中考数学专题复习18_二次函数及其图像
初三二次函数的图像与性质
初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。
在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。
本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。
一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。
它的图像是抛物线,并且开口的方向由$a$的正负决定。
当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。
二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。
其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。
【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。
解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。
由于$a>0$,所以抛物线开口向上。
考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。
首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。
代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。
因此,对称轴的方程为$x=\frac{3}{4}$。
接下来,我们需要计算抛物线的顶点坐标。
顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。
将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。
因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。
它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
(中考数学复习)第18讲-二次函数综合应用-课件-解析
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求h的取值范围. 解:(1)把x=0,y=2,及h=2.6代入到y=a(x-6)2+h中,
B.4 s
C.3 s
D.2 s
B
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 B
图18-1
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
4.(2013·宁波)如图18-2所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
图18-2 A.abc<0 B.2a+b<0 C.a-b-c<0 D.4ac-b2<0
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
5.某公园草坪的防护栏是由100段形状相同的抛物线组成 的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈 钢的支柱,防护栏的最高点距底部0.5 m(如图18-3所示), 则这条防护栏需要不锈钢支柱的总长度至少为 ( C )
函数图象得
∴函数关系式为y=-x+180.
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是 商场负责人,会将售价定为多少,来保证每天获得的利润最 大,最大利润是多少? 解: W=(x-100)y=(x-100)(-x+180) =-x2+280x-18 000 =-(x-140) 2+1 600, 当售价定为140元,W最大=1 600. ∴售价定为140元/件时,每天最大利润W=1 600元.
初三中考数学二次函数及其图像
y xO y xO 课时18.二次函数及其图像【课前热身】1.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 2.如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.二次函数2(1)2y x =-+的最小值是( )A.-2B.2C.-1D.1 4.二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)5. 二次函数y ax bx c =++2的图象如图所示,则下列结论正确的是( )A. a b c ><>000,,B. a b c <<>000,,C. a b c <><000,,D. a b c <>>000,,【考点链接】 1. 二次函数2()y a x h k =-+的图像和性质a >0 a <0图 象开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最值增减性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中 h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.O yx BA D CB Ao y x o y x oy x o y x4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定.【典例精析】例1 已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =++ (其中a 、h 、k 都是常数且a ≠0)形式,并画 出这个函数的图像,根据图象指出函数的对称 轴和顶点坐标.(2) 求函数的图象与x 轴的交点坐标.例2 如图,直线m x y +=和抛物线c bx x y ++=2都经过点A(1,0),B(3,2).⑴ 求m 的值和抛物线的解析式; ⑵ 求不等式m x c bx x +>++2的解集.(直接写出答案)【中考演练】1. 抛物线()22-=x y 的顶点坐标是 .2. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .3.已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .4. 函数2y ax =与(0,0)y ax b a b =+>>在同一坐标系中的大致图象是( )5. 已知函数y=x 2-2x-2的图象如图1所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是()A.-1≤x≤3 B.-3≤x≤1 C.x≥-3 D.x≤-1或x≥3 6. 二次函数c+=2(0axy+bxa)的图象如图所示,则下列结论:≠①a>0;②c>0;③b2-4a c>0,其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个(第5题)(第6题)7. 已知二次函数243=-+的图象经过点(-1,8).y ax x(1)求此二次函数的解析式;(2)根据(1x 0 1 2 3 4y(3。
2020中考数学 函数复习:二次函数及其图像(含答案)
2020中考数学函数复习:二次函数及其图像(含答案)一、选择题1.抛物线(是常数)的顶点坐标是()A.B.C.D.2.根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()x …-1 0 1 2 …y …-1 -2 …A.只有一个交点B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点3.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()4.二次函数的图象如图2所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是()A.B.C.D.不能确定22()y x m n=++m n,()m n,()m n-,()m n-,()m n--,cbxaxy++=247-47-cbxaxy++=221yy<21yy=21yy>B.C.D.1111xoyyo xyo xxoy5.将函数的图象向右平移a 个单位,得到函数的图象,则a 的值为 A .1 B .2C .3D .46.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A . B .C. D .7.把二次函数用配方法化成的形式A. B. C. D. 8.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s二、填空题1.若把代数式化为的形式,其中为常数,则=.2.已知二次函数的图象经过原点及点(,),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 3.抛物线的顶点坐标为__________.4.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.5.抛物线的图象如图所示, 则此抛物线的解析式为 .2y x x =+(0)a >232y x x =-+22y x x =+-x y 22y x x =--+22y x x =-+-22y x x =-++22y x x =++3412+--=x x y ()k h x a y +-=2()22412+--=x y ()42412+-=x y ()42412++-=x y 321212+⎪⎭⎫ ⎝⎛-=x y 2120y x =223x x --()2x m k -+,m k m k +12-14-23(1)5y x =--+2y ax bx c =++x (20)-,1(0)x ,112x <<y (02),420a b c -+=0a b <<20a c +>210a b -+>2y x bx c =-++yx =16.