“外接球”问题的解题策略

合集下载

高考满分数学压轴题13 与球相关的外接与内切问题(可编辑可打印)

高考满分数学压轴题13 与球相关的外接与内切问题(可编辑可打印)

一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力。

研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)多面体外接球半径的求法,当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体. (2)与球的外切问题,解答时首先要找准切点,可通过作截面来解决. (3)球自身的对称性与多面体的对称性;二.解题策略类型一 柱体与球【例1】(2020·河南高三(理))已知长方体1111ABCD A B C D -的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( ) A .116π B .106πC .56πD .53π【答案】A 【解析】【分析】由题意得出11118104AB BC AA AB BC BC AA AB AA ++=⎧⎨⋅+⋅+⋅=⎩,由这两个等式计算出2221AB BC AA ++,可求出长方体外接球的半径,再利用球体表面积公式可计算出结果.【详解】依题意,118AB BC AA ++=,11104AB BC BC AA AB AA ⋅+⋅+⋅=,所以,()()222211112116AB BC AA AB BC AA AB BC BC AA AB AA ++=++-⋅+⋅+⋅=,故外接球半径r ==,因此,所求长方体的外接球表面积24116S r ππ==.故选:A.【点睛】本题考查长方体外接球表面积的计算,解题的关键就是利用长方体的棱长来表示外接球的半径. 【举一反三】1.(2020·2,若与球相关的外接与内切问题该棱柱的顶点都在一个球面上,则该球的表面积为( ) A .73π B .113π C .5π D .8π【答案】D【解析】根据条件可知该三棱柱是正三棱柱,上下底面中心连线的中点就是球心,如图,则其外接球的半径22221123222sin 60R OB OO BO ⎛⎫ ⎪⎛⎫==+=+= ⎪ ⎪︒⎝⎭⎝⎭, 外接球的表面积428S ππ=⨯=.故选:D【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径. 2.(2020·安徽高三(理))已知一个正方体的各顶点都在同一球面上,现用一个平面去截这个球和正方体,得到的截面图形恰好是一个圆及内接正三角形,若此正三角形的边长为a ,则这个球的表面积为( ). A .234a π B .23a π C .26a πD .232a π【答案】D【解析】由已知作出截面图形如图1,可知正三角形的边长等于正方体的面对角线长,正方体与其外接球的位置关系如图2所示,可知外接球的直径等于正方体的体对角线长,设正方体的棱长为m ,外接球的半径为R ,则2a m =,23R m =,所以64R a =,所以外接球的表面积为222634442a S R a πππ⎛⎫==⨯= ⎪ ⎪⎝⎭, 故选:D .【点睛】本题考查正方体的外接球、正方体的截面和空间想象能力,分析出外接球的半径与正三角形的边长的关系是本题的关键,3.(2020·河南高三(理))有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( ) (附:2 1.414,3 1.732,5 2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C【解析】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为52cm ,每装两个球称为“一层”,这样装n 层球, 则最上层球面上的点距离桶底最远为()()10521n +-cm ,若想要盖上盖子,则需要满足()10521100n +-≤,解得19213.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球.故选:C 类型二 锥体与球【例2】5.已知球O 的半径为102,以球心O 为中心的正四面体Γ的各条棱均在球O 的外部,若球O 的球面被Γ的四个面截得的曲线的长度之和为8π,则正四面体Γ的体积为_________. 【来源】重庆市2021届高三下学期二模数学试题 【答案】182【解析】由题知,正四面体截球面所得曲线为四个半径相同的圆,每个圆的周长为2π,半径为1,故球心O 到正四面体各面的距离为2106122⎛⎫-=⎪⎝⎭,设正四面体棱长为a ,如图所示,则斜高332AE EF a ==,体高63=AF a ,在Rt AEF 和R t AGO 中,13OG EF AO AE ==,即61236632a =-,∴6a =,∴231362618234312V a a =⋅⋅=⋅=. 【举一反三】1.(2020四川省德阳一诊)正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______. 【答案】【解析】如图,设正四面体ABCD 的棱长为,过A 作AD ⊥BC , 设等边三角形ABC 的中心为O ,则,,,即.再设正四面体ABCD 的外接球球心为G ,连接GA , 则,即.∴正四面体ABCD 的外接球的体积为.故答案为:.2.(2020·宁夏育才中学)《九章算术》是我国古代的数学名著,其中有很多对几何体体积的研究,已知某囤积粮食的容器的下面是一个底面积为32π,高为h 的圆柱,上面是一个底面积为32π,高为h 的圆锥,若该容器有外接球,则外接球的体积为 【答案】288π【解析】如图所示,根据圆柱与圆锥和球的对称性知,其外接球的直径是23R h =,设圆柱的底面圆半径为r ,母线长为l h =, 则232r ππ=,解得42r =222(2)(3)l r h +=, 222(82)9h h ∴+=,解得4h =,∴外接球的半径为3462R =⨯=,∴外接球的体积为3344628833R V πππ⨯===.3.(2020·贵阳高三(理))在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD ∆是一个正三角形,若平面PAD ⊥平面ABCD ,则该四棱锥的外接球的表面积为( ) A .143πB .283πC .563πD .1123π【答案】D 【解析】【分析】过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,取PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O ,可证O 为外接球的球心,利用解直角三角形可计算PO .【详解】如图,过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,在PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O .因为PAD ∆为等边三角形,AF FD =,所以PF ⊥AD . 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PF ⊂平面PAD ,所以PF ⊥平面ABCD ,因GF ⊂平面ABCD ,故PF GF ⊥. 又因为四边形ABCD 为正方形,而,G F 为,BC AD 的中点,故FG CD ,故GF AD ⊥,因ADPF F =,故PF ⊥平面PAD .在Rt PGF ∆中,因,OE GF PF GF ⊥⊥,故OE PF ,故OE ⊥平面ABCD ,同理OH ⊥平面PAD .因E 为正方形ABCD 的中心,故球心在直线OE 上,因H 为PAD ∆的中心,故球心在直线OH 上,故O 为球心,OP 为球的半径. 在Rt PGF ∆中,2234343323PH PF ==⨯⨯=,2OH EF ==, 故16282214333OP =+==,所以球的表面积为28112433ππ⨯=. 类型三 构造法(补形法)【例3】已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( ) A .128π B .132πC .144πD .156π【答案】B【解析】PA ⊥平面ABC ,AB AC ⊥,将三棱锥P ABC -补成长方体PQMN ABEC -,如下图所示:设AE BC F =,连接OF 、DF 、OD ,可知点O 为PE 的中点,因为四边形ABEC 为矩形,AE BC F =,则F 为AE 的中点,所以,//OF PA 且12OF PA =,设2PA x =,且2210AE AB BE =+=,222225PE PA AE x ∴+=+所以,球O 的半径为21252R PE x ==+, 在Rt ABE △中,2ABE π∠=,6AB =,10AE =,3cos 5AB BAE AE ∠==,在ADF 中,243AD AB ==,5AF =, 由余弦定理可得222cos 17DF AD AF AD AF BAE =+-⋅∠=,PA ⊥平面ABCD ,OF ∴⊥平面ABCD ,DF ⊂平面ABCD ,则OF DF ⊥,12OF PA x ==,22217OD OF DF x ∴=+=+, 设过点D 的球O 的截面圆的半径为r ,设球心O 到截面圆的距离为d ,设OD 与截面圆所在平面所成的角为θ,则22sin d OD R r θ==-.当0θ=时,即截面圆过球心O 时,d 取最小值,此时r 取最大值,即2max 25r R x ==+;当2πθ=时,即OD 与截面圆所在平面垂直时,d 取最大值,即2max 17d OD x ==+,此时,r 取最小值,即()22min max 22r R d =-=. 由题意可得()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦,0x,解得22x =.所以,33R =,因此,球O 的表面积为24132S R ππ==.故选:B.【举一反三】1.(2020宁夏石嘴山模拟)三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于 .【答案】【解析】把三棱锥,放到长方体里,如下图:,因此长方体的外接球的直径为,所以半径,则三棱锥的外接球的表面积为.2.(2020菏泽高三模拟)已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.【答案】C【解析】如图所示,将直三棱柱补充为长方体,则该长方体的体对角线为,设长方体的外接球的半径为,则,,所以该长方体的外接球的体积,故选C.3.(2020·贵州高三月考(理))某几何体的三视图如图所示,则该几何体的体积为()A.43B.53C.83D.163【答案】A【解析】【分析】如图所示画出几何体,再计算体积得到答案.【详解】由三视图知该几何体是一个四棱锥,可将该几何体放在一个正方体内,如图所示:在棱长为2的正方体1111ABCD A B C D -中,取棱11,,,,B C DA AB BC CD 的中点分别为,,,,E M N P Q ,则该几何体为四棱锥E MNPQ -,其体积为()2142233⨯⨯=.故选:A 类型四 与球体相关的最值问题【例4】(2020·福建高三期末(理))在外接球半径为4的正三棱锥中,体积最大的正三棱锥的高h =( ) A .143B .134C .72D .163【答案】D 【解析】【分析】设正三棱锥底面的边长为a ,高为h ,由勾股定理可得22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22183h h a -=,三棱锥的体积()23384V h h =-,对其求导,分析其单调性与最值即可得解. 【详解】解:设正三棱锥底面的边长为a ,高为h ,根据图形可知22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22180,3h h a -=>08h ∴<<. 又正三棱锥的体积21334V a h =⨯()2384h h h =-()23384h h =-,则()231634V h h '=-, 令0V '=,则163h =或0h =(舍去), ∴函数()23384V h h =-在160,3⎛⎫ ⎪⎝⎭上单调递增,在16,83⎛⎫⎪⎝⎭上单调递减,∴当163h =时,V 取得最大值,故选:D. 【点睛】本题考查球与多面体的最值问题,常常由几何体的体积公式、借助几何性质,不等式、导数等进行解决,对考生的综合应用,空间想象能力及运算求解能力要求较高. 【举一反三】1.(2020·广东高三(理))我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,AC BC ⊥,若12AA AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外接球体积为( )A .22πB .823C .23D .2π【答案】B【解析】依题意可知BC ⊥平面11ACC A .设,AC a BC b ==,则2224a b AB +==.111111323B A ACC V AC AA BC AC BC -=⨯⨯⨯⨯=⨯⨯22114232323AC BC +≤⨯=⨯=,当且仅当2AC BC ==时取得最大值.依题意可知1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B ,故半径221111222OB A B AA AB ==⨯+=.所以外接球的体积为()34π82π233⋅=. 特别说明:由于BC ⊥平面11ACC A ,1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B 为定值,即无论阳马11B A ACC -体积是否取得最大值,堑堵111ABC A B C -外接球保持不变,所以可以直接由直径1A B 的长,计算出外接球的半径,进而求得外接球的体积.故选:B2.(2020·遵义市南白中学高三期末)已知A ,B ,C ,D 四点在同一个球的球面上,6AB BC ==,90ABC ∠=︒,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .4πB .8πC .16πD .32π【答案】C 【解析】根据6AB BC ==可得直角三角形ABC ∆的面积为3,其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q , 由于底面积ABC S ∆不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为为133ABC S DQ ∆⨯=,即133,33DQ DQ ⨯⨯=∴=,如图, 设球心为O ,半径为R ,则在直角AQO ∆中,即222(3)(3,)2R R R =∴+=-, 则这个球的表面积为24216S ππ=⨯=,故选C.3.(2020·河南高三(理))菱形ABCD 的边长为2,∠ABC =60°,沿对角线AC 将三角形ACD 折起,当三棱锥D -ABC 体积最大时,其外接球表面积为( ) A .153π B .2153π C .209π D .203π 【答案】D 【解析】【分析】当平面ACD 与平面ABC 垂直时体积最大,如图所示,利用勾股定理得到2223(3)()3R OG =-+和22223()3R OG =+,计算得到答案. 【详解】易知:当平面ACD 与平面ABC 垂直时体积最大. 如图所示:E 为AC 中点,连接,DE BE ,外接球球心O 的投影为G 是ABC ∆中心,在BE 上 3BE =,3DE =,33EG =,233BG =设半径为R ,则2223(3)()3R OG =-+,22223()3R OG =+ 解得:153R =,表面积22043S R ππ== 故选:D三.强化训练一、选择题1.(2020·广西高三期末)棱长为a 的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三棱锥E BCD -的表面积为( ) A .2334a + B .2336a + C .2336a - D .2334a - 【答案】A【解析】由题意,多面体ABCDE 的外接球即正四面体ABCD 的外接球, 由题意可知AE ⊥面BCD 交于F ,连接CF ,则233323CF a a =⋅= 且其外接球的直径为AE ,易求正四面体ABCD 的高为223633a a a ⎛⎫ ⎪ ⎪=⎝⎭-. 设外接球的半径为R ,由2226333R a R a ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=⎭-⎝-得64R a =. 设正三棱锥E BCD -的高为h ,因为6623AE a a h ==+,所以66h a =. 因为底面BCD ∆的边长为a ,所以2222EB EC ED CF h a ===+=, 则正三棱锥E BCD -的三条侧棱两两垂直.即正三棱锥E BCD -的表面积222121333322224S a a a ⎛⎫+=⨯⨯+⨯= ⎪ ⎪⎝⎭,故选:A .2、(2020辽宁省师范大学附属中学高三)在三棱锥中,,则三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】如图,把三棱锥补形为长方体,设长方体的长、宽、高分别为,则,∴三棱锥外接球的半径∴三棱锥外接球的表面积为.故选:C.3.(2020·安徽高三期末)如果一个凸多面体的每个面都是全等的正多边形,而且每个顶点都引出相同数目的棱,那么这个凸多面体叫做正多面体.古希腊数学家欧几里得在其著作《几何原本》的卷13中系统地研究了正多面体的作图,并证明了每个正多面体都有外接球.若正四面体、正方体、正八面体的外接球半径相同,则它们的棱长之比为()A23B.223C.22D.223【答案】Ba b c R【解析】设正四面体、正方体、正八面体的棱长以及外接球半径分别为,,,则2223,23,22R a R b R c =⨯==, 即222,,2::2:2:333R R a b c R a b c ===∴=故选:B 4.(2020·北京人大附中高三)如图,在四棱锥S ABCD -中,四边形ABCD 为矩形,23AB =,2AD =,120ASB ∠=︒,SA AD ⊥,则四棱锥外接球的表面积为( )A .16πB .20πC .80πD .100π 【答案】B【解析】由四边形ABCD 为矩形,得AB AD ⊥,又SA AD ⊥,且SA AB A ⋂=,∴AD ⊥平面SAB ,则平面SAB ⊥平面ABCD ,设三角形SAB 的外心为G ,则23322sin 2sin12032AB GA ASB ====∠︒. 过G 作GO ⊥底面SAB ,且1GO =,则22215OS =+=.即四棱锥外接球的半径为5. ∴四棱锥外接球的表面积为24(5)20S ππ=⨯=.故选B .5.(2020河南省郑州市一中高三)在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是( ) A . B .C .D .【答案】C【解析】解:如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以,在中,设外接圆的直径为,则:,所以外接球的半径,则:,故选:C.6、(2020河南省天一大联考)某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A.B.C.D.【答案】C【解析】由三视图可得,该几何体为一个三棱锥,放在长、宽、高分别为2,1,2的长方体中,此三棱锥和长方体的外接球是同一个,长方体的外接球的球心在体对角线的中点处,易得其外接球的直径为,从而外接球的表面积为.故答案为:C.7.