2010年普通高等学校招生全国统一考试数学(理科)(辽宁卷)解析

合集下载

2010年普通高等学校招生全国统一考试(辽宁卷.理)答案

2010年普通高等学校招生全国统一考试(辽宁卷.理)答案

2010年普通高等学校招生全国统一考试(辽宁卷)数学试卷(理科)参考答案一、选择题(1)D (2)A (3)B (4)D (5)C (6)B (7)B (8)C (9)D (10)D (11)C (12)A 二、填空题(13)-5 (14)(3,8) (15) (16)21217.解:(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++ 即 222a b c b c=++ 由余弦定理得 2222cos a b c bc A =+- 故 1c o s 2A =-,A=120° ……6分 (Ⅱ)由(Ⅰ)得:)60sin(sin sin sin 0B B C B -+=+1sin 2sin(60)B BB =+=︒+ 故当B=30°时,sinB+sinC 取得最大值1。

……12分 18.解:(Ⅰ)甲、乙两只家兔分在不同组的概率为991981002002100199C P C ==……4分 (Ⅱ)(i )图Ⅰ注射药物A 后皮肤疱疹面积的频率分布直方图 图Ⅱ注射药物B 后皮肤疱疹面积的频率分布直方图可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数。

……8分(ii )表3:22200(70653530)24.5610010010595K ⨯⨯-⨯=≈⨯⨯⨯由于K 2>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积于注射药物B 后的疱疹面积有差异”。

19.证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图。

则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).……4分 (Ⅰ)111(1,1,),(,,0)222CM SN =-=--,因为110022CM SN ∙=-++=,所以CM ⊥SN ……6分(Ⅱ)1(,1,0)2NC =-,设a=(x ,y ,z )为平面CMN 的一个法向量,则10,2210.2x y z x x y ⎧-+=⎪⎪=⎨⎪-+=⎪⎩令,得a=(2,1,-2). ……9分因为1cos ,2a SN -== 所以SN 与片面CMN 所成角为45°。

2010年辽宁高考数学理科试题简析 于会武

2010年辽宁高考数学理科试题简析 于会武

2010年辽宁高考数学理科试题简析于会武本套试卷体现了重基础、保稳定、求创新的原则,17题三角函数在模拟考试中见过,21(2)题导数与09年的21题问法相同,18题与09年宁夏海南试题应用题几乎相同。

创新题11、12题,20题由于运算量较大。

现就本套试卷进行简要的分析。

一、试卷题型分值情况试卷题型结构与09年辽宁试卷结构相同,没有变化。

二、试卷基本特点1、保持试题结构的稳定,但难度明显提高试题题型的设置与09年完全相同,试题的难度从平均分来看也比09年高,体现在11、12、20题,由于选择题难,直接影响了对后面问题的解答,而20题高运算量,在单位时间内是死题。

2、新增内容09年没考的10年重点考,与我们预计的相同09年理科试卷中没有出现如下内容,例如二项式定理,线性规划,充要条件,函数零点的研究(方程根的分布)球的内接几何体的研究,圆锥曲线离心率的求法,在2010年高考中都考了。

3、提高了对知识综合能力的要求很多题目设计知识应用的考查指向明确,考查知识点突出,紧扣课本和课标,知识综合应用能力提高,这些题目考生很难入手,没有能直接看出答案的题。

但个别试题较易入手,实现了平稳过渡的思想,在一定程度上保证了考生解答整体试卷的信心,也提高了考生整体试卷的分数。

4、继续体现能力立意的命题理念试卷的很多题目新颖,与实际问题联系紧密,考查学生基础的同时更注重能力的考查,有些题目显得很灵活,体现了能力立意的命题理念,例如理科第11、12、16、20、21,考查学生基础知识与能力的同时,也更加考查学生的探究与思维变通能力,突出对学生的知识综合应用能力的考查。

5、突出新课程新增内容的考查试卷突出了新课程中新增内容的考查,三视图、独立性检验、算法、量词、频率分布直方图,立体几何明显往与向量的应用方向上引导。

6、关注通性通法重点知识重点考查整个试卷坚持重点内容重点考查,如函数、三角、导数、解析几何、立体几何、概率统计等数学主干知识内容占全卷的80%左右。

2010年普通高等学校招生全国统一考试(辽宁卷)数学试题 ( 理科).含详解

2010年普通高等学校招生全国统一考试(辽宁卷)数学试题 ( 理科).含详解

2010年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1)已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},B)(C U ∩A={9},则A=( ) (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。

【解析】因为A ∩B={3},所以3∈A ,又因为B)(C U ∩A={9},所以9∈A ,所以选D 。

本题也可以用Venn 图的方法帮助理解。

(2)设a,b 为实数,若复数11+2ii a bi=++,则( ) (A )31,22a b == (B) 3,1a b == (C) 13,22a b == (D) 1,3a b == 【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。

【解析】由121i i a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。

(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是( ) 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512 (C)14 (D)16【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题【解析】记两个零件中恰好有一个一等品的事件为A ,则 P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于( ) (A )1m n C - (B) 1m n A - (C) m n C (D) mn A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3) ……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =mn A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是( ) (A )23 (B)43 (C)32(D)3【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。

2010年辽宁高考理科数学试题含答案

2010年辽宁高考理科数学试题含答案
(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(ⅱ)完成下面 2×2 列 联表,并回答能否有 99.9%的把握认为“注射药物 A 后的疱疹面积与
注射药物 B 后的疱疹面积有差异”. 表 3:
(19)(本小题满分 12 分) 已知三棱锥 P-ABC 中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N 为 AB 上一点,AB=4AN,M,S
(A){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}
(2)设 a,b 为实数,若复数 1+2i 1 i ,则 a bi
(A) a 3 ,b 1 22
(B) a 3,b 1
(C) a 1 ,b 3 22
(D) a 1,b 3
23
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为 和 ,两个零件是
x+
)+2
的图像向右平移
4
个单位后与原图像重合,则
的最小
3
3
值是
2
(A)
3
4
3
(B)
(C)
(D)3
3
2
(6)设{an}是有正数组成的等比数列, Sn 为其前 n 项和。已知 a2a4=1, S3 7 ,则 S5
15
(A)
2
31
33
(B)
(C)
4
4
17
(D)
2
(7)设抛物线 y2=8x 的焦点为 F,准线为 l,P 为抛物线上一点,PA⊥l,A 为垂足.如
二、填空题:本大题共 4 小题,每小题 5 分。
(13) (1 x x2 )(x 1 )6 的展开式中的常数项为_________. x

