 ABE ………………………8 …分…
D
E C
又 AB 面 ABE
∵ OE 平面 BDE , PA 平面 BDE ,……………………………4…分……
∴ PA ∥平面 BDE .…………………………………………………6 分……………
(Ⅱ) ∵ PO 底面 ABCD ,
∴ PO BD ,………………………………………………………8 …分……………
又∵ AC BD ,且 AC I PO O
∴ BD 平面 PAC ,而 BD 平面 BDE ,……………………………1…0 分……
∴平面 PAC 平面 BDE .…………………………………………1…2…分………
( 22)(本小题满分 14 分)
收集于网络,如有侵权请联系管理员删除
精品文档
解:(Ⅰ) Q OP OQ , CP CQ
OC 垂直平分线段 PQ .
设 P(x1, y1 ), Q( x2, y2 ) ,由
y kx 1 (x 2) 2 ( y 1)2
消去 y 整理得 (1 k2 ) x 2
5
4x 1 0
4 x1 x2 1 k2 , x1x2
1 1 k2
Q P,Q在 y kx 1上 , y1 kx1 1,y2 kx2 1. ………………………………7 …分……
0) 为圆心的圆经过坐标原点 O ,直线

高一数学必修2第一二章测试题

高一数学必修2第一二章测试题

数 学 试 题出题人:潘俊峰 审题人:秦学权试卷满分:150分 考试时间:120分钟一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选择一个符合题目要求的选项.)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是A 12l l ⊥,23l l ⊥13//l l ⇒B 12l l ⊥,23//l l ⇒13l l ⊥C 233////l l l ⇒1l ,2l ,3l 共面D 1l ,2l ,3l 共点⇒1l ,2l ,3l 共面3、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角 4、若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是A 、l ∥aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点 5、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、46、 已知直二面角l αβ--,点A ∈α,AC l ⊥,C 为垂足,点B ∈β,BD l ⊥,D 为垂足.若AB =2,AC =BD =1,则CD =A 2 BCD 17、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 A 、23 B 、76 C 、45D 、568、 某程序框图如图所示,该程序运行后输出的k 的值是( ) A .4 B .5 C .6 D .79 、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于 A 、34B 、35C 、7 D 、37710、某四棱锥的三视图如图所示,该四棱锥的表面积是A .32B .16+162C .48D .16+322二、填空题(本大题共5小题,每小题5分,共25分。

人教A版高一数学必修第二册全册复习测试题卷含答案解析(54)

人教A版高一数学必修第二册全册复习测试题卷含答案解析(54)