(2020·江西高三期末(理))如图,三棱锥P ABC -的体积为24,又90PBC ABC ∠=∠=︒,3BC =,4AB =,410PB =,且二面角P BC A --为锐角,则该三棱锥的外接球的表面积为( )A .169πB .144πC .185πD .80π【答案】A【解析】因90PBC ABC ∠=∠=︒,所以BC ⊥平面PAB ,且PBA ∠为二面角P BC A --的平面角, 又3BC =,4AB =,410PB =,由勾股定理可得13PC =,5AC =, 因为1sin 8102PAB S PB AB PBA PBA ∆⋅=⋅∠=∠,所以三棱锥的体积1181032433PAB V S BC PBA ∆=⋅=⨯∠⨯=,解得310sin PBA ∠=,又PBA ∠为锐角,所以10cos 10PBA ∠=, 在PAB ∆中,由余弦定理得2101601624410144PA =+-⨯⨯=, 即12PA =,则222PB PA AB =+,故PA AB ⊥, 由BC ⊥平面PAB 得BC PA ⊥,故PA ⊥平面ABC ,即PA AC ⊥,取PC 中点O , 在直角PAC ∆和直角PBC ∆中,易得OP OC OA OB ===,故O 为外接球球心, 外接圆半径11322R PC ==,故外接球的表面积24169S R ππ==.故选:A. 8.(2019·湖南长沙一中高三)在如图所示的空间几何体中,下面的长方体1111ABCD A B C D -的三条棱长4AB AD ==,12AA =,上面的四棱锥1111P A B C D -中11D E C E =,1111PE A B C D ⊥平面,1PE =,则过五点A 、B 、C 、D 、P 的外接球的表面积为( )A .311π9B .311π18C .313π9D .313π18【答案】C【解析】问题转化为求四棱锥P ABCD -的外接球的表面积.4913PC =+=,∴3sin 13PCD ∠=.所以PCD ∆外接圆的半径为131336213r ==⨯,由于PE ⊥平面1111D C B A ,则PE ⊥平面ABCD ,PE ⊂平面PCD ,所以平面PCD ⊥平面ABCD , 所以外接球的222169313243636R r =+=+=.所以2313π4π9S R ==球表面积.9.三棱锥P —ABC 中,底面ABC 满足BA=BC , ,点P 在底面ABC 的射影为AC 的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P 到底面ABC 的距离为( ) A .3 B .C .D .【答案】B【解析】设外接球半径为,P 到底面ABC 的距离为,,则,因为,所以, 因为,所以当时,,当时,,因此当时,取最小值,外接球的表面积取最小值,选B.10.(2019·河北高三月考)在平面四边形ABCD 中,AB ⊥BD ,∠BCD =30°,2246AB BD +=,若将△ABD 沿BD 折成直二面角A -BD -C ,则三棱锥A-BDC 外接球的表面积是( ) A .4π B .5πC .6πD .8π【答案】C【解析】取,AD BD 中点,E F ,设BCD ∆的外心为M ,连,,MB MF EF , 则01,30,22MF BD BMF DMB BCD BM BF BD ⊥∠=∠=∠=∴== 分别过,E M 作,MF EF 的平行线,交于O 点, 即//,//OE MF OM EF ,,BD AB E ⊥∴为ABD ∆的外心,平面ABD ⊥平面BCD ,AB ⊥平面BCD ,//,EF AB EF ∴⊥平面BCD ,OM ∴⊥平面BCD ,同理OE ⊥平面ABD ,,E M 分别为ABD ∆,BCD ∆外心,O ∴为三棱锥的外接球的球心,OB 为其半径, 22222221342OB BM OM BD EF BD AB =+=+=+=, 246S OB ππ=⨯=球.故选:C11.(2020·梅河口市第五中学高三期末(理))设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为3的等边三角形,45ACB ∠=︒,则当三棱锥P ABC -的体积最大时,球O 的表面积为( ) A .283π B .10πC .323π D .12π【答案】A【解析】如图,由题意得2334AB =,解得2AB =.记,,AB c BC a AC b ===, 12sin 24ABC S ab C ab ∆==,由余弦定理2222cos c a b ab C =+-,得224222a b ab ab ab =+-≥-,42(22)22ab ≤=+-,当且仅当a b =时取等号.所以CA CB =且平面PAB ⊥底面ABC 时,三棱锥P ABC -的体积最大.分别过PAB ∆和ABC ∆的外心作对应三角形所在平面的垂线,垂线的交点即球心O , 设PAB ∆和ABC ∆的外接圆半径分别为1r ,2r ,球O 的半径为R ,则123r =,21222sin 45r =⨯=︒.故222211172233R r r ⎛⎫=+=+= ⎪⎝⎭, 球O 的表面积为22843R ππ=.故选:A.12.(2020四川省成都外国语学校模拟)已知正方形ABCD 的边长为4,E ,F 分别是BC ,CD 的中点,沿AE ,EF ,AF 折成一个三棱锥P-AEF (使B ,C ,D 重合于P ),三棱锥P-AEF 的外接球表面积为( )A .B .C .D .【答案】C 【解析】如图,由题意可得,三棱锥P-AEF 的三条侧棱PA ,PE ,PF 两两互相垂直, 且,,把三棱锥P-AEF 补形为长方体,则长方体的体对角线长为, 则三棱锥P-AEF 的外接球的半径为,外接球的表面积为.故选:C .13.已知球O 夹在一个二面角l αβ--之间,与两个半平面分别相切于点,A B .若2AB =,球心O 到该二面角的棱l 的距离为2,则球O 的表面积为( ) A .8πB .6πC .4πD .2π【来源】江西省萍乡市2021届高三二模考试数学(文)试题 【答案】A【解析】过,,O A B 三点作球的截面,如图:设该截面与棱l 交于D ,则OA l ⊥,OB l ⊥,又OA OB O =,所以l ⊥平面AOB ,所以OD l ⊥,所以||2OD =,依题意得,OA AD OB BD ⊥⊥,所以,,,O A D B 四点共圆,且OD 为该圆的直径,因为||2||AB OD ==,所以AB 也是该圆的直径,所以四边形OADB 的对角线AB 与OD 的长度相等且互相平分,所以四边形OADB 为矩形,又||||OA OB =,所以该矩形为正方形,所以2||||22OA AB ==,即圆O 的半径为2,所以圆O 的表面积为24(2)8ππ⨯=. 故选:A14.已知点,,A B C 在半径为2的球面上,满足1AB AC ==,3BC =,若S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( ) A .32312+ B .3236+ C .23312+ D .3312+ 【答案】A【解析】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,如图,则AD BC ⊥,且O '在AD 上,221()22BC AD AB =-=, 设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1r =, 22||23OO r '∴=-=要使S ABC -体积的最大,需S 到平面ABC 距离最大, 即S 为O O '32,所以三棱锥S ABC -体积的最大值为11112)2)3322ABCS ⨯=⨯⨯⨯=故选:A15.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C .6D 【答案】D【解析】如图1所示,设BC x =,CO r '=,作CF AB ⊥于点F ,延长OO '交球面于点E ,则1BF r =-,OO CF '===2得CO O D ''⋅=()()11O E O H OO OO ''''⋅=+⋅-,即((211r =+⋅,解得212x r =-,则圆台侧面积(2π1102x S x x ⎛⎫=⋅+-⋅<< ⎪⎝⎭,则'2322S x ππ=-,令'0S =,则3x =或x =,当0x <<时,'0S >x <<'0S <,所以函数2π112x S x ⎛⎫=⋅+-⋅ ⎪⎝⎭在⎛ ⎝⎭上递增,在⎝上递减,所以当3x =时,S 取得最大值.当3x BC ==时,21123x r =-=,则213BF r =-=.在轴截面中,OBC ∠为圆台母线与底面所成的角,在Rt CFB △中可得cos 3BF OBC BC ∠==故选:D .16.(2020·重庆八中高三)圆柱的侧面展开图是一个面积为216π的正方形,该圆柱内有一个体积为V 的球,则V 的最大值为 【答案】323π【解析】设圆柱的底面直径为2r ,高为l ,则222π16πr l l =⎧⎨=⎩,解得24πr l =⎧⎨=⎩.故圆柱的底面直径为4,高为4π,所以圆柱内最大球的直径为4,半径为2,其体积为34π32π233⨯=. 17.(2020·江西高三)半正多面体(semiregular solid )亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为2,则该二十四等边体外接球的表面积为【答案】8π【解析】2,侧棱长为2的正四棱柱的外接球,2222(2)(2)(2)2R ∴=++,2R ∴,∴该二十四等边体的外接球的表面积24πS R =24π(2)8π=⨯=.18.(2020·福建高三期末(理))在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别为1AA ,BC 的中点,点M 在棱11B C 上,11114B M BC =,若平面FEM 交11A B 于点N ,四棱锥11N BDD B -的五个顶点都在球O 的球面上,则球O 半径为 【答案】2293【解析】如图1,2,,B M F 三点共线,连结22,B E B MF ∈从而2B ∈平面FEM ,则2B E 与11A B 的交点即为点N ,又12Rt B B N ∆与1Rt A EN ∆相似,所以1112112A E A NB B NB ==; 如图2,设11B D N ∆的外接圆圆心为1O ,半径为r ,球半径为R ,在11B D N ∆中,111445,103NB D D N ︒∠==,由正弦定理得453r =,所以1853D P =,在1Rt DD P ∆中,解得4293DP =,即42293R =,所以所求的球的半径为2293.19.(2020·黑龙江高三(理))设,,,A B C D 是同一个半径为4的球的球面上四点,在ABC 中,6BC =,60BAC ∠=︒,则三棱锥D ABC -体积的最大值为【答案】183【解析】ABC 中,6BC =,60BAC ∠=︒,则643223sin sin 60a r r A ===∴=︒,22max 6h R r R =-=,222222cos 36a b c bc A b c bc bc bc =+-=+-≥∴≤ ,1sin 932S bc A =≤ 当6a b c ===时等号成立,此时11833V Sh ==20.(2020·河北承德第一中学高三)正三棱锥S -ABC 的外接球半径为2,底边长AB =3,则此棱锥的体积为【答案】934或334【解析】设正三棱锥的高为h ,球心在正三棱锥的高所在的直线上,H 为底面正三棱锥的中心因为底面边长AB=3,所以2222333332AH AD ⎛⎫==-= ⎪⎝⎭当顶点S 与球心在底面ABC 的同侧时,如下图此时有222AH OH OA += ,即()()222322h +-=,可解得h=3因而棱柱的体积113393333224S ABC V -=⨯⨯⨯⨯=当顶点S 与球心在底面ABC 的异侧时,如下图有222AH OH OA +=,即()222322h +-=,可解得h=1所以113333313224S ABC V -=⨯⨯⨯⨯=9333421.(2020·江西高三(理))已知P,A,B,C 是半径为2的球面上的点,PA=PB=PC=2,90ABC ∠=︒,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值为 【答案】338【解析】如下图,由题意,2PA PB PC ===,90ABC ∠=︒,取AC 的中点为G ,则G 为三角形ABC 的外心,且为P 在平面ABC 上的射影,所以球心在PG 的延长线上,设PG h =,则2OG h =-,所以2222OB OG PB PG -=-,即22424h h --=-,所以1h =. 故G CG 3A ==,过B 作BD AC ⊥于D ,设AD x =(023x <<),则23CD x =-,设(03)BD m m =<≤,则~ABD BCD ,故23m xx m-=, 所以()223m x x =-,则()23m x x =-,所以ABD 的面积()3112322S xm x x ==-,令()()323f x x x =-,则()2'634f x x x =-(),因为20x >,所以当3032x <<时,()'0f x >,即()f x 此时单调递增;当33232x ≤<时,()'0f x ≤,此时()f x 单调递减.所以当332x =时,()f x 取到最大值为24316,即ABD 的面积最大值为1243932168=.当ABD 的面积最大时,三棱锥P ABD -体积取得最大值为19333388⨯=.22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.【来源】宁夏固原市第五中学2021届高三年级期末考试数学(文)试题 【答案】163π【解析】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=,所以球O 的半径为2323x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 23.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___【答案】π 【解析】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==++=+=,所以,3R =,设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+=, 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM ==;②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤=.设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-≥,因此,所求截面圆的面积的最小值为2r ππ=.24.若正四棱锥P ABCD -的底面边长和高均为8,M 为侧棱PA 的中点,则四棱锥M ABCD -外接球的表面积为___________.【来源】山西省运城市2021届高三上学期期末数学(文)试题 【答案】132π【解析】在正四棱锥P ABCD -中M 为侧楼PA 中点,∴四棱锥M ABCD -外接球即为棱台MNEF ABCD -的外接球,如图,四棱锥P ABCD -的底面边长和高均为8,1214,42AB O N O M ===∴ 212242AO MO ==∴设球心为O ,则图中12,OO A OMO △△均为直角三角形, 设1OO h =,222(42)OA h ∴=+,222(22)(4)OM h =++,A , M 都在球面上,222O O M R A =∴=,解得21,33h R =∴=,24132S R ππ∴==球25.已知P 为球O 球面上一点,点M 满足2OM MP =,过点M 与OP 成30的平面截球O ,截面的面积为16π,则球O 的表面积为________.【来源】广西钦州市2021届高三第二次模拟考试数学(理)试题 【答案】72π 【解析】如图所示:设截面圆心为1O , 依题意得130OMO ∠=, 设1OO h =,则2OM h =, 又2OM MP =,所以3OP h =,即球的半径为3h ,所以3ON h =,又截面的面积为16π,所以()2116O N ππ=,解得14O N =,在1Rt OO N 中,()22316h h =+, 解得2h =,所以球的半径为32, 所以球的表面积是()243272S ππ==,故答案为: 72π 26.如图是数学家GeminadDandelin 用来证明一个平面截圆锥得到的截面是椭圆的模型(称为丹德林双球模型):在圆锥内放两个大小不同的小球,使得它们分别与圆锥侧面、截面相切,设图中球1O 和球2O 的半径分别为1和3,128O O =,截面分别与球1O 和球2O 切于点E 和F ,则此椭圆的长轴长为___________.【来源】江苏省盐城市阜宁县2020-2021学年高三上学期期末数学试题【答案】15【解析】如图,圆锥面与其内切球12,O O 分别相切与,B A ,连接12,O B O A ,则12,O B AB O A AB ⊥⊥,过1O 作12O D O A 于D ,连接12,,O F O E EF 交12O O 于点C ,设圆锥母线与轴的夹角为α,截面与轴的夹角为β,在Rt △12O O D 中,2312DO ,22182215O D11221515cos 84O D O O α===128O O = , 218CO O C =-,△2EO C △1FO C ,11218O C O C EO O F -= 解得12O C =,26O C = 222211213CF O C FO ∴=-=-= ,即13cos 2CFO C , 所以椭圆离心率为cos 25cos 5c e aβα=== 在△2EO C 中223cos cos 2EC ECO O C β=∠== 解得33EC =,432EF c ==2325155a a =⇒= 2215a ∴=故答案为:21527.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.【来源】江苏省六校2021届高三下学期第四次适应性联考数学试题 【答案】16538【解析】如图所示:平面ABMN 将长方体分成两部分,MN 有可能在平面11CDD C 上或平面1111A D C B 上,根据对称性知,两球半径和的最大值是相同的,故仅考虑在平面11CDD C 上的情况,延长11B C 与BM 交于点P ,作1O Q BC ⊥于Q 点,设1CBP BPB α∠=∠=,圆1O 对应的半径为1r ,根据三角形内切圆的性质, 在1Rt O QB 中,12QBO α∠=,15BQ BC CQ r =-=-,111tan 25O Q r BQ r α==-, 则15tan5251tan 1tan 22r ααα==-++,又当BP 与1BC 重合时,1r 取得最大值,由内切圆等面积法求得1512251213r ⨯≤=++,则2tan 23α≤ 设圆2O 对应的半径为2r ,同理可得266tan2r α=-, 又252r ≤,解得7tan 212α≥. 故1255566tan 176(1tan )221tan 1tan 22r r αααα+=-+-=--+++,72tan 1223α≤≤, 设1tan 2x α=+,则195[,]123x ∈,()5176f x x x=--, 由对号函数性质易知195[,]123x ∈,函数()f x 单减,则19519165()()1761912123812f x f ≤=--⨯=,即最大值为16538 故答案为:16538 28.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为___________.【来源】江苏省南京市秦淮中学2021届高三下学期期初学情调研数学试题【答案】183【解析】ABC 为等边三角形且其面积为93,则23934ABC SAB ==,6AB ∴=,如图所示,设点M 为ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===, 点M 为三角形ABC 的重心,2233BM BE ∴==, Rt OMB ∴中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,所以三棱锥D ABC -体积的最大值19361833D ABC V -=⨯=29.已知四面体ABCD 的棱长均为6,,EF 分别为棱,BC BD 上靠近点B 的三等分点,过,,A E F 三点的平面与四面体ABCD 的外接球O 的球面相交,得圆'O ,则球O 的半径为___________,圆'O 的面积为__________.【来源】河南省九师联盟2021届高三下学期3月联考理科数学试题【答案】3 8π【解析】。