2010年普高等学校招生全国统一考试数学理科试题(全国卷I)真题精品解析

2010年普高等学校招生全国统一考试数学理科试题(全国卷I)真题精品解析

2010年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i 【答案】A【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=【答案】B【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析】222sin801cos 801cos (80)1k =-=--=-,所以tan100tan80︒=-sin 80cos80k=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a=5,789a a a=10,则456aaa = (A)【答案】A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a aa ===10,所以132850a a =, 所以133364564655()(50)a a a a aa a =====(5)35(1(1+-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4ABC DA 1B 1C 1D 1O(6)某校开设A 类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种(7)正方体ABCD-1111A BC D 中,B 1B 与平面AC 1D 所成角的余弦值为 A3B 3C 23D 3 【答案】D【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a 【答案】C【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P到x 轴的距离为【答案】B【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]1a PF e x a ex c =--=+=+,22000||[)]1a PF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 060222=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0||y =(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4-+3-(C) 4-+3-+【答案】D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos 2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--或3y ≥-+.故min ()3PA PB ∙=-+.此时x =(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C) 【答案】B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =.绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2010年高考理科数学答案详解

2010年高考理科数学答案详解

2010年普通高等学校招生全国统一考试 理科数学(新课标全国卷) 答案详解一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(集合)已知集合{||2}A x R x =∈≤},{|4}B x Z =∈≤,则A B =I(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2}【解析】∵{||2,}{22}A x R x x R x =∈≤=∈-≤≤,{4}{016}B x Z x Z x =∈=∈≤≤,故{0,1,2}A B =I .【答案】A2.(复数)已知复数z =z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 【解析】解法一:11)(1))84z i i =====,∴111))444z z i i ⋅=-⋅=.解法二:由221221z ====-可得214z z z ⋅==. 【答案】A 3.(函数)曲线2xy x =+在点(1,1)--处的切线方程为 (A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- 【解析】由2122x y x x ==-++可得122,2,12(1),21(2)x y k y y x y x x =-''===+=+=++【答案】A4.(三角函数)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为A B C D【解析】通过分析可知当0t =时,点P 到x 轴距离d,于是可以排除答案A,D ,再根据当4t π=时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B ,应选C .【答案】C5.(简单逻辑)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q【解析】1p :函数22x x y -=-在R 为增函数为真命题,而函数22x x y -=+为偶函数,则22x x y -=+在R 不可能为减函数,2p :函数22x xy -=+在R 为减函数为假命题,则1p ⌝为假命题,2p ⌝为真命题,然后根据复合命题的判断方法即可确定答案C . 【答案】C6.(概率统计)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400【解析】由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即~(1000,0.1)B ξ,而2X ξ=,则2210000.1200EX E ξ==⨯⨯=.应选B . 【答案】Btdπ2O7.(框图)如果执行下面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56【解析】根据框图所体现的算法可知此算法为求和:1111101223344556S =+++++⨯⨯⨯⨯⨯ 111111111151122334455666=-+-+-+-+-=-=,应选D .【答案】D8.(函数)设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或【解析】解法一:当0x <时,则0x ->,由偶函数满()f x 足3()8(0)f x x x =-≥可得,()()f x f x =-=38x --,则()f x =338(0)8(0)x x x x ⎧-≥⎨--<⎩,(2)f x -33(2)8(2)(2)8(2)x x x x ⎧--≥⎨---<⎩ 令(2)0f x ->,可解得4,0x x ><或.应选B .解法二:由偶函数满()f x 足3()8(0)f x x x =-≥可得3()()8f x f x x ==-, 则3(2)(2)28f x f x x -=-=--,要使(2)0f x ->, 只需3280,22x x -->->,解得4,0x x ><或.应选B .【答案】B9.(三角函数)若4cos5α=-,α是第三象限的角,则1tan21tan2αα+=-(A)12-(B)12(C) 2 (D) 2-【解析】解法一:由4 cos5α=-,α是第三象限的角可得3sin5α=-.311tan cos sin1sin152224cos21tan cos sin2225αααααααα-+++====----,应选A.解法二:由4cos5α=-,α是第三象限的角可得3sin5α=-.3sin sin52tan3421coscos125ααααα-====-+-,1tan13121321tan2αα+-==-+-.【答案】A10.(立体几何)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为(A) 2aπ(B) 273aπ(C) 2113aπ(D) 25aπ【解析】根据题意条件可知三棱柱是棱长都为a的正三棱柱,则其外接球的半径为2227()()22sin6012a aR a=+=o,球的表面积为222774123aR aππ=⋅=,应选B.【答案】B11.(函数)已知函数|lg|,010,()16,10.2x xf xx x<≤⎧⎪=⎨-+>⎪⎩若,,a b c互不相等,且()()(),f a f b f c==则abc的取值范围是(A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)【解析】作出函数()f x的图象如图A11,图A112不妨设a b c <<,则1lg lg 10(0,1)2a b c -==-+∈ 则(10,12)abc c =∈.应选C .【答案】C12.(解析几何)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -= 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 【答案】B二、填空题:本大题共4小题,每小题5分.13.(函数)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点(,)(1,2,)i i x y i N =…,,再数出其中满足()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ⎰的近似值为 .【解析】由题意可知11()1f x dx N N≈⎰得110()N f x dx N ≈⎰,故积分10()f x dx ⎰的近似值为1NN.【答案】1NN14.(立体几何)正视图为一个三角形的几何体可以是______(写出三种).【解析】正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥、四棱锥等等. 【答案】三棱锥、三棱柱、圆锥、四棱锥(其中任选3个即可)15.(解析几何)过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,则圆C 的方程为____. 【解析】设圆的方程为222()()x a y b r -+-=,则2222221(4)(1),(2)(1),1,2b a b r a b r a --+-=-+-==-- 解得3,0,2a b r ===,故所求圆的方程为22(3)2x y -+=.【答案】22(3)2x y -+=16.(三角函数)在△ABC 中,D 为边BC 上一点,12BD DC =,∠ADB =120°,AD =2,若△ADC 的面积为33-,则∠BAC =_______. 【解析】由△ADC 的面积为33-可得,13sin 603322ADC S AD DC DC ∆=⋅⋅⋅==-o ,13sin (33)22ABC S AB AC BAC ∆=⋅⋅∠=- 解得232DC =-,则31,333BD BC =-=-.∴2222cos120AB AD BD AD BD =+-⋅⋅o24(31)2(31)6=+-+-=,即6AB =. 2222cos 6024123AC AD CD AD CD =+-⋅⋅=-o ,即6(31)AC =-.∴222cos 2AB AC BC BAC AB AC +-∠=⋅6241239(423)63612266(31)12(31)+----===⋅--,故60BAC ∠=o.图A17【答案】60o三、解答题:解答应写出文字说明,证明过程和演算步骤. 