函数取得最大值时,______. 三、解答题1.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.2.已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.(1)求点的坐标(用表示); (2)求抛物线的解析式;(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结并延长交于点,试证明:为定值.3.已知二次函数过点A (0,),B (,0),C ().(1)求此二次函数的解析式; (2)判断点M (1,)是否在直线AC 上? (3)过点M (1,)作一条直线与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.4.如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(2)(3)y x x =--x =ABC ∆90ACB ∠=︒AC BC =A C x B 3m 0m >AB y D P B D A m Q P B PQ BC E BQ AC F ()FC AC EC +2-1-5948,1212l yxQPFE DC BA O(-1,2).(1)求点B的坐标;(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.5.新星电子科技公司积极应对世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.7.如图1,已知:抛物线与轴交于两点,与轴交于点C,经过B、C两点的直线是,连结.(1)B、C两点坐标分别为B(_____,_____)、C(_____,_____),抛物线的函数关系式为______________;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.[抛物线的顶点坐标是]【参考答案】 选择题 1. B 2. B 3. C 4. C 5. B 6. C 7. D 8. C 填空题 1. -32. ,3. (1,5)4. 45. 6. 解答题1. 解:设这个二次函数的关系式为得:解得:∴这个二次函数的关系式是,即2. (1)由可知,,又△ABC 为等腰直角三角形,∴,,所以点A 的坐标是(). (2)∵ ∴,则点的坐标是(). 又抛物线顶点为,且过点、,所以可设抛物线的解析式为:,得:解得 ∴抛物线的解析式为 2y x x =+21133y x =-+223y x x =-++52(3,)B m 3OC =BC m =AC BC m ==3OA m =-3,0m -45ODA OAD ∠=∠=︒3OD OA m ==-D 0,3m -(1,0)P B D 2(1)y a x =-22(31)(01)3a m a m ⎧-=⎪⎨-=-⎪⎩14a m =⎧⎨=⎩221y x x =-+(3)过点作于点,过点作于点,设点的坐标是,则,.∵ ∴∽ ∴ 即,得 ∵ ∴∽ ∴ 即,得 又∵ ∴ 即为定值8.3. (1)设二次函数的解析式为(), 把A (0,),B (,0),C ()代入得解得 a =2 , b =0 , c =-2, ∴(2)设直线AC 的解析式为 ,把A (0,-2),C ()代入得, 解得 ,∴ 当x =1时, ∴M (1,)在直线AC 上(3)设E 点坐标为(),则直线EM 的解析式为 由 化简得,即,∴F 点的坐标为().Q QM AC ⊥M Q QN BC ⊥N Q 2(,21)x x x -+2(1)QM CN x ==-3MC QN x ==-//QM CE PQM ∆PEC ∆QM PM EC PC =2(1)12x x EC --=2(1)EC x =-//QN FC BQN ∆BFC ∆QN BN FC BC =234(1)4x x FC ---=41FC x =+4AC =444()[42(1)](22)2(1)8111FC AC EC x x x x x x +=+-=+=⋅+=+++()FC AC EC +c bx ax y ++=20a ≠2-1-5948,2092558164c a b c a b c⎧⎪=-⎪=-+⎨⎪⎪=++⎩222y x =-(0)y kx b k =+≠5948,29584b k b =-⎧⎪⎨=+⎪⎩522k b ==-,522y x =-511222y =⨯-=121322--,4536y x =-2453622y x y x ⎧=-⎪⎨⎪=-⎩2472036x x --=17()(2)023x x +-=713618,第3题过E 点作EH ⊥x 轴于H ,则H 的坐标为(). ∴ ∴,类似地可得 , , ∴,∴△BEF 是直角三角形.4. 解:(1)过点A 作AF ⊥x 轴,垂足为点F ,过点B 作BE ⊥x 轴,垂足为点E , 则AF =2,OF =1.∵OA ⊥OB ,∴∠AOF+∠BOE =90°. 又 ∵∠BOE+∠OBE =90°, ∴∠AOF =∠OBE . ∴Rt △AFO ∽Rt △OEB . ∴. ∴BE =2,OE =4. ∴B(4,2).(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax 2+bx+c . ∴解之,得∴所求抛物线的表达式为. (3)由题意,知AB ∥x 轴.设抛物线上符合条件的点P 到AB 的距离为d ,102-,3122EH BH ==,2223110()()224BE =+=22213131690845()()186324162BF =+==222401025001250()()186324162EF =+==2221084512504162162BE BF EF +=+==2===OAOBAF OE OF BE ⎪⎩⎪⎨⎧==++=+-.0,2416,2c c b a c b a ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.0,23,21c b a x x y 23212-=则S △ABP =. ∴d =2.∴点P 的纵坐标只能是0或4. 令y =0,得,解之,得x =0,或x =3. ∴符合条件的点P 1(0,0),P 2(3,0). 令y =4,得,解之,得. ∴符合条件的点P 3(,4),P 4(,4). ∴综上,符合题意的点有四个: P 1(0,0),P 2(3,0),P 3(,4),P 4(,4). (评卷时,无P 1(0,0)不扣分) 5.解:(1)当时,线段O A 的函数关系式为;当时,由于曲线AB 所在抛物线的顶点为A (4,-40),设其解析式为在中,令x=10,得;∴B (10,320)∵B (10,320)在该抛物线上 ∴解得∴当时,=综上可知,(2) 当时, 当时,当时,AF AB d AB ⋅=⋅2121023212=-x x 423212=-x x 2413±=x 2413-2413+2413-2413+(3) 10月份该公司所获得的利润最多,最多利润是110万元.6. 解:(1)根据题意得解得.所求一次函数的表达式为.(2),抛物线的开口向下,当时,随的增大而增大,而,当时,.当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由,得,整理得,,解得,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而,所以,销售单价的范围是.7. (1)(4,0),..(2)是直角三角形.证明:令,则...解法一:..是直角三角形.解法二:,..,.即.是直角三角形.(3)能.当矩形两个顶点在上时,如图1,交于.,..解法一:设,则,,.=.当时,最大..,.,.解法二:设,则..当时,最大..,.,.当矩形一个顶点在上时,与重合,如图2,,..解法一:设,,.=.当时,最大.,.解法二:设,,,,..=∴当时,最大,..∴综上所述:当矩形两个顶点在上时,坐标分别为,(2,0);当矩形一个顶点在上时,坐标为。
中考数学复习之二次函数的图像与性质,考点过关与基础练习题
18. 二次函数的应用➢ 知识过关1.二次函数)0(2≠++=a c bx ax y 图像与系数a 、b 、c 的关系(1) 如果抛物线)0(2≠++=a c bx ax y 与x 轴有两个交点,则一元二次方程02=++c bx ax 有两个_____实数根.(2) 如果抛物线)0(2≠++=a c bx ax y 与x 轴只有1个交点,则一元二次方程02=++c bx ax 有两个_____实数根.(3) 如果抛物线)0(2≠++=a c bx ax y 与x 轴无交点,则一元二次方程02=++c bx ax 没有实数根.3. 二次函数与一次交点一次函数)0(≠+=k n kx y 的图像L 与二次函数)0(2≠++=a c bx ax y 的图像G 的交点,由方程nkx y cbx ax y +=++=2{的解的个数确定 (1)方程组有两组不同的解⇔L 与G 有______交点; (2)方程组只有一组解⇔L 与G 只有______交点; (3)方程组无解⇔L 与G_______交点. 4. 二次函数的实际应用建立二次函数模型—求出二次函数解析式—结合函数解析式—解答问题.➢ 考点分类考点1 二次函数图像与系数的关系例1二次函数的图像如图所示,现有下列结论:①042>-ac b ;①a>0;①b>0;①c>0; ①039<++c b a ,则其中结论正确的有( ) A.2个 B.3个 C.4个 D.5个考点2二次函数的实际应用例2某文具店购进一批纪念册,线本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系;当销售单价为22元时,销量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获昨的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?