破解外接球问题三法定义,构造,交轨

破解外接球问题三法定义,构造,交轨

㊀㊀㊀破解外接球问题三法:定义,构造,交轨◉湖北省大冶市实验高中㊀石晓皎㊀㊀摘要:理解并掌握一些相关的基本技巧方法,正确确定空间几何体的外接球的球心位置或球的半径,是破解空间几何体外接球问题的关键.结合几个常见的破解此类问题的技巧方法与策略,通过对相关实例的剖析,归纳总结题目类型与解题技巧,为数学教学与复习备考提供参考.关键词:空间几何体;外接球;定义;构造;交轨1引言空间几何体的外接球问题,其问题创设的形式各样,变化多端,是一类常考常新的综合应用问题.解决问题时,关键是利用空间几何体的结构特征,以及外接球的定义㊁性质等,确定空间几何体外接球的球心位置或球的半径.下面结合具体案例,从球的定义(定义法)㊁几何体的结构特征(构造法)以及球的性质(交轨法)等视角来分析与处理空间几何体的外接球问题,并巧妙归类与总结.2破解三法2.1定义法通过题目中所给的空间几何体的结构特征,结合球的定义确定其外接球的球心位置或半径.其实就是抓住球的定义本质进行求解.例1㊀[2022届吉林省白山市高三(上)期末数学试卷(文科)]已知四棱锥P GA B C D 的底面是矩形,P A ʅ平面A B C D ,A B =4,B C =2㊀5,P A =8,则四棱锥P GA B C D 外接球的表面积为(㊀㊀).A.72π㊀㊀B .144π㊀㊀C .50π㊀㊀D.100π分析:根据给定条件,取P C 中点O ,结合线面垂直的判定与性质,利用直角三角形的性质,结合球的定义来确定四棱锥P GA B C D 外接球的球心位置,进而构建关系式计算出球半径,代入球的表面积公式计算即可.图2解析:四棱锥P GA B C D 的底面是矩形,取P C 中点O ,连接A C ,O A ,O B ,O D ,如图1所示.因为P A ʅ平面A B C D ,B C ⊂平面A B C D ,则P A ʅB C .而A B ʅB C ,A B ɘP A =A ,A B ,P A ⊂平面P A B ,则有B C ʅ平面P A B .又P B ⊂平面P A B ,所以B C ʅP B .同理,可证C D ʅP D .而P A ʅA C ,因此O A =O B =O C =O D =12P C .结合球的定义,可知四棱锥P GA B C D 外接球的球心为O ,半径为O A .在矩形A B C D 中,A C 2=A B 2+B C 2,从而得P C =㊀A C 2+P A 2=㊀42+(2㊀5)2+82=10,即球半径O A =5,所以四棱锥P GA B C D 外接球的表面积为S =4πˑ52=100π.故选择答案:D .点评:定义法确定空间几何体外接球的球心位置或半径,其实就是抓住球的定义这一实质,利用球心到球面上任意一点的距离都相等,巧妙综合空间几何体的对称性㊁平面几何图形的基本性质等,结合球的定义巧妙构建相应的关系式,实现问题的化归与应用的目的.2.2构造法通过题目中所给的空间几何体的结构特征,巧妙构造立体几何模型,如所给空间几何体是柱体㊁锥体等,可构造长方体或正方体等特殊立几模型来转化与应用.例2㊀[2022届山西省高三(上)期末考试数学试卷(理科)]已知三棱锥P GA B C 的顶点P 在底面的射影O 为әA B C 的垂心,若әA B C 的面积为S әA B C ,әO B C 的面积为S әO B C ,әP B C 的面积为S әP B C ,满足S әA B C S әO B C =S 2әP B C ,当әP A B ,әP B C ,әP A C 的面积之和的最大值为8时,则三棱锥P GA B C 外接球的体积为(㊀㊀).A.4π3㊀㊀B .8π3㊀㊀C .16π3㊀㊀D.32π3分析:如图2,连接A O ,并延长交B C 于点D .由顶点P 在底面的射影O 为әA B C 的垂心,可得B C ʅP A ,A C ʅP B ,A B ʅP C .由S әA B C S әO B C =S әP B C 2,可得әP O D ʐәA P D ,P A ʅP D .即可得P A ,P B ,P C 两两互相垂直.通过构造立体几何模型法,利用三棱锥P GA B C 的外接球为以P A ,P B ,P C为棱的长方体的外接球,即可建立涉及外接球半径的关系式,结372022年11月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀合三角形的面积公式以及基本不等式的应用来转化与应用.图2解析:如图2所示,连接A O并延长交B C于点D,连结P D.由于顶点P在底面的射影O为әA B C的垂心,则知A DʅC B.又P Oʅ平面A B C,可得P OʅB C.又A DɘP O=O,所以B Cʅ平面A P D,可得B CʅA P,B CʅP D.同理A CʅP B.由SәA B C SәO B C=S2әP B C,可得A D O D=P D2.又øP D O=øP D A,则有әP O DʐәA P D,所以øA P D=øP O D=90ʎ,即P AʅP D.又P AʅB C,B CɘP D=D,所以A Pʅ平面P B C,而P B⊂平面P B C,故P AʅP B.又P BʅA C,且A PɘA C=A,所以P Bʅ平面A P C,而P B⊂平面A P C,故P BʅP C.所以P A,P B,P C两两互相垂直.所以三棱锥PGA B C的外接球为以P A,P B,P C为棱的长方体的外接球.设三棱锥PGA B C的外接球半径为R,则有P A2+P B2+P C2=4R2.故SәP A B+SәP B C+SәP A C=12P A P B+12P BP C+12P A P Cɤ14(P A2+P B2+P B2+P C2+P A2+P C2)=2R2=8,当且仅当P A=P B=P C时等号成立,此时R=2.所以,三棱锥PGA B C外接球的体积V=43πR3=32π3.故选择答案:D.点评:构造法确定空间几何体的外接球的球心位置或半径,其实就是借助补形思维,通过合理补形等方式构造特殊的空间几何体 正方体或长方体等,利用原几何体与所构造的特殊空间几何体的外接球一致,合理转化,快捷处理,进而利用正方体或长方体外接球的球心是其体对角线的中点(体对角线恰是该外接球的直径)来解决问题.2.3交轨法通过题目中所给空间几何体的结构特征,结合外接球的几何特征,从不同视角确定球心所在的直线,而满足条件的两条相交直线的交点就是对应的外接球球心.例3㊀(2020年陕西省西安市高考数学一模试卷理科)已知әA B C是以B C为斜边的直角三角形,P为平面A B C外一点,且平面P B Cʅ平面A B C,B C=3,P B=2㊀2,P C=㊀5,则三棱锥PGA B C外接球的表面积为.分析:根据题目条件,利用交轨法求解.先求出到A,B,C三点等距离的点的轨迹是直线MN,再求出到P,B两点等距离的点的轨迹是直线D E,则直线MN与直线D E的交点即是三棱锥PGA B C外接球的球心,进而结合余弦定理㊁正弦定理加以分析与求解,确定外接球的半径,即可求解对应的表面积.解析:设M为B C的中点,在平面P B C内过点M作MNʅB C交P B于点N.因为平面P B Cʅ平面A B C,所以MNʅ平面A B C.又三角形A B C是以B C为斜边的直角三角形,所以直线MN上任意一点到A,B,C三点的距离相等.在平面P B C内作线段P B的垂直平分线D E,设D E与MN的交点为O,则点O到P,A,B,C四点的距离都相等,即点O为三棱锥PGA B C外接球的球心,并且点O也是三角形P B C的外心.因此,三棱锥PGA B C外接球的半径与三角形P B C外接圆的半径相等.又P B=2㊀2,B C=3,P C=㊀5,所以在әP B C中,由余弦定理可得c o søP B C=8+9-52ˑ2㊀2ˑ3=㊀22,则s i nøP B C=㊀22.设三棱锥PGA B C外接球的半径为R,结合正弦定理有2R=㊀5㊀22=㊀10,即R=㊀102.所以,三棱锥PGA B C外接球的表面积S=4πR2=10π.故填答案:10π.点评:交轨法确定空间几何体外接球的球心位置或半径,其实就是借助球的相关性质: 球心O与截面圆的圆心O1的连线垂直于截面圆 球心O与弦中点的连线垂直于弦 等,利用满足条件的两条相交直线的交点直接确定空间几何体外接球的球心.3结语解决空间几何体的外接球问题,除了以上借助球的定义(定义法)㊁几何体的结构特征(构造法)以及球的性质(交轨法)等方法来解决外,还可以结合空间坐标法㊁向量法以及其他一些相关的技巧来处理,关键就是要 心中有图 ,正确进行空间想象,构建不同元素之间的联系,合理数学运算,巧妙逻辑推理,实现数学运算㊁直观想象以及逻辑推理等核心素养的培养与提升.Z47复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年11月上半月Copyright©博看网. All Rights Reserved.。

高中数学解题秘籍系列一篇文章攻克外接球

高中数学解题秘籍系列一篇文章攻克外接球

【高中数学解题秘籍系列】————一篇文章攻克外接球⚫外接球指一个空间几何图形的外接球,对于旋转体和多面体,外接球有不同的定义,广义理解为球将几何体包围,且几何体的顶点和弧面在此球上.正多面体各顶点同在一球面上,这个球叫做正多面体的外接球.⚫内切球球心到某几何体各面的距离相等且等于半径的球是几何体的内切球.如果一个球与简单多面体的各面或其延展部分都相切,且此球在多面体的内部,则称这个球为此多面体的内切球.一、外接球七大模型二、内切球万能公式(棱锥)①圆柱②直棱柱③侧棱垂直底面➢适用几何体:圆柱、直棱柱、一条侧棱垂直底面的棱锥.②和 ③ 可以通过补形转化为 ①,所以我们只需证明 ① 即可证明:设P 、O '分别为上下底面圆的圆心,O 为线段PO '的中点,( 2017•新课标 Ⅲ ) 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4 C .π2D .π4由秒杀公式1得22222212=1442h R r r ⎛⎫+=+== ⎪⎝⎭,解得234r =, 因此圆柱的体积233πππ144V r h =⋅=⋅⋅=,故选B.( 2017•新课标 Ⅱ ) 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则 球O 的表面积为 .由秒杀公式1得2222217=442h R r +=+=⎝⎭, 因此球O 的表面积为274π4π14π2S R ==⋅⋅=. 本题还可用秒杀公式4可得22222223217442a b c R ++++===,因此球O 的表面积为274π4π14π2S R ==⋅⋅=. 由此可知在选用公式的时候是比较灵活的,原因在于模型之间可以相互转化.典例例题1-1例题1-2( 2012•辽宁 ) 已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为PA =,则OAB △的面积为 .由秒杀公式1得(22222=12424h R r +=⋅+=⎝,解得R =OAB △为等边三角形,所以(2OAB S ==△( 2011•四川 ) 如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是 .由秒杀公式1得222=4h R r +,于是2224=2π=4π4π2π22h r h S r h r R+⋅⋅⋅=侧, 当且仅当2h r ==时不等式取“=”,于是 222=4π2π=2πSS R R R −−侧球.( 2010•辽宁 ) 已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB ==,BC ,则球O 的表面积等于( )A .4πB .3πC .2πD .π由秒杀公式1得222221=144h R r +=+=⎝⎭, 解得1R =,则球O 的表面积为24π4πS R ==.故选A .( 2008•浙江 ) 如图,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB BC ⊥,DA AB BC ==O 的体积等于 .由秒杀公式1得222229=444h R r +=+=⎝⎭, 解得32R =,则球O 的体积为 334439πππ3322V R ⎛⎫==⋅⋅= ⎪⎝⎭.①圆锥 ②正棱锥➢适用几何体:圆锥、顶点在底面的射影是底面外心的棱锥(正棱锥).② 可以通过补形转化为 ①,所以我们只需证明 ① 即可心O 为PO '上一点,于是在Rt OO A '△中有解得( 2018•新课标 Ⅲ ) 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且面积为D ABC −体积的最大值为( ) A.B.C.D.依题意得,当三棱锥D ABC −为正三棱锥且hR 时,三棱锥D ABC −的体积最大,那么由秒杀公式2得22=42r h R h+=,①又因为ABC △为正三角形且面积为))1πsin23S =⋅⋅⋅=,解得r =①式解得2h =或6h =,又因为4hR =,所以6h =,于是()max 1=3D ABC V −⋅ 故选B .例题2-1典例( 2014•大纲版 ) 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .81π4B .16πC .9πD .27π4由秒杀公式2得2222+49==2244r h R h+=⋅, 因此22981π=4π=4π=44S R ⎛⎫⋅ ⎪⎝⎭, 故选A .( 2020•银川模拟 ) 已知圆锥的母线与底面所成的角等于60︒,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( ) A .4:3B .3:4C .16:9D .9:16由秒杀公式2得22=2r h R h+,依题意得h =,因此R =, 于是2222224164ππ4π1633=ππππ23π9r r S R S r rl r r r r ⋅===++⋅球锥. 故选C .例题2-2例题2-3( 2018秋•太原期末 ) 在三棱锥P ABC −中,顶点P 在底面ABC 的投影G 是ABC △的外心,2PB BC ==,平面PBC 与底面ABC 所成的二面角的大小为60︒,则三棱锥P ABC −的外接球的表面积为 .如图所示,作BC 的中点M ,在Rt PMB △[1]中有PM ==依题意知60PMG ∠=︒[2],在Rt PGM △中有3sin 60cos602h PG PM GM PM ==︒==︒=, 于是在Rt BGM △中有r BG =, 由秒杀公式2可得224=23r h R h +=,因此264π4π9S R ==.[1] 因为顶点P 在底面ABC 的投影G 是ABC △的外心,所以PA PB PC ==. [2] 因为BC PM ⊥且BC GM ⊥,所以PMG ∠为二面角P BC A −−的平面角.( 2020•娄底模拟 ) 如图所示是某几何体的三视图,则该几何体的外接球的表面积为( )A .25π8B .25π4C .25π2 D .9π8由秒杀公式2得2222+=2r hR h+= 因此2225π=4π=4π=2S R ⋅⎝⎭, 故选C .( 2019秋•东莞市期末 ) 已知球O 是正四面体A BCD −的外接球,2BC =,点E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面圆面积的最小值是( )A .8π9B .11π18C .5π12 D .4π9依题意易知3r =,3h =,由秒杀公式2得2222+=2r h R h +=, 如图所示,在OBD △中,由余弦定理可得222cos 23OB BD ODOBD OB BD+−∠==⋅⋅, 那么在OBE △中,由余弦定理可得222112cos 18OE OB BE OB BE OBD =+−∠=, 当截面圆垂直OE 时面积最小,故截面圆的最小半径为3r '==, 因此截面圆面积的最小值为()288πππ99S r '==⋅=.故选A .( 学生答疑 ) 在《九章算术》卷商功中称正四棱锥为“方锥”. 现有一“方锥”的体积为若该“方锥”的五个顶点都在球O 的球面上,则球O 表面积的最小值为 A .18πB .27πC .36πD .75π由秒杀公式2得22=2r h R h+, 依题意得211=233V S h r h ⋅⋅=⋅⋅=底,即2r =2223263=32244h rh h h h R h h h ++==+⋅=4h”,即“h =”时不等式取“=”,因此 2min min 27=4π4π27π4S R =⋅=,故选B.➢适用几何体:三组线线垂直型三棱锥.证明:在三棱锥P ABC=,−中,AB AC APAB a,AC b、、两两垂直,= =,将三棱锥补成长方体,则长方体的体对角线PQ即为外接球的AP c直径,于是所以()22222R a b c=++,即( 2019•新课标 Ⅰ ) 已知三棱锥P ABC −的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( ) A.B.C.D依题意得三棱锥P ABC −为正三棱锥,CE EF ⊥,因为//EF PB ,所以PB CE ⊥,由正三棱锥性质可得PB CA ⊥[1],又因为CE ⊂面PAC ,CA ⊂面PAC ,=CE CA C ,因此PB ⊥面PAC ,因此PA PB PC ,,两两垂直[2],由秒杀公式3得2222222++3===442a b cR ++, 于是3344=π=π332V R ⎛⎫⋅⋅⋅⋅ ⎪ ⎪⎝⎭, 故选D .[1] 设G 为AC 的中点,P 点在底面ABC 的投影为1O ,因为三棱锥P ABC −为正三棱锥, 所以1O 为ABC △的外心,故1B O G ,,三点共线,因为1AC PO AC BG ⊥⊥,,且 11PO BG O =,所以AC ⊥平面PGB ,又因为PB ⊂平面PGB ,故PB CA ⊥.[2] PAB PAC PBC ≅≅△△△.例题3-1典例( 2012•辽宁 ) 已知正三棱锥P ABC −,点P ,A ,B ,CPA ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 .由秒杀公式3可得2222222344PA PB PC a b c R ++++===,由正三棱锥性质可得PA PB PC ==,解得2PA PB PC ===,则球心到截面ABC 的距离为OH ===.( 2008•福建 ) 是 .由秒杀公式3可得2222944a b c R ++===,故294π4π9π4S R ==⋅=. 例题3-3( 2020•山东学业考试 ) 在三棱锥P ABC −中,PA ,PB ,PC 两两垂直,且1PA =,2PB PC ==,则该三棱锥的外接球体的体积为( )A .9π2B .27π2C .9πD .36π由秒杀公式3可得22222221229444a b c R ++++===,于是334439πππ3322V R ⎛⎫==⋅=⎪⎝⎭. 故选A .( 2019春•湖南期末 ) 已知点P 在直径为2的球面上,过点P 作球的两两相互垂直的三条弦PA ,PB ,PC ,若PA PB =,则PA PB PC ++的最大值为( )A.B .4C.2+D .3由秒杀公式3可得22222222221444PA PB PC PB PC a b c R +++++====,即2224PB PC +=,因此()222PAPB PC PB PC⎡++=+=⎢⎣1PC =时,即3PB PC ==时不等式取“=”,故选A .例题3-5➢适用几何体:对棱长相等的三棱锥.证明:在三棱锥P ABC −中,PA BC x ==,PB AC y ==,PC AB z ==,将三棱锥P ABC −补成如图所示长方体,设DA a =,DB b =,DC c =,于是长方体的体对角线PD 即为三棱锥P ABC −外接球,因为222222222a b z a c y b c x ⎧+=⎪+=⎨⎪+=⎩,,, 所以()2222222x y z a b c ++=++,又因为那么即( 2020•红河州模拟 ) 在三棱锥A BCD −中,5AB CD AC BD ====,AD BC ==( )AB.C .132D .13由秒杀公式4得()((22222225+169==884x y z R +++=, 解得13=2R ,故选C .( 2016•蚌埠三模 ) 在四面体ABCD 中,2AB CD ==,AC BD AD BC ==== 面体的外接球的表面积为 .由秒杀公式4得()22222222+==188x y zR +++=,因此四面体外接球的表面积为24π4πS R ==.典例例题4-1例题4-2( 2019秋•路南区校级期中 ) 四面体ABCD 的四个顶点在同一球面上中,4AB BC CD DA ====,AC BD ==E 为AC 的中点,过E 作其外接球的截面,则截面面积的最大值与最小值的比为( ) A .5:4B2CD .5:2由秒杀公式4得()()(22222224+4==588x y z R +++=,在等腰OAE △中,OE ==当截面圆所在平面垂直OE 时面积最小,截面圆所在平面过球心O 时面积最大,因此22min maxπ2ππ5πS SR =⋅==⋅=,,于是max min 52S S =, 故选D .例题4-3➢适用几何体:两全等等腰三角形折叠式棱锥.证明:在三棱锥P ABC −中,PAB CAB ≅△△,CA CB =,1O ,2O 分别是ABC △和PBC △的外心,M 为线段AB 的中点,1OO ⊥平面ABC ,2OO ⊥中有那么,在Rt MBO △中有( 2019•齐齐哈尔一模 ) 在边长为2的菱形ABCD中,BD =,将菱形ABCD 沿对角线AC 对折,使二面角B AC D −−的余弦值为13,则所得三棱锥A BCD −的外接球的表面积为.由秒杀公式5得因此三棱锥A BCD −的外接球表面积为234π4π6π2S R ==⋅=.典例例题5-1(2017•广西一模)在菱形ABCD中,60A=︒,AB=ABD∆的∆沿BD折起到PBD位置,若二面角P BD C−的外接球球心为O,BD的中−−的大小为120︒,三棱锥P BCD点为E,则(OE=)A.1B.2C D.由秒杀公式5得那么OE===,2故选B.( 原创 ) 已知空间四边形ABCD 中,2AB BD AD BC AC =====,若二面角C AB D −−的取值范围为π2π33⎡⎤⎢⎥⎣⎦,,则该几何体的外接球表面积的取值范围为 .由秒杀公式5得又因为π2π33α⎡⎤∈⎢⎥⎣⎦,,所以ππ263α⎡⎤∈⎢⎥⎣⎦,,那么tan 2α∈⎣,因此213793R ⎡⎤∈⎢⎥⎣⎦,,又因为2=4πS R ,故外接球表面积的取值范围为52π28π93⎡⎤⎢⎥⎣⎦,.➢适用几何体:面面垂直型棱锥.证明:在三棱锥P ABC −中,平面ABP ⊥平面ABC ,1O ,2O 分别是ABP △和ABC △的外心,且1OO ⊥平面ABP ,2OO ⊥平面ABC ,1r ,2r 分别是ABP △和ABC △外接圆的半径,l 为线段AB 的长度,在2O BM △中有即同理所以( 原创 ) 在三棱锥S ABC −中,ABC △是边长为3的等边三角形,SA =,SB =面角S AB C −−的大小为90︒,则此三棱锥的外接球的半径为 .由秒杀公式5得典例例题6-1( 2019•中卫一模 ) 一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几 何体的外接球的表面积为( ) A .16π3B .8π3C. D.由秒杀公式5得因此外接球的表面积为正视图侧视图俯视图( 2019•开福区校级模拟 ) 已知等腰ABC △的面积为4,AD 是底边BC 上的高,沿AD 将ABC △折成一个直二面角,则三棱锥A BCD −的外接球的表面积的最小值为 .设AD x BD y ==,,因为等腰ABC △的面积为4,则=4xy ,又因为12r r ==, 那么由秒杀公式5得2211242x ⋅2212x y =时,即x y ==时,不等式取“=”,故三棱锥A BCD −的外接球的表面积的最小值为2min min =4πS R .如图,三棱锥P ABC −的底面是边长为2的等边三角形,若PA PB =二面角P BA C −− 的大小为90︒,则三棱锥P ABC −的外接球的表面积等于 .由秒杀公式5得因此外接球的表面积为➢适用几何体:普通三棱锥.证明:在三棱锥P ABC −中,1O ,2O 分别是ABP △和ABC △的外心,二面角12P AB C O MO α−−=∠=,M 为AB 的中点,1O M m =,2O M n =,且1OO ⊥平面ABP ,2OO ⊥平面ABC , l 为线段AB 的长度,在四边形12OO MO 中,因为所以12OO MO 四点共圆,设四边形12OO MO 的外接圆的半径为r ,则因此( 2019秋•迎泽区校级月考 ) 在三棱锥S ABC −中,ABC △是边长为3的等边三角形,SA,SB =二面角S AB C −−的大小为120︒,则此三棱锥的外接球的半径为 . 由秒杀公式7得典例例题7-1( 2019春•孝感期末 ) 将边长为2的正三角形ABC 沿中线AD 折成60︒的二面角B AD C −−,则三棱锥A BDC −的外接球的表面积为 .由秒杀公式7得因此外接球的表面积为( 2015秋•绍兴校级期中) 如图,三棱锥P ABC −的底面是边长为2的等边三角形,若PA PB ==P BA C −−的大小为60︒,则三棱锥P ABC −的外接球的表面积等于 .由秒杀公式7得因此外接球的表面积为( 2017•葫芦岛模拟 ) 已知空间四边形ABCD 中,2AB BD AD ===,1BC =,CD =,若二面角A BD C −−的取值范围为π2π43⎡⎤⎢⎥⎣⎦,,则该几何体的外接球表面积的取值范围为 .由秒杀公式7得因为π2π43α⎡⎤∈⎢⎥⎣⎦,,所以21sin 12α⎡⎤∈⎢⎥⎣⎦,,因此24533R ⎡⎤∈⎢⎥⎣⎦,,因此外接球的表面积的取值范围为➢适用几何体:所有棱锥.证明:设PAB PAC PBC ABC △、△、△、△的面积分别为1234S S S S 、、、,则那么即( 2020•来宾模拟 )已知正三棱锥的底面边长为,侧棱长为,则该正三棱锥内切球的表面积为 .由秒杀公式8得所以外接球的表面积为典例例题8-1( 2020•浙江模拟 ) 几何体三视图如图所示,则该几何体的内切球表面积是 .由秒杀公式8得所以外接球的表面积为( 2020•娄底模拟 ) 如图所示是某几何体的三视图,则该几何体的内切球与外接球的半径之比为( )A .12B .23C .25 D .13由秒杀公式2得2222=2r hR h++==外, 由秒杀公式8得故该几何体的内切球与外接球的半径之比为故选C .。