17. (本小题满分12分)(数列)设数列{}n a 满足21112,32n n n a a a -+=-=⋅(1)求数列{}n a 的通项公式; (2)令n n b na =,求数列的前n 项和n S【解析】(I )由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+L21233(222)2n n --=++++L 2(1)12n +-= .而 12a =,所以数列{n a }的通项公式为212n n a -= .(II )由212n n n b na n -==⋅知35211222322n n S n -=⋅+⋅+⋅++⋅L △从而22n S ⋅=357211222322n n +⋅+⋅+⋅+⋅⋅⋅+⋅ △△-△得(212-)n S ⋅=35212122222n n n -+++++-⋅L .即n S =211[(31)22]9n n +-+.18. (本小题满分12分)(立体几何)如图,已知四棱锥P ABCD -的底面为等腰梯形,AB CD ∥,AC BD ⊥,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点. (1)证明:PE BC ⊥.(2)若60APB ADB ∠=∠=o ,求直线PA 与平面PEH 所成角的正弦值.【解析】以H 为原点,,,HA HB HP 分别为,,x y z 轴,线段HA 的长为单位长, 建立空间直角坐标系如图, 则(1,0,0),(0,1,0)A B .(I )设 (,0,0),(0,0,)(0,0)C m P n m n <>,则(0,,0)D m ,1(,,0)22mE . 可得 PE uuu r =1(,,)22mn -,BC uuu r =(,1,0)m -.∵0022m mPE BC ⋅=-+=u u u r u u u r ,∴PE ⊥BC .图A18(II )由已知条件可得,1,33m n C =-=-故 (,1(0,,0),(,(0,0,1)326D E P -- 设 (,,)x y x =n 为平面PEH 的法向量则00HE HP ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n,即10260x y z ⎧-=⎪⎨⎪=⎩.因此可以取=n ,由(1,0,1)PA =-u u u r,可得|cos <,PA uu u r n>|=4,所以直线PA 与平面PEH所成角的正弦值为4.19. (本小题12分)(概率统计)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由.附:22()()()()()n ad bc K a b c d a c b d -=++++【解析】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为7014%500=. (2)22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯. 由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20. (本小题满分12分)(解析几何)设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B两点,且22,,AF AB BF 成等差数列. (I )求E 的离心率;(II ) 设点(0,1)P -满足PA PB =,求E 的方程【解析】(I )由椭圆定义知224AF BF AB a ++=,又222AB AF BF =+,得43AB a =l 的方程为y x c =+,其中c =设()11,A x y ,()22,B x y ,则A 、B 两点坐标满足方程组22221y x c x y a b=+⎧⎪⎨+=⎪⎩,化简的()()222222220a b x a cx a c b +++-=.则()2222121222222,a c b a cx x x x a b a b --+==++. 因为直线AB 斜率为1,所以AB=21x -=,得22244,3ab a a b =+故222a b =, 所以E的离心率2c e a===. (II )设AB 的中点为()00,N x y ,由(I )知212022223x x a c x c a b +-===-+,003cy x c =+=. 由PA PB =,得1PN k =-,即0011y x +=-, 得3c =,从而3a b ==,故椭圆E 的方程为221189x y +=. 21. (本小题满分12分)(函数)设函数2()1xf x e x ax =---. (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围【解析】(1)0a =时,()1xf x e x =--,'()1xf x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加. (II )'()12xf x e ax =--由(I )知1xe x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-, 从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)xe x x >+≠可得1(0)xex x ->-≠.从而当12a >时, '()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <. 综合得a 的取值范围为1(,]2-∞.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4—1:几何证明选讲如图:已知圆上的弧»»AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明: (I )ACE ∠=BCD ∠; (II )2BC =BE ×CD .【解析】(I )因为»»AC BC =,所以BCD ABC ∠=∠. 又因为EC 与圆相切于点C ,故ACE ABC ∠=∠,所以ACE BCD ∠=∠.(II )因为,ECB CDB EBC BCD ∠=∠∠=∠, 所以BDC ∆△ECB ∆,故BC CDBE BC=,即2BC BE CD =⨯.23. (本小题满分10分)选修4—4:坐标系与参数方程已知直线1C : 1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),圆2C cos sin x y θθ=⎧⎨=⎩(θ为参数). (I )当α=3π时,求1C 与2C 的交点坐标: (II )过坐标原点O 做1C 的垂线,垂足为A 、P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线. 【解析】(I )当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩ ,解得1C 与2C 的交点为(1,0)12⎛ ⎝⎭,. (II )1C 的普通方程为sin cos sin 0x y ααα--=. A 点坐标为()2sin cos sin ααα-, 故当α变化时,P 点轨迹的参数方程为:()21sin 21sin cos 2x y αααα⎧=⎪⎪⎨⎪=-⎪⎩为参数,P 点轨迹的普通方程为2211()416x y -+=. 故P 点轨迹是圆心为104⎛⎫ ⎪⎝⎭,,半径为14的圆. 24. (本小题满分10分)选修4—5:不等式选讲 设函数()f x =241x -+. (I )画出函数()y f x =的图像;(II )若不等式()f x ax ≤的解集非空,求a 的取值范围.【解析】(I )由于25,2()23,2x x f x x x -+<⎧=⎨-≥⎩,则函数()y f x =的图像如图A24所示.(II )由函数()y f x =与函数y ax =的图像可知,当且仅当12a ≥或2a <-时,函数()y f x =与函数y ax =的图像有交点. 故不等式()f x ax ≤的解集非空时,a 的取值范围为()122⎡⎫-∞-+∞⎪⎢⎣⎭U ,,.图A242010年普通高等学校招生全国统一考试理科数学(新课标全国卷)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为A B C Dtdπ2O(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -= 第II 卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点(,)(1,2,)i i x y i N =…,,再数出其中满足()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ⎰的近似值为 .(14)正视图为一个三角形的几何体可以是______(写出三种)(15)过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,则圆C 的方程为____ (16)在△ABC 中,D 为边BC 上一点,12BD DC =,∠ADB =120°,AD =2,若△ADC的面积为3,则∠BAC =_______三,解答题:解答应写出文字说明,证明过程和演算步骤. (17)(本小题满分12分)设数列{}n a 满足21112,32n n n a a a -+=-=⋅(1)求数列{}n a 的通项公式;(2)令n n b na =,求数列的前n 项和n S (18)(本小题满分12分)如图,已知四棱锥P ABCD -的底面为等腰梯形,AB CD ∥,AC BD ⊥,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点(1)证明:PE BC ⊥(2)若60APB ADB ∠=∠=o,求直线PA 与平面PEH 所成角的正弦值 (19)(本小题12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿男女需要 40 30 不需要160270 (1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:22()()()()()n ad bc K a b c d a c b d -=++++2()P K k …0.050 0.010 0.001 k3.8416.63510.828(20)(本小题满分12分)设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l与E 相交于,A B 两点,且22,,AF AB BF 成等差数列. (1)求E 的离心率;(2) 设点(0,1)P -满足PA PB =,求E 的方程(21)(本小题满分12分)设函数2()1xf x e x ax =---. (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4—1:几何证明选讲如图:已知圆上的弧»»AC BD =,过C 点的圆的切线与BA的延长线交于E 点,证明: (I )ACE ∠=BCD ∠; (II )2BC =BE ×CD .(23)(本小题满分10分)选修4—4:坐标系与参数方程已知直线1C : 1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),圆2C cos sin x y θθ=⎧⎨=⎩(θ为参数). (I )当α=3π时,求1C 与2C 的交点坐标; (II )过坐标原点O 做1C 的垂线,垂足为A 、P 为OA 的中点,当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.(24)(本小题满分10分)选修4—5:不等式选讲 设函数()f x =241x -+. (I )画出函数()y f x =的图像:(II )若不等式()f x ax ≤的解集非空,求a 的取值范围.。

