人教A版选修(22)2.3数学归纳法教学设计

合集下载

人教a版数学【选修2-2】2.3《数学归纳法》ppt课件

人教a版数学【选修2-2】2.3《数学归纳法》ppt课件

数学归纳法 温故知新 回顾复习归纳推理的定义、步骤及其所得结论的正确性如何 .

新知导学 1.数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: ①(归纳奠基)证明当n取__________________时命题成立. 第一个值n0(n0 ∈N*) ②(归纳递推)假设___________________ 时命题成立,证明当 n=k+1时命题也成立. n=k(k≥n0,k∈N*)
牛刀小试 1.用数学归纳法证明1+2+„+(2n+1)=(n+1)(2n+1)时 ,在验证n=1成立时,左边所得的代数式是( ) A.1 B.1+3 C.1+2+3 D.1+2+3+4 [答案] C [解析] 当n=1时,2n+1=2×1+1=3,所以左边为1+2+ 3.故应选C.
[ 解析 ]
自变量的取值依次为 2,4 = 22,8 = 23,16 = 24,32 =
25,„故为 2n.右边分母全为 2,分子依次为 3,4,5,6,7,„,故 n+2 n n+2 右边为 2 ,即 f(2 )> 2 .
典例探究学案
数学归纳法的基本原理及用数学归纳法证 明恒等式
1 1 1 证明: + +„+ = 1×3 3×5 2n-12n+1 n .(n∈N*) 2n+1
1 1 1 1 n 2.用数学归纳法证明1· 2+2· 3+3· 4+„+nn+1=n+1(n ∈N*),从“n=k 到 n=k+1”时,等式左边需要增添的项是 ( ) 1 A. kk+1 1 C. k k +2 1 1 B. + kk+1 k+1k+2 1 D. k+1k+2
1 1 1 127 而 1+2+4+„+ 8-1> 64 ,故应选 B. 2
1 1 1 4.(2013· 华池一中高二期中)已知 f(n)=1+2+3+„+n(n 3 5 7 ∈N ),计算得 f(2)=2,f(4)>2,f(8)>2,f(16)>3,f(32)>2,由

高一数学归纳法分析及解题步骤

高一数学归纳法分析及解题步骤

高一数学归纳法分析及解题步骤当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。

我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。

让我们一起到一起学习吧! 高一数学归纳法《2.3数学归纳法》教学设计青海湟川中学刘岩一、【教材分析】本节课选自《普通高中课程标准实验教科书数学选修2-2(人教A 版)》第二章第三节《2.3数学归纳法》。

在之前的学习中,我们已经用不完全归纳法得出了许多结论,例如某些数列的通项公式,但它们的正确性还有待证明。

因此,数学归纳法的学习是在合情推理的基础上,对归纳出来的与正整数有关的命题进行科学的证明,它将一个无穷的归纳过程转化为有限步骤的演绎过程。

通过把猜想和证明结合起来,让学生认识数学的本质,把握数学的思维。

本节课是数学归纳法的第一课时,主要让学生了解数学归纳法的原理,并能够用数学归纳法解决一些简单的与正整数有关的问题。

二、【学情分析】我校的学生基础较好,思维活跃。

学生在学习本节课新知的过程中可能存在两方面的困难:一是从骨牌游戏原理启发得到数学方法的过程有困难;二是解题中如何正确使用数学归纳法,尤其是第二步中如何使用递推关系,可能出现问题。

三、【策略分析】本节课中教师引导学生形成积极主动,勇于探究的学习精神,以及合作探究的学习方式;注重提高学生的数学思维能力;体验从实际生活理论实际应用的过程;采用教师引导学生探索相结合的教学方法,在教与学的和谐统一中,体现数学的价值,注重信息技术与数学课程的合理整合。

四、【教学目标】(1)知识与技能目标:①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤;②会用数学归纳法证明某些简单的与正整数有关的命题。

(2)过程与方法目标:努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。

最新人教版高中数学选修2.3《数学归纳法》教学设计

最新人教版高中数学选修2.3《数学归纳法》教学设计

教学设计一、教材分析1、教材的地位和作用:数学归纳法是数列知识的深入与拓展,是证明与正整数有关问题的有力工具,是高中数学的一种重要证明方法。

通过学习,能提高学生的抽象思维能力,培养学生科学探索的创新精神。

2、教学目标1)知识与技能:理解数学归纳法的原理,能用数学归纳法证明一些简单的与正整数有关的数学问题;进一步提高学生的猜想归纳能力和创新能力,体会类比、归纳的数学思想。

2)过程与方法:创设积极思考、大胆质疑的课堂情境,提高学生学习兴趣和课堂效率,通过合作探究,体会从猜想到证明的数学方法。

3)情感态度价值观:通过对数学归纳法的学习,感受到数学来源于生活而又高于生活,养成勤于思考、善于观察的学习习惯。

3、教学重难点1)教学重点:对数学归纳法产生过程的分析和对数学归纳法步骤的掌握。

2)教学难点:数学归纳法中对递推思想的理解。

二、学情分析1、学生的知识与能力储备:作为高二的学生已经学习了数列与推理证明,基本掌握了归纳推理,具备了一定的观察、归纳、猜想的能力。

2、学生可能遇到的困难:(1)学生初学时容易忽视归纳奠基的验证。

(2)学生难以理解第二个步骤的作用,尤其是为什么可以根据归纳假设进行证明,以及如何利用归纳假设证明。

三、教法分析:新课程标准指出,高中数学课应倡导自主探索,动手实践,合作交流等学习方式,应该力求通过不同形式的自主学习、探究活动,让学生体验数学发现和创造的过程,培养他们的创新意识。

结合本节课的内容,我主要采用小组合作探究的形式,创设各种问题情境,使学生带着问题去主动思考、动手操作、交流合作,帮助学生构建完善的知识结构和正确的解题思路。

四、教学过程1、 创设情境情境一::数列{}n a ,已知11=a ,n n n a a a +=+11(⋅⋅⋅=3,2,1n ),试求出4,32,,a a a 并求出{}n a 的通项。

生:回答并归纳通项na n 1= 师:根据前四项可以归纳结果,它对后续的项是否成立则需要证明,当n 比较小时可以逐一验证,当n 比较大或者证明n 取所有正整数都成立的命题时,逐一验证是不可能的,我们需要另辟心径,寻求一种方法:通过有限个步骤的推理,证明n 取所有正整数都成立。

教学设计数学归纳法

教学设计数学归纳法

归纳小结,巩固新知 ⑴数学归纳法的具体步骤 ①(归纳奠基)证明当 n 取第一个值 n0 ( n0 ∈ N * )时命
题成立。 ②(归纳递推)假设 n=k( k≥ n0 ,k ∈ N * )时命题成立, 证明当 n=k+1 时命题也成立。 只要完成这两个步骤,就可以断定命题对从 n0 开始的所有
正整数 n 都成立 上述证明方法叫数学归纳法。 ⑵数学归纳法的注意事项 : ① 数学归纳法的两个步骤缺一不可 ② 用数学归纳法进行证明时, 第一步 n0 取何值,要根据具
教学设计
课题: 数学归纳法
科目: 高中数学
教学对象:高二学生
课时: 一课时
提供者:周晓瑞
单位:山西省保德中学
一、教学内容分析
本节课是《普通高中课程标准实验教科书·数学选修 2-2 》(人教 A 版)第二章第三节
《数学归纳法》第一课时。数学归纳法对于学生来说是一个全新的方法,学习起来比较
吃力,但教学归纳法又与高考重要知识点《数列》紧密联系——都是研究与正整数
n有
关的问题。通过学习它,不仅从中可以体会证明的功能和特点,更可以培养学生严密的
逻辑思维能力
二、教学目标
知识与技能:了解数学归纳法的基本思想,掌握它的基本步骤,能运用它证明一些 与正整数 n(n 取无限多个值 ) 有关的命题。
过程与方法:通过对 盖高楼和多米诺骨牌游戏的研究、讨论,让学生体会数学归纳
2
交流,最后由
时,第一步验证 n=___ ○2 判断下面题目的证明方法是否正确,并说明理由: 求证:奇数是 2 的倍数
小组长进行 汇总结果, 向
证明:(数学归纳法)假设奇数 n 是 2 的倍数,即 n=2m( m 全班学生和
∈Z), 则后一个奇数 n+2=2m+2=2(m+1也) 是 2 的倍数。

人教版高中数学《数学归纳法》教学案例

人教版高中数学《数学归纳法》教学案例

《数学归纳法》教学案例(第一课时)一、设计思想:根据新课程标准的基本理念-----倡导积极主动、勇于探索的学习方式,设置恰当的教学情景,并通过亲自动手做实验(多米诺骨牌实验),感受事实,发现本质,提高数学的学习兴趣,体会数学推理的严谨性,发展学生的数学思维能力。

二、教材分析:本内容在选修2-2模块中的“推理与证明”这一章中,它的要求是:了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

另外,数学归纳法内容抽象,思想新颖,通过对该部分的学习,对培养学生的逻辑思维能力与创新能力,全面提高学生的数学素质有十分重要的意义.三、学情分析:学生在此之前,已了解合情推理和演绎推理,并能用归纳和类比等进行简单的推理,他们虽然知道从特殊的几个事例推出一般结论不一定合理,但对如何为什么不一定明白。

再就是数学归纳法原理的理解上有一定困难,这就要教师创设教学情景,让学生经历数学发现、实验、观察,共同交流合作,寻求解决问题的办法。

四、教学目标:(1)知识与技能:了解“归纳法”和“数学归纳法”的原理;体会用数学归纳法证明的合理性;学会用“数学归纳法”证明的“两个步骤一个结论”的书写格式;初步掌握用“数学归纳法”证明简单的恒等式的方法。