几类空间几何体的外接球问题的解法

几类空间几何体的外接球问题的解法

解:要使函数存在2个零点,需使ìíîïïïïf (1)=1-a +b ≥0,f (2)=4-2a +b ≥0,Δ≥0,1≤a 2≤2,绘制如图3所示的可行域(可行域为箭头所指的曲边三角形).对z =(x -a )2+(y -b )2变形,可得z +94=a 2+æèöøb -322,则将问题转化为求点(0,32)到可行域内任意一点(a ,b )距离的平方的最值.从图3中可以看出点(0,32)到直线1-a +b =0的距离即为(0,32)到可行域内任意一点(a ,b )的最小距离,利用点到直线的距离公式d =||Ax 0+By 0+C A 2+B 2,得d =522.则≥522,解得z ≥78.所以a 2+b 2-3b 取值范围为éëöø78,+∞.对于目标函数为z =(x -a )2+(y -b )2型的目标函数,我们可以依据(x -a )2+(y -b )2的几何意义,把问题转化为求可行域内动点P (x ,y )与定点A (a ,b )距离的平方的最值,从而求出z 的范围.综上所述,利用线性规划模型解答含参二次函数问题有如下几个步骤:1.根据题意建立不等式组,将其视为线性约束条件;2.将所求目标设为目标函数,将其变形为直线的截距式、两点的距离;3.画出可行域;4.在可行域内寻找使得直线的纵截距、动点到定点的距离取最值的点;5.将最值点的坐标代入求得问题的答案.同学们在解题的过程中要注意根据题意建立线性规划模型,利用线性规划模型来提升解答含参二次函数问题的效率.(作者单位:宁夏育才中学)空间几何体的外接球问题是高考试卷中的重要题型,主要考查球空间几何体的性质、面积公式、体积公式.此类问题的难度系数较大,要求同学们具备较强的空间想象能力和逻辑思维能力.本文介绍几种常见空间几何体的外接球问题的题型及其解法,以帮助同学们破解此类问题.类型一:三条棱两两互相垂直的三棱锥的外接球问题该类型的三棱锥具有明显的特征:三条棱两两互相垂直.我们可以抓住该特征,将其看作长方体、正方体的一部分,构造出一个完整的长方体、正方体.将三条棱看作长方体、正方体的三条边,于是三棱锥的外接球的直径等于长方体、正方体的对角线.求出三棱锥的外接球的半径、直径,空间几何体的外接球问题便可顺利获解.类型二:一条侧棱垂直于一个底面的三棱锥的外接球问题我们可将该三棱锥看作直棱柱的一部分,将其补成一个直棱柱,再将其补成一个圆柱,如图1、2、3、4所示,那么三棱锥的外接球即为圆柱的外接球.直棱柱的上、下底面为三角形,且三角形的外接圆的直径为a sin A =b sin B =c sin C =2r ,上下底面的距离为OO 1=12PA(此时PA 垂直与底面),则有①(2R )2=PA 2+(2r )2,即2R =PA 2+(2r )2;②R 2=r 2+OO 12,即R =r 2+OO 12,这样便建立了PA 与三棱锥的外接球之间的关系,进方法集锦图341图5图6例2.已知三棱锥S-ABC的所有顶点都在球O 球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA ,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为_____.解:如图7,连接AO,OB,∵SC为球O的直径,∴O为SC的中点,∵SA=AC,SB=BC,∴AO SC,BO⊥SC,平面SCA∩平面SCB=SC的表面积为S=4πR=4π×3图7该三棱锥的两个平面相互垂直,根据已知条件证明AO⊥然后构造三角形,找出三棱锥的外接球半径与三棱锥的棱之间的关系,通过解三角形求得三根据球的表面积公式求得球由两个直角三角形构成的三棱锥的外接解答该类型问题的关键是抓住特征:.我们可以通过解直角三角形求得三图8由两个全等三角形或等腰三角形构成的三棱锥的外接球问题在求解该类型外接球问题时,我们要灵活运用全等三角形或等腰三角形的性质,关注中点为全等三角形或等腰三角形,和ΔA ′BD 的外心H 1和图9例3.三棱锥P -ABC △PAC 和△ABC 均为边长为棱锥外接球的半径.解:如图10,设O 1,O 2由题意可知O 2H =13由勾股定理可得R 2=8图11类型七:直棱柱、圆柱的外接球问题直棱柱、圆柱的外接球问题较为简单,球的球心为高线的中点,如图12所示,所以我们很容=1=1.再设小圆图12图13例4.已知三棱柱ABC -A 1B 1C 1的底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为______.解:设球半径为R ,上,下底面中心为M ,N ,由题意,外接球心为MN 的中点,设为O ,,得R =OA =3,由勾股定理可知,OM =1,。

学生讲义巧解外接球问题.docx

学生讲义巧解外接球问题.docx

快速解决巧解外接球问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力 .研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法 (公式法 )1、求正方体的外接球的有关问题【例 1】(上海中学)若棱长为 3 的正方体的顶点都在同一球面上,则该球的表面积为______________ .【例 2】(交大附中)一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24 ,则该球的体积为______________.2、求长方体的外接球的有关问题【例 3】(复兴高级中学)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为______________.【例 4】(七宝中学)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A.16B. 20C.24D.323.求多面体的外接球的有关问题【例 5】(上海实验中学)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶9点都在同一个球面上,且该六棱柱的体积为8 ,底面周长为3,则这个球的体积为______________. .二、构造法 (补形法 )1、构造正方体【例 6】( 2015 年上海高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其外接球的表面积是_______________.【例 7】(上海中学)若三棱锥的三个侧面两两垂直,且侧棱长均为 3 ,则其外接球的表面积是_______________.【小结】一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c ,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有 2Ra2b2c2.出现“墙角”结构利用补形知识,联系长方体。

外接球问题方法总结

外接球问题方法总结

外接球问题方法总结外接球问题是在几何学中常见的一个问题,其基本要求是寻找一个平面图形的外接圆。

在解决这一问题时,可以运用多种方法来求解,本文将就外接球问题的解法进行总结和探讨。

一、解法一:三边长法最常见的外接球问题解法之一是通过已知图形的三边长来确定外接圆的半径和圆心位置。

这种方法的基本步骤如下:1. 已知一个三角形的三边长为a、b、c。

2. 根据海伦公式计算三角形的面积,公式为s=(a+b+c)/2,面积为S=s*(s-a)*(s-b)*(s-c)的开方。

3. 根据外接圆公式R=a*b*c/4S,计算外接圆的半径R。

4. 通过求垂直平分线交点或三角形的垂心、重心等特殊点来确定外接圆的圆心。

二、解法二:垂直平分线法垂直平分线法是另一种常用的外接球问题解决方法。

具体步骤如下:1. 已知一个图形,例如一个三角形ABC。

2. 求解三角形ABC的三边中点坐标,分别记为D、E、F。

3. 计算垂直平分线AD的斜率k1、BE的斜率k2和CF的斜率k3。

4. 通过垂直平分线的性质,即这些斜率的乘积为-1,可以求解出外接圆的半径和圆心坐标。

三、解法三:余弦定理法余弦定理法是外接球问题的一种较为常用的几何解法。

具体步骤如下:1. 已知一个三角形ABC,其中AB=c、AC=b、BC=a,待求解的是外接圆的半径和圆心位置。

2. 根据余弦定理,可以得到三角形ABC的内角余弦值cosA、cosB 和cosC。

3. 根据外接圆的性质,有R=a/(2*sinA)=b/(2*sinB)=c/(2*sinC),可通过这个公式求解外接圆的半径R。

4. 再通过求解三角形垂心、重心等特殊点的方法,可以确定外接圆的圆心坐标。

四、解法四:向量法另一种解决外接球问题的方法是通过向量的性质与运算进行计算。

具体步骤如下:1. 已知一个图形的点集合,通过向量的方法求解外接圆的半径和圆心位置。

2. 根据向量的性质,可以得到任意两个向量的夹角cosθ。

多面体的内切球外接球问题求解策略(原卷版)

多面体的内切球外接球问题求解策略(原卷版)

专题32 多面体的“内切球”、“外接球”问题求解策略【高考地位】球作为立体几何中重要的旋转体之一,成为考查的重点,基本属于必考题目.而且球相关的特殊距离,即球面距离是一个备考的重点,要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,更应特别加以关注的.题目一般属于中档难度,往往单独成题,或者在解答题中以小问的形式出现.类型一球的内切问题万能模板内容使用场景有关球的内切问题解题模板第一步首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面;第二步然后寻找几何体与几何体之间元素的关系第三步得出结论.例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.图1【变式演练1】阿基米德是古希腊伟大的数学家、物理学家、天文学家,是静态力学和流体静力学的奠基人,和高斯、牛顿并列为世界三大数学家,他在不知道球体积公式的情况下得出了圆柱容球定理,即圆柱内切球(与圆柱的两底面及侧面都相切的球)的体积等于圆柱体积的三分之二.那么,圆柱内切球的表面积与该圆柱表面积的比为( )A .12B .13C .23D .34【来源】2021年秋季高三数学开学摸底考试卷03(江苏专用)【变式演练2】正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.【变式演练3】【江西省乐平市第一中学2021届高三上学期联考理科】已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球和内切球分别为球1O ,球2O ,则球1O 上的点到球2O 上的点的距离的最大值为( )A .BC D【变式演练4】【湖南省衡阳市第八中学2020-2021学年高三上学期10月月考】攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为( )A .3B .4C .2 D类型二 球的外接问题例2. 两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【来源】2021年天津高考数学试题例3、已知点M 是边长为3的等边三角形ABC 的边AC 上靠近点C 的三等分点,BC 的中点为F .现将ABF沿AF 翻折,使得点B 到达B '的位置,且平面AB F '⊥平面ACF ,则四面体AB FM '的外接球的表面积为( )A B C .372π D .374π 【来源】2021年高考最后一卷理科数学(第八模拟)【变式演练5】【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,则四面体A BCD -的外接球表面积为( ) A .3π B .4π C .6π D .12π【变式演练6】【湖南省衡阳市第八中学2020-2021学年高三上学期11月第三次月考】在三棱锥A SBC -中,10AB ,4ASC BSC π∠=∠=,AC AS =,BC BS =,若该三棱锥的体积为3,则三棱锥S ABC -外接球的表面积为( )A .3πB .12πC .48πD .36π【变式演练6】【福建师范大学附属中学2021届高三上学期期中考试】在四面体ABCD 中,BD AC ==2AB BC AD ===,AD BC ⊥,则四面体ABCD 的外接球的体积为( )A .B .C .D .【高考再现】1.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12B .12C .4D .42.【2020年高考全国Ⅰ卷文数12理数10】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC ∆的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π3.【2020年高考天津卷5】若棱长为 ) A .12π B .24π C .36π D .144π4.(2019•新课标⊙,理12)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D5.(2018•新课标⊙,理10文12)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且面积为D ABC -体积的最大值为( )A .B .C .D .6.【2020年高考全国Ⅲ卷文数16理数15】已知圆维的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .7.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________.【反馈练习】1.【浙江省台州市第一中学2020-2021学年高三上学期期中】设ABC 为等腰三角形,2AB AC ==,2π3A ∠=,AD 为BC 边上的高,将ADC 沿AD 翻折成ADC ',若四面体ABC D ',则线段BC '的长度为( )A .BC D2.【河南省九师联盟2021届高三第一学期11月质量检测理科】已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是O 的表面积是( )A .28π3B .14π3C .56π3D .7π 33.【陕西省安康市2020-2021学年高三上学期10月联考文科】四棱锥P ABCD -的顶点都在球O 的球面上,ABCD 是边长为P ABCD -体积的最大值为54,则球O 的表面积为( ) A .36π B .64π C .100π D .144π4.【广东省湛江市2021届高三上学期高中毕业班调研】鳖臑(biē nào )是我国古代对四个面均为直角三角形的三棱锥的称呼.已知三棱锥A -BCD 是一个鳖臑,其中AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =6,BC =3,DC =2,则三棱锥A -BCD 的外接球的体积是( )A .493πB .3432πC .49πD .3436π 5.【湖北省鄂州高中2020-2021学年高三上学期10月质量检测】张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 1,利用张衡的结论可得该正方体的外接球的表面积为( )A .30B .C .D .366.【四川省成都市蓉城名校联盟2021届高三第一次联考文科】已知三棱锥P ABC -,PA ⊥平面ABC ,且PA =,在ABC 中,1AC =,2BC =,且满足sin 2sin 2A B =,则三棱锥P ABC -外接球的体积为( )A .3B .323πCD .83π 7.球O 的两个相互垂直的截面圆1O 与2O 的公共弦AB 的长度为2,若1O AB △是直角三角形,2O AB △是等边三角形,则球O 的表面积为( )A .9πB .12πC .16πD .20π【来源】辽宁省丹东市2021届高三二模数学试题8.【河南省洛阳市汝阳县2020-2021学年高三上学期联考数学(文)】我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B .2C .30πD .45π9.【湖南师大附中2021届高三(上)月考】四棱锥P ABCD -的底面ABCD 是矩形,侧面PAD ⊥平面ABCD ,120APD ︒∠=,AB PA ==2PD =,则该四棱锥P ABCD -外接球的体积为( )A .323πB .3C .D .36π10.【内蒙古赤峰市中原金科2020-2021学年高三大联考】据《九章算术》记载,“鳖臑(biēnào)”为四个面都是直角三角形的三棱锥.如图所示,现有一个“鳖臑”,PA ⊥底面ABC ,AB BC ⊥,且2PA AB BC ===,三棱锥外接球表面积为( )A .4πB .8πC .12πD .16π11.【内蒙古赤峰市松山区2020-2021学年高三第一次统一模拟考试文科】已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .143π B .283π C .11π D .12π12.如图,已知球O 是棱长为1 的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( )A .3πB .8πC .6πD .4π 13.(多选)【湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)】已知球O 是正三棱锥(底面为正三角形,点在底面的射影为底面中心)A BCD -的外接球,3BC =,AB =E 在线段BD 上,且6BD BE =,过点E 作球O 的截面,则所得截面圆的面积可能是( )A .πB .2πC .3πD .4π14.(多选)设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则( )A .该正方体的核长为2B .该正方体的体对角线长为3C 1D .空心球的外球表面积为(12π+ 【来源】重庆市2021届高三高考数学第三次联合诊断检测试题15.【江苏省泰州市2020-2021学年高三上学期期中】已知直三棱柱ABC —A 1B 1C 1中,AB =BC =1,AC ,侧棱AA 1=2,则该三棱柱外接球的体积为_______.16.【江西省南昌市第十中学2021届高三上学期期中考试】如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.【福建省莆田第一中学2021届高三上学期期中考试】在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 为正方形11CDD C 对角线的交点,则三棱锥11M ACC -的外接球表面积为______.18.在一个棱长为3+方体和大球之间的空隙自由滑动,则小球的表面积最大值是___________.【来源】2021届高三数学临考冲刺原创卷(一)19.阿基米德在他的著作《论圆和圆柱》中,证明了数学史上著名的圆柱容球定理:圆柱的内切球(与圆柱的两底面及侧面都相切的球)的体积与圆柱的体积之比等于它们的表面积之比.可证明该定理推广到圆锥容球也正确,即圆锥的内切球(与圆锥的底面及侧面都相切的球)的体积与圆锥体积之比等于它们的表面积之比,则该比值的最大值为________.【来源】福建省厦门第一中学2021届高三高考模拟考试数学试题20.在一次综合实践活动中,某手工制作小组利用硬纸板做了一个如图所示的几何模型,底面ABCD 为边长是4的正方形,半圆面APD ⊥底面ABCD .经研究发现,当点P 在半圆弧AD 上(不含A ,D 点)运动时,三棱锥P ABD -的外接球始终保持不变,则该外接球的表面积为______.【来源】山东省烟台市2021届高三二模数学试题21.一个封闭的正方体容器内盛有一半的水,以正方体的一个顶点为支撑点,将该正方体在水平桌面上任意旋转,当容器内的水面与桌面间距离最大时,水面截正方体各面所形成的图形周长为外接球的表面积为___________.【来源】湘豫联考2021届高三5月联考文数试题22.以三棱柱上底所在平面某一点为对称中心,将上底图形旋转180°后,再将上、下底顶点连接形成空间几何体称为“扭反三棱柱”.如图所示的“扭反三棱柱”上、下底为全等的等腰三角形,且顶点A ,B ,C ,A 1,B 1,C 1均在球O 的球面上,AB =AC =A 1B 1=A 1C 1=m ,截面BCB 1C 1是矩形,BC =2,B 1C =4.则该几何体的外接球表面积为__________,当该几何体体积最大时m =__________.【来源】重庆市第八中学2021届高三下学期适应性月考卷(七)数学试题23.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家、物理学家,享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家.公元前212年,古罗马军队入侵叙拉古,阿基米德被罗马士兵杀死,终年七十五岁.阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球(一个球与圆柱上下底面相切且与侧面相切)的图形,以纪念他在几何学上的卓越贡献,这个图形中的内切球的体积与圆柱体积之比为________,内切球的表面积与圆柱的表面积之比为_______.【来源】湖南省衡阳市第八中学2021届高三下学期考前预测(二)数学试题24.将三个边长为6的正方形分别沿相邻两边中点裁剪而成(1、2)部分,与正六边形组合后图形如图所示,将此图形折成封闭的空间几何体,则这个几何体的体积是___________,外接球表面积为___________.【来源】全国新高考2021届高三数学方向卷试题(B)25.天津滨海文化中心地天津滨海新区开发区,是天津乃至京津冀地区的标志性文化工程.其中滨海图书馆建筑独具特色,被称为“滨海之眼”,如图所示,中心球状建筑引起了小明的注意,为了测量球的半径,小明设计了两个方案,方案甲,构造正三棱柱侧面均与球相切如图所示,底面边长约为30米,估计此时球的完整表面积为 ________平方米;方案乙,测量球被地面截得的圆的周长约为16π米,地面到球顶部高度约为16米,估计此时球的完整体积为__________立方米,你认为哪种方案好呢?【来源】天津市河东区2021届高三下学期一模数学试题26.2020年底,中国科学家成功构建了76个光子的量子计算机“九章”,推动全球量子计算的前沿研究达到一个新高度.该量子计算机取名“九章”,是为了纪念中国古代著名的数学专著《九章算术》.在《九章算术》中,底面是直角三角形的直三棱柱被称为“堑堵”.如图,棱柱111ABC A B C -为一“堑堵”,P 是1BB 的中点,12AA AC BC ===,则在过点P 且与1AC 平行的截面中,当截面图形为等腰梯形时,该截面的面积等于___________,该“堑堵”的外接球的表面积为___________.【来源】全国100所名校2021年高考冲刺试卷(样卷一)文科数学试题。