2010年高考全国卷1理科数学试题答案及解析

2010年高考全国卷1理科数学试题答案及解析

2010年普通高等学校招生全国统一考试(1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=A.21k k -B. -21k k- C.21k k- D. -21k k-2.B 【解析】222sin 801cos 801cos (80)1k =-=--=- ,所以tan100tan80︒=-2sin801.cos80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1 3.B 【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456aaa = (A) 52 (B) 7 (C) 6 (D) 424.A 【解析】由等比数列的性质知31231322()5a a a a a a a === ,0x y += 1O y x = y20x y --=xA0:20l x y -=2-2AABC DA 1B 1C 1D 1O37897988()a a a a a a a === 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a ===== (5)353(12)(1)x x +-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 45.B 【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++- 故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23 B 33 C 23 D 637.D【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222ACD S AC AD a a ∆==⨯⨯= ,21122ACD S AD CD a ∆== . 所以1312333A C D A C D S D D a D O a S a ∆∆=== ,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos 3θ=. (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32 (B)62(C) 3 (D) 69.B 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-, 解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y = (10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 11.D【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令P A P B y∙=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C) 23 (D) 83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =. (13)不等式2211x x +-≤的解集是 .PABO12x =y=1 xyaO12x =-414a y -=2y x x a=-+13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.解析:原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 14.17-【解析】因为α为第三象限的角,所以2(2(21),2(21))()k k k Z απππ∈+++∈,又3cos 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4s i n 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【解析】如图,在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解得514a <<. (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uu r,则C 的离心率为 .16.23【解析】如图,22||BF b c a =+=,作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =. 三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望. 18.(19如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89FA FB = ,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n n a a c a +==- .(Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式;(Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .。

2010年辽宁高考理科数学试题及答案

2010年辽宁高考理科数学试题及答案

理科综合能力测试(辽宁卷)一、选择题本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列有关细胞的叙述,正确的是(D)A.病毒是一类具有细胞结构的生物 B.海澡细胞具有细胞核且DNA分子呈环状C.人体所有细胞的细胞周期持续时间相同 D.内质网膜和高尔基体膜都具有流动性2.下列关于呼吸作用的叙述,正确的是(D)A.无氧呼吸的终产物是丙酮酸B.有氧呼吸产生的在线粒体基质中与氧结合生成水C.无氧呼吸不需要的参与,该过程最终有的积累D.质量相同时,脂肪比糖原有氧氧化释放的能量多3.若要在普通显微镜下观察到质壁分离、RNA和脂肪,下列四组材料中应选择的一组是(C)A.水稻胚乳和花生子叶 B.天竹葵叶和水稻胚乳C. 紫色洋葱和花生子叶D.天竺葵叶和紫色洋葱4.水中氧含量随水温的升高而下降,生活在寒温带湖泊中的某动物,其血液中的血红蛋白含量与其生活的水温有关。