(2)过程与方法:通过列举具体事例,亲自操作并仔细观察多米诺骨牌实验,发现数学归纳法的基本原理,将感性认识上升到理性认识,类比归纳出“数学归纳法”的基本步骤。

(3)情感、态度与价值观:培养大胆猜想,严格论证的辩证思维素质,感受数学推理的严谨性,培养学生对于数学内在美的感悟能力,提高学生学习数学的兴趣。

五、教学重点与难点:(1)重点:对“数学归纳法”的原理的理解,明白“两步一结论的重要性”,特别是第一第二步的辨证关系的理解。

(2)难点:如何理解用“数学归纳法”证题的可靠性和有效性。

六、教学策略与手段:数学实验法,引导发现法、感性体验法,学生合作交流、自主探索,再配合教师适时的引导、点拨、启发,从而使学生获得知识和能力上的发展。

人教A版高中数学教案选修2-22.3数学归纳法数学归纳法

人教A版高中数学教案选修2-22.3数学归纳法数学归纳法

数学归纳法教学设计周村区实验中学 申臻臻【教学目标】(1)知识与技能:①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤;②会用数学归纳法证明某些简单的与正整数有关的命题;③能通过“归纳、猜想”的过程得出结论并用数学归纳法证明结论。

(2)过程与方法:努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。

(3)情感态度与价值观:通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。

【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数n 有关的数学命题;【教学难点】数学归纳法中递推关系的应用。

【辅助教学】多媒体技术辅助课堂教学。

【教学过程】 一、创设问题情境,启动学生思维(说明引入数学归纳法的必要性)(情景一)问题1:大球中有5个小球,如何证明它们都是绿色的?问题2: 如果{}n a 是一个等差数列,怎样得到()11n a a n d =+-? (情境二)数学家费马运用不完全归纳法得出费马猜想的事例。

【设计意图:】以上两个情境分别是完全归纳法和不完全归纳法的体现,发现其结论正确性不同,而这里实际上体现了数学中的归纳思想。

归纳法分为“不完全归纳法(只验证几个个体成立,得到一般性结论,但结论不一定正确)”和“完全归纳法(验证每个个体都成立,得到一般性结论,其结论一定正确)”。

(情景三)问题:如何解决不完全归纳法存在的问题呢?如何保证骨牌一一倒下?需要几个步骤才能做到?二、搜索生活实例,激发学生兴趣展示多米诺骨牌的动画,探究多米诺骨牌如何才能全部倒下?(由多米诺骨牌游戏的原理启发学生探索数学方法,解决情境三的问题。

)① 第一块骨牌必须要倒下 ②任意相邻的两块骨牌,若前一块倒下,则后一块也倒下 相当于能推倒第一块骨牌 相当于第k 块骨牌能推倒第1k +块骨牌 三、师生合作,形成概念。

【教案】人教版高中《数学》选修2-2《数学归纳法》教学设计

【教案】人教版高中《数学》选修2-2《数学归纳法》教学设计

人教版高中《数学》选修2-2§2.3 数学归纳法(第一课时)一、教学目标:1、了解数学归纳法,理解数学归纳法的原理与实质,掌握归纳法证明的两个步骤;2、会证明简单的与正整数有关的命题。

二、教学重点、难点:1、重点:借助具体实例,了解数学归纳法的基本思想,掌握基本步骤,会用它证明一些与正整数n 有关的命题;2、难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二步的作用,不易根据归纳假设作出证明;(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

三、教学手段:借助多媒体呈现多米诺骨牌等生活素材辅助课堂教学;四、教学过程:(一)创设情境,引入课题师:前面我们学习推理,并且知道由推理得到的结论是否正确,需要我们进一步验证。

我们来看这样的一道题目:已知数列{}n a 中,*111,()1n n na a a n N a +==∈+,试猜想数列的通项公式n a = 生:分别求出12341111,,,234a a a a ====,从而猜测1n a n=。

师:那么这个猜想是否正确?我们又该如何证明这个猜想?生:方法1:从n=5逐个验证?(由于n 为正整数,为无限个,所以可行性不高)方法2:通过构造新数列{}n b ,其中1n nb a =,先求出数列{}n b 的通项公式,从而得到{}n a 的通项公式;(技巧性较高,且有时新数列{}n b 不易构造)方法3:能否通过有限个步骤的推理,证明n 取所有正整数时,通项公式都成立? 师:带着这个问题,我们来观察一个关于多米诺骨牌游戏的视频。

(二)观看视频,动手实验观看多米诺骨牌游戏视频后,由学生来展示骨牌游戏:实验步骤:1、摆好骨牌,并由教师动手轻轻碰了第一块(并未推倒),发现实验不成功;2、由学生自己动手推倒骨牌,实验成功;3、再次摆好骨牌,教师调整最后3块的距离,发现并未全部倒下,实验失败。

师:我们一起来总结3次实验,那么要使游戏成功,所需条件有哪些?生:(1)第一块骨牌要倒下;(2)相邻的两块骨牌,前一块倒下一定导致后一块也倒下;师:若将每一块骨牌相应的看成数列的1234,,,a a a a ,那么这两个条件分别相当于:(1)首项1a 要符合n a 的通项公式;(2)假设n=k 时猜想成立,则必将导致n=k+1时猜想也成立;这样一来,就可以发现由n=1成立,就有n=2成立;n=2成立,就有n=3成立;n=3成立,就有n=4成立;n=4成立,就有n=5也成立……,所以对任意的正整数n ,猜想都成立。

人教A版选修2-2 2.3数学归纳法 学案

人教A版选修2-2   2.3数学归纳法  学案

2. 3数学归纳法课前预习学案一、预习目标:理解数学归纳法原理及其本质,掌握它的基本步骤与方法.能较好地理解“归纳奠基”和“归纳递推”两者缺一不可。

二、预习内容:提出问题:问题1:前面学习归纳推理时,我们有一个问题没有彻底解决.即对于数列,已知,( n=1,2,3…),通过对n=1,2,3,4前4项的归纳,猜想出其通项公式,但却没有进一步的检验和证明.问题2:大家玩过多米诺骨牌游戏吗?这个游戏有怎样的规划?(多媒体演示多米诺骨牌游戏)这是一个码放骨牌游戏,码放时保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下.只要推倒第一块骨牌,就必然导致第二块骨牌倒下;而第二块骨牌倒下,就必然导致第三块骨牌倒下…最后,不论有多少块骨牌都能全部倒下.讨论问题:问题1、问题2有什么共同的特征?其结论成立的条件的共同特征是什么结论成立的条件:结论对第一个值成立;结论对前一个值成立,则对紧接着的下一个值也成立.上面两个条件分别起怎样的作用?它们之间有怎样的关系?我们能否去掉其中的一个?你能举反例说明吗?在上述两个条件中,第一个条件是归纳递推的前提和基础,没有它,后面的递推将无从谈起;第二个步骤是核心和关键,是实现无限问题向有限问题转化的桥梁与纽带.如在前面的问题1中,如果不是1,而是2,那么就不可能得出,因此第一步看似简单,但却是不可缺少的.而第二步显然更加不可缺少.这一点在多米诺骨牌游戏中也可清楚地看出.解决问题:由上,证明一个与自然数n有关的命题,可按下列步骤进行:(1)证明当n取第一个值()时命题成立;(2)假设n=k(k≥,)时命题成立,证明当n=k+1时命题也成立.由以上两个步骤,可以断定命题对从开始的所有正整数n都成立.这种证明方法叫做数学归纳法,它是证明与正整数n(n取无限多个值)有关、具有内在递推关系的数学命题的重要工具.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、 学习目标(1)了解由有限多个特殊事例得出的一般结论不一定正确。

数学人教版高中二年级选修2 《数学归纳法》教学设计

数学人教版高中二年级选修2 《数学归纳法》教学设计

《数学归纳法》教学设计人民教育出版社A版教科书数学选修2-2第二章第三节【教材分析】1、教学内容:数学归纳法是人教社全日制普通高级中学教科书数学选修2-2第二章第3节的内容,根据课标要求,本书该节共2课时,这是第一课时,其主要内容是数学归纳法的原理及其应用。

2、地位作用:在已经学习了不完全归纳法的基础上,介绍了数学归纳法,它是一种用于关于正整数命题的直接证法。

教材通过剖析生活实例中蕴含的思维过程揭示数学思想方法,即借助“多米诺骨牌”的设计思想,揭示数学归纳法依据的两个条件及它们之间的关系。

【教学目标】1、知识与技能:(1)了解归纳法,理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤。

(2)会用数学归纳法证明简单的与正整数有关的命题。

2、过程与方法:努力创设课堂愉悦的情境,使学生处于积极思考,大胆质疑的氛围,积极参与,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会类比的数学思想。

3、情感、态度与价值观:通过本节课的教学,使学生领悟数学思想和辩证唯物主义观点,激发学生学习热情,提高学生数学学习的兴趣,培养学生大胆猜想,小心求证的辩证思维素质,以及发现问题、提出问题的意见和数学交流能力。

【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些简单的与正整数n(n取无限多个值)有关的数学命题。

【教学难点】(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明。

(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

【教学方法】运用类比启发探究的数学方法进行教学;【教学手段】借助多媒体播放人的多米诺骨牌视频;学生动手参与多米诺骨牌游戏等生活素材辅助课堂教学;【教学程序】第一阶段:回顾复习,课前准备复习1:类比推理及其一般步骤1、类比推理是由特殊到特殊的推理。

2、类比推理一般步骤:(1)观察、比较(2)联想、类推(3)猜想新结论复习2:归纳推理归纳推理是由部分到整体、由个别到一般的推理.(回顾复习类比推理和归纳推理目的是为数学归纳法推理的奠定基础。