外接球与内切球问题解题技巧梳理

外接球与内切球问题解题技巧梳理

外接球与内切球问题解题技巧梳理一.外接球8大模型秒杀公式推导r α说明:为底面外接圆的半径,R 为球的半径,l 为两面公共边的长度 为两个面的二面角,h 是空间几何体的高,H 为某一面的高1.墙角模型(1) 使用范围:3组或3条棱两两垂直;或可在长方体中画出该图且各顶点与长方体的顶点重合 (2)推导过程:长方体的体对角线就是外接球的直径(2) 秒杀公式:222222a b c 3a R (a b c R (a 44++==、、为长方体的长宽高)正方体的边长)(4)图示过程(3) 秒杀公式:2.汉堡模型(1)使用范围:有一条侧棱垂直与底面的柱体或椎体 (2)推导过程第一步:取底面的外心O 1,,过外心做高的的平行且长度相等,在该线上中点为球心的位置第二步:根据勾股定理可得222h R r 4=+(3)秒杀公式:222h R r 4=+(4)图示过程3.斗笠模型(1)使用范围:正棱锥或顶点的投影在底面的外心上 (2)推导过程第一步:取底面的外心O 1,,连接顶点与外心,该线为空间几何体的高h 第二步:在h 上取一点作为球心O第三步:根据勾股定理22222r h R (h R)r R 2h+=-+⇔=(3)秒杀公式:22r h R 2h+=(4)图示过程4.折叠模型(1)使用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠 (2)推导过程第一步:过两个平面取其外心H 1、H 2,分别过两个外心做这两个面的垂线且垂线相交于球心O第二步:计算2222222111OH H E tan=(CE-H E)tan (H r)tan (222ααα==-α为两个平面的二面角) 第三步:22222211OC OH CH (H r)tanr 2α=+=-+ (3)秒杀技巧:2222R (H r)tanr 2α=-+ (4)图示过程5.切瓜模型(1)使用范围:有两个平面互相垂直的棱锥 (2)推导过程:第一步:分别在两个互相垂直的平面上取外心F 、N ,过两个外心做两个垂面的垂线,两条垂线的交点即为球心O ,取BC 的中点为M ,连接FM 、MN 、OF 、ON第二步:22222222212l ONMF OA AN ON AN MF R r r 4∴=+=+∴=+-为矩形由勾股可得(3)秒杀公式:222212l R r r 4=+-(4)图示过程6.麻花模型(1)使用范围:对棱相等的三棱锥(2)推导过程:设3组对棱的长度分别为x 、y 、z,长方体的长宽高分别为a 、b 、c2222222222222x a b x y z y b c R 8z a c ⎧=+⎪++⎪=+⇔=⎨⎪=+⎪⎩(3)秒杀公式:2222x y z R 8++=(4)图示过程7.矩形模型(1)使用范围:棱锥有两个平面为直角三角形且斜边为同一边(2)推导过程:根据球的定义可知一个点到各个顶点的距离相等该点为球心可得,斜边为球的直径(3)秒杀公式:22l R 4=(4)图示过程8.鳄鱼模型(1)使用范围:适用所有的棱锥 (2)推导过程:121212222121221212221122211O O O O O O OO E r (1sin O O E O O =O E O E 2O E O E cos 2 OD O O O D 3OD O O O D∴α∆+-α=+=+第一步:在两个平面上分别找外心、两外心做这两面的垂线相交于球心第二步:四点共圆,正弦定理可得OE=2=)在中,()()第三步:由(1)(2)(3)整理可得 且 过 2221122212112222221211122221212 =OE O E O DO O O EO Dsin O E O E 2O E O E cos O E O D sin O E O E 2O E O E cos =sin -+=-+α+-α=-+α+-α=2211O E O B-+α2122222O E=m O E=n AB=l,m n2mncos lR=+sin4α+-αα第四步:设,,两个面的二面角为由第三步可得(3)秒杀公式:22222m n2mncos lR=+sin4+-αα(4)图示过程二.内切球的半径---等体积法1.推导过程P ABC PAB PAC PBC ABCPAB PAC PBC ABC11111V S h RS RS RS RS 333331=R(S S S S)31=RS33VR=S-∆∆∆∆∆∆∆∆==++++++∴底面表面积几何体表面积以三棱锥P-ABC为例2.秒杀公式:3VR=S几何体表面积3.图示过程技巧1 外接球之墙角模型【例1】已知长方体''''ABCD A B C D -中,''A B =''1B C =,'A B 与平面''ACC A 所成角的正)A .4πB .16πC .163π D .323π 【举一反三】1.棱长为2的正方体的外接球的表面积为( )A .4πB .43π C .12πD .2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( ) A .803πB .32πC .42πD .48π技巧2 外接球之汉堡模型【例2】已知四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形,3AB =且AB ⊥平面BCDE ,则该四棱锥外接球的表面积为( ) A .4π B .174πC .17πD .8π【举一反三】1.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为2,体积为8,则这个球的表面积是( ) A .16πB .12πC .10πD .8π2.如图,在三棱锥A ﹣BCD 中,BD ⊥平面ADC ,BD =1,AB =2,BC =3,AC A ﹣BCD 外接球的体积为( )A .4πB .3πC .D .3.在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为( )A .11π2B .7πC .11πD .14π4.(2020·全国高三月考(文))三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AC AB ⊥,1AC =,AB =12AA =,则该三棱柱111ABC A B C -的外接球的体积为( )A .3B .3C .3D .8π技巧3 外接球之斗笠模型【例3】正三棱锥S ABC -中,2SA =,AB = )A .B .4πC .12πD .6π【举一反三】1.已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是________. 2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π技巧4 外接球之折叠模型【例4】在三棱锥A ﹣BCD 中,△ABD 与△CBD 均为边长为2的等边三角形,且二面角A BD C --的平面角为120°,则该三棱锥的外接球的表面积为( ) A .7π B .8πC .163πD .283π【举一反三】 1.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.2.如图所示,三棱锥S 一ABC 中,△ABC 与△SBC 都是边长为1的正三角形,二面角A ﹣BC ﹣S 的大小为23π,若S ,A ,B ,C 四点都在球O 的表面上,则球O 的表面积为( )A .73π B .133π C .43π D .3π技巧5 外接球之切瓜模型【例5】已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==面PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .143πB .283πC .11πD .12π【举一反三】1.已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,且ABD △和BCD △都是边长为2的等边三角形,则该三棱锥的外接球表面积为( ) A .4πB .163πC .8πD .203π技巧6 外接球之麻花模型【例6】在四面体ABCD 中,若AB CD ==2==AC BD ,AD BC ==ABCD 的外接球的表面积为( ) A .2πB .4πC .6πD .8π技巧7 外接球之矩形模型【例7】在四面体ABCD 中,AB =,1DA DB CA CB ====,则四面体ABCD 的外接球的表面积为( ) A .π B .2πC .3πD .4π【举一反三】1.四面体SABC 中,AC BC ⊥,SA ⊥平面ABC ,SA =AC =BC =,则该四面体外接球的表面积为( ) A .323πB .163πC .16πD .32π2.已知四面体ABCD 满足:1AB BC CD DA AC =====,BD =,则四面体ABCD 外接球的表面积为_______.技巧8 内切球半径【例8】正四面体的外接球与内切球的表面积比为( ) A .9: 1 B .27: 1C .3: 1D .不确定【举一反三】1.如图所示,球内切于正方体.如果该正方体的棱长为a ,那么球的体积为( )A .343a πB .3aC 3aD .316a π2.已知直三棱柱ABC -A 1B 1C 1的底面ABC 为等边三角形,若该棱柱存在外接球与内切球,则其外接球与内切球表面积之比为( ) A .25︰1B .1︰25C .1︰5D .5︰13的内切球,则此棱柱的体积是( ).A .3B .354cmC .327cmD .3巩固练习1.直三棱柱111ABC A B C -的所有顶点都在同一球面上,且2AB AC ==,90BAC ∠=︒,1AA =则该球的表面积为( ) A .40πB .32πC .10πD .8π2.在三棱锥P ABC -中,AB AC ==120BAC ∠=,PB PC ==,PA =棱锥的外接球的表面积为( ) A .40πB .20πC .80πD .60π3.已知四棱锥A BCDE -中,AB ⊥平面BCDE ,底面BCDE 是边长为2的正方形,且3AB =,则该四棱锥外接球的表面积为( ) A .4πB .174πC .17πD .8π4.已知点P ,A ,B ,C 在同一个球的球表面上,PA ⊥平面ABC ,AB ⊥AC ,PB BC ,PC =2,则该球的表面积为( ) A .6πB .8πC .12πD .16π5.四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,则四面体A BCD -的外接球表面积为( ) A .3πB .4πC .6πD .12π6.平行四边形ABCD 中,AB BD ⊥,且2224AB BD +=,沿BD 将四边形折起成平面ABD ⊥平面BDC ,则三棱锥A BCD -外接球的表面积为( )A .2π B .2πC .4πD .16π7.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 1,利用张衡的结论可得该正方体的外接球的表面积为( )A .30B .C .D .368.已知直三棱柱111ABC A B C -的顶点都在球O 上,且4AB =,16AA =,30ACB ∠=︒,则此直三棱柱的外接球O 的表面积是( ) A .25πB .50πC .100πD .500π39.已知三棱柱111ABC A B C -(侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形)内接于球O ,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3,则球O 的表面积是( ) A .228π c m 3B .256π c m 3C .27π c m 3D .214π c m 310.在四棱锥P ABCD -中,//BC AD ,AD AB ⊥,AB =6AD =,4BC =,PA PB PD ===P BCD -外接球的表面积为( )A .60πB .40πC .100πD .80π11.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A .10B .20πC .24πD .32π12.我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B C .30π D .45π13.已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球为球1O ,则外接球1O 的表面积是__________.14.在三棱锥P ABC -中,侧棱PA ⊥底面,120,1ABC BAC AB AC ∠===且2,PA BC =则该三棱锥的外接球的体积为__________.15.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.16.鳖臑(bi ē n ào )出自《九章算术·商功》:“斜解立方,得两重堵.斜解壍堵,其一为阳马,一为鳖臑.”鳖臑是我国对四个面均为直角三角形的三棱锥的古称.如图,三棱锥A BCD -是一个鳖臑,其中AB BC ⊥,AB BD ⊥,BC CD ⊥,且4AB BC DC ===,过点B 向AC 引垂线,垂足为E ,过E作CD 的平行线,交AD 于点F ,连接BF .设三棱锥A BCD -的外接球的表面积为1S ,三棱锥A BEF -的外接球的表面积为2S ,则12S S =________.17.若体积为8的正方体的各个顶点均在一球面上,则该球的体积为______.18.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”,已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BB ==,1BC =,AC =表面积为___.19.在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为______.20.在四面体S ABC -中,SA ⊥平面ABC ,120BAC ∠=︒,2SA =,BC =球的表面积为________.21.我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知某方锥各棱长均为2,则其内切球的体积为______.22.已知在三棱锥P ABC -中,PA PB ==,23APB ∠=π,6ACB π∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_____.23.三棱锥A BCD -中,60ABC CBD DBA ===∠∠∠,2BC BD ==,面ACD,则此三棱锥外接球的表面积为___.24.在三棱锥P ABC -中,平面PAB 垂直平面ABC,PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.25在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,BC =1cos 3BAC ∠=,若三棱锥D ABC-,则此三棱锥的外接球的表面积为______26.设A ,B ,C ,D 为球O 的球面上的四个点,满足2AB AC BC ===,DC BD ==.若四面体ABCD 的表面积为O 的表面积为______.。

高中数学外接球解题技巧(一)

高中数学外接球解题技巧(一)

高中数学外接球解题技巧(一)高中数学外接球解题外接球是一个很重要的概念,在高中数学中也有重要的应用。

接下来,我们就来详细了解一下如何解决外接球的问题。

外接球的定义外接球定义为:在一个三角形ABC中,如果圆心位于三角形顶点的外接圆,该圆被称为三角形ABC的外接球。

外接球的性质外接球有一些基本的性质,这些性质可以帮助我们解决相关的问题。

1.外接球的圆心为三角形三边的垂直平分线的交点。

2.外接球半径等于三边上的垂直平分线长度之积的一半。

3.外接球与三角形的三个顶点都有交点。

解决外接球的问题的技巧在解决外接球问题时,我们可以采用以下技巧:1.首先推导出外接球的相关公式,明确各个元素之间的关系。

2.利用外接球的性质,结合已知条件,进行运算,解出未知量。

3.在计算过程中,要注意使用适当的三角函数公式,以及正确的角度单位。

示例:利用外接球求解三角形面积题目:已知一个三角形ABC,其三边长度分别为a、b、c,且外接球半径为R,求三角形ABC的面积。

解:利用外接球的性质可知,外接球半径R等于三边垂直平分线长度之积的一半,即 R=abc/4S。

又根据三角形面积公式S=1/2 bc sinA,可将S表示为 abc/4R。

因此,三角形ABC的面积为S=abc/4R。

结论通过上述分析,我们可以看到,外接球是一个非常重要的概念,它有着很多的应用。

在解决相关的问题时,我们需要掌握外接球的定义、性质和计算方法。

只有在熟练掌握了这些知识后,我们才能在高中数学学习的路上越走越远。

典型例题以下是一些典型的外接球问题,通过对这些问题的解答,可以更好地理解外接球的计算方法和应用。

例题1已知一个直角三角形ABO,其中∠O为直角,∠AOB为75度,设AB=c,OB=a,求OA的值。

解:首先由三角形的内角和得出∠BAO=15度,∠BOA=90-15=75度,可知三角形BOA是等腰直角三角形。

由等腰直角三角形的性质得出,a=c,其中外接球的半径R=OA=a/c。

人教版高中数学外接球问题常见解法(共15张PPT)教育课件

人教版高中数学外接球问题常见解法(共15张PPT)教育课件

面ABC,PA=AB=AC=2,∠BAC=120。,求其外
接球的半径.
z
P(0,0,2)
球心坐标(1, 3,1)
(A 0,0,0)
C(-1,3,0)
y
R 5
(B 2,0,0) x
轴截面法
学习小结
三棱锥的外接球半径的常见解法:
1、补形法 2、构造直角三角形法 3、向量法
练习1
D
A
D
A
C
C
B
R= 6 , 4