高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.已知一家便利店从1月份至5月份的营业收入与成本支出的折线图如下:关于该便利店1月份至5月份的下列描述中,正确的是( )A.各月的利润保持不变B.各月的利润随营业收入的增加而增加C.各月的利润随成本支出的增加而增加D.各月的营业收入与成本支出呈正相关关系2.设i是虚数单位,如果复数(a+1)+(−a+7)i(a∈R)的实部与虚部相等,那么实数a的值为( )A.4B.3C.2D.13.关于频率分布直方图中小长方形的高的说法,正确的是( )A.表示该组上的个体在样本中出现的频率B.表示取某数的频率C.表示该组上的个体数与组距的比值D.表示该组上的个体在样本中出现的频率与组距的比值4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000)内的频率为( )A.0.001B.0.1C.0.2D.0.35. 如果一组数据“x 1,x 2,x 3,x 4,x 5”的平均数是 2,方差是 13,那么另一组数据“3x 1−2,3x 2−2,3x 3−2,3x 4−2,3x 5−2”的平均数和方差分别为 ( ) A . 2,13B . 2,1C . 4,23D . 4,36. 在 △ABC 中,∠BAC =π2,AB =AC =2,P 为 △ABC 所在平面上任意一点,则 PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) 的最小值为 ( ) A . 1B . −12C . −1D . −27. 已知互相垂直的平面 α,β 交于直线 l ,若直线 m ,n 满足 m ∥α,n ⊥β,则 ( ) A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n8. 复数 i (2−i )= ( ) A . 1+2iB . 1−2iC . −1+2iD . −1−2i9. 若复数 z 满足 z (1+i )=2i ,其中 i 为虚数单位,则 z = ( ) A . 1−iB . 1+iC . −1+iD . −1−i10. 在 △ABC 中,B =30∘,AB =2√3,AC =2,则 △ABC 的面积是 ( )A . √3B . 2√3C . √3 或 2√3D . 2√3 或 4√3二、填空题(共6题) 11. 思考辨析,判断正误.在 △ABC 中,已知两边及夹角时,△ABC 不一定唯一.( )12. 根据党中央关于“精准脱贫”的要求,某市农业经济部门派甲、乙、丙 3 位专家对 A ,B 两个区进行调研,每个区至少派 1 位专家,则甲、乙两位专家均派遣至 A 区的概率为 .13. 已知向量 a =(2,1),b ⃗ =(−1,x ),若 (a +b ⃗ )∥(a −b ⃗ ),则实数 x 的值为 .14. 半径为 3 的球体表面积为 .15. 平面与平面垂直的性质定理:文字语言:两个平面垂直,如果一个平面内有一直线垂直于这两个平面的 ,那么这条直线与另一个平面 .符号语言:α⊥β,α∩β=l,,⇒a⊥β.图形语言:16.若复数z=2+i,其中i为虚数单位,则z在复平面内对应点的坐标为.1−2i三、解答题(共6题)17.已知圆柱的底面直径与高都等于球的直径.求证:(1) 球的表面积等于圆柱的侧面积;.(2) 球的表面积等于圆柱全面积的2318.在静水中划船的速度的大小是每分钟40m,水流速度的大小是每分钟20m,如果一小船从岸边某处出发,沿着垂直于水流的方向到达对岸,则小船的行进方向应指向哪里?19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2+c2−a2=2bcsin(B+C).(1) 求角A的大小;,求△ABC的面积.(2) 若a=2,B=π320.应用面面平行判断定理应具备哪些条件?21.在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天然气的开支情况,从11月15日起,小强连续八天每天晚上记录了天然气表显示的读数,如下表(注:天然气表上先后两次显示的读数之差就是这段时间内使用天然气的数量):日期15日16日17日18日19日20日21日22日小强的天然气表显示读数(单位:m3)220229241249259270279290妈妈11月15日买了一张面值600元的天然气使用卡,已知每立方米天然气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?22.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1) 结合平均数和方差分析谁更优秀;(2) 结合平均数和中位数分析谁的成绩好些;(3) 结合平均数和命中9环及以上的次数分析谁的成绩好些;(4) 从折线图上两人射击命中环数的走势分析谁更有潜力.答案一、选择题(共10题) 1. 【答案】D【知识点】频率分布直方图2. 【答案】B【解析】由题意得 a +1=−a +7,则 a =3.故选B . 【知识点】复数的乘除运算3. 【答案】D【解析】频率分布直方图中小长方形的高是 频率组距,面积表示频率.