人教A版高中数学选修归纳法教案新

人教A版高中数学选修归纳法教案新

数学:2.3《数学归纳法》教案(新人教A 版选修2-2) 第一课时 2.3 数学归纳法(一)教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.教学过程:一、复习准备: 1. 问题1: 在数列{}n a 中,*111,,()1n n n a a a n N a +==∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式. (过程:212a =,313a =,414a =,由此得到:*1,n a n N n =∈) 2. 问题2:2()41f n n n =++,当n ∈N 时,()f n 是否都为质数?过程:(0)f =41,(1)f =43,(2)f =47,(3)f =53,(4)f =61,(5)f =71,(6)f =83,(7)f =97,(8)f =113,(9)f =131,(10)f =151,… (39)f =1 601.但是(40)f =1 681=412是合数3. 问题3:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.二、讲授新课:1. 教学数学归纳法概念:① 给出定义:归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法. ② 讨论:问题1中,如果n =k 猜想成立,那么n =k +1是否成立?对所有的正整数n 是否成立?③ 提出数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.原因:在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立. 关键:从假设n =k 成立,证得n =k +1成立.2. 教学例题: ① 出示例1:2222*(1)(21)123,6n n n n n N ++++++=∈. 分析:第1步如何写?n =k 的假设如何写? 待证的目标式是什么?如何从假设出发?小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.② 练习:求证:2*1427310(31)(1),n n n n n N ⨯+⨯+⨯+++=+∈. ③ 出示例2:设a n …(na n <12(n +1)2. 关键:a 1k +<12(k +1)22<12(k +1)2+(k +32)=12(k +2)2小结:放缩法,对比目标发现放缩途径. 变式:求证a n >12n (n +1) 3. 小结:书写时必须明确写出两个步骤与一个结论,注意“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等.三、巩固练习: 1. 练习:教材108 练习1、2题 2. 作业:教材108 B 组1、2、3题.第二课时 2.3 数学归纳法(二)教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:经历试值、猜想、归纳、证明的过程来解决问题.教学过程:一、复习准备:1. 练习:已知()*()13521,f n n n N =++++-∈,猜想()f n 的表达式,并给出证明? 过程:试值(1)1f =,(2)4f =,…,→ 猜想2()f n n = → 用数学归纳法证明.2. 提问:数学归纳法的基本步骤?二、讲授新课:1. 教学例题: ① 出示例1:已知数列1111,,,,2558811(31)(32)n n ⋅⋅⋅⨯⨯⨯-⨯+,猜想n S 的表达式,并证明.分析:如何进行猜想?(试值1234,,,S S S S →猜想n S ) →学生练习用数学归纳法证明→ 讨论:如何直接求此题的n S ? (裂项相消法)小结:探索性问题的解决过程(试值→猜想、归纳→证明)② 练习:是否存在常数a 、b 、c 使得等式132435......(2)n n ⨯+⨯+⨯+++=21()6n an bn c ++对一切自然数n 都成立,试证明你的结论.解题要点:试值n =1,2,3, → 猜想a 、b 、c → 数学归纳法证明2. 练习: ① 已知 0(1,2,,)i a i n >=,考察111()1i a a ⋅≥;121211()()()4ii a a a a ++≥;123123111()()()9iii a a a a a a ++++≥之后,归纳出对12,,,n a a a 也成立的类似不等式,并证明你的结论.② (89年全国理科高考题)是否存在常数a 、b 、c ,使得等式 (答案:a =3,b =11,c =10) 12222(1)223.....(1)()12n n n n an bn c +⨯+⨯+++=++对一切自然数n 都成立?并证明你的结论3. 小结:探索性问题的解决模式为“一试验→二归纳→三猜想→四证明”.三、巩固练习:1. 平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,求证这n 个圆将平面分成f (n )=n 2-n +2个部分.2. 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意正整数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. (答案:m =36)3. 试证明面值为3分和5分的邮票可支付任何(7,)n n n N >∈的邮资. 证明:(1)当8,9,10n =时,由835,9333,1055=+=++=+可知命题成立;(2)假设(7,)n k k k N =>∈时,命题成立. 则 当3n k =+时,由(1)及归纳假设,显然3n k =+时成立.根据(1)和(2),可知命题成立.小结:新的递推形式,即(1)验证00(),(1),,P n P n + 0(1)P n l +-成立()l N ∈;(2)假设()P k 成立,并在此基础上,推出()P k l +成立. 根据(1)和(2),对一切自然数0()n n ≥,命题()P n 都成立.2. 作业:。

人教版高中数学选修22(教案)23数学归纳法(含2课时)

人教版高中数学选修22(教案)23数学归纳法(含2课时)

教学过程:学生探究过程:我们已经用归纳法得到许多结论,例如,等差数列{}n a 的通项公式1(1)n a a n d =+-,自然数平方和公式2222(1)(21)1236n n n n +++++⋅⋅⋅+=.这些命题都与自然数有关,自然数有无限多个,我们无法对所有的自然数逐一验证.怎样证明一个与自然数有关的命题呢? 讨论以下两个问题的解决方案:(1)在本章引言的例子中,因为袋子里的东西是有限的,迟早可以把它摸完,这样总可以得到一个肯定的结论.因此,要弄清袋子里究竟装了什么东西是一件很容易的事.但是,当袋子里的东西是无限多个的时候,那怎么办呢?(2)我们有时会做一种游戏,在一个平面上摆一排砖(每块砖都竖起),假定这排砖有无数块,我们要使所有的砖都倒下,只要做两件事就行了.第一,使第一块砖倒下;第二,保证前一块砖倒下后一定能击倒下一块砖. 一、复习引入:问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办?方法一:把它倒出来看一看就可以了.特点:方法是正确的,但操作上缺乏顺序性. 方法二:一个一个拿,拿一个看一个.比如结果为:第一个白球,第二个白球,第三个白球,……,第十二个白球,由此得到:这一袋球都是白球.特点:有顺序,有过程.问题2:在数列{}n a 中,*111,,()1nn na a a n N a +==∈+,先算出a 2,a 3,a 4再推测通项a n 的公式.过程:212a =,313a =,414a =,由此得到:*1,()n a n N n=∈,解决以上两个问题用的都是归纳法. 再请看数学史上的两个资料:资料1: 费马(Fermat )是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献.但是,费马曾认为,当n ∈N 时,221n+一定都是质数,这是他对n=0,1,2,3,4时的值分别为3,5,17,257,65537作了验证后得到的.18世纪伟大的瑞士科学家欧拉(Euler )却证明了当n=5时,5221+ =4 294 967 297=6 700 417×641,从而否定了费马的推测.有人说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!资料2:f (n )=n 2+n+41,当n ∈N 时,f (n )是否都为质数? f (0)=41,f (1)=43,f (2)=47,f (3)=53,f (4)=61, f (5)=71,f (6)=83,f (7)=97,f (8)=113,f (9)=131, f (10)=151,… f (39)=1 601. 但是f (40)=1 681=412是合数算了39个数不算少了吧,但还不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来.对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明课件展示:多媒体课件(游戏:多米诺骨牌) ,多米诺骨牌游戏要取得成功,必须靠两条:(1)骨牌的排列,保证前一张牌倒则后一张牌也必定倒; (2)第一张牌被推倒.用这种思想设计出来的,用于证明不完全归纳法推测所得命题的正确性的证明方法就是数学归纳法. 数学运用例1.用数学归纳法证明:等差数列{}n a 中,1a 为首项,d 为公差,则通项公式为1(1)n a a n d =+-.①证:(1)当1n =时,等式左边1a =,等式右边110a d a =+⨯=,等式①成立. (2)假设当n k =时等式①成立,即1(1)k a a k d =+-,那么,当1n k =+时,有111(1)[(1)1]k k a a d a k d d a k d +=+=+-+=+--. 这就是说,当1n k =+时等式也成立. 根据(1)和(2),可知对任何*n N ∈,等式①都成立. 注意:(1)这两个步骤是缺一不可的.数学归纳法的步骤(1)是命题论证的基础,步骤(2)是判断命题的正确性能否递推下去的保证;(2)在数学归纳法证明有关问题的关键,在第二步,即1n k =+时为什么成立?1n k =+时成立是利用假设n k =时成立,根据有关的定理、定义、公式、性质等数学结论推证1n k =+出时成立,而不是直接代入,否则1n k =+时也成假设了,命题并没有得到证明;(3)用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明,学习时要具体问题具体分析.数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k 时命题成立这个条件变式:用数学归纳法证明:等比数列{}n a 中,1a 为首项,q 为公比,则通项公式为11n n a a q -=.例2.用数学归纳法证明:当*n N ∈时,2135(21)n n +++⋅⋅⋅+-=. 证:(1)当1n =时,等式左边1=,等式右边1=,等式成立. (2)假设当n k =时等式成立,即2135(21)k k +++⋅⋅⋅+-=, 那么,当1n k =+时,有135(21)[2(1)1]k k +++⋅⋅⋅+-++-222[2(1)1]21(1)k k k k k =++-=++=+.这就是说,当1n k =+时等式也成立. 根据(1)和(2),可知对任何*n N ∈,等式都成立.例3.用数学归纳法证明:当*n N ∈时,2222(1)(21)1236n n n n +++++⋅⋅⋅+=. 证:(1)当1n =时,211=,1(11)(211)16⨯+⨯⨯+=,结论成立.(2)假设n k =时,结论成立,即2222(1)(21)1236k k k k +++++⋅⋅⋅+=,那么2222222(1)(21)(1)(266)123(1)(1)66k k k k k k k k k k +++++++++⋅⋅⋅+++=++=2(1)(276)(1)(2)(23)(1)[(1)1][2(1)1]666k k k k k k k k k +++++++++++===.所以当1n k =+时,命题也成立. 根据(1)和(2),可知结论当*n N ∈时都成立.变式:用数学归纳法证明:(1)(2)()2135(21)n n n n n n ++⋅⋅⋅+=⋅⋅⋅-gg g g g ,*n N ∈ 解:(1)当1n =时,等式左边2=,等式右边212=⨯=,所以,等式成立. (2)假设n k =*()k N ∈时,等式成立,即 (1)(2)()2135(21)k k k k k k ++⋅⋅⋅+=⋅⋅⋅-g g g g g 那么,当1n k =+时,1(2)(3)()(21)(22)2(1)(2)(3)()(21)2135(21)[2(1)1]k k k k k k k k k k k k k k k +++⋅⋅⋅+++=+++⋅⋅⋅++=⋅⋅⋅-+-g g g g g即1n k =+时等式成立. 根据(1)和(2),可知对任何*n N ∈,等式都成立.例4.已知数列1111,,,,1447710(32)(31)n n ⨯⨯⨯-+L ,计算1234,,,S S S S ,根据计算结果,猜想n S 的表达式,并用数学归纳法进行证明.证:111144S ==⨯;21124477S =+=⨯; 3213771010S =+=⨯;431410101313S =+=⨯.可以看出,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为31n +.于是可以猜想31n nS n =+. 下面用数学归纳法证明这个猜想.(1)当1n =时,左边=114S =,右边=11313114n n ==+⨯+,猜想成立.(2)假设n k =(*k N ∈)时,猜想成立,即 11111447710(32)(31)31k k k k ++++=⨯⨯⨯-++L , 那么 111111447710(32)(31)[3(1)2)][3(1)1]k k k k +++++⨯⨯⨯-++-++L 131[3(1)2)][3(1)1]k k k k =+++-++ 2341(31)(1)(31)(34)(31)(34)k k k k k k k k ++++==++++ 13(1)1k k +=++. 所以当1n k =+时,猜想也成立. 根据(1)和(2),可知猜想对任何*n N ∈时都成立. 巩固练习: 课外作业:1.对一切自然数n ,猜出使2n t n >成立的最小自然数t2.平面上有n 条直线,其中无两条平行,无三条共点,问:(1)这n 条直线共有几个交点f(n)?(1()(1)2f n n n =-(2)这n 条直线互相分割成多少条线段(或射线)?(2n 条)(3)平面被这n 条直线分割成多少块区域?(222++n n )3.已知数列{a n }中,a 1=31, a n+1=nn a a -+31a 2, a 3, a 4,猜测通项公式a n )422(+=n na n教后感:教学过程:教学过程:1. 归纳法:由一些特殊事例推出一般结论的推理方法.特点:特殊→一般2. 不完全归纳法: 根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法.3. 完全归纳法: 把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法.4.数学归纳法:对于某些与自然数n 有关的命题常常采用下面的方法来证明它的正确性:先证明当n 取第一个值n 0时命题成立;然后假设当n=k(k ∈N*,k ≥n 0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n 0,如果当n =n 0时,命题成立,再假设当n =k (k ≥n 0,k ∈N *)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n =k +1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立.6.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确;(2)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,证明当n =k +1时结论也正确.由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 递推基础不可少,归纳假设要用到,结论写明莫忘掉.学生探究过程:数学归纳法公理;用数学归纳法证明:当*n N ∈时111111111234212122n n n n n-+-+⋅⋅⋅+-=++⋅⋅⋅+-++.数学运用例1.设*n N ∈,1()5231n n f n -=+⨯+. (1)当1,2,3,4n =时,计算()f n 的值;(2)你对()f n 的值有何感想?用数学归纳法证明你的猜想. 解:(1)当1n =时,111(1)5231881f -=+⨯+==⨯; 当2n =时,221(2)52313284f -=+⨯+==⨯; 当3n =时,331(3)5231144818f -=+⨯+==⨯; 当4n =时,441(4)5231680885f -=+⨯+==⨯.(2)猜想:当*n N ∈时,1()5231n n f n -=+⨯+能被8整除. ①当1n =时,有111(1)52318f -=+⨯+=能被8整除,命题成立. ②假设当n k =时,命题成立,即()f k 能被8整除,那么当1n k =+时,有1(1)11(1)523155631k k k k f k ++--+=+⨯+=⨯+⨯+111(5231)4(53)()4(53)k k k k k k f k ---=+⨯+++=++.这里,5k 和13k -均为奇数,它们的和1(53)k k -+必为偶数,从而14(53)k k -+能被8整除.又依归纳假设,()f k 能被8整除,所以(1)f k +能被8整除.这就是说,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何*n N ∈都成立.变式:求证当n 取正奇数时,n n x y +能被x y +整除。