在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。
P 1
1
C
B
B
注意:图中三棱锥的外接球与长方
体的外接球是同一个球。
方法介绍
法二:构造直角三角形
A Q
基本步骤:

略谈几何体外接球半径解题的策略

略谈几何体外接球半径解题的策略

42
福建中学数学
2018 年第 2 期
解析 初看本题,似乎好难.但仔细分析发现,
所以 ∠ABC = 90 .
三棱锥的对角线长均相等,立即联想到长方体面对
又 PA ⊥ BC ,所以 BC ⊥ 面 PAB , BC ⊥ PB ,
角线长相等,问题迎刃而解.
即 ∠PBC = ∠PAC = 90 .
如图 1,设长方体的长宽高分别为 a,b,c ,
P
A
如图 2,试求该几何体的外接球半径. 解析 此题与三视图结合有一定难度.依据三视
图形成原理,不难发现它可以认为是由正方体切割
4 2 2 22
2
图4
D A
图5 B
C
BD
C
图6
而成,如图 3 中的正四面体 A − BCD ,其边长为 2 2 ,
例 4 三棱锥 S − ABC 中, S=A S=B S=C A=B
而正方体的对角线长为 2 3 就是球的直径,所以球 2 ,且 ∠ACB = 120 试求该三棱锥的外接球体积.
半径为 R = 3 . 点评 通过以上两个例题可以发现,能够还原为
解析 S=A S=Байду номын сангаас SB , ∴ S 在面 ABC 内的射影为 ∆ABC 的外接圆圆心
长方体或正方体的模型具有的特征:题设反映的信 O′ (如图 7),而 O′A 为 ∆ABC 的外接圆的半径,
6 结语 高考试题是命题专家集体智慧的结晶,浓缩了 出题人的出题范围、出题思路、出题模式和题型, 甚至个人喜好,历届试题对高三复习备考起到很好 的引领作用.为使得复习备考更加科学,更加有针 对性,研究高考试题是非常有必要的.通过对高考 试题解法的总结归纳,并学会利用可视化工具思维 导图进行呈现,能够帮助学生实现高效的记忆和理 解相关知识,完善知识框架,深入大脑,并按照一 定的记忆规律及时地在脑海中再现,进行提取.有 利于提高学生分析问题和解决问题的能力,有利于 巩固学生的知识,训练学生的思维,实现知识的构 建,更好地实现提高数学解题能力的目的.

高中数学中外接球问题的解题策略

高中数学中外接球问题的解题策略

高中数学中外接球问题的解题策略简单多面体外接球问题是立体几何中的难点和重要的考点,外接球有关计算问题在近年高考试题中屡见不鲜,有些同学对于球类问题的解决,往往不知从何处入手,此类问题实质是解决球的半径R或确定球心O的位置问题,其中球心的确定是关键。

抓住球心就抓住了球的位置。

如何确定简单多面体外接球的球心,为此下面介绍解决球类问题的几个策略,以供参考。

一、直接法由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.由上述性质,可以得到确定简单多面体外接球的球心的如下结论.结论1正方体或长方体的外接球的球心是其体对角线的中点.结论2正棱柱的外接球的球心是上下底面中心的连线的中点.结论3直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.结论4正棱锥的外接球的球心是在其高上,具体位置可通过计算找到.结论5若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.因为正方体,长方体的外接球内切球问题较简单,在此不再赘述。

例1.(2009年高考全国卷Ⅰ)直三棱柱ABC-A1B1C1的各顶点都在同一球面上。

若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于__________。

解:设球心为O,球半径为R,△ABC的外心是M,则O在底面ABC上的射影是点M,在△ABC中,AB=AC=2,,,AM=2,所以球的表面积为二、构造模型法长方体模型是学习立体几何的基础,掌握长方体模型,对于学生理解立体几何的有关问题起着非常重要的作用。

1、构造正方体例2。

(2012·辽宁高考题)已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上。

若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为________。

解析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,且侧棱长均相等,所以可构造正方体模型,由已知条件可知,以PA,PB,PC为棱可以补充成球的内接正方体,如图。

外接球问题全搞定(学生版)

外接球问题全搞定(学生版)