【知识点】频率分布直方图4. 【答案】D【知识点】频率分布直方图5. 【答案】D【知识点】样本数据的数字特征6. 【答案】C【解析】如图,以直线 AB ,AC 分别为 x ,y 轴建立平面直角坐标系, 则 A (0,0),B (2,0),C (0,2),设 P (x,y ),则 PA⃗⃗⃗⃗⃗ =(−x,−y ),PB ⃗⃗⃗⃗⃗ =(2−x,−y ),PC ⃗⃗⃗⃗⃗ =(−x,2−y ),PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =(2−2x,2−2y ), 所以PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=−x (2−2x )−y (2−2y )=2x 2−2x +2y 2−2y =2(x −12)2+2(y −12)2−1,当 x =12,y =12 时,PA ⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ ) 取得最小值,为 −1. 故选C .【知识点】平面向量数量积的坐标运算7. 【答案】C【解析】由题意知α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.【知识点】直线与直线的位置关系、点、线、面的位置关系8. 【答案】A【解析】i(2−i)=1+2i.【知识点】复数的乘除运算9. 【答案】B【解析】因为复数z满足z(1+i)=2i,所以z=2i1+i=1+i.【知识点】复数的乘除运算10. 【答案】C【解析】由AB=2√3,AC=2,B=30∘及正弦定理ACsinB =ABsinC得sinC=ABsinBAC=2√3×122=√32.由C为三角形的内角可知C=60∘或120∘.因此A=90∘或30∘.在△ABC中,由AB=2√3,AC=2,A=90∘或30∘,得面积S=12AC⋅AB⋅sinA=2√3或√3.【知识点】正弦定理二、填空题(共6题)11. 【答案】×【知识点】余弦定理12. 【答案】16【解析】该试验所有的样本点为(甲,乙丙),(乙,甲丙),(丙,甲乙),(甲乙,丙),(甲丙,乙),(乙丙,甲)(其中每个样本点表示的都是“派往A区调研的专家、派往B区调研的专家”),共6个,其中甲、乙两位专家均被派遣至 A 区的样本点有 1 个,因此,所求事件的概率为 16. 【知识点】古典概型13. 【答案】 −12【解析】因为 a =(2,1),b⃗ =(−1,x ), 所以 a +b ⃗ =(1,x +1),a −b ⃗ =(3,1−x ), 又 (a +b ⃗ )∥(a −b⃗ ), 所以 1−x −3(x +1)=0, 解得 x =−12.【知识点】平面向量数乘的坐标运算14. 【答案】 36π【知识点】球的表面积与体积15. 【答案】交线;垂直; a ⊂α ; a ⊥l【知识点】平面与平面垂直关系的性质16. 【答案】 (0,1)【知识点】复数的几何意义、复数的乘除运算三、解答题(共6题) 17. 【答案】(1) 略. (2) 略.【知识点】圆柱的表面积与体积、球的表面积与体积18. 【答案】如图所示,设向量 OA⃗⃗⃗⃗⃗ 的长度和方向表示水流速度的大小和方向,向量 OB ⃗⃗⃗⃗⃗ 的长度和方向表示船在静水中速度的大小和方向,以 OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 为邻边作平行四边形 OACB ,连接 OC . 依题意得 OC ⃗⃗⃗⃗⃗ ⊥OA ⃗⃗⃗⃗⃗ ,∣∣BC ⃗⃗⃗⃗⃗ ∣∣=∣∣OA ⃗⃗⃗⃗⃗ ∣∣=20,∣∣OB ⃗⃗⃗⃗⃗ ∣∣=40,所以 ∠BOC =30∘.故船应向上游且与河岸夹角为 60∘ 的方向行进. 【知识点】平面向量的实际应用问题19. 【答案】(1) 因为 A +B +C =π, 所以 sin (B +C )=sinA , 所以 b 2+c 2−a 2=2bcsinA ,所以b 2+c 2−a 22bc=sinA ,由余弦定理得 cosA =sinA ,可得 tanA =1, 又因为 A ∈(0,π), 所以 A =π4.(2) 根据正弦定理得 b =a sinA ⋅sinB =√6,又 sinC =sin (A +B )=sin (π4+π3)=√6+√24, 所以S △ABC =12absinC =12⋅2⋅√6⋅√6+√24=3+√32.【知识点】余弦定理、正弦定理20. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定21. 【答案】 300×1.70<600,够用.【知识点】样本数据的数字特征22. 【答案】(1) 根据题意作出统计表:平均数方差中位数命中9环及以上次数甲7 1.271乙75.47.53因为平均数相同,且 s 甲2<s 乙2,所以甲的成绩比乙稳定,甲更优秀.(2) 因为平均数相同,甲的中位数 < 乙的中位数, 所以乙的成绩比甲好.(3) 因为平均数相同,且乙命中 9 环及以上的次数比甲多, 所以乙的成绩比甲好.(4) 因为甲的成绩在平均线附近波动,而乙的成绩整体处于上升趋势,从第 4 次开始射靶的环数没有比甲少的情况发生, 所以乙更有潜力.【知识点】样本数据的数字特征。