数学归纳法(人教教案)docx

数学归纳法(人教教案)docx

“数学归纳法”(第一课时)教学设计(修改稿)浙江省衢州高级中学何豪明一、内容和内容解析“数学归纳法”是人教A版《普通高中课程标准实验教科书数学(选修2-2)》中的内容,它可以完成通过有限个步骤的推理,证明取所有正整数都成立的命题的证明.在等差数列和等比数列知识的学习过程中,我们用不完全归纳法推出了它们的通项公式,其中正确性的严格证明需要用数学归纳法进行.因此,数学归纳法的学习是学习数列知识的深化和拓展,也是归纳推理的具体应用.应用数学归纳法(证明某些与正整数有关的命题时常常采用的方法)证明命题的步骤:(1)(归纳奠基)证明当取第一个值时命题成立;(2)(归纳递推)假设当时命题成立,证明当时命题也成立;根据(1)和(2),可知命题对于从开始的所有正整数都成立.数学归纳法的理论依据是皮亚诺公理,皮亚诺公理中第五条:设是正整数的一个子集,且它具有下列性质:①;②若,则.那么是全体正整数的集合,即)也叫做归纳公理.设是一个与正整数有关的命题,我们把使成立的所有正整数组成的集合记为,如果要证明对于所有正整数都成立,只要证明即可.为此,根据归纳公理,首先证明(数学归纳法中的第一步“归纳奠基”正是进行这样的证明);其次证明若,则(数学归纳法中的第二步“归纳递推”正是进行这样的证明).这样即可得到,从而证明了命题对于一切正整数都成立.不难看出归纳公理是数学归纳法的理论根据,数学归纳法的两个证明步骤恰是验证这条公理所说的两个性质.数学归纳法的基本思想:即先验证使结论有意义的最小的正整数,如果当时,命题成立,再假设当时命题成立,利用这个假设,如果能推出当时,命题也成立,那么就可以递推出对所有的正整数,………,命题都成立.也就是说,当时命题成立,可以推出时命题成立,当时命题成立,可以推出时命题成立,…….即命题真命题真命题真命题真.因此可知命题对于从开始的所有正整数都成立.数学归纳法的思维模式是:“观察——归纳——猜想——证明”.数学归纳法教学的重点是借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数(取无限多个值)有关的数学命题.二、目标和目标解析本节课的目标是:1.借助具体实例归纳出数学归纳法的基本原理、步骤;2.了解数学归纳法的原理,能用数学归纳法证明一些简单的命题.数学归纳法的适用范围仅限于与正整数有关的命题,在证明过程中,要分“两个步骤和一个结论”.其中第一步是归纳奠基,只需验证取第一个值(这里是使结论有意义的最小的正整数,它不一定是1,可以是2,或取别的正整数)时命题成立;第二步是归纳递推,就是要证明命题的传递性.把第一步的结论和第二步的结论联系起来,才可以断定命题对所有的正整数都成立.因此,用数学归纳法证明命题时,完成了上述两个步骤后,还应该有一个总的结论.否则,还不能算是已经证明完毕.所以,严格地说,用数学归纳法证明命题的完整过程应该是“两个步骤和一个结论”.应用类比的方法,类比多米诺骨牌游戏和数学归纳法,将一块“骨牌”对应一个“命题”,某块骨牌“倒下”对应某个命题“成立”,从而培养学生的类比推理能力.三、教学问题诊断分析教学的难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明;(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系.因此,用数学归纳法证明命题的关键在第二步,而第二步的关键在于合理利用归纳假设.如果不会运用“假设当时,命题成立”这一条件,直接将代入命题,便说命题成立,实质上是没有证明.为突破以上教学难点,课堂教学中两条线索交替进行.一条是主线:“提出问题——分析问题——解决问题”;另一条是暗线:“课堂提问的规则——根据学号提问,并依次从小号到大号”.在这个过程中,让学生体会数学归纳法证明命题的第一步的第一个值不一定是1,就如同第一个被提问到的学生不一定是1号的学生一样.若是2号,则下一个被提问的学生一定是3号.另外,设计命题:已知时,命题成立,求证:时命题成立.从而突破数学归纳法第二步中证明命题的难点.四、教学支持条件分析在进行本节课的教学时,学生已经在必修5中学习了不完全归纳法(推导等差、等比数列的通项公式);在本章的合情推理中已经学习了归纳推理,在演绎推理中学习了“三段论”.这些内容的学习是学生理解推理思想和证明方法的重要基础.因此,教学时应该充分注意这一教学条件,通过类比的方法,引导学生理解数学归纳法的本质.利用flash软件,动态地演示多米诺骨牌游戏,从中体会并理解“归纳奠基”和“归纳递推”,知道只有把“归纳奠基”与“归纳递推”结合起来,才能完成数学归纳法的证明过程,理解数学归纳法的证明步骤.另外,在课堂练习时,选择学生中有代表性的解法,利用实物投影进行分析讲解,增强课堂教学效果.五、教学过程设计1.从思考题中引入课题思考题:已知数列的第1项,且,计算由此推测计算的公式,并给出证明.分析:逐一验证是不可能的.那么,我们应该思考“怎样通过有限个步骤的推理,证明取所有正整数都成立”的问题.引出课题“这就是我们今天要研究的直接证明数学问题的一种方法——数学归纳法”.【设计意图】应用归纳推理,发现新事实,获得新结论,这是数学归纳法的先行组织者;该思考题出现在本章第一节的合情推理中,是课标教材“螺旋式”上升的具体体现,其思维模式就是“观察——归纳——猜想——证明”.2.体会多米诺骨牌游戏中蕴含的数学思想游戏:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么?【设计意图】通过对多米诺骨牌游戏的分析,让学生经历从具体到抽象的归纳和概括过程,从而理解数学归纳法的本质.思考游戏1: 摆放好多米诺骨牌,推倒第1块骨牌,观察发生的结果?思考游戏2: 摆放好多米诺骨牌,推倒第2块骨牌,观察发生的结果?【设计意图】在多米诺骨牌游戏过程中,体会所有骨牌都倒下,第1块骨牌必须倒下,这是基础,也是前提条件.思考游戏3: 摆放好多米诺骨牌,先抽走第块骨牌,然后推倒第块骨牌,观察发生的结果?【设计意图】在多米诺骨牌游戏过程中,第块骨牌不能拿走,因为第块骨牌的存在,是所有骨牌都倒下的保证,这就是多米诺骨牌游戏的连续性.问题1:为什么会有这些结果的发生?如果我们想要确保所有的多米诺骨牌都倒下,那么必须满足哪些条件?问题2:从多米诺骨牌游戏中,抽象出解决与正整数有关的命题的方法?【设计意图】在类比的过程中学习数学归纳法.分析1:根据“第一块骨牌倒下”抽象出数学归纳法的第一步,即(1)(归纳奠基)证明当取第一个值(,例如=1或)时,命题成立.分析2:根据“任意相邻的两块骨牌,前一块倒下一定导致后一块倒下”,抽象出数学归纳法的第二步,即(2)(归纳递推)假设时命题成立,证明当时命题也成立.分析3:从完成“多米诺骨牌游戏”中,抽象出数学归纳法证明命题的结论,即由(1),(2)可知,命题对于从开始的所有正整数都成立.【设计意图】抽象出“多米诺骨牌游戏”的本质.3.数学归纳法概念的形成数学归纳法: 对于由不完全归纳法得到的某些与正整数有关的数学命题,我们常采用下面的方法来证明它们的正确性:(1)(归纳奠基)证明当取第一个值(,例如=1或)时,命题成立;(2)(归纳递推)假设时命题成立,证明当时命题也成立;根据(1)和(2),可知命题对于从开始的所有正整数都成立.问题3:(1)为什么完成了“两个步骤和一个结论”就说明命题对所有的正整数都成立?(2)为什么在证明命题时“两个步骤和一个结论”缺一不可?【设计意图】进一步理解“通过有限个步骤的推理,证明取所有正整数都成立”的情形.分析:缺了第(1)步,就没有了归纳奠基;缺了第(2)步,就丧失了归纳递推的过程;缺了结论,整个数学归纳法的过程就不能顺利完成.“两个步骤和一个结论”缺一不可.其思维过程是,当时命题成立,可以推出时命题成立,当时命题成立,可以推出时命题成立,…….4.数学归纳法的应用例1:已知数列的第项,且,求证:.【设计意图】因为从“n=k到n=k+1”的一般性递推,可以看成一个独立的命题,所以设计这一例题,有利于突破数学归纳法第二步中证明命题的难点.例2:已知数列的第1项,且,计算由此推测计算的公式,并给出证明.【设计意图】在应用的过程中理解数学归纳法.5.课堂练习练习1:已知数列计算,由此推测计算的公式,并给出证明.解:猜想:.证明:(1)当时,左边=,右边=1,所以猜想成立.(2)假设当时猜想成立,即,那么,,所以,当时猜想也成立.根据(1)和(2),可知猜想对任何都成立.问题4:请看练习1的三个变式,请问它们的分析过程合理吗?请问它的三个变式正确吗?变式1:等式对任意的正整数都成立吗?分析:假设当时命题成立,即,那么,,所以,当时命题也成立.所以等式()成立.【设计意图】用数学归纳法证明命题时,只有归纳递推,没有归纳奠基是不行的.变式2:等式对任意的正整数都成立吗?分析:当时,左边=,右边=,所以等式()成立.【设计意图】用数学归纳法证明命题时,只有归纳奠基,没有归纳递推也是不行的.变式3:等式对任意的正整数都成立吗?分析:(1)当时,左边=,右边=,所以等式成立.(2)假设当时等式成立,即那么,,所以当时,等式也成立,所以等式对任何都成立.【设计意图】用数学归纳法证明命题时,不能没有归纳递推的过程(即证明命题时归纳假设一定要用上),因为它是运用“有限”手段,解决“无限”问题的关键.练习2:用数学归纳法证明.练习3:已知数列计算,由此推测计算的公式,并给出证明.【设计意图】进一步熟练数学归纳法证明命题的步骤,加深对数学归纳法本质的理解.6.课堂小结(1)数学归纳法能够解决哪一类问题?一般被用于证明某些与正整数n(n取无限多个值)有关的数学命题.(2)数学归纳法证明命题的步骤是什么?两个步骤和一个结论,缺一不可.(3)数学归纳法证明命题的关键在哪里?关键在第二步,即归纳假设要用上,解题目标要明确(也就是人们常说的“双凑”:凑假设和凑结论).(4)数学归纳法体现的核心思想是什么?数学归纳法是一种完全归纳法,它是在可靠的基础上,利用命题自身具有的传递性,运用“有限”的手段,来解决“无限”的问题.它克服了完全归纳法的繁杂、不可行的缺点,又克服了不完全归纳法结论不可靠的不足,使我们认识到事情由简到繁、由特殊到一般、由有限到无穷.其蕴含的数学思想方法有归纳的思想,递推的思想,特殊到一般的思想,有限到无限的思想方法.等等.【设计意图】回顾和总结本节课的主要内容,提高学生对本节课知识的整体认识.六、目标检测设计(1)用数学归纳法证明:①;②首项是,公差是的等差数列的通项公式是,前项和的公式的.【设计意图】通过数学归纳法的简单应用,体会其思维模式:“观察——归纳——猜想——证明”.(2)用数学归纳法证明命题:的步骤如下,其证明方法是否正确?并说明理由.证明:假设时命题成立,就是,那么,当时,,这就是说,当时命题也成立.根据数学归纳法,成立.【设计意图】数学归纳法证明命题时不能没有第一步,因为它是归纳奠基.(3)用数学归纳法证明.【设计意图】数学归纳法证明命题时,两个步骤和一个结论,缺一不可.同时,归纳假设一定要用上.(4)已知数列计算,由此推测计算的公式,并给出证明.【设计意图】体现数学归纳法的思维模式:“观察——归纳——猜想——证明”.这就是数学归纳法的核心思想.(5)用数学归纳法证明.【设计意图】数学归纳法证明命题时,第一步中的第一个值不一定是1.。

