中考数学勾股定理与锐角三角函数02
锐角三角函数(第2课时)(课件)九年级数学下册(北师大版)
c
sin
A
=
∠A的对边
斜边
斜边
a =c
b
A
c
cos
A
=
∠A的邻边
斜边
=
b c
斜边
b邻 A 边
谢谢~
B1 A1
B2 A1
B1 A1
B2 A1
B1
(3)如果改变B2在梯子A1B1上的位置呢?
由此你可得出什么结论?
B2
(4)如果改变梯子A1B1的倾斜角的大小呢?
由此你可得出什么结论?
C1 C2
A1
探究新知
(1)Rt△B1A1C1 ∽ Rt△B2A1C2.
(2)相等
∵ Rt△B1A1C1 ∽ Rt△B2A1C2,
=
a c
tan A a a c sin A b c b cos A
若∠A+∠B=90°;一个 锐角的正弦等于它余角的余 弦,sinA=cosB;一个锐角的 余弦等于它余角的正弦;
cosA=sinB.
探究新知
锐角三角函数之间的关系:
(1)同一个角:①商的关系:tanA= sin A ;②平方
关系:sin2A+cos2A=1.
A
B
斜边
∠A的对边
┌ ∠A的邻边 C
结论:在Rt△ABC中,如果锐角A确定,那么∠A的对边与 斜边的比, ∠A的邻边与斜边的比也随之确定.
探究新知
核心知识点一: 正弦、余弦的定义
想一想:如图.
(1)直角三角形A1B1C1和直角三角形A1B2C2有什么关系?
(2)A1C1 和 A1C2 有什么关系? B1C1 和 B2C2 呢?
探究新知
• 定义中应该注意的几个问题: 1.sinA,cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构 造直角三角形). 2.sinA,cosA是一个完整的符号,分别表示∠A的正弦,余弦 (习惯省去 “∠”号). 3.sinA,cosA 是一个比值,是直角边与斜边之比.注意比的顺序
勾股定理与锐角三角函数
C
B
A
试一试
(2009年泸州中考)计算:
1 1 ( ) (2009 ) 0 9 2 sin 30 2
A
已知:
tan B 3 2 sin A 3 0,
求∠A,∠B的度数。
2
提高 练习
计算:
cos300 sin 450 1. ; 0 0 sin 60 cos 45
怎样 解答
?
1 2 1 2 . 2 2 2 (2) sin2600+cos2600-tan450
2 3 1 1 2 2 2
角函数值进行 计算时,一般 不取近似值.
Sin2600表示 (sin600)2,
0.
3 1 1 4 4
小结
本节课我们主要复习了哪些知识?
1、直角三角形的有关性质 2. 锐角三角函数的定义 3. 锐角三角函数的性质 4. 特殊角的三角函数值
2.sin 2 300 2 sin 600 tan450 tan600 cos2 300 ;
3.
1 2 tan600 tan2 600 tan600.
2.在Rt△ABC中,∠C=900,∠B=600,AB=4, 求AC,BC,sinA和cosA.
2 3 2 6.(2012 中考预测题)在△ABC 中, 若|sinA- |+( -cosB) =0, 2 2 ∠A、∠B 都是锐角,则∠C 的度数是( A.70° B.90° C.105° )
∴ cos B a 5 3 。 26 c 13 3
b B a ( 图 1) C
4 4 如图,已知 Rt△ABC 中,斜边 BC 上的高 AD=4,cosB= , 5 则 AC=________.