高一数学必修一必修二综合测试题(有答案)

高一数学必修一必修二综合测试题(有答案)

高一数学《必修1》《必修2》综合测试题一、选择题(共12小题;每小题5分,共60分)1. 已知全集R U =,集合}32{≤≤-=x x A ,}41{>-<=x x x B 或,则()B C A U ⋃( )A.{}42≤≤-x xB.}43{≥≤x x x 或C.}12{-<≤-x xD.}31{≤≤-x x2. 过点(1,0)且与直线x -2y -2=0垂直的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .74. 已知圆C :x 2:y 2:4y :0,直线l 过点P (0,1),则 ( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D. 以上三个选项均有可能5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA.π2B.38πC.π3D. 310π6. 已知,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若直线2x y -=被圆22()4x a y -+=所截得的弦长为22,则实数a 的值为( ) A. 0或4 B. 1或3 C. 2-或6 D. 1-或3 8. 在三棱柱ABC­A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 9. 若幂函数)(x f y =是经过点)33,3(,则此函数在定义域上是 ( ) A .偶函数 B .奇函数 C .增函数 D .减函数 10. 一个多面体的三视图如图所示,则该多面体的表面积为 A.321+ B.318+ C.18 D.21 11.若定义在R 上的偶函数()x f 满足)()2(x f x f =+,且当[]1,0∈x 时,x x f y x x f 3log )(,)(-==则函数的零点个数是( ) A .6个 B .4个 C .3个 D .2个 12. 已知A(3,1),B(-1,2),若:ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( ) A .y =2x +4 B .y =12x -3 C .x -2y -1=0 D .3x +y +1=001,1a b <<<-x y a b =+二、填空题(共4小题,每小题5分,共20分)13. 若直线1x y +=与圆222(0)x y r r +=>相切,则实数r 的值等于________.14. 在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为________.15. 函数ax x y 22--=()10≤≤x 的最大值是2a ,则实数a 的取值范围是________ .16.若圆C :x 2+y 2−2ax +b =0上存在两个不同的点A ,B 关于直线x −3y −2=0对称,其中b ∈N ,则圆C 的面积最大时,b = .三、解答题(共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式.18. (12分)如图,在三棱锥P ­ABC 中,PC ⊥底面ABC ,AB ⊥BC ,D ,E 分别是AB ,PB 的中点.(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB .19.(12分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程. 20.(12分)已知圆22:2240C x y mx ny ++++=,直线:10l x my -+=相交于A :B 两点. :1)若交点为(1,2)A ,求m 及n 的值. :2)若直线l 过点(2,3):60ACB ∠=︒,求22m n +的值. 21.(12分)已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=. (1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程; (2)若坐标原点O 到直线m 的距离为5,判断m 与n 的位置关系. 22.(12分)(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程. (2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.高一数学答案一、选择题(共12小题;每小题5分,共60分). 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D A B A A C D A B C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.22 14.0 15.[-1,0] 16.0三、解答题(本大题共6小题,共70分)17.解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6. .................4分(2)设x <0,则-x >0,∴f (-x )=2-x -1,∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1,.................8分∴f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥0,-2-x +1,x <0. ........................10分18. 解 (1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥PA.又因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE ∥平面PAC. .................6分(2)证明:因为PC ⊥底面ABC ,AB ⊂底面ABC ,所以PC ⊥AB.又因为AB ⊥BC ,PC ∩BC =C ,所以AB ⊥平面PBC ,又因为PB ⊂平面PBC ,所以AB ⊥PB. .................6分19.解: 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l 1,l 2之间距离为5,符合题意;.................3分若l 1,l 2的斜率均存在,设直线的斜率为k ,由斜截式方程得直线l 1的方程为y =kx +1,即kx -y +1=0,.................6分由点斜式可得直线l 2的方程为y =k (x -5),即kx -y -5k =0,在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0. .................10分 综上知,满足条件的直线方程为l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0. .......12分20.【解析】试题分析:(1)将点()1,2A 代入直线和圆方程,可解得1m =,114n =-. (2)将点()2,3代入直线方程得1m =.又由已知可判断ACB V 是等边三角形.所以有圆心到直线10x y -+=的距离233322d r n ==-,代入解得29n =,从而2210m n +=. 试题解析::1)将点()1,2A 代入直线10x my -+=:∴1210m -+=,解出1m =:再将()1,2A 代入圆2221240x y x ny ++⨯++=: ∴22122440n ++++=,解得114n =-: ∴1m =:114n =-: :2)将点()2,3代入直线10x my -+=:∴2310m -+=,解出1m =:又∵在ACB V 中,CA CB =且60ACB ∠=︒:∴ACB V 是等边三角形.∵圆()()222221230x x y ny nn ++++++-=: 即()()22213x y n n +++=-:圆心()1,n --,半径23r n =-:其中圆心到直线10x y -+=的距离222113332211n d r n -++===-+: 代入解出29n =:∴2210m n +=:21.(12分)【详解】试题分析:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得m 与n 的交点为(-21,-9),当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-,解得所求直线方程(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-,分情况根据斜率关系判断两直线的位置关系;试题解析:解:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得21,9,x y =-⎧⎨=-⎩即m 与n 的交点为(-21,-9). 当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-, 所以直线l 的方程为120x y -+=,故满足条件的直线l 方程为370x y -=或120x y -+=.(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-, 当14a =-时,直线m 的方程为250x y --=,此时//m n ; 当73a =-时,直线m 的方程为250x y +-=,此时m n ⊥.22.解: (1)设圆C 的方程为(x -a )2+(y -b )2=r 2.∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25, ∴|2a +b +15|22+1=r =25,即|2a +b +15|=10①|2a +b -5|22+1=r =25,即|2a +b -5|=10② 又∵过圆心和切点的直线与过切点的切线垂直,∴b -1a -2=12③ 由①②③解得⎩⎨⎧ a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20.(2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。