高中数学人教A版选修2-2课件:2.3数学归纳法

高中数学人教A版选修2-2课件:2.3数学归纳法
借助于几何图形来分析,在分析不出来的情况下,将n=k+1和n=k分
别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明
即可,这也是用数学归纳法证明几何命题的一大技巧.
-14-
目标导航
题型一
题型二
题型三
重难聚焦
典例透析
典例透析
题型四
【变式训练 3】 平面内有 n(n∈N*,n≥2)条直线,其中任何两条
重难聚焦
典例透析
典例透析
题型四
则当 n=k+1 时,
1
1+
3
1
1+
5
1
·…· 1 +
2-1
1
1+
2(+1)-1
2
4 + 8 + 4
2 + 1 2 + 2
2 + 2
>
·
=
=
2
2 + 1 2 2 + 1
2 2 + 1
2
>
4 + 8 + 3
2 2 + 1
=
2 + 3· 2 + 1
(2)假设当 n=k(k≥1,k∈N*)时等式成立,即 1+4+7+…+(3k-2)=
1
(3
2
− 1),
则当 n=k+1 时,1+4+7+…+(3k-2)+[3(k+1)-2]=
(3 + 1) =
1
(32 + 5
2
1
(3 − 1) +

高中数学教案选修22《2.3数学归纳法》

高中数学教案选修22《2.3数学归纳法》

Word 文档仅限参照教课目:1.理解数学法的观点, 掌握数学法的明步.2.通数学法的学 , 领会用不完整法律, 用数学法明律的门路.掌握从特别到一般是用的一种主要思想方法.教课要点:掌握数学法的原理及明的方法.教课点:能用数学法明一些的数学命.教课程:一、1.:好多同学小候都玩的游 , (教具)就是一种放的游 , 放保随意相的两 , 若前一倒下 , 必定致后一也倒下 , 只需推倒第一就会致所有都倒下(种游称多米骨牌游).思虑个游中 , 能使所有多米骨牌所有倒下的条件是什么?只需足以下两个条件 , 所有的多米骨牌都能倒下:( 1);( 2).思虑你条件( 2)的作用是什么?思虑假如条件( 1)不要 , 能不可以保所有的骨牌都倒下?.我知道于数列n已知1=1,且a n+1=a n(n=1, 2, 3⋯)通+2{ a } ,a1 a n=前4的,我能够猜想出其通公式=1, 但推理得出n 1, 2, 3,4,a n n的猜想不必定建立 , 必通格的明.要明个猜想 , 同学自然就会从 n=5开始一个个往下 , 当 n 小可以逐一 , 但当 n 大 , 逐一起来会很麻,特是明 n 取所有正整数 ,Word 文档仅限参照逐一考证是不行能的.能不可以追求一种方法, 经过有限个步骤的推理 , 证明 n 取所有正整数都建立.思虑?你以为证明数学的通项公式是a n=1, 这个猜想与上述多米诺骨牌游戏 n有相像性吗?你能类比多米诺骨牌游戏解决这个问题吗?多米诺骨牌游戏原理通项公式 a n=1的证明方法n( 1)第一块骨牌倒下.(1)当 n=时, 猜想建立( 2)若第 k 块倒下时 , 则相邻的第( 2)若当n =时, 猜想建立 ,即, 则当 n=时 , 猜想也成k+ 1 块也倒下.立, 即.依据( 1)和( 2) , 可知无论有多依据( 1)和( 2) , 可知对随意的少块骨牌 , 都能所有倒下.正整数 n, 猜想都建立.证明:(1).( 2)假定,3.小结.数学概括法的定义:一般地 , 证明一个与正整数相关的命题, 可按以下步骤进行:(1)(概括奠定)证明当 n 取第一个值 n0时命题建立.(2)(概括递推)假定 n= k(k≥ n0,k∈N* )时命题建立 , 证明当 n=k+1 时命题也建立.只需达成这两个步骤 , 就能够判定数题对从 n0开始的所有正整数都建立.上述明方法叫做数学法.用框表示:n=n0若 n=k (k≥ n命建立0),命建立.明 n=k+1 命也建立.奠定推命从 n0从开始所有的正整数 n 都成立.注两个步缺一不行 , 只达成步( 1)而缺乏步( 2) , 就做出判断可能得出不正确的 , 因靠步( 1), 没法推下去 , 即 n 取 n0此后的数命能否正确 , 我没法判断.同 , 只有步( 2)而缺乏步( 1), 也可能得出不正确的 , 缺乏步( 1)个基 , 假就失掉了建立的前提 , 步( 2)也就没存心了.二、堂例 1 明等差数列通公式 a n= a1+(n- 1)d.例 2 用数学法明: 1+ 3+ 5+⋯+( 2n-1)=n2.例 3用数学法明12+22+32+⋯+n2=n(n+1)(2n+1)(n∈N* ).6:n n用数学法明:- 1+3-5+⋯+ (- 1) (2n-1)= (-1) n.n+22n+11- a1.用数学法明:“1+ a+a ++a= a ≠ 1, n ∈N”1-a在 n=1建立 , 左算所得的果是..已知:=1+1++1, f (k+1)等于.2 f (n)++2+n 1n3n 13.用数学法明: 1×2+2×3+3×4+⋯+ n( n+1) =1n( n+1)(n+2) .3222-2+-n-12n-1 n(n+1)4.用数学法明:1-+34+n=-.2( 1)( 1)2四、小要点:两个步骤、一个结论;注意:奠定基础不行少 , 概括假定要用到 , 结论写明莫忘记.五、作业课本 P94第 1, 2, 3题.。