勾股定理及锐角三角函数值
中考数学20大专题—勾股定理及锐角三角函数值勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2+ b 2= c 2。
公式的变形:a 2= c 2- b 2, b 2= c 2-a 2。
如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2+ b 2= c 2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。
满足a 2+ b 2= c 2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 ) 4、最短距离问题:主要运用的依据是两点之间线段最短。
【例1】如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.【例2】在直线上依次摆放着七个正方形(如图4所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、=_____________。
【例3】已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c mB 、36 2c mC 、482c mD 、602c m【例4】已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、15【例5】如图1所示,等腰中,,是底边上的高,若,求 ①AD 的长;②ΔABC 的面积.【例6】若△ABC 的三边长a,b,c 满足222a b c 20012a 16b 20c +++=++,试判断△ABC 的形状。
初三数学三角函数(含答案)
初中数学三角函数1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边c 的平方。
a 2b 2c 24、任意锐角的正切值等于它的余角的余切值; 任意锐角的余切值等于它的余角的正切值。
tan A cot B cot A tan Bcot-1 ~3~6、 正弦、余弦的增减性:当0°w < 90°时,sin 随 的增大而增大,cos 随 的增大而减小7、 正切、余切的增减性:当0° < <90°时,tan 随 的增大而增大,cot 随 的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)一所有未知的 边和角。
依据:①边的关系: a 2b 2c 2;②角的关系:A+B=90 °;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; 俯角:视线在水平线下方的角(2)坡面的铅直高度 h 和水平宽度I 的比叫做坡度(坡比)。
用字母i 表示,即i y 。
坡度一 般写成1: m 的形式,如i 1:5等。
把坡面与水平面的夹角记作 (叫做坡角),那么h + i tan 。
l3、 从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图 3, OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、 指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30° (东北方向), 南 偏东45° (东南方向),南偏西60° (西南方向), 北偏西60° (西北方向)。
铅垂线*视线 ‘ 仰角水平线俯角1*视线初三数学三角函数综合试题一、填空题: 1、在 Rt △ ABC 中/C = 90°, a = 2, b = 3,则 cosA =_, sinB =_ , tanB = ___ 2、直角三角形 3、已知tan ABC 的面积为24cm 2,直角边AB 为6cm , / A 是锐角,则sinA = =—, 是锐角,贝U sin 12 + ) + cos 2(40 ° 4、 cos 2(50° — _______ ? 5、 如图1,机器人从A 点,沿着西南方向,行了个4,:2单位,至U 达 60°的方向上,贝U 原来 )—tan(30)tan(60 ° + 到原点O 在它的南偏东 保留根号).A 的坐标为B 点后观察 _ (结果 NMNC 0(2)10cm 周长为36cm 则一底角的正切值为_、3的山坡走了 50米,则他离地面 米高。
锐角三角函数值的求解攻略