人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

高一数学必修第二册全册复习测试题卷11(共22题)一、选择题(共10题)1. △ABC 中,若 a =1,c =2,B =60∘,则 △ABC 的面积为 ( ) A . 12B . 1C .√32D . √32. 若书架中放有中文书 5 本,英文书 3 本,日文书 2 本,则抽出一本书为外文书的概率为 ( ) A . 15B . 310C . 25D . 123. 若 θ 为两个非零向量的夹角,则 θ 的取值范围为 ( ) A .(0,π) B .(0,π] C .[0,π) D .[0,π]4. 从一箱产品中随机地抽取一件,设事件 A = { 抽到一等品 },事件 B = { 抽到二等品 },事件 C = { 抽到三等品 } ,且已知 P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的是二等品或三等品”的概率为 ( ) A .0.7 B .0.65 C .0.35 D .0.35. 下列关于古典概型的说法中正确的是 ( ) ①试验中所有可能出现的样本点只有有限个; ②每个事件出现的可能性相等; ③每个样本点出现的可能性相等;④若样本点总数为 n ,随机事件 A 包含其中的 k 个样本点,则 P (A )=kn . A .②④ B .③④ C .①④ D .①③④6. 给定一组数据:102,100,103,104,101,这组数据的第 60 百分位数是 ( ) A . 102 B . 102.5 C . 103 D . 103.57. 为比较甲、乙两地某月 14 时的气温情况,随机选取该月中的 5 天,这 5 天中 14 时的气温数据(单位:∘C )如下:甲:2628293131乙:2829303132以下结论:①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温; ②甲地该月 14 时的平均气温高于乙地该月 14 时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据数据能得到的统计结论的编号为( )A.①③B.①④C.②③D.②④8.下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定9.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α10.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π二、填空题(共6题)11.一家保险公司想了解汽车的挡风玻璃在一年时间里破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率约为.12.思考辨析 判断正误.( )做100次拋硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是5110013.若空间两个角的两条边分别平行,则这两个角的大小关系是.14.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B对应的复数分别是z1,=.z2,则z2z115.平均数:如果n个数x1,x2,⋯,x n,那么x=叫做这n个数的平均数.16.思考辨析判断正误为了更清楚地反映学生在这学期多次考试中数学成绩情况,可以选用折线统计图.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.小明是班里的优秀学生,他的历次数学成绩是96,98,95,93,45分,最近一次考试成绩只有45分的原因是他带病参加了考试.期末评价时,怎样给小明评价(90分及90分以上为优秀,75∼90分为良好)?19.类比绝对值∣x−x0∣的几何意义,∣z−z0∣(z,z0∈C)的几何意义是什么?20.如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,∠ACB=90∘,PA=AC=2BC.(1) 若PA⊥PB,求证:平面PAB⊥平面PBC;(2) 若PA与平面ABC所成角的大小为60∘,求二面角C−PB−A的余弦值.21.应用面面平行判断定理应具备哪些条件?22.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.答案一、选择题(共10题) 1. 【答案】C【解析】由题得 △ABC 的面积 S =12AB ⋅BC ⋅sin60∘=12×2×1×√32=√32. 【知识点】三角形的面积公式2. 【答案】D【解析】在 10 本书中,中文书 5 本,外文书为 3+2=5 本,由古典概型,在其中抽出一本书为外文书的概率为 510,即 12. 【知识点】古典概型3. 【答案】D【知识点】平面向量的数量积与垂直4. 【答案】D【解析】由题意知事件 A 、 B 、 C 互为互斥事件,记事件 D =“抽到的是二等品或三等品”,则 P (D )=P (B ∪C )=P (B )+P (C )=0.2+0.1=0.3. 