2.3-数学归纳法

2.3-数学归纳法

2.3数学归纳法整体设计教材分析本节课是人教A版选修2-2的第二章第三单元.“数学归纳法”是继学习分析法和综合法之后,进一步研究的另一种特殊的直接证明方法.它通过有限步骤的推理,证明n取无限多个正整数的情形.通过本节的学习,可以更好地理解数学证明的基本方法,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯.课时分配2课时.第1课时教学目标1.知识与技能目标(1)理解“归纳法”和“数学归纳法”的含义和本质.(2)掌握数学归纳法证题的两个步骤和一个结论.(3)会用“数学归纳法”证明简单的恒等式.(4)初步掌握归纳与推理的方法.2.过程与方法目标培养学生观察、归纳、发现的能力,并能以递推的思想作指导,理解数学归纳法的操作步骤,使学生的抽象思维和概括能力得到进一步的提升.3.情感、态度与价值观通过对数学归纳法的学习,培养学生勇于探索、创新的个性品质,培养大胆猜想,小心求证的辩证思维素质,进一步培养学生数学思维的严密性,通过学生之间的交流和讨论,增强学生之间的团结合作意识,提高学生的语言交流能力.重点难点重点:借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数n(n取无限多个值)有关的数学命题.难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明.(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系.教学过程引入新课提出问题:问题1:一个盒子里有十个乒乓球,如何证明里面的球全为橙色?问题2:你知道谚语“天下乌鸦一般黑”的由来吗?问题3:一个数列的通项公式是a n=(n2-5n+5)2,容易验证a1=1,a2=1,a3=1,a4=1.由此作出结论:对于一切n∈N,a n=(n2-5n+5)2=1都成立.请问这个结论正确吗?问题4:对于数列{a n},已知a1=1,a n+1=a n1+a n,试写出a1,a2,a3,a4并由此作出猜想.请问这个结论正确吗?问题5:请说出以上4个问题的异同点.活动设计:先让学生独立思考,然后小组交流,教师巡视引导,并注意与学生交流.活动成果:教师板书“一一进行验证”(学生回答问题1的时候抓住关键词)“只能验证有限个”(学生在回答问题2的时候)“结论不一定正确”(学生在回答问题3、4的时候)“归纳法,完全归纳法,不完全归纳法”(学生在回答问题5的时候)同时说明:归纳法是指由一系列有限的特殊事例得出一般结论的推理方法.归纳法分为完全归纳法和不完全归纳法.点明不完全归纳法的缺憾之处:仅根据一系列有限的特殊事例得出一般结论是要冒很大风险的,因为有可能产生不正确的结论.学情预测:对于问题1及问题2估计学生会比较感兴趣,这两个问题有利于活跃课堂气氛,拉近师生之间的距离,让学生的思维过渡到课堂的思考中来.问题3大部分学生应该能判断准确.对于问题4最初可能会有一部分学生认为正确,但是由问题3的引导也会对问题4的正确性产生怀疑.设计意图让学生体会“数学来源于生活”,创造和谐积极的学习气氛.在学生已有认知基础上给出问题,从生活问题自然过渡到数学问题.由问题3的不正确引导,学生对问题4的正确性产生怀疑,从而使学生对学过的知识进行及时的反思,在不断反思中得到提高(教师可以在学生回答完问题4后顺便提问学生以前学过的结论中哪些用到了不完全归纳法).通过问题的设计使学生了解归纳法的分类,让学生自然领悟到不完全归纳法的缺憾,使学生对本节课的知识产生期待,从而引出本节课的课题“数学归纳法”.探究新知实例:播放多米诺骨牌录像,思考以下问题:提出问题:你认为一个骨牌链能够被成功推倒,靠的是什么?活动设计:学生讨论交流,各抒己见.活动成果:根据学生的发言板书以下内容(1)第一张牌被推倒;(2)任意相邻两块骨牌,前一块倒下一定导致后一块倒下.结论:多米诺骨牌会全部倒下.(板书时注意格式,为数学归纳法的步骤提供类比依据.)可以再举几则生活事例:推倒自行车,早操排队对齐等.学情预测:大部分学生在电脑或电视节目中或者小时候玩的玩具中都遇到过多米诺骨牌,通过讨论,教师再加以引导,学生对所提出的问题基本能解决.设计意图:通过直观具体的画面让“归纳递推”这一难点在学生的头脑中建立载体,便于帮助学生理解从有限到无限的过渡.提出问题:对于数列{a n},已知a1=1,a n+1=a n1+a n(n=1,2,3,4,…),求a4,a100.活动设计:学生进行计算推理后,展示思考结果(学生板演).教师追问:问1:根据递推公式a n+1=a n1+a n,可以由a1出发,推出a2,再由a2推出a3,由a3推出a4,说说你又是如何求得a100的呢?学情预测:学生可能会回答:“由前四项归纳猜想a100=1 100”.问2:归纳猜想的结果并不可靠,你能对a 100=1100给出严格的证明吗? 针对学生的回答情况,教师可进行追问:问3:利用递推公式,命题可以由a 1推出a 2,由a 2推出a 3,由a 3推出a 4,…,由a 99推出a 100,这样要严格证明n =100时结论成立,需要进行多少个步骤的论证呢?(教师在刚才学生板演的基础之上板书以下推理过程,可以再多写出第六步,第七步,第八步直到学生开始有反应:嫌麻烦等情绪的出现)第一步,a 1=1,第二步,a 2=a 11+a 1=11+1=12,(由a 1推a 2) 第三步,a 3=a 21+a 2=121+12=13,(由a 2推a 3) 第四步,a 4=a 31+a 3=131+13=14,(由a 3推a 4) ……第99步,a 99=a 981+a 98=1981+198=199,(由a 98推a 99) 第100步,a 100=a 991+a 99=1991+199=1100.(由a 99推a 100) 学情预测:通过板书上的推理过程,学生可能窃窃私语“太麻烦”,出现畏难情绪.教师可以抓住这一契机继续追问:问4:你认为上述推理的麻烦之处在哪里?你能否对此过程进行优化?只用最少的步骤就能证明这个结论呢?学情预测:学生思考、讨论之后可能会总结出:推理麻烦之处在于除了第一步论证之外,其余99个步骤的证明实际上都是类似的.教师因势利导:后面99个步骤都可以概括成一个命题的证明,即转化为对以下命题的证明:若n 取某一个值时结论成立,则n 取其下一个值时结论也成立,即若a k =1k (k ≥1,k ∈N ),则a k +1=1k +1(*).(a k +1=a k 1+a k =1k 1+1k =1k +1) 问5:你能进一步说明命题(*)的证明对原命题的证明起到什么作用吗?问6:有了命题(*)的证明,你能肯定a 100=1100吗?你能肯定a 101=1101吗?你能肯定a 102=1102吗?甚至你能肯定a 1 000=11 000吗?…… 问7:给定a 1=1及命题(*),你能推出什么结论呢?学情预测:通过追问4、5、6、7,学生可能对“归纳递推”这一步骤有了清晰的认识,逐渐领悟了从有限到无限的飞跃,有了对数学问题解决过程的体验,对于问7部分学生有能力对这一模式的特征概括出“可以证明对任意的正整数n ,结论a n =1n(n ∈N )都成立”.(为了更直观可以用多媒体投出下列图示) 反思与总结:a n =1n(n ∈N *)?问8:已知数列{a n }:a 1=1,a n +1=a n 1+a n(n ∈N *),求证:a n =1n . 教师在上述板书的基础之上把后99步用彩笔圈起,在附近用同色彩笔写下下面的(2)中的推理过程,然后用板书完善数学归纳法的“两步一结论”.证明:(1)当n =1时,a 1=1=11,所以结论成立. (2)假设当n =k(k ∈N )时,结论成立,即a k =1k, 则当n =k +1时a k +1=a k 1+a k(已知) =1k 1+1k(代入假设) =1k k +1k(变形) =1k +1(目标), 即当n =k +1时,结论也成立.由(1)(2)可得,对任意的正整数n 都有a n =1n成立. 问9:你能否总结出这一证明方法的一般模式?活动成果:板书以下内容(注意与多米诺骨牌得到的结论写在一起便于之后的类比)一般地,证明一个与正整数n 有关的命题P(n),可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N )时命题成立;(2)(归纳递推)假设当n =k(k ≥n 0,k ∈N )时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法. 证明命题P (n )(n ∈N *)说明:(1)是归纳基础,(2)是归纳递推,两者缺一不可.数学归纳法实质上是将对原问题的证明转化为对两个步骤的证明和判断.通过对a 4的求解,让学生体会到只需知道某一项,就可求出其下一项的值.通过对a 100的求解过程总结领悟到99步的证明“汇成一句话”: 设计意图“若a k =1k (k ∈N ),则a k +1=1k +1(k ∈N )(*)”为学生理解从有限到无限提供了依托,再加之追问5、6、7使学生容易实现从有限到无限的思维“飞跃”,直观的框图式结构为刚才的思维过程加以“浓缩”使观点得以提炼,再加上问题(8)的趁热打铁可以说学生对“归纳递推”的认识也基本到位.至此从具体实例中概括出数学归纳法已经是水到渠成.提出问题:你认为证明数列的通项公式是a n =1n与多米诺骨牌游戏有相似性吗? 活动设计:首先学生独立思考,然后学生自由发言,最后教师总结并形成新知. 活动结果:通过类比让学生进一步理解数学归纳法的原理,增加对数学学习的兴趣,通过从不同的角度审视,更有利于学生全面地了解数学归纳法的本质. 理解新知提出问题:用数学归纳法证明1+3+5+…+(2n -1)=n 2,如采用下面的证法,对吗?若不对请改正.证明:(1)n =1时,左边=1,右边=12=1,等式成立.(2)假设n =k 时等式成立,即1+3+5+…+(2k -1)=k 2,则当n =k +1时,1+3+5…+(2k +1)=(k +1)×[1+(2k +1)]2=(k +1)2等式也成立. 