锐角三角函数值的求解攻略浙江嘉善县泗洲中学(314100)杨晓霞[摘要]锐角三角函数是历年中考数学的重点和热点内容,研究锐角三角函数对中考应用题的复习备考乃至中考数学命题模式的把握都有非常重要的指导意义.[关键词]三角函数;锐角;求解[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2021)08-0020-02一、定义法[例1]如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=15,AB的垂直平分线DE交BC的延长线于点D,垂足为E,求sin∠CAD的值.分析:在图1中,∠CAD为直角三角形CAD的一个内角,根据锐角的正弦的定义,可知sin∠CAD=CDAD.因此,本题的解题关键是求出∠CAD的对边CD和斜边AD的长度.根据线段的垂直平分线的性质易知AD=BD.已知条件BC=3,可表示出CD长.在Rt△CAD中运用勾股定理求解.当然,这里最好引入一个未知数,以简便表示相关线段长度.解:因为AB的垂直平分线DE交BC的延长线于点D,所以有AD=BD.不妨设AD=BD=x,又BC=3,则CD=x-3,而AC=15,在Rt△CAD中,根据勾股定理知AC2+CD2=AD2,即15+()x-32=x2,解得x=4.即AD=4,CD=1,所以sin∠CAD=CDAD=14.点评:本题主要考查锐角三角函数中正弦的定义,并检测学生对一元二次方程的求解的掌握程度,勾股定理在解题中起了关键作用.二、参数法[例2]如图2,在△ABC中,∠C=90°,sin A=25,求sin B的值.分析:根据已知条件中的sin A=25,可以结合锐角三角函数中正弦的定义,引入一个参数,设出角A的对边CB和斜边AB的长度,再运用勾股定理求得角A的邻边AC的长度后,问题得解.解:因为∠C=90°,sin A=25,根据此比值可设CB=2x,AB=5x,其中x>0,再由勾股定理得AC2=AB2-CB2=21x2,即AC=21x,结合锐角三角函数中正弦的定义可知,sin B=ACAB=21x5x=点评:熟练掌握锐角三角函数中正弦的定义是解决本题的关键所在,若已知条件中给出具体角的比值,通常的做法是引入一个大于0的参数,根据比值设出相应边的长度,然后根据勾股定理求解.三、构造法1.三角形中的构造[例3]如图3,在直角△BAD中,延长斜边BD到点C,使得DC=12BD,连接AC,若tan B=53,求tan∠CAD的值.分析:本题要求tan∠CAD,但由于∠CAD不在图中已知的直角三角形中,需要另外构造直角三角形,使得∠CAD置于其中.可以过点D作边AD的垂线,构造出直角三角形ADH来解决.解:过点D作边AD的垂线DH交AC于H,垂足为D,如图4所示,根据△BAD为直角三角形可知,∠BAD=∠ADH=90°,所以AB∥DH,易证得△CDH∽△CBA,进而得到DH AB=CD CB,因为已知条件中有DC=12BD,则DH AB=CD CB=13,又在Rt△BAD中,tan B=53,不妨设AD=5k,AB=3k,这样DH=k,故在Rt△ADH中,有tan∠CAD=DHAD=k5k=15.点评:如果在三角形中求相关角的三角函数值时,所求角并不在已知直角三角形中,这时我们就需要通过作垂线段来构造直角三角形,从而将所求角置于直角三角形中,再结合三角函数值的定义求解.本题还运用了相似三角形的相关性质.此外,本题亦可图1图2图3图4[基金项目]本文系全国教育科学“十三五”规划2017年度教育部重点课题“核心素养视角下的中学数学命题模式研究”(批准号:DHA17035)成果.数学·解题研究过点C 作直线AD 的垂线,通过构造出两个相似的直角三角形,利用相似比计算出相应的边长求解.2.圆中的构造[例4]如图5,在半径为3的圆O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,求tan D 的值.分析:题中已知条件提及直径AB ,又要求角D 的正切值,自然联想到这里应该是要借助“直径AB 所对的圆周角为直角”这一性质来构造直角三角形,然后将角D 置于其中求解.解:连接BC ,如图6所示,因为AB 为直径,则∠ACB =90°,这样在直角三角形ACB 中,有tan A =BCAC,根据圆周角的性质,不难发现∠A =∠D ,故tan D =BCAC,又圆O 的半径为3,AC =2,那么BC =AB 2-AC 2=36-4=42,所以tan D =BCAC=422=22.点评:在圆中求锐角三角函数值时,利用直径来构造直角三角形是最常用的构造方法,一般还会利用“同弧(或等弧)所对的圆周角相等”这一性质,将目标角进行等量转化.3.网格中的构造[例5]如图7所示,已知△ABC 的三个顶点均在格点上,则cos A 的值为.图7图8分析:因为网格中无直角三角形,所以需要借助网格格点构造直角三角形,不妨通过点B 来构造,连接格点B 、D ,如图8所示,易知△ABD 为直角三角形.解:如图8所示,连接格点B 、D ,根据正方形的对角线的特征,易知△ABD 为直角三角形,可设小正方形的边长为1,则AB =10,AD =22,所以cos A =AD AB =2210=255.点评:在网格中求锐角三角函数值,一般都是借助网格中的格点去构造直角三角形,通常构造的方法也不是唯一的,本题也可以通过补网格,利用格点C 来构造直角三角形.