【知识点】事件的关系与运算5. 【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特征及计算公式可知①③④正确. 【知识点】古典概型6. 【答案】D【解析】 5×0.6=3,第 60 百分位数是第三与第四个数的平均数, 即103+1042=103.5.【知识点】样本数据的数字特征7. 【答案】B【解析】因为 x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以 x 甲<x 乙.又 s 甲2=9+1+0+4+45=185,s 乙2=4+1+0+1+45=2,所以 s 甲>s 乙,故由样本估计总体可知结论①④正确. 【知识点】样本数据的数字特征8. 【答案】C【解析】不可能事件的概率为 0,必然事件的概率为 1,故A 错误;频率是由试验的次数决定的,故B 错误;概率是频率的稳定值,故C 正确,D 错误. 【知识点】频率与概率9. 【答案】D【解析】点 A 在直线 l 上,表示为 A ∈l ,l 在平面 α 内,表示为 l ⊂α. 【知识点】平面的概念与基本性质10. 【答案】D【解析】因为球的半径为 r =2, 所以该球的表面积为 S =4πr 2=16π. 【知识点】球的表面积与体积二、填空题(共6题) 11. 【答案】 0.03【解析】 P =60020000=0.03.【知识点】频率与概率12. 【答案】 ×【知识点】频率与概率13. 【答案】相等或互补【知识点】直线与直线的位置关系14. 【答案】 −1−2i【解析】由题意,根据复数的表示可知z1=i,z2=2−i,所以z2z1=2−ii=(2−i)⋅(−i)i⋅(−i)=−1−2i.【知识点】复数的乘除运算、复数的几何意义15. 【答案】1n(x1+x2+⋯+x n)【知识点】样本数据的数字特征16. 【答案】√【知识点】频率分布直方图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】小明5次考试成绩从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.【知识点】样本数据的数字特征19. 【答案】∣z−z0∣(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.【知识点】复数的加减运算20. 【答案】(1) 因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC⊂平面ABC,BC⊥AC,所以BC⊥平面PAC,因为PA⊂平面PAC,所以PA⊥BC.又PA⊥PB,PB∩BC=B,所以PA⊥平面PBC,因为PA⊂平面PAB,所以平面PAB⊥平面PBC.(2) 如图,过P作PH⊥AC于点H,因为平面PAC⊥平面ABC,所以PH⊥平面ABC,所以∠PAH=60∘,不妨设PA=2,所以PH=√3,以 C 为原点,分别以 CA ,CB 所在直线为 x 轴,y 轴,以过 C 点且平行于 PH 的直线为 z 轴,建立如图所示的空间直角坐标系,则 C (0,0,0),A (2,0,0),B (0,1,0),P(1,0,√3),因此 AB⃗⃗⃗⃗⃗ =(−2,1,0),AP ⃗⃗⃗⃗⃗ =(−1,0,√3),CB ⃗⃗⃗⃗⃗ =(0,1,0),CP ⃗⃗⃗⃗⃗ =(1,0,√3). 设 n ⃗ =(x 1,y 1,z 1) 为平面 PAB 的一个法向量, 则 {n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AP⃗⃗⃗⃗⃗ =0, 即 {−2x 1+y 1=0,−x 1+√3z 1=0,令 z 1=√3,可得 n ⃗ =(3,6,√3), 设 m ⃗⃗ =(x 2,y 2,z 2) 为平面 PBC 的一个法向量, 则 {m ⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =0, 即 {y 2=0,x 2+√3z 2=0,令 z 2=√3,可得 m ⃗⃗ =(−3,0,√3), 所以 cos⟨m ⃗⃗ ,n ⃗ ⟩=4√3×2√3=−14, 易知二面角 C −PB −A 为锐角, 所以二面角 C −PB −A 的余弦值为 14.【知识点】平面与平面垂直关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定22. 【答案】(1) 取 PB 的中点 M ,连接 EM ,CM ,过点 C 作 CN ⊥AB ,垂足为 N ,如图所示. 因为 CN ⊥AB ,DA ⊥AB , 所以 CN ∥DA , 又 AB ∥CD ,所以四边形 CDAN 为矩形, 所以 CN =AD =8,DC =AN =6.在 Rt △BNC 中,BN =√BC 2−CN 2=√102−82=6, 所以 AB =12.因为 E ,M 分别为 PA ,PB 的中点, 所以 EM ∥AB 且 EM =6, 又 DC ∥AB ,且 CD =6, 所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题。