由(1)和(2)可知对任何n ∈N 等式都成立.活动设计:给学生充足的时间让学生对照黑板上板书的数学归纳法的步骤,积极思考、交流,不仅要明确数学归纳法的步骤,还要明确数学归纳法的实质.学情预测:生甲:证明是对的.生乙:证明方法不是数学归纳法,因为第二步证明时,未用到归纳假设.(指出错误,并分析出错原因,是澄清学生模糊认识的有效方法)从形式上看这种证法,用的是数学归纳法,实质上不是,因为证明n =k +1正确时,未用到归纳假设,而用的是等差数列求和公式.生丙:“则当n =k +1时1+3+5+…+(2k +1)=(k +1)×[1+(2k +1)]2=(k +1)2等式也成立.”应该改为“则当n =k +1时,1+3+5+…+(2k +1)=k 2+(2k +1)=(k +1)2”.活动成果:数学归纳法的核心是在验证n 取第一个值n 0正确的基础上,由P(k)正确证明P(k +1)正确,也就是说核心是证明命题具有递推性.因此,今后用数学归纳法证明时,第二步必须由归纳假设P(k)的正确性来推导出P(k +1)的正确性.可见,正确使用归纳假设,是用数学归纳法证明的关键.不能机械地套用两个步骤,而要深入理解其实质及两个步骤之间的内在联系.设计意图通过判断正误,使学生在一个看似完美的证明过程中发现问题,以加深对数学归纳法“核心技术”的理解而不是仅仅停留在数学归纳法的形式上,从而突出重点.生丙的改正错误实际上是重点练习了归纳假设的应用.提出问题:用数学归纳法证明命题的两个步骤中,仅有第一步验证而没有第二步递推性的证明是不行的,那么,没有第一步行吗?活动设计:生甲:第一步仅是验证当n 取第一个值n 0时结论正确,其实这是显然的,可以省略.生乙:第一步是第二步递推的基础,没有第一步是不行的.师:让我们举一个例子来看一下:试问等式2+4+6+…+2n =n 2+n +1成立吗? 设n =k 时成立,即2+4+6+…+2k =k 2+k +1,则2+4+6+…+2k +2(k +1)=(k 2+k +1)+2(k +1)=(k +1)2+(k +1)+1.这就是说,n=k+1时等式也成立,若仅由这一步就得出等式对任何n∈N都成立的结论,那就错了.事实上,当n=1时,左边=2,右边=3,左边≠右边,可能有的同学已经看出,该式左边总是偶数,而右边总是奇数,因此对任何n∈N该式都是不成立的.活动成果:数学归纳法证明命题的两个步骤,缺一不可.第一步是递推的基础,第二步是递推的依据.缺了第一步,递推失去基础,缺了第二步,递推失去依据,因此无法递推下去.设计意图通过具体的例子让学生体会到用数学归纳法证明命题的两个步骤,缺一不可.应当克服教师反复强调,而学生只知其一不知其二,仅停留在“了解、知道”的层面上的弊端.一个好的例子胜过千百次的强调.运用新知例1证明若{a n}是首项是a1,公差是d的等差数列,则a n=a1+(n-1)d对于一切n∈N 都成立.思路分析:题目没有要求用什么方法证明,这就要分析可以用哪种方法去证明,这是一个与正整数有关的数学命题,故可以用数学归纳法进行证明.证明:(教师可以要求学生板演)(1)当n=1时,a1=a1+(1-1)d,命题成立.(2)假设当n=k时命题成立,即a k=a1+(k-1)d,则当n=k+1,a k+1=a k+d=a1+(k-1)d+d=a1+[(k+1)-1]d.所以当n=k+1时命题成立.由(1)(2)可知如果{a n}是一个等差数列,则a n=a1+(n-1)d对于一切n∈N都成立.点评:通过证明学生学过的命题,体现了用数学归纳法在证明问题之前的选择与判断.此题由n=k到n=k+1的变形比较简单,利用简单问题来突出证明步骤,防止复杂的变形冲淡数学归纳法的核心.变式练习用数学归纳法证明若{a n}为首项是a1,公比是q(q≠1)的等比数列,则其前n项和公式是S n =a 1(1-q n )1-q. 证明:(1)当n =1时,S 1=a 1=a 1(1-q 1)1-q,结论成立. (2)假设当n =k 时命题成立,即S k =a 1(1-q k )1-q, 则当n =k +1时,S k +1=S k +a k +1=a 1(1-q k )1-q +a k +1=a 1(1-q k )1-q +a 1q k (1-q )1-q =a 1(1-q k +1)1-q.所以当n =k +1时命题成立.由(1)(2)知若等比数列{a n }的首项是a 1,公比是q(q ≠1),则其前n 项和公式是S n =a 1(1-q n )1-q. 变练演编1.用数学归纳法证明“2n >n 2+1对于n>n 0的正整数n 成立”时,第一步证明中的起始值n 应取( )A .1B .2C .3D .52.用数学归纳法证明不等式1+12+13+…+12n -1<n(n ∈N *)的过程中,由n =k 递推到n =k +1时,不等式左端增加的项数是( )A .1B .2k -1C .2kD .2k +1答案:1.D 2.C设计意图通过变练演编,使学生的认识不断加深,进一步巩固数学归纳法证明数学问题的两个步骤,培养学生思维的严谨性.达标检测用数学归纳法证明当n ∈N 时,11×3+13×5+15×7+…+1(2n -1)(2n +1)=n 2n +1.请分析下面的证法是否正确,若不正确请改正.证明:①n =1时,左边=11×3=13,右边=12+1=13,左边=右边,等式成立. ②假设n =k 时,等式成立,即11×3+13×5+15×7+…+1(2k -1)(2k +1)=k 2k +1, 那么当n =k +1时,有11×3+13×5+15×7+…+1(2k -1)(2k +1)+1(2k +1)(2k +3)=12[(1-13)+(13-15)+(15-17)+…+(12k -1-12k +1)+(12k +1-12k +3)] =12(1-12k +3)=12·2k +22k +3=k +12k +3=k +12(k +1)+1. 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切n ∈N 等式成立.解:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,是用裂项法推出来的,这样归纳假设没起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时左边=11×3+13×5+15×7+…+1(2k -1)(2k +1)+1(2k +1)(2k +3)=k 2k +1+1(2k +1)(2k +3)=2k 2+3k +1(2k +1)(2k +3)=(2k +1)(k +1)(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1=右边. 这就说明,当n =k +1时,等式亦成立. 课堂小结1.知识收获:学习数学归纳法应掌握下列几个要点:(1)数学归纳法证题的步骤:①(归纳奠基)证明当n 取第一个值n 0(n 0∈N )时命题成立;②(归纳递推)假设n =k(k ≥n 0,k ∈N )时命题成立,证明当n =k +1时命题也成立. 根据①②,可知命题对任何n ∈N 都成立.(2)数学归纳法的核心是在验证P(n 0)正确的基础上,证明P(n)(n ≥n 0)的正确具有递推性.第一步是递推的基础或起点,第二步是递推的依据,因此两步缺一不可,证明中,恰当地运用归纳假设是关键.(3)数学归纳法适用的范围是:一般用于证明某些与正整数n(n 取无限多个值)有关的数学命题,但是并不能简单的说,所有与正整数有关的数学命题都可以用数学归纳法证明,如果问题中存在可以利用的递推关系,数学归纳法才有用武之地,否则使用数学归纳法就有困难.(4)归纳法是一种推理方法,数学归纳法是一种证明方法,归纳法帮助我们提出猜想,而数学归纳法的作用是证明猜想.2.方法收获:类比方法、数形结合方法、特殊到一般、有限到无限方法.3.思维收获:递推思想、分类思想、归纳思想、辩证唯物主义思想.布置作业教材习题2.3 A 组第1题.补充练习基础练习1.在应用数学归纳法证明凸n 边形的对角线条数为12n(n -3)条时,第一步验证n 等于 ( )A .1B .2C .3D .02.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”时,第2步归纳假设应写成( )A .假设n =2k +1(k ∈N *)时正确,再推证n =2k +3时正确B .假设n =2k -1(k ∈N *)时正确,再推证n =2k +1时正确C .假设n =k(k ≥1)时正确,再推证n =k +2时正确D .假设n ≤k(k ≥1)时正确,再推证n =k +2时正确3.若f(n)=1+12+13+…+12n +1(n ∈N *),则n =1时f(n)是( ) A .1 B.13C .1+12+13D .以上答案均不正确 4.已知f(n)=1+12+13+…+1n (n ∈N *),用数学归纳法证明不等式f(2n )>n 2时,f(2k +1)比f(2k )多出的项数是__________.答案:1.C 2.B 3.C 4.2k拓展练习5.已知数列{a n }满足:a 1=32,且a n =3na n -12a n -1+n -1(n ≥2,n ∈N *), (1)求数列{a n }的通项公式;(2)证明对于一切正整数n ,不等式a 1·a 2·a 3·…·a n <2·n !.(1)解:将条件变为:1-n a n =13(1-n -1a n -1),因此{1-n a n }为一个等比数列,其首项为1-1a 1=13,公比为13,从而1-n a n =13n ,据此得a n =n·3n3n -1(n ≥1).① (2)证明:据①得a 1·a 2·a 3·…·a n =n !(1-13)(1-132)…(1-13n ), 要证a 1·a 2·a 3·…·a n <2·n !,只要证n ∈N 时,有(1-13)(1-132)…(1-13n )>12.② 显然,左端每个因式都是正数,只需证明,对每个n ∈N ,有(1-13)(1-132)…(1-13n )≥1-(13+132+…+13n ).