四、等量转化法1.网格中的转化[例6]如图9,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P,则tan∠APD 的值为.图9图10分析:本题可将∠APD 转化为∠BPC ,然后通过小正方形的对角线构造直角三角形解决.解析:连接格点B 、Q ,交DC 于点H ,如图10所示,则BH ⊥DC ,所以tan∠APD =tan∠BPH =BHPH ,若设小正方形的边长为1,那么BH=易知△BDP ∽△ACP ,则DP PC =BD AC =13,所以DP =14DC=那么PH =DH -DP 故tan∠APD =BH PH =22=2.点评:在网格中,若对所求角直接构造直角三角形较困难,可以进行适当的等量转化.本题将∠APD 等量转化为∠BPC 是解题的关键.2.折叠中的转化[例7]如图11,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC边上的点D 处,EF 为折痕,若AE =3,则sin∠BFD =.分析:根据折叠的性质,∠A =∠EDF =45°,注意到∠BFD =180°-∠B -∠BDF =135°-∠BDF ,∠CDE =180°-∠EDF -∠BDF =135°-∠BDF .这样将∠BFD 等量转化成∠CDE ,再在Rt△CDE 中求解.解析:由题意知,∠A =∠EDF =∠B =45°,在△BFD 中,∠BFD =180°-∠B -∠BDF =135°-∠BDF ,又因为∠CDE =180°-∠EDF -∠BDF =135°-∠BDF ,所以∠BFD =∠CDE ,易知CE =1,DE =3,故sin∠BFD =sin∠CDE =CE DE =13.点评:折叠问题中,要紧扣相关角、边之间的等量关系.将∠BFD 等量转化成∠CDE 是成功解决本题的关键一步.锐角三角函数值的求解是中考数学的必考题型,其涉及的题目类型多变,可采用的解题策略也较多,在平时的教学过程中,教师要注意归纳、小结各种解题方法,以便学生在解题时可以信手拈来.(责任编辑黄桂坚)图5图6图11数学·解题研究。
中考数学-锐角三角函数(解析版)
知识点一:锐角三角函数 1.三角函数定义 在 Rt△ABC 中,若∠C=90°
sin A A的对边 a
斜边
c
A的邻边
b
cos A
斜边
c
A的对边
a
tan A A的邻边 b
A的邻边
b
cot A A的对边 a
2.同角三角函数的关系
(1)平方关系: sin2 Acos2 A1
(1)三边之间的关系为 a2 b2 c2 (勾股定理)
(2)锐角之间的关系为∠A+∠B=90°
(3)30°角所对直角边等于斜边的一半。
(4)直角三角形斜边上的中线等于斜边的一半。
(5)边角之间的关系为:(三角函数定义)
2.其他有关公式
(1)
S
1 2
ab sin C
=
1 2
bc sin
A
=
1 2
ac sin
B
(2)Rt△面积公式:
S
1 2
ab
1 2
ch
(3)直角三角形外接圆的半径
R c 2
,内切圆半径
r abc 2
结论:直角三角形斜边上的高 h ab c
3.实际问题中术语的含义
(1)仰角与俯角
在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角。
(2)坡度:如图,我们通常把坡面的铅直高度和水平宽度的比叫做坡度(或坡比),用字母 i 表示,即 i h . l
见问题,这也是以后中考命题的趋势。 5.解决实际问题的关键在于建立数学模型,要善于把实际问题的数量关系转化为解直角三角形的问题.在 解直角三角形的过程中,常会遇到近似计算,应根据题目要求的精确度定答案.
锐角三角函数(公式、定理、结论图表) --中考数学知识必备
锐角三角函数(公式、定理、结论图表)--中考数学知识必备考点一、锐角三角函数的概念如图所示,在Rt△ABC 中,∠C=90°,∠A 所对的边BC 记为a,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB记为c,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA,即cos A bA c∠==的邻边斜边;BCa c锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为..【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于()A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为()米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为16m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB =tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC 中,∠C=90°,(1)三边之间的关系:222a b c +=;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c ==,1tan tan a A b B==.