高一数学必修2第二章测试题及答案解析

高一数学必修2第二章测试题及答案解析

高一数学必修2第二章测试题及答案解析(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章单元测试题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是( ) A.相交B.平行 C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为( )A.3 B.4 C.5 D.63.已知平面α和直线l,则α内至少有一条直线与l( ) A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于( ) A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得( ) A.a?α,b?α B.a?α,b∥α⊥α,b⊥α D.a?α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为( )A.4 B.3 C.2 D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有( )A.①②B.②③C.②④D.①④B.8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a?α,b?β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A?l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.详解答案1[答案] D2[答案] C[解析] AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析] 1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l?α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析] 由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析] 对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a?α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a?α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析] 异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF?平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF?平面A1B1C1D1,所以EF ∥平面ABCD,所以④正确.8[答案] D[解析] 选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C 中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a∥β或a?β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案] C[解析] 如图所示:AB∥l∥m;AC⊥l,m∥l?AC⊥m;AB∥l?AB∥β.13[答案] α∩β=AB14[答案] 45°[解析] 如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案] 9[解析] 如下图所示,连接AC,BD,则直线AB,CD确定一个平面ACBD.∵α∥β,∴AC∥BD,则ASSB=CSSD,∴86=12SD,解得SD=9.16[答案] ①②④[解析] 如图所示,①取BD中点,E连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC?平面AEC,故AC⊥BD,故①正确.②设正方形的边长为a,则AE=CE=2 2 a.由①知∠AEC=90°是直二面角A-BD-C的平面角,且∠AEC=90°,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD 所成的角,而∠ABE=45°,所以③不正确.④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN ∥AB ,且MN =12AB =12a ,ME ∥CD ,且ME =12CD =12a ,∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a ,∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确.17[证明] (1)在正三棱柱ABC -A 1B 1C 1中, ∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1?平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.18[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3. ∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM ?平面ABCD ,∴PE ⊥AM . ∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°.1111。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修2第二章测试题
试卷满分:150分 考试时间:120分钟
班级___________ 姓名__________ 学号_________ 分数___________
第Ⅰ卷
一、选择题(每小题5分,共60分)
1、线段AB 在平面α内,则直线AB 与平面α的位置关系是
A 、A
B α⊂ B 、AB α⊄
C 、由线段AB 的长短而定
D 、以上都不对
2、下列说法正确的是
A 、三点确定一个平面
B 、四边形一定是平面图形
C 、梯形一定是平面图形
D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定
A 、平行
B 、相交
C 、异面
D 、以上都有可能 4、在正方体1111ABCD A BC D -中,下列几种说法正确的是
A 、11AC AD ⊥
B 、11D
C AB ⊥ C 、1AC 与DC 成45