③ 用数学归纳法证明③式:(ⅰ)n =1时,③式显然成立,(ⅱ)假设n =k 时,③式成立,即(1-13)(1-132)…(1-13k )≥1-(13+132+…+13k ). 则当n =k +1时,(1-13)(1-132)…(1-13k )(1-13k +1)≥[1-(13+132+…+13k )]·(1-13k +1) =1-(13+132+…+13k )-13k +1+13k +1(13+132+…+13k ) ≥1-(13+132+…+13k +13k +1),即当n =k +1时,③式也成立. 故对一切n ∈N ,③式都成立.利用③得,(1-13)(1-132)…(1-13n )≥1-(13+132+…+13n )=1-13[1-(13)n ]1-13=1-12[1-(13)n ]=12+12(13)n >12.故②式成立,从而结论成立. 设计说明本节课是数学归纳法的第一课时,新课标要求不能仅以用数学归纳法解决一些简单问题为标准,只让学生通过各种题型的操练,学会第一步证什么,如何证;第二步证什么,如何证.这样训练出来的学生,能知道数学归纳法的步骤,也会套用数学归纳法证明一些数学命题,但不一定知道为什么要这样做,这样做可行的理由、依据是什么.这样的教学看似容易完成,但被动地训练使学生可能会增添的是:数学是机械的、枯糙的;一定会丢失的是:对数学以及数学方法、思想的进一步认识与理解.所以本节课的设计没有急于去进行大量的练习,而是把主要精力用在了由“假设P(k)(k ∈N 且k ≥n 0)成立,推证P(k +1)成立”的突破上,从生活出发加强了数学与生活的联系,消除了学生的畏惧感,通过问题串将学生从有限逐步引领到无限的高峰.备课资料《归纳法的分类》(一)第一数学归纳法:一般地,证明一个与正整数n 有关的命题,有如下步骤:(1)证明当n 取第一个值n 0时命题成立;(2)假设当n =k(k ≥n 0,k 为自然数)时命题成立,证明当n =k +1时命题也成立.(二)第二数学归纳法:对于某个与自然数n 有关的命题,(1)验证n =n 0时P(n)成立;(2)假设n 0<n ≤k 时P(n)成立,并在此基础上,推出P(k +1)成立.综合(1)(2)对一切正整数,命题P(n)都成立.(三)倒推归纳法(反向归纳法):(1)对于无穷多个自然数命题P(n)成立;(2)假设P(k+1)成立,并在此基础上推出P(k)成立,综合(1)(2),对一切自然数n(n>n0),命题P(n)都成立.(四)螺旋式归纳法:P(n),Q(n)为两个与自然数有关的命题,假如(1)P(n0)成立;(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立,综合(1)(2),对于一切自然数n(n>n0),P(n),Q(n)都成立.(设计者:张建霞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 数学归纳法教学设计(第一课时)
恒大足球学校卢峥
三维目标:
1. 知识与技能
(1)通过多米诺骨牌实例探究,类比得出数学归纳法的产生过程,并理解数学归纳法的原理与实质;
(2)掌握数学归纳法证明的两个步骤,初步会用“数学归纳法”证明与自然数有关的简单命题;
(3)通过数学归纳法进一步理解归纳法的思想,并理解数学归纳法中的核心----递推思想.
2. 过程与方法
(1)通过引领学生探究某些问题的证明,认识到综合法、分析法以及反证法的不足,体会学习数学归纳法的必要;
(2)通过多米诺骨牌,经历知识产生与形成的一般过程,培养学生观察、分析、逻辑推理及归纳概括的能力,体会数学思想方法的广泛性,感受数学的博大与精深;(3)通过师生、生生的互动交流过程,从各层次认识所学问题和方法的本质,享受这个过程所带来的各种认识和收获,在学习交流中不断提高辨证思维素质以及
发现问题、提出问题的意识和数学交流的能力. 为下一步的学习奠定良好的基
础.
3. 情态与价值观
(1)引导学生通过论证相关问题,总结数学归纳法的思想方法,体会数学推理方法的思想和本质,培养学生求真务实的科学态度和积极进取的创新精神,培养学
生辩证唯物主义观点,提高学生的思维推理能力.
(2) 通过学习数学归纳法的证明方法,使学生拥有实事求是的态度和严密的逻辑性.
使学生不断认识和体会数学知识的深刻内涵和应用价值,从而激发学生学习数
学的兴趣;
(3)通过引领学生利用数学归纳法论证各类数学问题.不断培养学生自主学习、合作交流、善于反思、勤于总结的科学意识和锲而不舍的钻研精神,提高参与意识和合作精神,并通过学科教学逐步引导学生形成正确的人生观和价值观.
教学重点:
数学归纳法的原理及步骤
教学难点:
数学归纳法中递推思想的理解
教 具:多媒体 几何画板
教学方法:设疑探究、分层推进教学法
教学过程:
一、设疑导入:
前面我们学习了合情推理和演绎推理、直接证明与间接证明,进一步认识了数学中
常见的推理论证的方法.
PPT 展示下列问题分别采用的证明方法是?
学生回答完成这三道题分别采用的证明方法:分析法,综合法,反证法. 请学生思考:6
)12)(1(3212222++=++++n n n n (*N n ∈)的证明方法? 采用分析法,综合法,反证法能完成上述等式的证明吗?显然都不能,这就需要我
们寻找新的证明方法.
二、创设情境,引入主题
PPT 展示“多米诺骨牌游戏”,同学们都见过或玩过多米诺骨牌游戏吗?播放多米
诺骨牌录像. 几何画板展示多米诺骨牌.
提问:大家想一下满足怎样的条件,所有多米诺骨牌才能都能倒下:
(1) 第 块骨牌倒下;
(2) 任意 的两块骨牌, 块倒下一定导致 倒下.
只要保证(1)(2)成立,那么所有的骨牌一定可以 倒下. 将“多米诺骨牌原理”类比到数学式子的证明中:
由此,尝试着归纳出这种方法的原理及步骤,类比得出:
【数学归纳法的原理及步骤】
一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n 取第一个值n 0(*0N n ∈)时命题成立;
(2)(归纳递推)假设n=k(*0,N k n k ∈≥)时命题成立,证明当n=k+1时命题也成立.
只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.
上述证明方法叫做数学归纳法
有了此法,以前的一些猜想就可进行证明了,而且还可论证更丰富的数学问题.
三、应用举例:
例1 用数学归纳法证明6
)12)(1(3212222++=++++n n n n (*N n ∈) 【分析】证明与自然数n 有关的等式问题,用数学归纳法还是比较方便的,要注意数学归纳法的步骤的规范性,不要丢掉关键的字或词,如:当n=k+1时命题也成立中的“也”字.
【证明】(1)当n =1时,左边=12=1,右边=1 ∴n=1时,等式成立.
(2) 假设n=k (k ∈N*)时,等式成立,即6)12)(1(3212222++=
++++k k k k 那么,当n=k+1时
左边 =
=12+22+…+k 2+(k +1)2
=右边
∴n=k+1时,原不等式也成立. 由(1)、(2)知当n ∈N *时,原不等式都成立.
【点评】数学归纳法作为一种证明方法,其基本思想是递推(递归)思想,使用要点可概括为:两个步骤一结论,递推基础不可少,归纳假设要用到,结论写明莫忘掉. 再看一下证明步骤结构图:
命题对所有从n 0开始的正整数n 都成立.
练习 用数学归纳法证明
1+3+5+‥+(2n -1)=2n
例2 用数学归纳法证明:
(黑板板书) 若n = k ( k ≥n 0 ,k ∈ N* ) 时命题成立, 证明当n=k+1时命题也成立. 验证n= n 0 时命题成立.
注意 :
1. 用数学归纳法进行证明时,要分两个步骤,两步同样重要,两步骤缺一不可.
2. 第二步证明,由假设n =k 时命题成立,到n=k+1时.必须用假设条件,否则不是数学归纳法.
3. 最后一定要写“由(1)(2)……”
四、小结:
知识线:
(1)数学归纳法的原理与实质————类比多米诺骨牌原理;
(2)数学归纳法的步骤;
(3)数学归纳法中的递推的内涵.
思想方法线:
(1)数学归纳法;
(2)递推的思想方法.
题目线:
(1)利用数学归纳法证明与自然数n 有关的等式问题;
(2)利用数学归纳法证明关于数列的公式(通项、前n 项和);
(3)利用数学归纳法证明与自然数n 有关的不等式问题;
(4)利用数学归纳法证明与自然数n 有关的平面几何问题;
(5)利用数学归纳法证明与自然数n 有关的整除问题.
五、针对训练 巩固提高:
1.用数学归纳法证明121*11(,1)1n n a a a a n N a a ++-+++
+=∈≠-,在验证1n =成立时,左边所得的项为( )
A. 1
B. 1+a
C. 21a a ++
D. 231a a a +++
2. 用数学归纳法证明111111111234212122n n n n n -+-++-=+++-++ *()n N ∈,则从k 到k+1时,左边所要添加的项是( )
A. 121k +
B. 112224k k -++
C. 121k -+
D. 112122
k k -++ 3.用数学归纳法证明)1,(12131211>∈<-++++
n N n n n 时,在第二步证明从n =k 到
n =k +1成立时,左边增加了的项数为 .
4.用数学归纳法证明2
2131211,1*n N n n >++++∈- 时,当1+=k n 时,在假设的基础上不等式两边应该增添的项是 .
三、解答题
5.用数学归纳法证明:
(1)2)12(531n n =-++++ .
(2) 12222112-=++++-n n .
(3)1
2)12)(12(1751531311+=+-++⨯+⨯+⨯n n n n . 6.已知数列
,,)1(1,,431,321,211 +⨯⨯⨯n n 计算,,,321S S S 由此推测计算n S 的公式,并给出证明.
附加题:
数列{}n a 满足,2n n S n a =-*n N ∈,先计算前4项后,猜想n a 的表达式,并用数学归纳 法证明.。

相关文档
最新文档