(4)如图,若直角三角形ABC 中,CD⊥AB 于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a 2=pc;由△CAD∽△BAC,得b 2=qc;由△ACD∽△CBD,得h 2=pq;由△ACD∽△ABC 或由△ABC 面积,得ab=ch.(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD=AD=BD=12AB;②点D 是Rt△ABC 的外心,外接圆半径R=12AB.(6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c ab r a b c +-==++.直角三角形的面积:①如图所示,111sin 222ABC S ab ch ac B === △.(h 为斜边上的高)②如图所示,1()2ABCS r a b c=++△.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为()A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。
2023 数学浙教版新中考 考点29锐角三角函数(解析版)
考点29锐角三角函数考点总结1.锐角三角函数的意义:如图,在Rt △ABC 中,设∠C =90°,∠α为Rt △ABC 的一个锐角,则: ∠α的正弦sin α=∠α的对边斜边;∠α的余弦cos α=∠α的邻边斜边;∠α的正切tan α=∠α的对边∠α的邻边2.同角三角函数之间的关系: sin 2A +cos 2A = 1 ,tan A =s inA cos A .3.互余两角三角函数之间的关系:(1)sin α=cos (90°-α),cos α=sin (90°-α). (2)tan α·tan (90°-α)=1.(3)锐角的正弦值或正切值随着角度的增大而增大,锐角的余弦值随着角度的增大而减小.(4)对于锐角A 有0<sin A <1,0<cos A <1,tan A >0. 4.特殊的三角函数值:5.如图,直角三角形的三条边与三个角这六个元素中,有如下的关系:(1)三边的关系(勾股定理):a 2+b 2=c 2. (2)两锐角间的关系:∠A +∠B =90°. (3)边与角的关系:sin A =cos B =a c, cos A =sin B =b c ,tan A =a b ,tan B =b a.6.直角三角形的边角关系在现实生活中有着广泛的应用,它经常涉及测量、工程、航海、航空等,其中包括了一些概念,一定要根据题意理解其中的含义才能正确解题. (1)仰角:向上看时,视线与水平线的夹角,如图.(2)俯角:向下看时,视线与水平线的夹角, (3)坡角:坡面与水平面的夹角.(4)坡度:坡面的铅直高度与水平宽度的比叫做坡度(或坡比),一般情况下,我们用h 表示坡的铅直高度,用l 表示坡的水平宽度,用i 表示坡度,即i =hl=tan α,显然,坡度越大,坡角就越大,坡面也就越陡,如图.(5)方向角:指北或指南的方向线与目标方向线所成的小于90°的锐角叫做方向角,如图324.真题演练一、单选题1.(2021·浙江台州·中考真题)如图,将长、宽分别为12cm ,3cm 的长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P .若∠α=60°,则折叠后的图案(阴影部分)面积为( )A .(36-cm 2B .(36-cm 2C .24 cm 2D .36 cm 2【答案】A 【分析】过点C 作CF MN ⊥,过点B 作BE MN ⊥,根据折叠的性质求出60PAC α∠=∠=︒,30EAB PAB ∠=∠=︒,分别解直角三角形求出AB 和AC 的长度,即可求解.【详解】解:如图,过点C 作CF MN ⊥,过点B 作BE MN ⊥,∵长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P , ∵60PAC α∠=∠=︒, ∵30EAB PAB ∠=∠=︒,∵90BAC ∠=︒,6cm sin BE AB EAB ==∠,sin CFAC α==,∵12ABCSAB AC =⋅=∵(212336cm ABCS S S=-=⨯-=-阴矩形,故选:A .2.(2021·浙江金华·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 【答案】A 【分析】根据等腰三角形的性质得到12BD DC BC ==,根据余弦的定义即可,得到答案. 