考点3二次函数的综合应用例3如图所示,直线与抛物线相交于点A 和点B ,点P 是线段AB 上异于A 、B 的动点,过点P 作PC①x 轴于点C ,交抛物线于点D. (1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PD 的长有最大值,若存在,求出这个最大值;若不存在,说明理由;(3)当①PAD 为直角三角形时,求点P 的坐标.➢真题演练1.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.2.函数y=|ax2+bx+c|(a>0,b2﹣4ac>0)的图象是由函数y=ax2+bx+c(a>0,b2﹣4ac >0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是()①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.A.①②B.①③C.②③④D.①③④3.如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1B.2C.3D.46.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=−12,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x 的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③7.如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.8.公园草坪上,自动浇水喷头喷出的水线呈一条抛物线,水线上水珠的离地高度y(米)关于水珠与喷头的水平距离x(米)的函数解折武是y=−13x2+43x(0≤x≤4).那么水珠的最大离地高度是米.9.东方商厦将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价元.10.中国跳水队被称为“梦之队”,跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的抛物线.已知跳板AB长为1米,距水面的高OA为3米,C 为入水点,训练时跳水曲线在离起跳点B水平距离1米时达到距水面最大高度k米,分别以OC、OA所在直线为横轴和纵轴,点O为坐标原点建立平面直角坐标系.若跳水运动员在入水时点C与点O的距离在3.5米至4米(含3.5米和4米)才能达到训练要求,则k的取值范围是.11.随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?12.在新农村建设过程中,渣濑湾村采用“花”元素打造了一座花都村庄.如图,一农户用长为25m 的篱笆,一面利用墙,围成有两个小门且中间隔有一道篱笆的长方形花圃.已知小门宽为1m ,设花圃的宽AB 为x (m ),面积为S (m 2). (1)求S 关于x 的函数表达式.(2)如果要围成面积为54m 2的花圃,AB 的长为多少米?(3)若墙的最大长度为10m ,则能围成的花圃的最大面积为多少?并求此时AB 的长.➢ 课后练习1.已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (43,y 1)、C (13,y 2)、D (−13,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .42.已知抛物线y =12x 2﹣bx +c ,当x =1时,y <0;当x =2时,y <0.下列判断:①b 2>2c ;②若c >1,则b >32;③已知点A (m 1,n 1),B (m 2,n 2)在抛物线y =12x 2﹣bx +c 上,当m 1<m 2<b 时,n 1>n 2;④若方程12x 2﹣bx +c =0的两实数根为x 1,x 2,则x 1+x 2>3.其中正确的有( )个. A .1 B .2 C .3 D .43.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1,①b 2﹣4ac >0②4a +c <0③当﹣3≤x ≤1时,y ≥0④若B(−52,y 1),C(−12,y 2)为函数图象上的两点,则y 1>y 2,以上结论中正确的有( )A .1个B .2个C .3个D .4个4.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (3,0),与y 轴的交点B 在(0,3)与(0,4)之间(不包括这两点),对称轴为直线x =1.下列结论:①abc <0;②43a +3b +c >0;③−43<a <−1;④若x 1,x 2(x 1<x 2)是方程ax 2+bx +c =m (m <0)的两个根,则有x 1<﹣1<3<x 2.其中正确结论的个数是( )A .1个B .2个C .3个D .4个5.如图,抛物线y =ax 2+bx +c (a >0)与x 轴交于A (﹣3,0)、B 两点,与y 轴交于点C ,点(m ﹣5,n )与点(3﹣m ,n )也在该抛物线上.下列结论:①点B 的坐标为(1,0);②方程ax 2+bx +c ﹣2=0有两个不相等的实数根;③54a +c <0;④当x =﹣t 2﹣2时,y ≥c .正确的有( )A .1个B .2个C .3个D .4个6.如图,抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且抛物线经过点(1,0),下面给出了四个结论:①abc>0;②a﹣2b+4c>0;③5a+c<b;④a﹣b=13c.其中结论正确的个数是()A.1个B.2个C.3个D.4个7.如图,物体从点A抛出,物体的高度y(m)与飞行时间t(s)近似满足函数关系式y=−1 5(t﹣3)2+5.(1)OA=m.(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t的取值范围是.8.某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+8t,无人机着陆后滑行秒才能停下来.9.图1是一个斜坡的横截面,tanα=12,斜坡顶端B与地面的距离为3米,为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A,喷头A喷出的水柱在空中走过的曲线可以看作抛物线的一部分,设喷出水柱的竖直高度为y(单位:米)(水柱的竖直高度是指水柱与地面的距离),水柱与喷头A的水平距离为x(单位:米),图2记录了y与x 的相关数据,则y与x的函数关系式为.10.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,则小球飞出s时,达到最大高度.11.开学季,福山振华量贩超市从厂家购进A、B两种型号的书包,两次购进书包的情况如表:进货批次A型书包(个)B型书包(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的书包进价各是多少元?(2)在销售过程中,A型书包因为物美价廉而更受消费者喜欢.为了增大B型书包的销售量,超市决定对B型书包进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型书包降价多少元时,每天售出B型书包的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种书包,如果每销售出一个A型书包可获利9元,售出一个B型书包可获利6元,超市决定每售出一个A型书包就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的书包在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?➢冲击A+已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求ADAB+AC的值.。
二次函数及其图象
函数的图像以y轴为对称轴。
与x轴的交点
当c=0时,函数与x轴无交点;当c>0时,函数与x轴有两 个交点;当c<0时,函数与x轴有一个交点。
CHAPTER 03
二次函数图象特征
开口方向
开口向上
当二次项系数a大于0时,函数图 像开口向上,顶点为最低点。
开口向下
当二次项系数a小于0时,函数图 像开口向下,顶点为最高点。
科技领域
图像处理
01
在计算机视觉和图像处理中,二次函数常被用于图像的缩放、
旋转和变形等操作中。
声音处理
02
在音频处理中,二次函数被用于声音的频谱分析和合成,以及
音频信号的滤波等。
航天技术
03
在航天学中,二次函数被用于描述火箭和卫星的运动轨迹,以
及太空探测器的路径规划等。
CHAPTER 06
二次函数与数学文化
CHAPTER 04
二次函数与一元二次方程
二次函数与一元二次方程的关系
01
二次函数是一元二次方程的图形 表示,一元二次方程是二次函数 的解析形式。
02
二次函数描述了一个抛物线的形 状,而一元二次方程则描述了该 抛物线与x轴的交点位置。
一元二次方程解法
公式法
使用求根公式计算一元二次方程 的解。
因式分解法
期货与期权定价
二次函数常被用于金融衍生品如 期货、期权等的定价模型中,通 过调整参数来估算未来资产价格
的不确定性。
物理领域
弹性力学
在研究材料的弹性和塑性问题时,经常使用二次函数来描述应变 和应力之间的关系。
波动方程
在物理学中,二次函数经常被用来描述波动现象,如弦的振动、电 磁波等。
第1讲 二次函数的图像及性质
第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。
2次函数ppt课件
CHAPTER 02
2次函数的解析式
一般形式
总结词
一般形式是二次函数的标准形式,包含三个系数a、b和c。
详细描述
一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。a决定了抛物线的开 口方向和开口大小,b决定了抛物线的对称轴,c是抛物线与y轴的交点。
顶点形式
总结词
顶点形式是为了更方便地找到抛物线 的顶点坐标而转化得到的。
在物理学中的应用
自由落体运动
在物理学中,自由落体运动的速度和 位移可以用二次函数表示。通过求解 这些二次函数,可以得出物体下落的 速度和位移随时间变化的规律。
弹簧振动