外接球、内切球专题外接球几何体的外接球一、定义1. 球的定义: 空间中到定点的距离等于定长的点的集合 (轨迹) 叫球面, 简称球.2. 外接球的定义: 若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3. 内切球的定义: 若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关性质1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面 (类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交, 交点是球心 (类比:在同圆 中,两相交弦的中垂线交点是圆心 ).2.结论:由上述性质,可以得到确定简单多面体外接球的球心的如下结论.结论1:正方体或长方体的外接球的球心是其对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心外心的连线的中点.结论4:正棱雉的外接球的球心在其高上, 具体位置可通过计算找到.结论5:若棱雉的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.正方体正方体的外接球、内切球和棱切球1.正方体的外接球的球心是其对角线的中点,若正方体的棱长为a ,则正方体外接球的半径为R =22a 2+a 2 2=32a .2.正方体的内切球的球心是其对角线的中点,若正方体的棱长为a ,则正方体内切球的半径为R =a 2.3.正方体的棱切球的球心是其对角线的中点,若正方体的棱长为a ,则正方体棱切球的半径为R =a 2 2+a 2 2=2a 2.正方体的每个面与其棱切球的交线轨迹为圆.正三棱锥正三棱锥的外接球结论:正三棱锥的外接球的球心在顶点与底面外接圆的圆心连线上,切球心到顶点与到底面的距离之比为3:1,即OP :OO 1=3:1.则若正三棱锥的边长为a ,则正三棱锥外接球的半径R =64a ,正三棱锥的高h =63a .【证明】:如图所示:将正三棱锥P -ABC 放进正方形中,由正三棱锥的边长为a 可得正方体的棱长为22a 故正三棱锥外接球的半径即为正方体外接球的半径∴R =32⋅22a =64a ,即OP =OC =64a 设底面ABC 外接圆的半径为r ,正三棱锥P -ABC 的高为h则a sin 60∘=2r ,即r =33a ,h =O 1P =PC 2-r 2=a 2-33a 2=63a ∴OO 1=OC 2-O 1C 2=R 2-r 2=612a 故OP OO 1=64a 612a =3正十四面体正十四面体的外接球定义:从正方体中切掉八个小的正三棱锥所得到的几何体称为正十四面体,如图所示,它有六个面为正方形,八个面为正三角形.正十四面体是阿基米德立体中的一种.结论①:正十四面体的外接球的球心就是正方体棱切球的球心.若正十四面体的边长为a ,则正方体的边长为2a ,正十四面体的高R =22⋅2a =a .结论②:若正十四面体的边长为a ,则正十四面体的体积V =532a 3.【证明】:由正十四面体的边长为a 可知:正方体的边长为2a 故切掉的一个小三棱锥的体积为V 0=13×12×22a 3=224a 3∴正十四面体的体积V =2a 3-8V 0=532a 3结论③:正十四面体的体积与正方体的体积之比为5∶6.【证明】:∵正十四面体的体积V =532a 3,正方体的体积为V 1=2a 3=22a 3∴正十四面体的体积与正方体的体积之比为V V 1=532a 322a 3=56.长方体长方体的外接球结论:长方体的外接球的球心是其对角线的交点,若长方体的长为a,宽为b,高为c,则长方体外接球的半径R=a2+b2+c22.【证明】:如图所示:AC=AB2+BC2=a2+b2∴2R=AC1=AC2+CC12=a2+b2+c2,即R=a2+b2+c22四种典型模型:外接球对棱相等模型结论:对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造长方体的方法解决.若三棱锥的三组对棱长分别为x、y、z.,则几何体外接球的半径为R= x2+y2+z28.【证明】:如图,设长方体的长、宽、高分别为a,b,c,AC=BD=x,AB=CD=y, AD=BC=z.则b2+c2=z2 a2+c2=y2 a2+b2=x2三式相加可得a2+b2+c2=x2+y2+z22,而显然四面体和长方体有相同的外接球,设外接球半径为R,则a2+b2+c2=4R2,∴R=a2+b2+c22=x2+y2+z28.外接球墙角模型定义:墙角模型是指几何体中有三条棱两两互相垂直的模型,采用构造法长方体或正方体解决问题.1.如果两两互相垂直的三条棱相等,则构造正方体模型.若棱长为a ,则几何体的外接球半径为R =32a .2.如果两两互相垂直的三条棱不全相等,则构造长方体模型.若两两互相垂直的三条棱的棱长分别为a 、b 、c ,则几何体的外接球半径为:R =a 2+b 2+c 22柱体与锥体外接球①柱体的外接球:柱体的外接球的球心是上下底面圆心连线的中点,若柱体的底面半径为r,高为h,则柱体外接球的半径R=r2+h2 2.②锥体的外接球:锥体的外接球的球心在顶点与底面圆心的连线上,若锥体的底面半径为r,高为h,则锥体外接球的半径R=r2+h2 2.【证明】:如图所示:OA=OP=R,O1A=r,O1P=h则OO1=O1P-OP=h-R在△AOO1中:OA2=OO12+O1A2,即R2=h-R2+r2∴R=h2+r22h汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法解决找球心法:多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.则多面体外接球的半径为:R =r 2+h 24其中,h 为直棱柱的高,r 为底面外接圆的半径.以直棱柱为例,模型如下图:如图1,图2,图3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,O 1是ΔABC 的外心,则OO 1⊥平面ABC ;第二步:算出小圆O 1的半径AO 1=r ,OO 1=12AA 1=12h (AA 1=h 也是圆柱的高);第三步:勾股定理:OA 2=O 1A 2+O 1O 2⇒R 2=h 2 2+r 2⇒R =r 2+h 2 2,解出R .注意:底面外接圆的半径r 的求法1.正弦定理:a sinA =2R (通用);2.直角三角形:半径等于斜边的一半;3.等边三角形:半径等于三分之二高;4.长(正)方形:半径等于对角线的一半.结论:垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,则棱锥的外接球半径为:R =r 2+h 24.解题步骤:第一步:将ΔABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:O 1为ΔABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r (三角形的外接圆直径算法:利用正弦定理,得a sin A =b sin B =c sin C =2r ),OO 1=12PA =12h ;第三步:利用勾股定理求三棱锥的外接球半径:①(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;②R 2=r 2+OO 12⇔R =r 2+OO 12=r 2+h 24外接球斗笠模型斗笠模型:棱锥、圆锥的顶点在底面的射影是底面外心的.多面体外接球公式为:R =h 2+r 22h其中h 为几何体的高,r 为几何体的底面半径或底面外接圆的半径.【证明】:∵P 的射影是△ABC 的外心∴三棱锥P -ABC 的三条棱相等 取△ABC 的外心O 1,球心O 的位置,则P ,O ,O 1三点共线; 由勾股定理可得:OA 2=O 1A 2+O 1O 2,即R 2=h -R 2+r 2解得:R =h 2+r 22h台体外接球台体的外接球结论:台体的外接球的球心在上下底面外接圆圆心的连线上,若台体下底面的外接圆半径为r 1,上底面的外接圆半径为r 2,高为h ,则台体外接球的半径为:R =r 12-r 22+h 22h2+r 22【证明】:如图所示:设球心到下底面的距离为h 1,到上底面的距离为h 2,则R 2=h 22+r 22⋯①R 2=h 12+r 12⋯②②-①得:h 22+r 22-h 12-r 12=0,即h 22+r 22-h -h 2 2-r 12=0整理得:r 22-h 2-r 12+2h ⋅h 2=0∴h 2=r 12-r 22+h 22h故R 2=h 22+r 22=r 12-r 22+h 22h2+r 22,即R =r 12-r 22+h 22h2+r 22切瓜模型是有一侧面垂直底面的棱锥型,常见的是两个互相垂直的面,即α⏊β.类型Ⅰ:△ABC与△BCD都是直角三角形,则三棱锥A-BCD的外接球球心在斜边BC的中点O.类型Ⅱ:△ABC是等边三角形,△BCD是直角三角形,则三棱锥A-BCD的外接球球心为△ABC外接圆的圆心O.类型Ⅲ:△ABC与△BCD都是等边三角形,解决方法是分别过△ABC与△BCD 的外心作该三角形所在平面的垂线,交点O即为球心.类型Ⅳ:侧面△ABC是一般三角形,设为α平面,底面是一般三角形或四边形,设为β平面,如图,解决方法是过α,β的外心O2,O1作所在平面的垂线,垂线必交于一点O,O即为外接球的球心.则几何体的外接球半径为R=r21+r22-l24其中r1、r2为平面α,β的外接圆的半径,l为两个面的交线BC的长.【证明】:过O1,O2作AB的垂线,则OO1⎳O2E,OO2⎳O1E∵α⏊β∴四边形OO2EO1为矩形∴R2=OB2=OO22+O2B2=O1E2+O2B2=O1B2-BE2+O2B2=r21+r22-l24即R=r21+r22-l2 4折叠模型:两个全等三角形或等腰三角形拼在一起,或菱形折叠.结论:如图所示:△ABD 和△CBD 是两个全等的三角形(或者等腰三角形),把△ABD 沿BD 折叠起来,使点A 折叠到点A ,E 为BD 的中点,设折叠的二面角 ∠A EC =α,CE =A E =h ,△ABD 和△BCD 的外接圆的半径为r ,H 1和H 2分别为△BCD ,△A BD 外心,过H 1作平面BCD 的垂线,过H 2作平面A BD 的垂线,这两条垂线相交于球心O ,则R =r 2+(h -r )2tan 2α2【证明】:在△BCD 中:CH 1=r ,CE =h ,EH 1=CE -CH 1=h -r ,在△COH 1中:OH 1=EH 1⋅tan α2=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=(h -r )2tan 2α2+r 2.∴R =r 2+(h -r )2tan 2α2结论:鳄鱼模型即普通三棱锥模型(两个面不垂直),用找球心法可以解决.如果m 为平面ACD 外接圆圆心O 2到交线CD 的距离,n 为平面BCD 外接圆圆心O 1到交线CD 的距离,θ为二面角A -CD -B 的平面角,l 为交线CD 的长,R 为外接球半径,则R =m 2+n 2-2mn cos θsin 2θ+l 24【证明】:如图所示:∵OO 1⏊O 1E ,OO 2⏊O 2E∴O ,O 1,E ,O 2四点共圆在△O 1O 2E 中,由余弦定理可得:O 1O 22=m 2+n 2-2m ⋅n ⋅cosθ在△OO 1O 2中,由正弦定理可得:O 1O2sinθ=2r 0=OE(r 0为△OO 1O 2外接圆半径)∴R 2=OC 2=OE 2+CE 2=O 1O 2sinθ 2+l 2 2=m 2+n 2-2mn ⋅cos θsin 2θ+l 24内切球内切球结论以三棱锥P-ABC为例,如下图所示:求其内切球的半径r.方法:等体积法,三棱锥P-ABC体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r,球心为O,建立等式:V P-ABC=V O-ABC+V O-PAB+V O-PAC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△PAB·r+13S△PAC·r+13S△PBC·r=13(S△ABC+S△PAB+S△PAC+S△PBC)·r;第三步:解出内切球半径r=3V P-ABCS O-ABC+S O-PAB+S O-PAC+S O-PBC=3VS表.内切球半径公式:r=3VS表,其中S表为几何体的表面积,V表示几何体的体积.题型一:墙角模型1.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD=3,AA1=1,则球面面积为()A.83πB.43πC.4πD.8π2.已知正三棱锥S-ABC的三条侧棱两两垂直,且侧棱长为2,则此三棱锥的外接球的表面积为()A.πB.3πC.6πD.9π3.已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=3,BC=2,CD=5,则球O的表面积为( )A.12πB.7πC.9πD.8π4.若三棱锥S−ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,则该三棱锥的外接球半径为( ).A.3B.6C.36D.95.已知S,A,B,C,是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于( ).A.4πB.3πC.2πD.π6.点A,B,C,D均在同一球面上,且AB,AC,AD两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为().A.7πB.14πC.72πD.714π37.三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,三棱锥P-ABC的外接球的体积为()A.272πB.2732π C.273πD.27π8.已知球O的球面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于.9.已知三棱锥A-BCD的所有顶点都在球O的球面上,且AB⊥平面BCD,AB=23,AC= AD=4,CD=22,则球O的表面积为.10.已知正方体的所有顶点在一个球面上,若这个球的表面积为12π,则这个正方体的体积为.11.已知长方体ABCD-A1B1C1D1的体积为325,AA1=25,则当长方体ABCD-A1B1C1D1的表面积最小时,该长方体外接球的体积为.变式演练1.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S-ABC的外接球的表面积为( )A.6πB.12πC.32πD.36π2.(多选题)一棱长等于1且体积为1的长方体的顶点都在同一球的球面上,则该球的体积可能是()A.22πB.32πC.πD.52π3.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A-BCD为鳖臑,AB⊥平面BCD,且AB=BC=36CD,若此四面体的体积为833,则其外接球的表面积为.4.长方体ABCD-A1B1C1D1的长、宽、高分别为2,2,1,其顶点都在球O的球面上,则球O的表面积为.5.已知正四棱柱(底面为正方形且侧棱与底面垂直的棱柱)的底面边长为3,侧棱长为4,则其外接球的表面积为.6.在四面体S-ABC中,SA⊥平面ABC,三内角B,A,C成等差数列,SA=AC=2,AB=1,则该四面体的外接球的表面积为.7.如图,在△ABC中,AB=AC=3,cos∠BAC=-13,D是棱BC的中点,以AD为折痕把△ACD折叠,使点C到达点C 的位置,则当三棱锥C -ABD体积最大时,其外接球的表面积为.8.在三棱锥P-ABC中,点A在平面PBC中的投影是△PBC的垂心,若△ABC是等腰直角三角形且AB=AC=1,PC=3,则三棱锥P-ABC的外接球表面积为9.已知三棱锥S-ABC的三条侧棱SA,SB,SC两两互相垂直且AC=13,AB=5,此三棱锥的外接球的表面积为14π,则BC=.10.三棱锥P-ABC中,PA⊥平面ABC,直线PB与平面ABC所成角的大小为30°,AB=23,∠ACB=60°,则三棱锥P-ABC的外接球的表面积为.题型二:对棱相等模型1.在正四面体A-BCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为7,则该正四面体的外接球的体积是( )A.6πB.6πC.3632π D.3 2π2.四面体P-ABC的一组对棱分别相等,且长度依次为25,13,5,则该四面体的外接球的表面积为( )A.294πB.28πC.29296π D.29π3.在三棱锥P-ABC中,PA=BC=4,PB=AC=5,PC=AB=11,则三棱锥P-ABC的外接球的表面积为( )A.26πB.12πC.8πD.24π4.在三棱锥P-ABC中,PA=BC=3,PB=AC=2,PC=AB=5,则三棱锥P-ABC外接球的体积为( )A.2πB.3πC.6πD.6π5.正四面体的各条棱长都为2,则该正面体外接球的体积为________.6.在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A−BCD外接球的表面积为________.7.在三棱锥A-BCD中,AB=CD=6,AC=BD=AD=BC=5,则该三棱锥的外接球的体积为.8.已知三棱锥A-BCD,三组对棱两两相等,且AB=CD=1,AD=BC=3,若三棱锥A-BCD的外接球表面积为9π2,则AC=.9.在四面体ABCD中,AD=AC=BC=BD,AB=CD=42,球O是四面体ABCD的外接球,过点A作球O的截面,若最大的截面面积为9π,则四面体ABCD的体积是.变式演练1.表面积为83的正四面体的外接球的表面积为( )A.43πB.12πC.8πD.46π2.正四面体ABCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为14,则该正四面体的外接球表面积是( )A.12πB.32πC.8πD.24π3.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B,C,D,满足AB=CD=5,BD=AC=6,AD=BC=7,则该鞠的表面积为( )A.55πB.60πC.63πD.68π4.已知正四面体ABCD的外接球的体积为86π,则这个四面体的表面积为________.5.已知四面体ABCD满足AB=CD=6,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是________.6.三棱锥中S-ABC,SA=BC=13,SB=AC=5,SC=AB=10.则三棱锥的外接球的表面积为______.7.已知一个四面体ABCD的每个顶点都在表面积为9π的球O的表面上,且AB=CD=a,AC= AD=BC=BD=5,则a=________.8.在三棱锥P-ABC中,若PA=PB=BC=AC=5,PC=AB=42,则其的外接球的表面积为 .9.已知在四面体ABCD中,AB=CD=22,AD=AC=BC=BD=5,则四面体ABCD的外接球表面积为 .10.若四面体ABCD中,AB=CD=BC=AD=5,AC=BD=2,则四面体的外接球的表面积为.11.在三棱锥P-ABC中,PA=BC=5,PB=AC=17,PC=AB=10,则该三棱锥外接球的表面积为;外接球体积为.12.在四面体ABCD中,AC=BD=2,AD=BC=5,AB=CD=7,则其外接球的表面积为.题型三:斗笠模型1.已知在高为2的正四棱锥P-ABCD中,AB=2,则正四棱锥P-ABCD外接球的体积为()A.4πB.9π2C.27π4D.8π32.正三棱锥P-ABC底面边长为2,M为AB的中点,且PM⊥PC,则三棱锥P-ABC外接球的体积为()A.32π3B.6πC.6πD.82π33.在三棱锥P-ABC中,PA=PB=PC=5,AB=AC=BC=3,则三棱锥P-ABC外接球的表面积是()A.9πB.152πC.4πD.254π4.已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB= BC=AC=OO1,则球O的表面积为( )A.64πB.48πC.36π D.32π5.在三棱锥P -ABC 中,PA =PB =PC =2,AB =AC =1,BC =3,则该三棱锥外接球的体积为( )A.4π3 B.823π C.43π D.323π6.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9πD.27π47.正三棱锥P -ABC 底面边长为2,M 为AB 的中点,且PM ⊥PC ,则三棱锥P -ABC 外接球的体积为()A.32π3B.6πC.6πD.82π38.已知一个圆锥的底面面积为3π,侧面展开图是半圆,则其外接球的表面积等于.9.一个圆锥恰有三条母线两两夹角为60°,若该圆锥的侧面积为33π,则该圆锥外接球的表面积为________.10.如图所示,在正四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,E ,F 分别是AB ,CD 的中点,cos ∠PEF =22,若A ,B ,C ,D ,P 在同一球面上,则此球的体积为.11.在三棱锥P -ABC 中,PA =PB =PC =26,AC =AB =4,且AC ⊥AB ,则该三棱锥外接球的表面积为.变式演练1.某圆锥的侧面展开后,是一个圆心角为23π的扇形,则该圆锥的体积与它的外接球的体积之比为()A.243256B.128243C.128729D.2567292.已知圆锥的顶点和底面圆周都在球O 的球面上,圆锥的母线长为3,侧面展开图的面积为3π,则球O 的表面积等于()A.81π8B.81π2C.121π8D.121π23.已知一个圆锥的底面圆面积为3π,侧面展开图是半圆,则其外接球的表面积等于()A.12πB.16πC.36πD.48π4.已知圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为2π3,面积为3π,则球O 的表面积等于()A.81π8B.81π2C.121π8D.121π25.已知一个圆锥的底面半径为2,高为3,其体积大小等于某球的表面积大小,则此球的体积是()A.43πB.833π C.4πD.4π36.两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π7.在三棱锥P -ABC 中,PA =PB =PC =3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为( )A.πB.π3C.4π D.4π38.在三棱锥P -ABC 中,PA =PB =PC =6,AC =AB =2,且AC ⊥AB ,则该三棱锥外接球的表面积为( )A.4π B.8π C.16π D.9π9.已知体积为3的正三棱锥P -ABC 的外接球的球心为O ,若满足OA +OB +OC =0 ,则此三棱锥外接球的半径是( )A.2 B.2 C.32 D.3410.已知正四棱锥P -ABCD 的各顶点都在同一球面上,底面正方形的边长为2,若该正四棱锥的体积为2,则此球的体积为( )A.124π3 B.625π81 C.500π81D.256π911.已知在高为2的正四棱锥P -ABCD 中,AB =2,则正四棱锥P -ABCD 外接球的体积为()A.4πB.9π2C.27π4D.8π312.设圆锥的顶点为A ,BC 为圆锥底面圆O 的直径,点P 为圆O 上的一点(异于B 、C ),若BC =43,三棱锥A -PBC 的外接球表面积为64π,则圆锥的体积为.13.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若ΔSAB的面积为8,则该圆锥外接球的表面积是.14.在六棱锥P-ABCDEF中,底面是边长为2的正六边形,PA=2且与底面垂直,则该六棱锥外接球的体积等于.题型四:汉堡模型1.已知正三棱柱的高与底面边长均为2,则该正三棱柱内半径最大的球与其外接球的表面积之比为()A.17B.77C.37D.2172.已知三棱锥P-ABC的四个顶点都在球O的表面上,PA⊥平面ABC,AB⊥BC且PA=8,AC=6,则球O的表面积为()A.10πB.25πC.50πD.100π3.三棱锥P-ABC中,PA⊥平面ABC,∠ABC=30°,ΔAPC的面积为3,则三棱锥P-ABC的外接球体积的最小值为()A.323π3 B.43π3 C.86π D.326π4.已知四棱锥P-ABCD的顶点都在球O的球面上,PA⊥底面ABCD,AB=AD=1,BC= CD=2,若球O的表面积为9π,则四棱锥P-ABCD的体积为()A.4B.43C.25D.2535.已知三棱锥A-BCD的所有顶点都在球O的球面上,且AB⊥平面BCD,AB=2,CD=2,AC=AD=5,则球O的表面积为()A.6πB.2πC.3πD.6π6.已知边长为3的正△ABC的顶点和点D都在球O的球面上.若AD=6,且AD⊥平面ABC,则球O的表面积为()A.323πB.48πC.24πD.12π7.已知各顶点都在同一球面上的正四棱柱的底面边长为a,高为h,球的体积为86π,则这个正四棱柱的侧面积的最大值为()A.482B.242C.962D.1228.(多选题)在四面体ABCD中,AB⊥AC,AC⊥CD,直线AB,CD所成的角为60°,AB=CD =43,AC=4,则四面体ABCD的外接球表面积为()A.16053π B.52π C.80π D.208π9.已知四棱锥P-ABCD的五个顶点都在球O的球面上,PA⊥平面ABCD,底面ABCD是高为12的等腰梯形,AD⎳BC,AD=PA=1,BC=2,则球О的表面积为()A.10πB.4πC.5πD.6π10.已知正三棱柱ABC-A1B1C1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC-A1B1C1外接球的表面积为( )A.4πB.8πC.16πD.32π11.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的表面上,若AB=AC=1,AA1=23,∠BAC=2π3,则球O的体积为( )A.32π3B.3πC.4π3D.8π12.在四棱锥P-ABCD中,已知PA⊥底面ABCD,AB⊥BC,AD⊥CD,且∠BAD=120°,PA=设直三棱柱ABC-A1B1C1的所有顶点都在一个球面上,且球的体积是4010π3,AB=AC=AA1,∠BAC=120°,则此直三棱柱的高是______.变式演练1.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( ).A.3172 B.210 C.132D.3102.设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为( ).A.πa2B.73πa2C.113πa2D.37πa23.直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于( ).A.10πB.20πC.30πD.40π4.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A.4πB.16π3C.32π3D.16π5.若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A.(125-12)πB.123πC.(123+3)πD.16π6.一直三棱柱的每条棱长都是2,且每个顶点都在球O的表面上,则球O的表面积为( )A.28π3B.22π3 C.43π3 D.7π7.已知三棱锥P-ABC的四个顶点都在球O的表面上,PA⊥平面ABC,AB⊥BC且PA=8,AC=6,则球O的表面积为()A.10πB.25πC.50πD.100π8.已知四棱锥P-ABCD的顶点都在球O的球面上,PA⊥底面ABCD,AB=AD=1,BC=CD =2,若球O的表面积为9π,则四棱锥P-ABCD的体积为()A.4B.43C.25D.2539.有一个圆锥与一个圆柱的底面半径相等,此圆锥的母线与底面所成角为60°,若此圆柱的外接球的表面积是圆锥的侧面积的4倍,则此圆柱的高是其底面半径的( )A.2倍B.2倍C.22倍D.3倍10.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=1,∠BAC=60°,AA1=2,则该三棱柱的外接球的体积为( )A.40π3B.4030π27 C.32030π27 D.20π11.三棱锥P-ABC中,PA⊥平面ABC,∠ABC=30°,ΔAPC的面积为3,则三棱锥P-ABC的外接球体积的最小值为()A.323π3 B.43π3 C.86π D.326π12.在直三棱柱ABC-A1B1C1中,若AB⊥BC,AB=6,BC=8,AA1=6,则该直三棱柱外接球的表面积为( )A.72πB.114πC.136πD.144π13.设直三棱柱ABC-A1B1C1的所有顶点都在一个球面上,AB=AC=AA1,∠BAC=120°,且底面△ABC的面积为23,则此直三棱柱外接球的表面积是( )A.16πB.4010π3 C.40π D.64π14.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的表面积为( )A.36πB.144πC.169πD.256π题型五:垂面模型1.已知在三棱锥S-ABC中,SA⊥平面ABC,且∠ACB=30°,AC=2AB=23,SA=1.则该三棱锥的外接球的体积为( )A.13813πB.13πC.136πD.13136π2.三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥AC,PA=PC=AC=2,AB=4,则三棱锥P-ABC的外接球的表面积为( )A.23πB.234πC.64πD.643π3.在三棱锥S-ABC中,侧棱SA⊥底面ABC,AB=5,BC=8,∠ABC=60°,SA=25,则该三棱锥的外接球的表面积为( )A.643πB.2563πC.4363πD.2048327π4.在三棱锥P-ABC中,已知PA⊥底面ABC,∠BAC=120˚,PA=AB=AC=2,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A.103πB.18πC.20πD.93π5.已知三棱锥P-ABC中,PA⊥平面ABC,BC⊥平面PAB,若AB=BC=1,PA=2,则此三棱锥的外接球的表面积为( )A.24πB.8πC.6πD.8π36.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.若四棱锥P-ABCD为阳马,底面ABCD为矩形,PA⊥平面ABCD,AB=2,AD=4,二面角P-BC-A为60°,则四棱锥P-ABCD的外接球的表面积为( )A.16πB.20πC.643πD.32π7.三棱锥S-ABC中,SA⊥底面ABC,若SA=AB=BC=AC=3,则该三棱锥外接球的表面积为( )A.18πB.21π2C.21πD.42π8.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形,若AB=2,则球O的表面积为( )A.4πB.12πC.16πD.32π9.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=120°,AC=2,AB=1,设D为BC中点,且直线PD与平面ABC所成角的余弦值为55,则该三棱锥外接球的表面积为________.10.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA⊥平面ABCE,四边形ABCD为正方形,AD=5,ED=3,若鳖臑P-ADE的外接球的体积为92π,则阳马P-ABCD的外接球的表面积为________.11.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,PA⊥平面ABCD,PA=4,AB=3,AD=1,则该“阳马”外接球的表面积为.12.如图,在三棱锥P-ABC中,PA⊥平面ABC,∠ABC=120°,PA=4.若三棱锥P-ABC外接球的半径为22,则直线PC与平面ABC所成角的正切值为.13.如图,在三棱锥P-ABC中,PA⊥平面ABC,PA=4,cos∠ACB=13,若三棱锥P-ABC外接球的表面积为52π,则三棱锥P-ABC体积的最大值为.变式演练1.已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC =2,∠BAC=60°,则球O的表面积为( )A.4πB.12πC.16πD.64π2.在三棱锥P-ABC中,已知PA⊥底面ABC,∠BAC=60°,PA=2,AB=AC=3,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A.4π3B.82π3 C.8πD.12π3.如图,在△ABC中,AB=BC=6,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC=PD,连接PC,得到三棱锥P-BCD,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是( )A.7πB.5πC.3πD.π4.已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为23的正方形.若PA=26,则△OAB的面积为( ).A.3B.22C.33D.635.在三棱锥S-ABC中,SA⊥平面ABC,SA=4,底面ΔABC是边长为3的正三角形,则三棱锥S-ABC的外接球的表面积为( )A.19πB.28πC.43πD.76π6.三棱锥P-ABC中,PA⊥平面ABC且PA=2,ΔABC是边长为3的等边三角形,则该三棱锥外接球的表面积为( )A.4π3B.4πC.8πD.20π7.三棱锥P-ABC中,AB=BC=15,AC=6,PC⊥平面ABC,PC=2,则该三棱锥的外接球表面积为( )A.253πB.252πC.833πD.832π8.在三棱锥S-ABC中,侧棱SC⊥平面ABC,SA⊥BC,SC=1,AC=2,BC=3,则此三棱锥的外接球的表面积为( )A.14πB.12πC.10πD.8π9.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=60°,AB=AC=23,PA=2,则三棱锥P-ABC的外接球的表面积为( )A.20πB.24πC.28πD.32π10.三棱锥P-ABC中,PA⊥平面ABC,BC⊥CA,AC=1,BC=2,PA=2,则该三棱锥外接球的表面积为( )A.9πB.36πC.92πD.94π11.三棱锥P-ABC中,AB=BC=15,AC=6,PC⊥平面ABC,PC=2,则该三棱锥的外接球表面积为________.12.已知三棱锥S-ABC中,SA⊥平面ABC,SA=AB=4,BC=6,AC=213,则三棱锥S-ABC外接球的表面积为.13.已知四面体P-ABC中,PA=PB=4,PC=2,AC=25,PB⊥平面PAC,则四面体P-ABC外接球的表面积为.14.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=120°,AC=2,AB=1,设D为BC中点,且直线PD与平面ABC所成角的余弦值为55,则该三棱锥外接球的表面积为.15.在四棱锥P-ABCD中,PA⊥平面ABCD,AP=2,点M是矩形ABCD内(含边界)的动点,且AB=1,AD=3,直线PM与平面ABCD所成的角为π4.记点M的轨迹长度为α,则tanα= ;当三棱锥P-ABM的体积最小时,三棱锥P-ABM的外接球的表面积为.题型六:切瓜模型1.在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为()A.12512πB.1259πC.1256πD.1253π2.已知三棱锥A-BCD中,△ABD与△BCD是边长为2的等边三角形且二面角A-BD-C为直二面角,则三棱锥A-BCD的外接球的表面积为( )A.10π3B.5πC.6πD.20π33.已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为。

简单几合体的外接球问题

简单几合体的外接球问题

简单几合体的外接球问题摘要:在高中数学教学中培养学生的空间想象力是重要的教学内容与教学目标,这也是高中数学的教学难点。

为了培养学生的空间想象力就要求教师能够总结简单几何体外接球解题方法,帮助学生灵活应用解题技巧,解决同类数学问题,获得理想的成绩。

关键词:几何体;外接球;解题方法高中阶段数学中通过引导学生解决简单的几何体外接球问题,培养数学思维能力,在该过程中学生根据简单几何图形的特点找到正确的解题思路与解题方法,从而正确解题,并培养空间想象力。