【详解】过点A 作AD BC ⊥,如图所示:∵AB AC =,AD BC ⊥, ∵BD DC =, ∵DCco ACα=, ∵cos 2cos DC AC αα=⋅=, ∵24cos BC DC α==, 故选:A .3.(2021·浙江温州·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+ B .2sin 1α+ C .211cos α+ D .2cos 1α+【答案】A 【分析】根据勾股定理和三角函数求解. 【详解】∵在Rt OAB 中,AOB α∠=,1AB = ∵1=sin sin AB OB αα= 在Rt OBC 中,1BC =,2222221111sin sin OC OB BC αα⎛⎫=+=+=+ ⎪⎝⎭故选:A .4.(2021·浙江·中考真题)如图,已知在矩形ABCD 中,1,AB BC ==P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段1CC 扫过的区域的面积是( )A .πB .π+C D .2π【答案】B 【分析】先判断出点Q 在以BC 为直径的圆弧上运动,再判断出点C 1在以B 为圆心,BC 为直径的圆弧上运动,找到当点P 与点A 重合时,点P 与点D 重合时,点C 1运动的位置,利用扇形的面积公式及三角形的面积公式求解即可. 【详解】解:设BP 与CC 1相交于Q ,则∵BQC =90°,∵当点P 在线段AD 运动时,点Q 在以BC 为直径的圆弧上运动, 延长CB 到E ,使BE =BC ,连接EC , ∵C 、C 1关于PB 对称, ∵∵EC 1C =∵BQC =90°,∵点C 1在以B 为圆心,BC 为直径的圆弧上运动, 当点P 与点A 重合时,点C 1与点E 重合, 当点P 与点D 重合时,点C 1与点F 重合,此时,tanPC AB PBC BC BC ∠=== ∵∵PBC =30°,∵∵FBP =∵PBC =30°,CQ =12BC =BQ 32=,∵∵FBE =180°-30°-30°=120°,11322BCFS CC BQ =⨯==线段1CC 扫过的区域的面积是2120360BCFSππ⨯+=故选:B .5.(2021·浙江丽水·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin CODSm α=⋅【答案】B 【分析】根据垂径定理、锐角三角函数的定义进行判断即可解答. 【详解】解:∵AB 是O 的直径,弦CD OA ⊥于点E , ∵12DE CD =在Rt EDO ∆中,OD m =,AOD α∠=∠ ∵tan =DEOEα ∵=tan 2tan DE CDOE αα=,故选项A 错误,不符合题意; 又sin DEODα=∵sin DE OD α=∵22sin CD DE m α==,故选项B 正确,符合题意; 又cos OEODα=∵cos cos OE OD m αα== ∵AO DO m ==∵cos AE AO OE m m α=-=-,故选项C 错误,不符合题意; ∵2sin CD m α=,cos OE m α=∵2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .6.(2021·浙江宁波·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C 【分析】根据条件可知∵ABD 为等腰直角三角形,则BD =AD ,∵ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC。
中考数学第四单元三角形第22课时锐角三角函数2
.
[答案] (1) 2 (2)- 2 (3)2 (4) 3-1
4
2019/8/9
遇上你是缘分,祝你学业有成,金
6
榜题名。万事如意!开心每一天!
课前双基巩固
4.[九下 P85 复习题 28 第 11 题改编] 如图 22-1,折叠矩形 ABCD 的一边 AD,使点 D 落在 BC 边的 点 F 处.已知折痕 AE=5 5 cm,且 tan∠EFC=3.则
遇上你是缘分,祝你学业有成,金
12
榜题名。万事如意!开心每一天!
课堂考点探究
4.[2018·德州] 如图 22-4,在 4×4 的正方形方格图形中,小正方
形的顶点称为格点,△ ABC 的顶点都在格点上,则∠BAC 的正
弦值是
.
[答案]
5 5
[解析] 因为 AC=2 5,BC= 5,AB=5,
所以 AC2+BC2=AB2,所以∠ACB=90°, 所以 sin∠BAC=������������= 5.
B.
3 2
C.1 D. 3
6.在△ ABC 中,AB=2,AC=3,∠B=45°,则 sinC 的值是
.
[答案] 5.B
6.
2 3
2019/8/9
遇上你是缘分,祝你学业有成,金
9
榜题名。万事如意!开心每一天!