弹簧的振动规律也可以用二次函数表 示,通过分析这个二次函数,可以得 出弹簧振动的周期、振幅等物理量。
在经济学中的应用
收益与成本问题
在几何中的应用
求最值问题
在几何中,常常需要求解图形面积、体积等的最大值或最小值,而二次函数的最值问题正是解决这类 问题的关键。通过将几何问题转化为二次函数问题,可以方便地利用二次函数的性质求解最值。
抛物线性质
二次函数可以表示为抛物线的方程,抛物线具有对称性、开口方向等性质,这些性质在解决几何问题 中有着广泛的应用。例如,利用抛物线的对称性可以解决关于对称性的问题。
在经济学中,常常需要研究商品的销售 收益与成本之间的关系,而二次函数正 数模型,可以分析 出最佳的定价策略。
VS
供需关系
在分析市场的供需关系时,二次函数可以 用来描述供应量和需求量随价格变化的规 律。通过分析这个二次函数,可以得出市 场的均衡价格和均衡数量。
翻折变换可以改变函数的值域和定义域,将函数的最大值 和最小值进行互换。
伸缩变换
认识二次函数及其图像性质
认识二次函数及其图像性质二次函数是数学中的一类重要函数,它的表达式可以写成f(x) =ax^2 + bx + c的形式,其中a、b、c都是常数,且a ≠ 0。
在本文中,我们将探讨二次函数的性质及其图像表现。
一、二次函数的图像形状二次函数的图像是一个抛物线,其形状取决于二次项的系数a的正负。
1. 当a > 0时,抛物线开口向上,形状为向上的U型。
这种情况下,抛物线的最低点称为顶点,是函数的极值点。
2. 当a < 0时,抛物线开口向下,形状为向下的U型。
这种情况下,抛物线的最高点称为顶点。
二、二次函数的顶点及对称轴二次函数的顶点可以通过以下公式得到:x = -b / (2a),将这个值代入函数中即可得到对应的y值。
顶点坐标为(x, y)。
对称轴垂直于x轴,通过顶点。
这意味着对称轴的方程为x = -b /(2a)。
三、二次函数的零点二次函数的零点是函数与x轴相交的点,即f(x) = 0的解。
零点可以通过以下公式得到:x = (-b ± √(b^2 - 4ac)) / (2a)。
这个公式称为二次函数的根公式。
根公式中的判别式(Δ)可以用来判断二次函数的零点情况:1. 当Δ > 0时,二次函数有两个不相等的实根,即与x轴有两个交点。
2. 当Δ = 0时,二次函数有一个实根,即与x轴有一个交点。
3. 当Δ < 0时,二次函数没有实根,即不与x轴有交点。
此时,函数的取值范围都在x轴上方或下方。
四、二次函数的凹凸性二次函数的凹凸性可以通过a的正负来判断。
1. 当a > 0时,抛物线开口向上,函数是凹的。
2. 当a < 0时,抛物线开口向下,函数是凸的。
五、二次函数的图像平移二次函数的图像可以通过平移变换得到新的函数。
平移变换可以沿着x轴或y轴方向进行。
1. 沿着x轴平移:将f(x) = ax^2 + bx + c中的x替换为x - h,其中h 为平移的距离。
平移后的函数为f(x - h) = a(x - h)^2 + b(x - h) + c。
中考数学专题复习资料-二次函数
专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2+bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=-(2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c ) (4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大; 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式。
(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式 12()()y a x x x x =--专题知识回顾已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c ) 5.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0(a ≠0)的根。
抛物线y=ax 2+bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
中考数学-二次函数图像及其性质
中考数学二次函数图像【一】二次函数y ax 2 bx c 图象的画法五点绘图法:利用配方法将二次函数 y ax 2 bx c 化为顶点式y a(x h)2 k ,确定其开 口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图•一般我们选取的五点为:顶点、与y 轴的交点0, c 、以及0, c 关于对称轴对称的点2h , c 、与x 轴的交 点x i ,0, X 2,0 (若与x 轴没有交点,则取两组关于对称轴对称的点)画草图时应抓住以下几点:开口方向,对称轴,顶点,与 x 轴的交点,与y 轴的交点. 【二】二次函数y ax 2 bx c 的性质时,y 随x 的增大而增大;当x 屯时,y 随x 的增大而减小;当x 2a 【三】二次函数的图象与各项系数之间的关系 1.二次项系数a二次函数y ax 2 bx c 中,a 作为二次项系数,显然a 0 .⑴当a 0时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵当a0时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定 开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在a 0的前提下,1.当a 0时,抛物线开口向上,对称轴为2舟,顶点坐标为霜,罟当x R 时,y 随x 的增大而减小;当2ay 有最小值4ac b.4a—时,y 随x 的增大而增大;当2a上时,2a2.当a 0时,抛物线开口向下,对称轴为2a ,顶点坐标为b 4ac b 2 2a' 4ab 2a2a 时,y 有最大值4ac4a的说就是“左同右异” 总结: 3.常数项c总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a, b , c 都确定,那么这条抛物线就是唯一确定的. 【四】二次函数图象的平移 1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式y a x h 彳k ,确定其顶点坐标h , k ;⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到 h, k 处,具体平移方法如下:当 b 0时, b 0,2a当 b 0时,b 0 ,2a 当 b 0时,b 2a, 即抛物线的对称轴在y 轴左侧;即抛物线对称轴在y 轴的右侧.即抛物线的对称轴就是y 轴; 0的前提下,结论刚好与上述相反,即 b 2ab_2ab_2a 0时, 0时, 0时,总结起来,在 0,即抛物线的对称轴在y 轴右侧;0,即抛物线的对称轴就是y 轴; 0,即抛物线对称轴在y 轴的左侧.a 确定的前提下, ab 的符号的判定:对称轴xb 决定了抛物线对称轴的位置.K一在y 轴左边则ab 0,在y 轴的右侧则ab 0 ,概括2a0时, 抛物线与 y 轴的交点在x 轴上方,即抛物线与 y 轴交点的纵坐标为正; 0时, 抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0;0时, 抛物线与 y 轴的交点在x 轴下方,即抛物线与 y 轴交点的纵坐标为负.2. 平移规律在原有函数的基础上h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减” •方法二: ⑴yax 2 bx c 沿y 轴平移:向上(下)平移m 个单位,y ax 2bx c 变成y axbx c m (或 y ax bx cm )⑵yax 2 bx c 沿轴平移:向左(右)平移 m 个单位,y ax 2bx c 变成 y a(xm)2 b(x m) c (或y a(xm)2 b(x m) c )【五】二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称y ax 2 bx c 关于x 轴对称后,得到的解析式是y ax 2 bx c ;22y a x h k 关于x 轴对称后,得到的解析式是y a x h k ;2. 关于y 轴对称y ax 2 bx c 关于y 轴对称后,得到的解析式是y ax 2 bx c ;22y a x h k 关于y 轴对称后,得到的解析式是y a x h k ;3. 关于原点对称y ax 2 bx c 关于原点对称后,得到的解析式是 y ax 2 bx c ; y a x h 彳k 关于原点对称后,得到的解析式是 y a x k ;4. 关于顶点对称(即:抛物线绕顶点旋转 180°)b 2y=ax 2 » y=ax 2+ky=a(x h)2向右(h>0)【或左(h<0)】 平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位n y =a(x-h)2+k向上(k>0)【或下(k<0) 平移|k|个单位向右(h>0)【或左(*0)】平移|k|个单位向右(h>0)【或左(h<0)】 平移|k|个单位向上(k>0)【或向下(k<0)】平移|k|个单位y ax2 bx c关于顶点对称后,得到的解析式是y ax2 bx c 一 ;2a2 __________________ 2y ax h k关于顶点对称后,得到的解析式是y ax h k.5.关于点m, n对称2y a x h k关于点m, n对称后,得到的解析式是y根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.【六】二次函数图像参考:y=3(x+4) 2y=3x2a x h 2m 2n k。
二次函数及其图像
二次函数及其图像二次函数是数学中一种重要的函数类型,它的图像通常是一个开口向上或向下的抛物线。
本文将对二次函数及其图像进行详细介绍与讨论。
1. 二次函数的定义二次函数是指具有以下形式的函数:f(x) = ax^2 + bx + c,其中a、b、c为实数且a≠0。