一、常见的简单几何体外接球计算方法(一)长方体外接球问题例题1、长方体相邻的三个面的面积为2,3,6,已知这个长方体的顶点都在同一个球面上,求这个球的表面积。

在长方体外接球解题过程中,教师可以先带领学生回顾相关的知识。

求得表面积计算公式为:S球=4πR2,在本题中先计算出球的半径,长方体是比较规则的几何体,对角线的长度就是球体的直径,这样就可以迅速的计算出本题球体半径,球的表面积为S球=14π。

在例题1的解题过程中,教师要明确解答该类问题主要能够准确的结合已知知识,从而计算球体的半径,计算球体面积。

(二)正棱锥的外接球问题正棱锥的外接球问题也是比较常见的简单几何体外接球问题类型,在解决这类问题时,其关键在于如何找出并计算球的半径。

根据正棱锥的特点可知,外接球的球心在正棱锥的高线之上,因此就可以应用比较简单的勾股定理计算球的半径,从而计算其他的题目。

例题2、如图1所示,正棱锥P-ABCD的顶点都位于同一球面上,假设该正四棱锥的高为2,底面边长为,则该球体的体积是多少?图1在这个过程中,教师应该引导学生注意分析题目,因为正棱锥的特殊性才可以使用勾股定理来计算球的半径,如果是非正棱锥就需要应用多种方式来计算外接球的半径,从而计算其他的相关问题。

二、常见的简单几何体外接球解题策略在上文我们对比较常见的简单几何体外接球解题方法进行探究,可以发现,计算出球体的半径是解题的关键。

高中数学外接球解题技巧

高中数学外接球解题技巧

高中数学外接球解题技巧高中数学外接球解题技巧在高中数学中,外接球是一道常见的几何题,其目的是求出几何体 (如正方体、长方体等) 的外接球半径或直径,进而求解几何体的体积或表面积。

下面将介绍一些外接球解题技巧。

1. 熟悉常见几何体的外接球公式对于正方体、长方体等常见几何体的外接球,可以使用以下公式计算其半径或直径:正方体外接球半径 = √3/3 ×正方体边长长方体外接球半径 = √3/3 ×长方体边长×√2球体外接球半径 = 圆周率×球体直径其中,√表示开根号运算,√2 表示圆周率乘以 2。

2. 利用对称性求解外接球半径在某些情况下,几何体的外接球半径可以通过对称性得到求解。

例如,对于正方体,可以利用其对称性求解外接球半径。

正方体有六个等效面,每个面都是一个等边三角形,这些等效面都是正方体的外接球球面的一部分。

因此,可以利用对称性计算出正方体的外接球半径,进而求解其他几何体外接球半径。

3. 利用三角函数求解外接球半径对于一些较为复杂的几何体,可以利用三角函数求解外接球半径。

例如,对于正八面体,其外接球是一个正十二面体,可以利用正弦定理求解外接球半径。

具体而言,正八面体的每个面都是一个等腰三角形,相邻面的夹角为 30 度,正十二面体的每个面都是一个等边三角形,相邻面的夹角为 60 度。

因此,可以利用正弦定理计算正十二面体的外接球半径。

拓展:除了上述技巧外,还有一些其他的技巧可以用来求解外接球半径,例如用极坐标方程求解、用向量法求解等。

此外,外接球问题也与物理学中的牛顿第二定律、圆周运动等问题密切相关。

因此,对于外接球问题,需要从不同角度进行思考,灵活运用各种技巧和方法,以达到求解的目的。

数学外接球解题方法

数学外接球解题方法

数学外接球解题方法数学外接球是一种解题方法,通过将数学问题与球的运动结合起来,以便更好地理解和解决数学问题。

首先,让我们回顾一下什么是外接球。

在几何学中,外接球是指一个球恰好与一个给定的几何形状(如三角形、四边形等)相切于其所有顶点或边。

外接球具有一些特殊的性质,例如其圆心与几何形状的顶点或边的中点重合,使得我们可以利用这些性质来解决数学问题。

在数学中,我们经常遇到各种各样的问题,例如求解三角形的面积、寻找最大或最小值、证明定理等。

使用数学外接球的方法,我们可以将这些问题转化为球的运动问题,以便更好地理解和解决它们。

举个例子来说,假设我们要求解一个三角形的面积。

首先,我们可以将这个三角形看作是一个平面上的物体,然后我们可以构造一个外接球将其包围。

根据外接球的性质,我们知道外接球的圆心与三角形的顶点的中点重合。

现在,我们可以将这个问题转化为求解一个球体的体积的问题,因为我们知道球的体积公式为V=4/3πr,其中r为球的半径。

通过求解这个球体的体积,我们可以得到这个三角形的面积。

除了求解面积,我们还可以利用数学外接球的方法来解决其他类型的问题。

例如,我们可以将最大或最小值的问题转化为球的运动问题,通过求解球的最大或最小半径来得到答案。

我们还可以利用外接球的性质来证明数学定理,例如利用外接球定理来证明一个四边形为矩形。

总之,数学外接球是一种强大的解题方法,可以帮助我们更好地理解和解决各种数学问题。

通过将数学问题与球的运动相结合,我们可以利用外接球的性质来简化问题,从而更容易找到解决方案。

使用数学外接球的方法,我们可以更加直观地理解数学概念,并且能够更好地应用它们来解决实际问题。

简单几何体的外接球问题的解题策略

简单几何体的外接球问题的解题策略

简单几何体的外接球问题的解题策略简单几何体外接球球问题是立体几何中的一难点,重在考查考生的直观想象能力和逻辑推理能力.此类问题实质是解决球的半径长与确定球心O的位置问题,其中球心的确定是关键.下面从四个方面分类阐述外接球问题问题的求解策略:一、利用长(正)方体的体对角线探索外接球半径1、若几何体可补形成长方体,直接用公式(2R)2=a2+b2+c2求出R.【例1】已知边长为2的等边三角形ABC,D为BC的中点,沿AD进行折叠,使折叠后的∠BDC=,则过A,B,C,D四点的球的表面积为( )A.3πB.4πC.5πD.6π[解析]连接BC(图略),该几何体ABCD为三棱锥,BD=CD=1,AD=,BD⊥AD,CD⊥AD,BD⊥CD,三棱锥A-BCD可补成一个长、宽、高分别是,1,1的长方体,其体对角线长为==2R,故该三棱锥外接球的半径是,其表面积为5π.[评析]几何体(如图-1,图-2)存在三条两两垂直的线段(墙角模型):PA⊥面ABC,△ABC是直角三角形或四边形ABCD是矩形,可补形成长方体。

图-1 图-2【例2】已知三棱锥P-ABC中,AB=3,AC=4,BC=5,PC=5,PC⊥平面ABC则过A,B,C,P四点的球的表面积为.[解析]三棱锥P-ABC可补成一个长、宽、高分别是3,4,5的长方体,其体对角线长为5,故该三棱锥外接球的半径是,其表面积为50π.[评析] 几何体(如图-3,图-4)存在三条线有两个垂直:AB⊥AC,AC⊥PC (“工”字模型),可补形成长方体。

图-3 图-42、利用长(正)方体的面对角线探索外接球半径【例3】三棱锥中P­ABC,PA=BC=,PB=AC=,PC=AB=,则三棱锥的外接球的表面积为________.[解析]如图-5,在长方体中,设AD=a,BD=b,CD=c.则PC=AB==,PA=BC==,PB=AC==.从而a2+b2+c2=14=(2R)2,可得S=4πR2=14π.故所求三棱锥的外接球的表面积为14π.[评析] 三棱锥的相对棱相等(如图-6),可在长(正)方体中构造三棱锥,从而利用长(正)方体体对角线求外接球半径.图-5 图-6二、利用底面与侧面的外心探索球心【例4】三棱锥P­ABC中,平面PAB⊥平面ABC,AB⊥AC,PA=PB=AB=2,AC=4,则三棱锥P­ABC的外接球的表面积为( )A.23π B.π C.64π D.π[解析]如图-7,设O1为正△PAB的外心,O2为Rt△BAC斜边的中点,H为AB中点.由平面PAB⊥平面ABC,可知O1H⊥平面ABC, O2H⊥平面PAB.作O1O∥HO2,OO2∥O1H,则交点O为三棱锥外接球的球心,连接OP,又O1P=PH=××2=,OO1=O2H=AC=2.∴R2=OP2=O1P2+O1O2=+4=.故几何体外接球的表面积S=4πR2=π.[评析] 三棱锥(如图-8)时,可利用球心与球截面圆圆心连线垂直于该截面这一性质,用底面与侧面的外心,外接球球心,构造三角形求球半径长.图-7 图-8三、利用直棱柱上下底面外接圆圆心的连线确定球心【例5】一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为________.[解析]设正六棱柱底面边长为a,正六棱柱的高为h,底面外接圆的半径为r,=Sh=h=,∴h=,R2=外接球的半径为R,则a=,底面积为S=6··=,V柱+=1,R=1,球的体积为V=.[评析] 直棱柱的外接球、圆柱的外接球模型(如图-9,图-10,图-11):图-9 图-10 图-11其外接球球心就是上下底面外接圆圆心连线的中点.四、外接球综合问题举例【例6】(2019·全国卷Ⅰ-改编)已知三棱锥P­ABC(如图-12)的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,求球O的体积.[解析]因为点E,F分别为PA,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.(如图-13)取AC的中点D,连接BD,PD,则AC⊥PD,AC⊥BD,又PB∩BD=D,所以AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,三棱锥P­ABC S可补形成正方体.因为AB=2,所以该正方体的棱长为,所以该正方体的体对角线长为,所以三棱锥P­ABC的外接球的半径R=,所以球O的体积V=πR3=π=π.图-12 图-13 图-14[评析] 本题难点是发现与证明:三棱锥P­ABC的PA,PB,PC两两垂直,是墙角模型,可补形成正方体。

简单几何体的外接球半径的求解技巧(论文)

简单几何体的外接球半径的求解技巧(论文)

简单几何体的外接球半径求解技巧简单几何体的外接球相关问题是立体几何中的难点也是重要的考点,此类问题最能有效考查考生的空间想象能力,自然受到命题者的青睐。

有些学生对于此类问题的解答,往往不知从何处入手,其实简单多面体的外接球问题实质上就是解决球的半径和确定球心位置的问题,其中球心的确定是关键,抓住球心就抓住了球的位置。

在教学过程中,比较难的是要能让学生灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、等价转化思想)来确定多面体外接圆半径。

本文通过近年来部分地市模拟题中外接球的问题谈几种解法让学生学会用补体法补全长方体或正方体解决一些特殊的三棱锥外接球问题;掌握多面体外接圆半径的求解策略;建立空间感,体会转化的数学思想方法;培养学生的分析、理解、运算能力、知识迁移能力、解决问题的能力。

在高三第二轮总复习过程中,学生对简单几何体的中档题,特别是简单几何体外接球的把握还存在一些差距。

学生在平时学习中,对棱锥的外接球相关问题的求解普遍感觉困难,主要是因为不善于抓住几何体的结构特征,不能正确寻找球心和半径。

虽然本文的内容及主要知识学生己经学过,但是真正掌握的学生不多,主要是学生对一些常见问题的基本处理方法比较生疏,尤其是运用简单几何体来分析问题、解决问题,就更加薄弱。

因此,在教学中,立足于学生的这种状况,通过归类构建知识体系,通过三种题型,深入浅出地在变式中升华规律性知识,并根据学生的现场反应随时确定教学进程和教学方法。

【例】(2019•莆田一模)在三棱锥P﹣ABC中,AC=2AB=22,BC=10,∠APC=90°,平面ABC⊥平面PAC,则三棱锥P﹣ABC外接球的表面积为()A.4πB.5πC.8πD.10π本题将三棱锥补成一个直四棱柱,运用“正四棱柱(包括正方体、长方体)的体对角线的长等于其外接球的直径”这一性质来求解。

一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有222R+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球心 .
义或球心 与其截 面 的 圆心连 线垂 直于 截 面这一 性 质 , 就 是 确定球 心位置 的 理论 依据. 即球 心可 以通 过作 出过几
何体某两个 面的外接圆 圆心 , 且垂 直于相 应面 的垂 线 , 则 两直线交 点即为球心. 我们可以将几何体的外接球 问题分为以下几类题型.
有关 外接球 的立体几何 问题 是近 年高考试 题 的难 点 之一 , 这与学生 的空 间想 象 能力 以及化 归 能力有 关. 《 普 通 高中数 学课 程标 准》 中对立 体几 何初 步 的学 习提 出 了
底补成直棱柱 ; ( 2 )构造长方体确定球 心 , 构造策 略 : 长方体 的八个
模 型的求解来求几何体外接球的半径.
关键词 : 外接球 ; 球心 ; 构造 ; 几 何 体
中图分类号 : G 6 3 2
文献标 识码: A
文章编号 : 1 0 0 8— 0 3 3 3 ( 2 0 1 7 ) 2 8— 0 0 0 7- 0 2 ( 1 )有一组线面垂直 的棱锥 , 以该线 为侧 棱 , 该面 为
C. 1 6竹 D. 8 1 T

因 为 AP A D 为 等 腰 直 角 三 角形 , A B C D 为 正方
形, 则 四棱 锥 P— A B C D外接 球 的球 心 为正方 形 A B C D的 中心. P A= P D= , 故 A D= 2 , 则 球 的半 径为 , 所 以该
A B= 2 , A A 。 =6 , / _ A C B=1 2 0 。 . 若三 棱柱 A B C— A 。 B 。 C 。

A. 2 07 r B. 42 7 r C. 5 2 叮 r D. 5 6竹
特别 的 , 长方 体 , 正方体 的外接球 的球心是其 体对角
线 中点 .

7一

数理化 解 题 研 究
( )
A. 1 0 I t B. 4 , r r
2 0 1 7 年第 2 8期总 第 3 7 7 期
吉 × - z , d =
所以 R=、 / / r + 9=、 / / 西, 则 S: 4 - t r X( 、 / / ) =
) .
B. 1 6耵
几 何体外接球的表面积 s= 4 1 T ×( ) = 8 , 应选 D .
模型, 对 于学生理 解立 体几 何 的有关 问题起 着非 常 重要
的作 用 .
① 有一个 面是直 角三角形 或矩形 , 一条侧 棱和该 面
垂直 的三棱锥或 四棱锥 ;
② 有共斜边 的两 个直 角三角形 的三棱锥 , 则公共斜 边 的中点就是其外接球的球心 ;
③ 对棱相 等的三棱锥 , 特别的 , 正四面体可转 化到正 方体 中 ;
顶点可 以构造 出三棱锥或 四棱锥.
基本要求 : “ 在立体 几何 初步 部分 , 学生 将先 从对 空 间几
何体 的整 体 观察 人 手 , 认 识 空 间 图形 ; 再 以长 方体 为 载 体, 直观认 识 和理解 空 间点 、 线、 面 的位置 关 系 I . . …・ ” 由 此 可见 , 长 方体模 型是学 习立 体几何 的基础 , 掌握 长方径 为 r , 球 0的半 径为
AB =2 +2 一2 x 2 ×2 c o s 1 2 0。: 1 2 ̄ AB : 2 : ,=
作者 简介 : 崔红光 ( 1 9 8 1—1 0 ) , 女, 黑龙江 , 任职 于福 建泉州实验 中学, 中学一级 , 大学本科 , 主要从 事高中数 学教 学研 究. 杨苍 洲( 1 9 7 9 , 1 2 ) , 男, 福建 惠安 , 福 建省泉州第五 中学, 中学 高级 , 大学本科 , 主要从 事高 中数 学教 学研究.
5 6 7 r , 故选 C . 例2 ( 2 0 1 4高考全 国大纲 卷 ) 正 四棱锥 的顶点都 在 同一球面 上 , 若该棱锥 的高为 4 , 底面边 长为 2 , 则该球 的
表面积为 (
A.
P A=P D= , 则 四棱 锥 尸 一A B C D 外 接 球 的表 面 积 为
的所 有 顶 点 都 在 球 0 的 表 面 上 , 则 球 0 的 表 面 积 为

二、 椎体的外接球
1 . 正棱锥 的外接 球 的球 心在 其 高上 , 具体 位 置 可通 过计算找 到. 2 . 构造长方 体或正方体或直棱柱确定球心
收 稿 日期 : 2 0 1 7— 0 7— 0 1
2 0 1 7 年 第 2 8 期 总 第 3 7 7 期
数理化 解 题 研 究

“ 外接球 ” 问题 的解 题 策略
崔 红 光 杨 苍 洲
( 1 . 福 建省 泉州 实验 中学 , 2 . 福 建省 泉州第 五 中学 , 福建

泉州
3 6 2 0 0 0 )
要: 本文通过近年 来部分 高考试题 中外接球 的 问题 , 利用化 归思想 , 最终都转化 为四个模 型, 通过 对


柱 体 的外 接 球
1 . 圆柱 的外 接球球 心为上下底面圆心连线 中点 ; 2 . 直棱柱 的外 接球 球心 为上下底 面外 接圆 的圆心连 线 中点 ;

三、 例 题 分 析
例 1 在 三棱柱 A B C— A B C 中, 】 上平面 A B C, C A
几何 体的外接球问题实 质是解 决球 的半 径或 确定球
心 O的位置 问题 , 其 中球心 的确定是关键 . 而利用 球心定
④ 底 面是 矩形 , 一 个侧 面是直 角三角形且 垂直 于底 面, 这两个 面的交线是三角形 的斜边 , 满 足上述条件 的四
棱锥. 3 . 过几 何体 的两个 面的外接圆 的圆心分别作 两个 面 的垂线 , 垂线 的交点为球心. 4 . 圆锥 的外接球 :圆锥 的轴截 面的外接 圆的圆心为
相关文档
最新文档