右图中能正确表示一定温度范围内动物血液中血红蛋白含量随水温变化趋势的曲线是【A】A 甲 B。

乙 C.丙 D.丁5..将神经细胞置于相当于细胞外液的溶液(溶液S)中,可测到静息电位。

给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。

适当降低溶液S中NA+浓度,测量该细胞的静息电位和动作电位,可观测到【D】A.静息电位值减小B.静息电位值增大C.动作电位峰值升高D.动作电位峰值降低6.在白花豌豆品种栽培园中,偶然发现了一株开红花的豌豆植株,推测该红花表现型的出现是花色基因突变的结果。

为了确定推测是否正确,应检测和比较红花植株与百花植株中【B】A 白花基因的碱基组成B 花色基因的DNA序列C.细胞的DNA含量D.细胞的RNA含量7.下列各项表达中正确的是【C】A. Na2O2的电子式为NaNaB.106g的乙醇和丙醇混合液完全燃烧生成的CO2为112L(标准状态)C.在氮原子中,质子数为7而种子数不一定为7D.CL-的结构示意图为8.分子式为C3H6CL2 的同分异构体共有(不考虑例题异构)【B】A.3中B.4种C.5种D.6种9.下列各组的反应,属于统一反应类型的是【D】A.由溴丙烷睡解制丙醇:由丙烯和水反应制丙醇B.由甲苯硝化制对硝基甲苯:由甲苯氧化制苯甲酸C.由苯乙烷消去制环乙烯:由丙烯加溴制1,2-二溴丙烷D.由乙酸和乙醇制乙酸乙酯:由苯甲酸乙酯水解制苯甲酸和乙醇10.把500ml含有BaCl2和KCl的混合溶液分成5等分,取一份加入含a mol硫酸钠的溶液,恰好是钡离子完全沉淀:令取一份加入b mol硝酸银的溶液,恰好使卤离子完全沉淀,则该混合溶液中钾离子浓度为【D】A.0.1(b-2a)mol·L-1B.10(2a-b) mol·L-1C.10(b-a) mol·L-1D.10(b-2a) mol·L-111.已知:HCN(aq)与NaOH(aq)反应的△H等于【C】A.-67.7KJ·mol·L-1B.-43.5 KJ·mol·L-1C.+43.5 KJ·mol·L-1D.+67.7 KJ·mol·L-112.根据右图,可判断出下列离子方程式中错误的是(A)A.2Ag(s) + Cd2+(s) = 2Ag(s) + Cd(s)B. Co2+(aq)+ Cd(s) = Co(s)+ Cd2+(aq)C. 2Ag (aq) + Cd(s) = 2Ag(s) Cd2+(aq)D. 2Ag (aq) +Co(s)=2Ag(s)+Co2+(aq)13.下表中评价合理的是二.选择题:本体共8小题,每小题6分,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。

2010年高考数学理科试题解析版(全国卷II)

2010年高考数学理科试题解析版(全国卷II)

2010年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+>(C )211(R )x y e x +=-∈ (D )211(R )x y ex +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A (1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++===(5)不等式2601x x x --->的解集为(A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)A B C V 中,点D 在A B 上,C D 平方A C B ∠.若CB a =u u r,C A b =uur ,1a =,2b =,则C D =uuu r(A )1233a b +(B )2133a b +(C )3455a b +(D )4355a b +【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为C D 平分A C B ∠,由角平分线定理得A D C A 2=D BC B1=,所以D 为AB 的三等分点,且22A D A B (C B C A )33==- ,所以2121C D C A +A D C B C A a b 3333==+=+,故选B.(9)已知正四棱锥S A B C D -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a = (A )64 (B )32 (C )16 (D )8 【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y xk a--=-∴=-,切线方程是13221()2y aax a ---=--,令0x =,1232y a-=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b ab+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2010年全国高考数学(理)试题及答案(新课标卷) 详解版

2010年全国高考数学(理)试题及答案(新课标卷)  详解版

绝密★启用前2010年普通高等学校招生全国统一考试(课标版) 理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2,RA x x x =≤∈,{}4,ZB x =≤∈,则A B =(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2(2)已知复数1z=,z 是z 的共轭复数,则z z ⋅=(A )14(B )12(C )1 (D )2(3)曲线2xy x =+在点()1,1--处的切线方程为 (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A )100 (B )200 (C )300 (D )400 (7)如果执行右面的框图,输入5N=,则输出的数等于 (A )54(B )45(C )65 (D )56(8)设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>(A ){}2x x x <-或>4 (B ){}0x x x <或>4 (C ){}0x x x <或>6 (D ){}2x x x <-或>2(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A )12-(B )12(C )2 (D )2-(10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为 (A )2a π (B )273a π (C )2113a π (D )25a π (11)已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是 (A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 第Ⅱ卷二、填空题:本大题共4小题,每小题5分。

2010年辽宁省高考数学试题分析

2010年辽宁省高考数学试题分析

2010年辽宁省高考数学试题分析2010年高考,作为辽宁省实施新课程改革后的第二次高考,引起了广大中学数学教师的高度关注。

文理科数学难度较2009年稳中有升。

一、试题总体概述1 、立足基础,突出主干2010年辽宁数学试题注重考查双基,多数试题的综合性不强。

如理科选择题的第1—10题、所有的填空题,都只是单纯地考查1~2个知识点,没有知识间的交叉;所有解答题及选作题也都只考查基本的知识和技能,这些题约占整个试卷的90%。