其中,x为自变量,f(x)为因变量。
二次函数中最高次项是x的平方,这也是为什么称之为"二次"函数的原因。
2. 二次函数的图像特点二次函数的图像通常为一个抛物线。
当a>0时,图像开口向上;当a<0时,图像开口向下。
图像的形状和开口方向与a的正负有关。
3. 顶点及轴对称性对于二次函数 f(x) = ax^2 + bx + c,其顶点可以通过计算得到:x_v = -b / (2a)y_v = f(x_v)顶点的横坐标为x_v,纵坐标为y_v。
顶点是二次函数曲线的最低点(当a>0)或最高点(当a<0)。
二次函数的图像以顶点为中心具有轴对称性,即对于任意x,f(x) = f(2x - x_v)。
4. 判定开口方向根据二次函数的系数a的正负可以判断图像的开口方向。
当a>0时,图像开口向上;当a<0时,图像开口向下。
5. x轴与y轴的交点二次函数与x轴和y轴的交点可以通过方程 f(x) = 0 和 x = 0 的解得到。
当x轴交点存在时,解方程 f(x) = 0 即可得到x轴交点的横坐标;当y轴交点存在时,解方程 x = 0 即可得到y轴交点的纵坐标。
6. 对称轴对称轴是指二次函数图像的对称轴线。
它的方程可以通过公式 x = -b / (2a) 得到,x = -b / (2a) 即为对称轴的方程。
7. 纵坐标与平移对于二次函数 f(x) = ax^2 + bx + c,系数c表示了二次函数图像的纵坐标上移(当c>0)或者下移(当c<0)。
通过调整c的值,可以使得图像在纵向上发生平移。
8. 横坐标与平移对于二次函数 f(x) = ax^2 + bx + c,通过调整二次项系数a的值可以实现图像在横向上发生平移。
二次函数二次函数及其图象二次函数y=ax的图象ppt
二次函数与一元二次不等式的关系
一元二次不等式的解法
根据一元二次函数的图象和性质,可以求解一元二次不等式。
二次不等式与一次不等式的解集
通过将二次不等式转化为一元一次不等组,可以求解二次不等式的解集。
二次不等式的应用
二次不等式在生活和工作中有着广泛的应用,如时间分配、投资决策、资源分配等。
THANKS
谢谢您的观看
a小于0时,开口向下,函数在y轴左侧向上凹,右侧向下凸。
图象的对称轴和顶点坐标
对称轴为x=0 顶点坐标为(0,0)
图象的开口方向和判别式的关系
二次函数y=ax的判别式为delta=0,因此其图象的开口方向 与a的值有关。
当a大于0时,开口向上;当a小于0时,开口向下。
03
二次函数的应用
利用二次函数解决实际问题
详细描述
二次函数的单调性取决于a的取值。当a>0时,函数图像在对称轴左侧单调递减, 在对称轴右侧单调递增;当a<0时,函数图像在对称轴左侧单调递增,在对称轴 右侧单调递减。对称轴是x=-b/2a。
02
二次函数y=ax的图象
a对二次函数图象的影响
a大于0时,开口向上,函数在y轴左侧向下凹,右侧向上凸。
最值
在一定区间内,找到二次函数的最大值和最小值 。
应用
最值问题在生活和生产中有着广泛的应用,如最 大利润、最小成本等。
二次函数的极值问题极值的源自念01了解二次函数的极值,即在一定区间内,使二次函数的导数为
零的点对应的函数值。
求极值的方法
02
学习并掌握求二次函数极值的方法,如判别式法、导数法等。
极值的应用
二次函数的定义域和值域
总结词
定义域是使函数有意义的自变量的取值范围,值域是函数因变量的取值范围 。
中考数学专题《二次函数》复习课件(共54张PPT)
当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴
中考数学专题复习:二次函数图象综合应用
图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面.若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: 开口方向 00a a >⇔⎧⎨<⇔⎩向上向下,a 越大,开口越小. 对称轴 2bx a=-(或x h =). 顶点坐标(2ba-,24)4ac b a -或(h ,)k . 单调性当0a >时,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大(如图1);知识互联网思路导航题型一:二次函数图象与其解析式系数的关系二次函数图象综合应用当0a <时,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小(如图2)与坐标轴的交点① 与y 轴的交点:()0c ,; ② 与x 轴的交点:()()1200x x ,,,,其中12x x ,是方程()200ax bx c a ++=≠的两根.图象与x 轴的交点个数① 当240b ac ∆=->时,图象与x 轴有两个交点. ② 当0∆=时,图象与x 轴只有一个交点. ③ 当0∆<时,图象与x 轴没有交点.Ⅰ当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; Ⅱ当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.【引例】 二次函数2y ax bx c =++的图象如图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【解析】 由图知:图象开口向上,所以0a >;函数的对称轴02bx a=->,所以0b <;函数图象与y 轴的交点小于0,所以0c <;函数图象与x 轴有两个不同的交点,所以240b ac ->;同时12bx a=-<,所以20a b +>;1x =所对应的函数值小于0,所以0a b c ++<; 1x =-所对应的函数值大于0,所以0a b c -+>【例1】 ⑴ 二次函数2y ax bx c =++的图象如图所示,则点()a c ,在( )A .第一象限B .第二象限C .第三象限D .第四象限⑵ 二次函数c bx ax y ++=2的图象如图所示,则一次函数b ax y +=与反比例函数xcy =在同一平面直角坐标系中的大致图象为( ) 例题精讲典题精练A .B .C .D .⑶ 一次函数()0≠+=a b ax y 、二次函数bx ax y +=2和反比例函数()0≠=k xky 在同一直角坐标系中的图象如图所示,A 点的坐标为()02,-,则下列结论中,正确的是( )A .k a b +=2B .k b a +=C .0>>b aD .0>>k a【解析】 ⑴ B. ⑵ B .⑶D.【例2】 ⑴ 如图,抛物线2y ax bx c =++,OA OC =,下列关系中正确的是()A .1ac b +=B .1ab c +=C .1bc a +=D .1ac b+= )⑵ 如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,若12OB OC OA ==,则b 的值为 .【解析】 ⑴ A .提示:把()0c -,代入2y ax bx c =++即可.⑵ 12-.提示:先把B ()0c ,代入2y ax bx c =++,得1ac b =--,再把()0c ,代入()()2y a x c x c =+-即可.【例3】 ⑴ 函数2y ax bx c =++与x y =的图象如图所示,有以下结论:①ac b 42->0;②01=++c b ;③063=++c b ;④当1<x<3时,()012<c x b x +-+.其中正确的为.⑵ 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列8 个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()a b m am b +>+,(1m ≠的实数);⑥20a b += ;⑦240b ac -<,⑧22()a c b +>,其中正确的结论有( )A .2个B .3个C .4个D .5个【解析】 ⑴ ③④⑵ C .对称轴在y 轴的右边得0ab <(由开口向下得0a <,故0b >),抛物线与y 轴交于正半轴得0c >,∴0abc <,①不正确;当1x =-时,函数值为0a b c -+<,②不正确; 当2x =时,函数值420a b c ++>,③正确;其实0x =和2x =到对称轴1x =的距离相等,函数值相等得42a b c c ++=,∴2b a =-代入0a b c -+<,32bc <,即23c b <,④正确;当1x =,∵1m ≠,2max y a b c am bm c =++>++,可知⑤正确;由对称轴12ba-=得20a b +=,故⑥正确;抛物线与x 轴有两个交点,故240b ac ->,故⑦不正确;0a b c ++>,0a b c -+<,故()220a c b +-<,故⑧不正确.对于二次函数()20y ax bx c a =++>(max y 表示y 的最大值,min y 表示y 的最小值) ⑴ 若自变量x 的取值范围为全体实数,如图①,函数在顶点处2bx a=-时,取到最值. ⑵ 若2bm x n a<-≤≤,如图②,当x m =,max y y =;当x n =,min y y =. ⑶ 若2bm x n a-<≤≤,如图③,当x m =,min y y =;当x n =,max y y =. ⑷ 若m x n ≤≤,且2b m n a -≤≤,22b b n m a a +>--,如图④,当2bx a=-,min y y =; 当x n =,max y y =.【引例】 ⑴ 若x 为任意实数,求函数221y x x =-+的最小值;⑵ 若12x ≤≤,求221y x x =-+的最大值、最小值; ⑶ 若01x ≤≤,求221y x x =-+的最大值、最小值;b 思路导航例题精讲题型二:二次函数的最值⑷ 若20x -≤≤,求221y x x =-+的最大值、最小值; ⑸ 若x 为整数,求函数221y x x =-+的最小值.【解析】 ⑴ 套用求最值公式(建议教师讲配方法):当112224b x a -=-=-=⨯时,y 的最小值是24748ac b a -=. ⑵ 由图象可知:当12x ≤≤时,函数221y x x =-+单调递增,当1x =时,y 最小,且21112y =⨯-+=,当2x =时,y 最大,且222217y =⨯-+=.