角 D 、11AC 与1BC 成60
角 5、若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是
A 、l ∥a
B 、l 与a 异面
C 、l 与a 相交
D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有
A 、1
B 、2
C 、3
D 、4
7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上
C 、点P 必在平面ABC 内
D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b
a ∥
b ,则a ∥M ;③若a ⊥
c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 9、一个棱柱是正四棱柱的条件是
A 、底面是正方形,有两个侧面是矩形
B 、底面是正方形,有两个侧面垂直于底面
C 、底面是菱形,且有一个顶点处的三条棱两两垂直
D 、每个侧面都是全等矩形的四棱柱
10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是
A 、
23 B 、76 C 、4
5
D 、56
11、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为
4,那么tan θ的值等于
B 1
C 1
A 1
D 1
B A C
D
A 、、、 D 、2、如图:直三棱柱ABC —A 1
B 1
C 1的体积为V ,点P 、Q 分别在
侧棱AA 1和
12、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和
CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为
A 、
B 、
C 、
D 、、填空题(每小题4分,共
16分)
二、填空题(每小题4分,共16分)
13、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体
(填”大于、小于或等于”).
14、正方体1111ABCD A BC D -中,平面11AB
D 和平面1BC D 的位置关系为 15、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形
ABCD 一定是 .
16、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1
D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)
第Ⅱ卷
13、 小于 14、 平行 15、菱形 16、 1111AC B D 对角线与互相垂直
三、解答题(共74分,要求写出主要的证明、解答过程)
17、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.
(10分)
解:设圆台的母线长为l ,则
圆台的上底面面积为224S ππ=⋅=上
圆台的上底面面积为2525S ππ=⋅=下 所以圆台的底面面积为29S S S π=+=下上 又圆台的侧面积(25)7S l l ππ=+=侧
于是725l ππ= 即29
7
l =
为所求.
Q
P C'B'
A'
C B
A
18、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (12分)
证明:,EH FG EH ⊄ 面BCD ,FG ⊂面BCD
EH ∴ 面BCD
又EH ⊂ 面BCD ,面BCD 面ABD BD =,
EH BD ∴
19、已知ABC ∆中90ACB ∠=
,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)
证明:90ACB ∠=
B C A C ∴⊥
又SA ⊥面 S A B C ∴⊥
BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥=
AD ∴⊥面SBC
H G F
E D B
A C
S
D
C
B
A
20、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域. (12分)
解:如图,设所截等腰三角形的底边边长为xcm . 在Rt EOF 中,
1
5,2EF cm OF xcm ==,
所以
,
EO =
于是13V x =
依题意函数的定义域为{|010}x x <<
21、已知正方体1111ABCD A BC D -,
O 是底ABCD 对角线的交点. 求证:(1)11AB D ;
(2 )1
AC ⊥面11AB D . (14分)
证明:(1)连结11AC ,设11111AC B D O =
连结1AO , 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形
11AC AC ∴ 且 11AC AC = 又1,O O 分别是11,AC AC 的中点,11O C AO ∴ 且11O
C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴⊂ 面11AB
D ,1C O ⊄面11AB D
∴1C O 面11AB D
(2)1CC ⊥ 面1111A B C D 11!C C B D
∴⊥ 又1111AC B D ⊥ , 1111B D A C C
∴⊥面 1
11AC B D ⊥即 同理可证11AC AB ⊥, 又1111D B AB B =
∴1
AC ⊥面11AB D
22、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,
D 1
O
D
B
A
C 1
B 1
A 1
C
∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14
证明:∵AB ⊥平面BCD , ∴AB ⊥CD ,
∵CD ⊥BC 且AB ∩BC=B , ∴CD ⊥平面ABC. 又不论λ为何值,恒有EF ∥CD , ∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EFEF,
∴不论λ为何值恒有平面BEF ⊥平面ABC.
由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD ,
∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC=CD=1,∠BCD=90°,∠ADB=60°, ∴ 2
=AE ·AC 得
故当面BEF ⊥平面ACD.
F E
D B
A C。

相关文档
最新文档