这些试题突出体现了考试大纲中“平稳过渡”指导思想。

2、关注课改,注重教材2010年辽宁数学试卷中,对课改中新增内容给予了足够的重视。

诸如算法、三视图、统计知识、2×2列联表及卡方、简单逻辑用语,以及理科的空间向量、等知识在试卷中都有所体现。

今年我省理科和文科数学试卷中新增内容都约占25%。

可以说,对新增内容基本上做到了全面覆盖,但对这些内容考查的难度要求都比09年的略高一些。

另外,试卷中相当数量的试题在教材中都有原型,例如理第8题是由必修4第113页的例3变式迁移得来的;理第14题和文科第15题就由必修5中第95页的思考与讨论改编而成;理第13题是由选修2—3中第35页的一道求解题改编过来的。

3 、注重通法,淡化技巧全卷没有直接考查纯记忆的陈述性知识,注重考查知识的运用能力及学生的计算能力和推理论证能力等等。

由于立足基本方法和通性通法,整卷试题的坡度较好地实现了由易到难,并且实现了解答题低起点、宽入口、逐步深入的格局。

4、注重知识交汇点本套试卷具有较为合理的覆盖面,集合、复数、常用逻辑、线性规划、向量、算法与框图、排列组合等内容在选择、填空题中得到了有效的考查;三角函数、概率统计、立体几何、解析几何、函数与导数、数列等主干知识在解答题中得到考查,构成试卷的主体内容。

同时,文、理科试卷都注重了考查知识间的内在联系,在知识点的交汇处设计试题,如理科第10题,将算法与排列组合相结合;理第16题将数列与不等式相结合;理第18题,将概率知识和实际背景相结合,并把必修3和选修系列2-3的统计概率知识结合起来;如文科4题和理科11题将简单逻辑用语同二次函数的最值知识融为一体。

2010年辽宁省高考数学试卷(理科)

2010年辽宁省高考数学试卷(理科)