⑶ 由图象可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =.∵当0x =时,20011y =⨯-+=;当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.⑷ 由函数图象开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为11,当0x =时,y 取最小值为1.⑸ ∵112224b x a -=-=-=⨯,当0x =时,y 取最小值为1.【点评】 由此题我们可以得到:求二次函数2(0)y ax bx c a =++≠在给定区域内的最值,得看抛物线顶点横坐标2bx a=-是否在给定区域内.若在,则在顶点处取到一个最值,若不在,则在端点处取得最大值和最小值(其实求出端点值和顶点值,这三个值中最大的为最大值,最小的为最小值).【例4】 ⑴ 已知m 、n 、k 为非负实数,且121=+=+-n k k m ,则代数式6822+-k k 的最小值 为 .⑵ 已知实数x y ,满足2330x x y ++-=,则x y +的最大值为 .⑶当12x ≤时,二次函数223y x x =--的最小值为( ) A .4- B .154- C .12- D .12【解析】 ⑴∵m 、n 、k 为非负实数,且121=+=+-n k k m ,∴m 、n 、k 最小为0,当n =0时,k 最大为:21;∴210≤≤k ,故最小值为2.5.⑵ 4.提示:233y x x =--+,令()222314q x y x x x =+=--+=-++,当1x =-,q的最大值为4.本题属于x 为全体实数,求二次函数的最值,配方法要熟练掌握.⑶ B .提示:二次函数的对称轴为1122b x a =-=>,且抛物线的开口向上,故12x =时,y 的最小值为154-.【例5】 如图,抛物线211y ax ax =--+经过点1928P ⎛⎫- ⎪⎝⎭,,且与抛物线221y ax ax =--相交于典题精练A B ,两点.⑴ 求a 值; ⑵ 设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;⑶ 设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点()0Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C D ,两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?【解析】 ⑴ ∵点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,∴1191428a a -++=,解得12a =.⑵ 由⑴知12a =,∴抛物线2111122y x x =--+,2211122y x x =--.当2111022x x --+=时,解得12x =-,21x =.∵点M 在点N 的左边,∴2M x =-,1N x =. 当2111022x x --=时,解得31x =-,42x =. ∵点E 在点F 的左边,∴1E x =-,2F x =.∵0M F x x +=,0N E x x +=,∴点M 与点F 关于y 轴对称,点N 与点E 关于y 轴对称. ⑶ ∵102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.又21221112211122y x x y x x ⎧=--+⎪⎪⎨⎪=--⎪⎩,消y可解得12x x ==,则当0x =时,CD 的最大值为2.【例6】 ⑴ 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围⑵ 二次函数2y ax bx c =++的图象的一部分如图所示,试求a b c ++的取值范围.【解析】 ⑴ 根据二次函数图象可知0a <,又此二次函数图象经过(10),,(01), 则有0a b c ++=,1c =,得(1)b a =-+,∵0a <,据图象得对称轴在y 轴左侧,∴0b <∴()10a -+<,∴1a >-于是有10a -<<. ⑵ 由图象可知0a >.又顶点在y 轴的右侧,在x 轴的下方,则:02ba->,2404ac b a -<,∴0b <. 又∵当0x =时,1y c =-=当0y =时,1x =-,∴0a b c -+= ∴10a b =+> ∴10b -<<.∴202a b c a b c b b ++=-++=+ ∴220b -<<,即20a b c -<++<.精讲:数形结合思想在二次函数中的应用探究【探究对象】数形结合思想在二次函数中的应用 【探究过程】【探究1】数形结合思想在含参二次函数中求参数的取值范围的应用;二次函数的图像信息:⑴ 根据抛物线的开口方向判断a 的正负性.⑵ 根据抛物线的对称轴的位置判断a 与b 之间的关系. ⑶ 根据抛物线与y 轴的交点,判断c 的大小.⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性.⑸ 根据抛物线所经过的特殊点的坐标,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a-的大小.例. 2y ax bx c =++的图象如图所示.设|||||2||2|M a b c a b c a b a b =++--+++--, 则( )A .0M >B .0M =C .0M <D .不能确定M 为正,为负或为0分析:依题意得0a >,012ba<-<,∴0b <,20a b +>,20a b ->, 又当1x =时,0y a b c =++<,当1x =-时,0y a b c =-+>,故()()(2)(2)2()0M a b c a b c a b a b a b c =-++--+++--=--+<,故选C .☆【探究2】数形结合思想在求解二次函数的区间最值中的应用;(区间最值问题为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲) 区间最值分三种类型: “轴定区间定”、“轴动区间定”、“轴定区间动”;1、轴定区间定:2、轴动区间定:例.求2()22f x x ax =-+在[24],上的最大值和最小值. 分析: 先求最小值.因为()f x 的对称轴是x a =,可分以下三种情况:⑴ 当2a <时,()f x 在[24],上为增函数,所以min ()(2)64f x f a ==-; ⑵ 当24a ≤≤时,()f a 为最小值,2min ()2f x a =-;⑶ 当4a >时,()f x 在[24],上为减函数,所以min ()(4)188f x f a ==-.综上所述:2min 64, (2)()2, (24)188, (4)a a f x a a a a -<⎧⎪=-⎨⎪->⎩≤≤最大值为(2)f 与(4)f 中较大者:(2)(4)(64)(188)124f f a a a -=---=-+,(1)当3a ≥时,(2)(4)f f ≥,则max ()(2)64f x f a ==-; (2)当3a <时,(2)(4)f f <,则max ()(4)188f x f a ==-.故max 64, (3)()88, (3)a a f x a a -⎧=⎨-<⎩≥ 点评:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x a = 与区间[24],的位置关系,分三种情况讨论;最大值在端点取得时,只须比较(2)f 与 (4)f 的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两 种情况. 3、轴定区间动:例.若函数2()22f x x x =-+当1t x t +≤≤时的最小值为()g t ,求函数()g t 当[32]t ∈-,时的最值. 分析:2()(1)1f x x =-+,按直线1x =与区间[1]t t +,的不同位置关系分类讨论:若1t >,则2min ()()(1)1f x f t t ==-+;若11t t +≤≤,即01t ≤≤,则min ()(1)1f x f ==; 若11t +<,即0t <,则2min ()(1)1f x f t t =+=+.∴22(1)1(1)()1(0)1(0)t t g t t t t ⎧-+>⎪=⎨⎪+<⎩≤≤1 函数()g t 在(0)-∞,内是减函数,在[01],内是常值函数,在(1)+∞,内是增函数,又(3)(2)g g ->,故在区间[32]-,内,min ()1g t =(当01t ≤≤时取得),max ()(3)10g t g =-=.小结:(i )解此类问题时,心中要有图象;(ii )含参数问题有两种:一种是“轴变区间定”,另一种是“轴定区间变”.讨论时,要紧紧抓住对称轴与所给区间的相对位置关系,这是进行正确划分的关键.☆【探究3】数形结合思想在求解二次函数的区间根中的应用;(区间根问题同样为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲)二次方程的根其实质就是其相应二次函数的图像与x 轴交点的横坐标.因此, 可以借助于二次函数及其图像,利用数形结合的方法来研究二次方程的实根分布问题.设二次方程()002≠=++a c bx ax 的两个实根1x 、2x ()21x x <,ac b 42-=∆,方程对应的二次函数为()()02≠++=a c bx ax x f .1.当方程有一根大于m ,另一根小于m 时,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ;2.当方程两根均大于m 时,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, m ab2-,()0>m af ; 3.当方程两根均在区间()n m ,内,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, n abm <<2-,()0>m af ,()0>n af ; 4.当两根中仅有一根在区间()n m ,内,对应函数()x f 的图像有下列四种情形:方程系数所满足的充要条件: ()()0<n f m f ⋅;5.