2010年辽宁省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}2.(5分)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=33.(5分)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.4.(5分)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的p等于()A.C n m﹣1B.A n m﹣1C.C n m D.A n m5.(5分)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.36.(5分)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.7.(5分)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.168.(5分)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C. D.9.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.10.(5分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,) C.(,]D.[,π)11.(5分)已知a>0,则x0满足关于x的方程ax=b的充要条件是()A.B.C.D.12.(5分)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,) D.(0,)二、填空题(共4小题,每小题5分,满分20分)13.(5分)的展开式中的常数项为.14.(5分)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是.(答案用区间表示)15.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.16.(5分)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.三、解答题(共8小题,满分90分)17.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.18.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K2=.19.(12分)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB 上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.20.(12分)设椭圆C:的左焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.22.(10分)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.23.(10分)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.24.(10分)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.2010年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}【分析】由韦恩图可知,集合A=(A∩B)∪(C U B∩A),直接写出结果即可.【解答】解:因为A∩B={3},所以3∈A,又因为C U B∩A={9},所以9∈A,选D.本题也可以用Venn图的方法帮助理解.故选:D.【点评】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力.2.(5分)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=3【分析】先化简,然后用复数相等的条件,列方程组求解.【解答】解:由可得1+2i=(a﹣b)+(a+b)i,所以,解得,,故选:A.【点评】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.(5分)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案.【解答】解:记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=,故选:B.【点评】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系(对立,互斥,相互独立).4.(5分)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的p等于()A.C n m﹣1B.A n m﹣1C.C n m D.A n m【分析】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量p的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:第一次循环:k=1,p=1,p=n﹣m+1;第二次循环:k=2,p=(n﹣m+1)(n﹣m+2);第三次循环:k=3,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)…第m次循环:k=m,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n此时结束循环,输出p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n=A n m故选:D.【点评】要注意对第m次循环结果的归纳,这是本题的关键.5.(5分)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选:C.【点评】本题考查了三角函数图象的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度.6.(5分)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.【分析】先由等比中项的性质求得a3,再利用等比数列的通项求出公比q及首项a1,最后根据等比数列前n项和公式求得S5.【解答】解:由a2a4=a32=1,得a3=1,所以S3==7,又q>0,解得=2,即q=.所以a1==4,所以=.故选:B.【点评】本题考查等比中项的性质、等比数列的通项公式及前n项和公式.7.(5分)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.16【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选:B.【点评】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想.8.(5分)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C. D.【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选:C.【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角.9.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.10.(5分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,) C.(,]D.[,π)【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y=上的导数为y′=﹣=﹣,∵e x+e﹣x≥2=2,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴π≤α<π.即α的取值范围是[π,π).故选:D.【点评】本题主要考查直线的斜率关系、导数的几何意义.属于基础题.11.(5分)已知a>0,则x0满足关于x的方程ax=b的充要条件是()A.B.C.D.【分析】初看本题,似乎无从下手,但从题目中寻求充要条件,再看选项会发现构造二次函数求最值.【解答】解:由于a>0,令函数,此时函数对应的开口向上,当x=时,取得最小值,而x0满足关于x的方程ax=b,那么x0═,y min=,那么对于任意的x∈R,都有≥=故选:C.【点评】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力.12.(5分)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,) D.(0,)【分析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.我们可以通过分析确定当底面是边长为2的正三角形,三条侧棱长为2,a,a此时a取最大值,当构成三棱锥的两条对角线长为a,其他各边长为2,a有最小值,易得a的取值范围【解答】解:根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况①底面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有2﹣<<2+,即,即有<a<②构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时0<a<2;综上分析可知a∈(0,);故选:A.【点评】本题考查的知识点是空间想像能力,我们要结合分类讨论思想,数形结合思想,极限思想,求出a的最大值和最小值,进而得到a的取值范围二、填空题(共4小题,每小题5分,满分20分)13.(5分)的展开式中的常数项为﹣5.【分析】展开式的常数项为展开式的常数项与x﹣2的系数和;利用二项展开式的通项公式求出第r+1项,令x的指数分别为0,﹣2即得.【解答】解:的展开式的通项为T r=C6r(﹣1)r x6﹣2r,+1当r=3时,T4=﹣C63=﹣20,的展开式有常数项1×(﹣20)=﹣20,当r=4时,T5=﹣C64=15,的展开式有常数项x2×15x﹣2=15,因此常数项为﹣20+15=﹣5故答案为﹣5【点评】本题考查等价转化的能力;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.【解答】解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.15.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【分析】结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.【点评】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.16.(5分)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.【分析】由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【解答】解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N,所以当n=5或6时f(n)有最小值.+又因为,,所以的最小值为【点评】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.三、解答题(共8小题,满分90分)17.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.【分析】(Ⅰ)根据正弦定理,设,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc再与余弦定理联立方程,可求出cosA的值,进而求出A的值.(Ⅱ)根据(Ⅰ)中A的值,可知c=60°﹣B,化简得sin(60°+B)根据三角函数的性质,得出最大值.【解答】解:(Ⅰ)设则a=2RsinA,b=2RsinB,c=2RsinC∵2asinA=(2b+c)sinB+(2c+b)sinC方程两边同乘以2R∴2a2=(2b+c)b+(2c+b)c整理得a2=b2+c2+bc∵由余弦定理得a2=b2+c2﹣2bccosA故cosA=﹣,A=120°(Ⅱ)由(Ⅰ)得:sinB+sinC=sinB+sin(60°﹣B)=cosB+sinB=sin(60°+B)故当B=30°时,sinB+sinC取得最大值1.【点评】本题主要考查了余弦函数的应用.其主要用来解决三角形中边、角问题,故应熟练掌握.18.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K2=.【分析】(1)利用组合数找出所有事件的个数n,基本事件的个数m,代入古典概率计算公式p=(2)由频数分布表中的频数求出每组的,画出频率分布直方图,完成2×2列联表,代入计算随机变量值后与临界点比较判断两变量的相关性的大小.【解答】解:(Ⅰ)从200选100的组合数C200100,记:“甲、乙两只家兔分在不同组”为事件A,则事件A包含的情况有2C19899∴(4分)(Ⅱ)(i)图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(8分)(ii)表3:由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.(12分)【点评】本题考查的内容为:利用组合数求古典概率,由频数分布表画频率分布直方图及2×2列联表,考查独立性检验的计算公式与临界值比较以判断两个变量的关联性.要注意频率分布直方图的纵轴是19.(12分)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB 上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.【分析】由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求SN与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出SN和方向向量与平面CMN的法向量的夹角,再由它们之间的关系,易求出SN与平面CMN所成角的大小.【解答】证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图.则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).(4分)(Ⅰ),因为,所以CM⊥SN(6分)(Ⅱ),设a=(x,y,z)为平面CMN的一个法向量,则令x=2,得a=(2,1,﹣2).因为,所以SN与平面CMN所成角为45°.【点评】如果已知向量的坐标,求向量的夹角,我们可以分别求出两个向量的坐标,进一步求出两个向量的模及他们的数量积,然后代入公式cosθ=即可求解20.(12分)设椭圆C:的左焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.【分析】(1)点斜式设出直线l的方程,代入椭圆,得到A、B的纵坐标,再由,求出离心率.(2)利用弦长公式和离心率的值,求出椭圆的长半轴、短半轴的值,从而写出标准方程.【解答】解:设A(x1,y1),B(x2,y2),由题意知y1>0,y2<0.(1)直线l的方程为,其中.联立得.解得,.因为,所以﹣y1=2y2.即﹣=2 ,解得离心率.(6分)(2)因为,∴•.由得,所以,解得a=3,.故椭圆C的方程为.(12分)【点评】本题考查椭圆的性质标和准方程,以及直线和圆锥曲线的位置关系,准确进行式子的变形和求值,是解题的难点,属于中档题.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)根据第一问的单调性先对|f(x1)﹣f(x2)|≥4|x1﹣x2|进行化简整理,转化成研究g(x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a 的范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞)..当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调递增;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调递减;当﹣1<a<0时,令f′(x)=0,解得.则当时,f'(x)>0;时,f'(x)<0.故f(x)在单调递增,在单调递减.(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调递减,从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1①令g(x)=f(x)+4x,则①等价于g(x)在(0,+∞)单调递减,即.从而故a的取值范围为(﹣∞,﹣2].(12分)【点评】本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.22.(10分)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.【分析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC 的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】相似三角形有三个判定定理:判定定理1:两角对应相等的两个三角形相似;判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.在证明三角形相似时,要根据已知条件选择适当的定理.23.(10分)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,【分析】进行代换即得.(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可.【解答】解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.24.(10分)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.【分析】证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.【解答】证明:证法一:因为a,b,c均为正数,由平均值不等式得①所以②故.又③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.证法二:因为a,b,c均为正数,由基本不等式得所以a2+b2+c2≥ab+bc+ac①同理②故③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.【点评】考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.。

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卷面清洁,不折叠,不破损。

5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:样本数据n x x x ,,21的标准差锥体体积公式s =13V Sh=其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π=343V R π=其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B = ()(A)()0,2(B)[]0,2(C){}0,2(D){}0,1,2【答案】D【解析】{22},{0,1,2,3,4}A B={0,1,2}A x x B =-≤≤=∴⋂,,选D 命题意图:考察集合的基本运算(2)已知复数z =,z 是z 的共轭复数,则z z ⋅=()(A)14(B)12(C)1(D)2【答案】A 命题意图:考察复数的四则运算【解析】2323244i iz ===-⨯4z =,14z z ⋅=(3)曲线2xy x =+在点()1,1--处的切线方程为()(A)21y x =+(B)21y x =-(C)23y x =--(D)22y x =--【答案】A【解析】''122,|2(2)x y k y x =-=∴==+ ,切线方程为[](1)2(1)y x --=--,即21y x =+.命题意图:考察导数的几何意义(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为()【答案】C【解析】当点P 在0P ,即0t =,P 到x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试数学(理科)(辽宁卷)解析第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。