当两根在区间[]n m ,之外时:对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ,()0<n af ;6.当两根分别在区间()n m ,、()t s ,内,且s n ≤,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0>m af ,()0<n af ,()0<s af , ()0>t af .小结: 由函数图像与x 轴交点的位置写出相应的充要条件,一般考虑三个方面:①判别式ac b 42-=∆的符号;②对称轴abx 2-=的位置分布;③二次函数在实根分布界点处 函数值的符号.例.若方程01222=+-+m mx x 的两个根均大于2,求实数m 的取值范围. 分析:令()1222+-+=m mx x x f ,如图得充要条件:()()⎪⎩⎪⎨⎧-+-+=≥+-⋅-=∆20124220124422>>m m m f m m ,解得4316-≤-m .训练1. 已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A B C D【解析】 B .由a b c >>,且0a b c ++=,可得0a >, 0c <,且过()10,点,由a b c >>,且a b c ++=0,利用不等式性质,可以进一步推出下列不等关系:a b a b >>--,∴112ba -<<, ∴11224b a -<-<.另一方法:∵a b >,∴330a b ->,330a b a b c -+++>,从而得到420a b c -+>.训练2.已知二次函数()2211y kx k x =+--与x 轴交点的横坐标为1x 、2x ()12x x <,则对于下列结论:⑴ 当2x =-时,1y =;⑵ 当2x x >时,0y >;⑶ 方程()22110kx k x +--=有两个不相等的实数根1x 、2x ;⑷11x <-,21x >-;⑸21x x -=确的结论是______.(只需填写序号)【解析】 ⑴⑶⑷.当2x =-时,代入得1y =,故⑴正确;因为k 的符号不确定,故开口不确定,因此无法确定当2x x >时,0y >,故⑵不正确;联立方程()22110y kx k x y ⎧=+--⎪⎨=⎪⎩可得()22110kx k x +--=,抛物线与x 轴有两个交点,即方程()22110kx k x +--=有两个不相等的实数根.当1x =-时,y k =-,若0k >,0y k =-<,若0k <,0y k =->,故⑷正确.21x x -=.训练3. 如图所示,二次函数2(2)5y x a x a =--+-的图象交x 轴于A 和B ,交y 轴于C ,当线段AB 最短时,求线段OC 的长.【解析】 设1(A x ,0),2(B x ,0),思维拓展训练(选讲)则1x ,2x 是方程2(2)50x a x a --+-=的两根,则12AB x x =-=== 当4a =时,AB 取最小值,即最短,此时,抛物线为221y x x =--, 可求得C 的纵坐标为1-,即线段OC 的长是1.训练4. 小明为了通过描点法作出函数21y x x =-+的图象,先取自变量x 的7个值满足:213276x x x x x x d -=-==-= ,再分别算出对应的y 值,列出表1:表1:x1x 2x3x4x 5x 6x7xy1 3 7 13 21 31 43记121m y y =-,232m y y =-,343m y y =-,454m y y =-,…; 121s m m =-,232s m m =-,343s m m =-,… ⑴ 判断1s 、2s 、3s 之间关系;⑵ 若将函数“21y x x =-+”改为“2(0)y ax bx c a =++≠”,列出表2:表2:x 1x 2x 3x 4x 5x 6x 7x y1y 2y 3y 4y 5y 6y 7y其他条件不变,判断1s 、2s 、3s 之间关系,并说明理由;⑶ 小明为了通过描点法作出函数2(0)y ax bx c a =++≠的图象,列出表3: 表3: x 1x 2x 3x4x 5x 6x7x y 10 50 110 190 290 420 550由于小明的粗心,表3中有一个y 值算错了,请指出算错的y 值(直接写答案).【解析】 ⑴ 123s s s ==;⑵ 123s s s ==.证明:()()222121111112m y y a x d b x d c ax bx c adx ad bd ⎡⎤⎡⎤=-=++++-++=++⎣⎦⎣⎦()222322122m y y adx ad bd ad x d ad bd =-=++=+++()2234331222m y y adx ad bd ad x d ad bd =-=++=+++()2245441223m y y adx ad bd ad x d ad bd =-=++=+++()22212111222s m m ad x d ad bd adx ad bd ad ⎡⎤⎡⎤=-=+++-++=⎣⎦⎣⎦ 同理22322s m m ad =-=,23432s m m ad =-=. ∴123s s s ==.⑶ 表中的420改为410.题型一 二次函数图象与其解析式系数的关系 巩固练习【练习1】 ⑴ 函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的( )⑵ 二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )【解析】 ⑴ A .⑵ D .【练习2】 如图所示,二次函数2y ax bx c =++的图象开口向上,图象经点()12-,和()10,且与y 轴交于负半轴.⑴ 下列四个结论:①0a >;②0b >;③0c >;④0a b c ++=, 其中正确的结论的序号是 . ⑵给出下列四个结论:①0abc <;②20a b +>;③1a c +=;④1a >.其中正确的结论的序号是 .【解析】 ⑴图象开口向上得0a >;对称轴02ba->可得0b <;当0x =时,0y <,即0c <;由1x =时,0y =,即0a b c ++=.故①④.⑵由⑴可知0abc >;对称轴12ba-<,∴20a b +>;∵点()12-,和()10,在抛物线上,代入解析式得20a b c a b c -+=⎧⎨++=⎩两式相加得1a c +=,得1a c =-,∵0c <,∴11c ->,即1a >.A BCD复习巩固故②③④.【练习3】 如图,表示抛物线2y ax bx c =++的一部分图象,它与x轴的一个交点为A ,与y 轴交于点B .则b 的取值范围是( )A .20b -<<B .10b -<<C .102b -<< D .01b <<【解析】 B .【练习4】 二次函数()20y ax bx c a =++≠的图象大致如图所示,⑴判别a ,b ,c 和24b ac -的符号,并说明理由; ⑵如果OA OC =,求证:10ac b ++=【解析】 ⑴ 解:因为抛物线开口向上,0a >.因为抛物线与y 轴交于负半轴,0c <.又因为抛物线对称轴在y 轴的右侧,02ba->,即a ,b 异号,由0a >,得0b <. 因为抛物线与x 轴有两个交点,所以方程20ax bx c ++=有两个不相等的实根,所以其判别式240b ac ->.⑵ 证明:由于C 点坐标为()0c ,,而OA OC =,所以A 点坐标为()0c ,,把()0A c ,代入2y ax bx c =++,得20ac bc c =++. 因为0c ≠,所以10ac b ++=.题型二 二次函数的最值 巩固练习【练习5】 已知:关于x 的一元二次方程22(2)0x n m x m mn +-+-=①.⑴ 求证:方程①有两个实数根;⑵ 若10m n --=,求证方程①有一个实数根为1;⑶ 在⑵的条件下,设方程①的另一个根为a . 当2x =时,关于m 的函数1y nx am =+与()2222y x a n m x m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线l 与1y 、2y 的图象分别交于点C 、D . 当l 沿AB 由点A 平移到点B 时,求CD 的最大值.【解析】 ⑴ 证明:()()22224n m m mn n ∆=---=.∵20n ≥, ∴0∆≥. ∴方程①有两个实数根.⑵ 解:由10m n --=,得1m n -=当x =1时,等号左边212n m m mn =+-+-()121210n m m m n n m m n m =+-+-=+-+=+-=. 等号右边=0. ∴左边=右边.∴ 1x =是方程①的一个实数根.⑶ 解:由求根公式,得22m n nx -±=.x =m 或x m n =-∵ 1m n -=, ∴ a m =.当2x =时,222122(1)22y n m m m m m =+=-+=+-,22222()()42(1)24y m n m m m m n m m m m m =+--+-=+--+=--+如图,当l 沿AB 由点A 平移到点B 时,22211273363(24CD y y m m m =-=--+=-++由12y y =,得222224m m m m +-=--+解得m =-2或m =1.∴ m A =-2,m B =1.∵-2<12-<1,∴当m =12-时,CD 取得最大值274.【测试1】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断:24a b c a b c a b c b ac ++-+-、、、、、的符号.【解析】由图像可知0a >,102ba-<<,2404ac b a -<,2000a b c ⋅+⋅+<,0a b c -+=,0a b c ++>,于是20000040a b c a b c a b c b ac >><++>-+=->,,,,,.【测试2】 若01x ≤≤,求221y x x =-+的最大值、最小值;【解析】由图像可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =. ∵当0x =时,20011y =⨯-+=当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.课后测。
二次函数的图像和性质总结
二次函数的图像和性质总结二次函数(Quadratic Function)是高中数学中重要的一个部分,是指一种形式为y=ax²+bx+c(a≠0)的函数。
二次函数的图像是一条抛物线,其性质包括:开口方向、顶点、对称轴、最值、零点、增减性等。
下面将对二次函数的图像和性质进行详细总结。
一、图像特征:1.开口方向:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。
2.顶点:-对于抛物线开口向上的情况,顶点是抛物线的最低点;-对于抛物线开口向下的情况,顶点是抛物线的最高点。
3.对称轴(y轴):- 对于一般的二次函数y=ax²+bx+c,其对称轴的方程为x=-b/2a;-对于抛物线开口向上的情况,对称轴是抛物线的最低点;-对于抛物线开口向下的情况,对称轴是抛物线的最高点。
4.最值:-对于抛物线开口向上的情况,最小值为顶点的纵坐标;-对于抛物线开口向下的情况,最大值为顶点的纵坐标。
5.零点:- 零点是指二次函数y=ax²+bx+c与x轴的交点;-二次函数可能有0个、1个或2个零点;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
6.增减性:-当a>0时,抛物线开口向上,函数在对称轴两侧递增;-当a<0时,抛物线开口向下,函数在对称轴两侧递减。
二、性质总结:1.函数的解析式:- 二次函数的解析式一般形式为y=ax²+bx+c,其中a、b、c为常数,a≠0;-通过解析式可以得到函数的图像特征。
2.零点:-零点是指函数与x轴的交点;- 零点可以通过解二次方程ax²+bx+c=0来求解;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
二次函数及其图像
二次函数及其图像引言二次函数是高中数学中的重要内容之一,它在数学和实际生活中都有着广泛的应用。
本文将从二次函数的定义、性质、图像以及实际问题的应用等方面进行论述,以帮助读者更好地理解和掌握二次函数的知识。
一、二次函数的定义和性质二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c是常数,且a ≠ 0。
二次函数的定义域是全体实数集R,值域是实数集R。
1. 零点和因式分解二次函数的零点是指函数图像与x轴相交的点,即f(x) = 0的解。
根据零点的定义,我们可以得到二次函数的因式分解形式,即f(x) = a(x - x1)(x - x2),其中x1和x2是二次函数的两个零点。
2. 对称性二次函数的图像是一个抛物线,具有对称性。
具体来说,二次函数的图像关于直线x = -b/2a对称。
这个直线称为二次函数的对称轴。
对称轴将图像分为左右对称的两部分。
3. 开口方向二次函数的开口方向取决于二次项的系数a的正负。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
二、二次函数图像的绘制了解二次函数的图像特点对于解决实际问题非常重要。
下面将介绍如何绘制二次函数的图像。
1. 寻找顶点二次函数的顶点是抛物线的最高点(当a > 0时)或最低点(当a < 0时)。
顶点的横坐标可以通过求解x = -b/2a得到,纵坐标可以通过代入横坐标得到。
2. 确定开口方向根据二次项的系数a的正负,可以确定抛物线的开口方向。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
3. 确定对称轴和焦点对称轴是二次函数图像的中心线,可以通过求解x = -b/2a得到。
焦点是抛物线的焦点,可以通过求解x = -b/2a得到横坐标,再代入函数得到纵坐标。
4. 绘制图像根据顶点、对称轴、开口方向和焦点等信息,可以绘制出二次函数的图像。
可以选择几个横坐标,代入函数求得纵坐标,然后将这些点连成平滑的曲线。
2018年中考数学要考的【二次函数的概念和图像】知识点.doc
2018年中考数学要考的【二次函数的概念和图像】知
识点
要想在中考数学考试中取得好成绩必须掌握中考数学知识点,这样复习的时候才能有所侧重,为了帮助大家备考中考数学考试,下面为大家带来2018年中考数学要考的【二次函数的概念和图像】知识点,希望大家认真掌握这些内容。
1、二次函数的概念
一般地,如果,那么y叫做x 的二次函数。
叫做二次函数的一般式。
2、二次函数的图像
二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法
五点法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴
(2)求抛物线与坐标轴的交点:
当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y 轴的交点C,再找到点C的对称点D。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交
点C及对称点D。
由C、M、D三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。
2018年中考数学要考的【二次函数的概念和图像】知识点为大家带来过了,这些知识点是我们解题的关键,希望大家能够在这些内容上多下功夫,从而在中考考试中取得好的成绩。
中考数学专题复习二次函数及其图象
◆【典例精析】 例1 已知: 二次函数为 y=x -x+m, (1) 写出它的图象的开口方向, 对称轴及顶点坐标; (2)
2
m 为何值时,顶点在 x 轴上方, (3)若抛物线与 y 轴交于 A,过 A 作 AB∥x 轴交抛物线于另 一点 B,当 S△AOB=4 时,求此二次函数的解析式.
的表达式; 元,试写出利润 与销售单价 之间的关系式;销售单价定
为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于 500 元,试确定销售单价 的范围.
7.(2009 年福建漳州)如图 1,已知:抛物线
与
轴交于
两点,与
轴交于点 C,经过 B、C 两点的直线是
,连结
.
(1)B、C 两点坐标分别为 B(_____,_____)、C(_____,_____),抛物线的函数关系式 为______________; (2)判断 (3)若 的形状,并说明理由; 内部能否截出面积最大的矩形 (顶点 在 各
会用待定系数法求二次函数解析式 例 2(2009 年湖北武汉)如图, 抛物线 y ax bx 4a 经过 A(1 与x轴 , 0) 、C (0, 4) 两点,
2
交于另一点 B . (1)求抛物线的解析式; (2)已知点 D(m,m 1) 在第一象限的抛标; (3)在(2)的条件下,连接 BD ,点 P 为抛物线上一点,且 DBP 45°,求点 P 的坐 标. y
BQ 并延长交 AC 于点 F ,试证明: FC ( AC EC ) 为定值.
y
B
E Q D A O P F C
5 9 3.(20 09 年 湖 南 常 德 )已知二次函数过点 A (0, 2 ) ,B( 1 ,0) ,C( , ) . 4 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
x
课时18.二次函数及其图像
【课前热身】
1. 将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 .
2. 如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .
3.二次函数2(1)2y x =-+的最小值是( )
A.-2
B.2
C.-1
D.1 4.二次函数22(1)3y x =-+的图象的顶点坐标是( )
A.(1,3)
B.(-1,3)
C.(1,-3)
D.(-1,-3)
5. 二次函数y ax bx c =++2的图象如图所示,则下列结论正确的是( )
A. a b c ><>000,,
B. a b c <<>000,,
C. a b c <><000,,
D. a b c <>>000
,, 【考点链接】
1. 二次函数2
()y a x h k =-+的图像和性质
a >0
2. 二次函数c bx ax y ++=2
用配方法可化成()k h x a y +-=2的形式,其中h =
k = .
3. 二次函数2()y a x h k =-+的图像和2
ax y =图像的关系.
D
C
B
A
4. 二次函数c
bx
ax
y+
+
=2中c
b
a,
,的符号的确定.
【典例精析】
例1 (06遂宁)已知二次函数24
y x x
=+,
(1) 用配方法把该函数化为2
()
y a x h k
=++
(其中a、h、k都是常数且a≠0)形式,并画
出这个函数的图像,根据图象指出函数的对称
轴和顶点坐标.
(2) 求函数的图象与x轴的交点坐标.
例2 (08大连)如图,直线m
x
y+
=和抛物线c
bx
x
y+
+
=2都经过点A(1,0),B(3,
2).
⑴求m的值和抛物线的解析式;
⑵求不等式m
x
c
bx
x+
>
+
+
2的解集.
(直接写出答案)
【中考演练】
1. 抛物线()2
2
-
=x
y的顶点坐标是 .
2. 请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛
物线的解析式 .
3.已知二次函数22
y x x m
=-++的部分图象如右图所示,则关于x的一元二次方程220
x x m
-++=的解为.
4. 函数2
y ax
=与(0,0)
y ax b a b
=+>>在同一坐标系中的大致图象是()
5. 已知函数y=x2-2x-2的图象如图1所示,根据其中提供的信息,可求得使
y≥1成立的x的取值范围是()
A.-1≤x≤3 B.-3≤x≤1 C.x≥-3 D.x≤-1或x≥3
6.二次函数c
bx
ax
y+
+
=2(0
≠
a)的图象如图所示,则下列结论:
①a >0; ②c >0; ③ b 2
-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个
(第5题) (第6题) 7. 已知二次函数243y ax x =-+的图象经过点(-1,8).
(1)求此二次函数的解析式;
(2)根据(1)填写下表.在直角坐标系中描点,并画出函数的图象;
(3。