【解析】因为A ∩B={3},所以3∈A ,又因为 u ðB ∩A={9},所以9∈A ,所以选D 。

本题也可以用Venn 图的方法帮助理解。

(2)设a,b 为实数,若复数11+2i i a bi =++,则(A )31,22a b ==(B) 3,1a b ==(C) 13,22a b == (D) 1,3a b ==【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。

【解析】由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。

(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12(B)512(C)14(D)16【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题【解析】记两个零件中恰好有一个一等品的事件为A ,则 P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于(A )1m n C -(B) 1m nA -(C) mn C (D) mn A【答案】D 【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3) ……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n 此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =mn A (5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是(A )23(B)43(C)32(D)3【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。

【解析】将y=sin(ωx+3π)+2的图像向右平移34π个单位后为4s i n [()]233y x ππω=-++4s i n ()233x πωπω=+-+,所以有43ωπ=2k π,即32k ω=,又因为0ω>,所以k ≥1,故32k ω=≥32,所以选C(6)设{a n }是有正数组成的等比数列,n S 为其前n 项和。

已知a 2a 4=1, 37S =,则5S =(A )152(B)314(C)334(D)172【答案】B【命题立意】本题考查了等比数列的通项公式与前n 项和公式,考查了同学们解决问题的能力。

【解析】由a 2a 4=1可得2411a q =,因此121a q=,又因为231(1)7S a q q =++=,联力两式有11(3)(2)0q q+-=,所以q=12,所以5514(1)3121412S--==-,故选B。

(7)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=(A)(B)8(C)(D) 16【答案】B【命题立意】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想。

【解析】抛物线的焦点F(2,0),直线AF的方程为2)y x=-,所以点(2,A-、(6,P,从而|PF|=6+2=8(8)平面上O,A,B三点不共线,设,O A=a O B b=,则△OAB的面积等于(B)(C)(D)【答案】C【命题立意】本题考查了三角形面积的向量表示,考查了向量的内积以及同角三角函数的基本关系。

【解析】三角形的面积S=12|a||b|sin<a,b>,而=11||||||||sin,22a b a b a b=<>(9)设双曲线的—个焦点为F;虚轴的—个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A)(C)12(D)12【答案】D【命题立意】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想。

【解析】设双曲线方程为22221(0,0)x ya ba b-=>>,则F(c,0),B(0,b) 直线FB:bx+cy-bc=0与渐近线y=bxa垂直,所以1b bc a-=-,即b2=ac所以c 2-a 2=ac ,即e 2-e -1=0,所以12e +=或12e -=(舍去)(1O)已知点P 在曲线y=41xe +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值范围是(A)[0,4π) (B)[,)42ππ 3(,]24ππ (D) 3[,)4ππ【答案】D【命题立意】本题考查了导数的几何意义,求导运算以及三角函数的知识。

【解析】因为'2441(1)2x xxxey e e e--==≥-+++,即tan a ≥-1,所以34παπ≤≤。

(11)已知a>0,则x 0满足关于x 的方程ax=6的充要条件是 (A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤-(C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤-【答案】C【命题立意】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力。

【解析】由于a >0,令函数22211()222b by ax bx a x aa=-=--,此时函数对应的开口向上,当x=b a时,取得最小值22ba-,而x 0满足关于x 的方程ax=b,那么x 0==b a,y min =2200122bax bx a-=-,那么对于任意的x ∈R,都有212y a x b x =-≥22ba-=20012ax bx -(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)( (B)(1,(D) (0,)【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。

【解析】根据条件,四根长为2的直铁条与两根长为a 的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a ,a ,如图,此时a可以取最大值,可知AD=,SD=,则有<2+,即228a <+=,即有+(2)构成三棱锥的两条对角线长为a ,其他各边长为2,如图所示,此时a>0;综上分析可知a ∈(+二、填空题:本大题共4小题,每小题5分。

(13)261(1)()x x x x++-的展开式中的常数项为_________.【答案】-5【命题立意】本题考查了二项展开式的通项,考查了二项式常数项的求解方法【解析】21()x x-的展开式的通项为6216(1)r r rr T C x-+=-,当r=3时,34620T C =-=-,当r=4时,45615T C =-=,因此常数项为-20+15=-5(14)已知14x y -<+<且23x y <-<,则23z x y =-的取值范围是_______(答案用区间表示)【答案】(3,8) 【命题立意】本题考查了线性规划的最值问题,考查了同学们数形结合解决问题的能力。

【解析】画出不等式组1423x y x y -<+<⎧⎨<-<⎩表示的可行域,在可行域内平移直线z=2x-3y ,当直线经过x-y=2与x+y=4的交点A (3,1)时,目标函数有最小值z=2×3-3×1=3;当直线经过x+y=-1与x-y=3的焦点A (1,-2)时,目标函数有最大值z=2×1+3×2=8.(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.【答案】【命题立意】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力。

【解析】由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱=(16)已知数列{}n a 满足1133,2,n n a a a n +=-=则n a n的最小值为__________.【答案】212【命题立意】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力。

【解析】a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2[1+2+…(n -1)]+33=33+n 2-n所以331n a n n n =+-设()f n =331n n+-,令()f n =23310n-+>,则()f n 在)+∞上是单调递增,在上是递减的,因为n ∈N +,所以当n=5或6时()f n 有最小值。

又因为55355a =,66321662a ==,所以,n a n的最小值为62162a =三、解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++(Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值.(17)解:(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++ 即 222a b c b c=++ 由余弦定理得 2222cos a b c bc A =+- 故 1c o s 2A =-,A=120° ……6分(Ⅱ)由(Ⅰ)得:s i n s i n s i n s i n (60B C B B +=+︒-1sin 22sin(60)B BB =+=︒+故当B=30°时,sinB+sinC 取得最大值1。

相关文档
最新文档