课堂考点探究
探究一 求锐角三角函数值
【命题角度】 (1)已知直角三角形的边长,直接求锐角三角函数值; (2)在网格中求锐角三角函数值. 例 1 [2019·原创] 如图 22-2,在 Rt△ ABC 中,∠BAC=90°,
∴BD=6 3.在 Rt△ ACD 中,tanA=3,CD=6,
4
锐角三角函数(第2课时)教案 2022—2023学年人教版数学九年级下册
28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF=成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE,因此AC DF=.AB DE教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF =, 即BC EF AC DF=. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A 的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A 的正切值可以等于1;当a=b 时;可以大于1,当a >b 时.出示课件15,学生独立思考后口答,教师订正.知识点三 锐角三角函数的定义出示课件16:锐角A 的正弦、余弦、和正切统称∠A 的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例 如图,△ABC 中,∠C=90°,AB=10,BC=6,求sinA ,cosA ,tanA 的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得2222=106AC AB BC --, 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==. 又22221068AC AB BC =-=-=, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。
初三精英班第2讲勾股定理与三角函数
CF=DF+CD=41 3-10+40=41 3+3(0 米) EF=CF tan =41 3 30 41 1.7 99.7 100(米) 答:点E离地面的高度EF是100米
中考专练
1.(2014 年山东泰安)如图,∠ACB=90°,D 为 AB 的中点,连接 DC 并
延长到 E,使 CE= 1 CD,过点 B 作 BF∥DE,与 AE 的延长线交于点 F.若
3
AB=6,则 BF 的长为( )
A.6 B.7 C.8
D.10
解: ACB 90 ,D为AB的中点,AB 6
CD 1 AB 3.又CE 1 CD
2
3
CE 1
ED CE CD 4 又 BF DE,点D是AB的中点
2X
x
2X
x
3.(2015•牡丹江)在△ABC 中,AB=12 2 ,AC=13,cos∠B= 2 , 2
则 BC 边长为(
)
A.7 B.8
C.8 或 17
D.7 或 17
4. 如图,Rt△ABC 中,∠ACB=90º,AC=3,BC=4,将边 AC 沿 CE 翻折,使点 A 落在 AB 上的点 D 处;再将边 BC 沿 CF 翻折, 使点 B 落在 CD 的延长线上的点 B′处,两条折痕与斜边 AB 分 别交于点 E、F,则线段 B′F 的长为( )
锐角 A 的邻边与 斜边 的比叫做∠A 的余弦; 锐角 A 的对边与 邻边 的比叫做∠A 的正切。
即:
sinA
(斜对),cosA
=(斜邻),tanA
对
=( 邻)
2.特殊角的三角函数值
锐角 α
中考专项复习锐角三角函数
与几何图形有关的锐角三角函数问题
总结词
理解几何图形中的角度关系与边长关 系,掌握三角函数的定义及使用。
详细描述
在几何图形中,锐角三角函数通常被 用于求解角度、边长等问题。例如, 在直角三角形中,可以用正弦、余弦 、正切等函数来描述各边与斜边的关 系。
与实际生活有关的锐角三角函数问题
总结词
将实际问题转化为数学问题,通过锐 角三角函数求解。
余弦函数的图像与性质
图像描述
余弦函数图像也是周期性的,但其波形与正弦函数相反,波 峰和波谷随着x的增大而交替出现,且函数值先正后负,周期 为2π。
性质总结
余弦函数具有对称性和周期性,其对称轴为y轴,对称中心为 (kπ+π/2,0),其中k为整数。此外,余弦函数在区间[0,π/2] 上为增函数,在区间[π/2,π]上为减函数。
中考专项复习锐角三角函
数
汇报人:
2023-12-11
• 锐角三角函数概述 • 锐角三角函数的图像与性质 • 锐角三角函数的应用题解析 • 锐角三角函数的实际应用 • 中考中锐角三角函数的常见考点与题
型 • 中考真题解析与备考策略01锐角三角函数概述
锐角三角函数的定义
正弦函数(sine function): 锐角α的正弦值与直角三角形 斜边长度的比值,记作sin α。
总结
中考中锐角三角函数一般以填空题和选择题 的形式出现,主要考察的是锐角三角函数的 定义以及运用。题目会设定一个或者几个锐 角,然后利用锐角三角函数的定义,求出这 个锐角的三角函数值。
例子
例如,如果一个锐角A的对边长度为4,邻 边长度为3,那么我们可以使用锐角三角函 数的定义来求出这个锐角的正弦值和余弦值 。根据定义,正弦值=对边长度/斜边长度
锐角三角函数锐角三角函数
03
证明方法
利用正弦定理和余弦定理,将边的关 系转化为角的关系,再利用三角函数 的性质推导得出。
05
锐角三角函数的作图及演 示
利用计算器或计算机软件绘制锐角三角函数图像
总结词
通过使用计算器或计算机软件,我们可以 轻松地绘制出锐角三角函数的图像。
详细描述
首先,我们需要输入锐角的角度值,然后 在计算器或计算机软件中选择对应的三角 函数(正弦、余弦或正切)。这样,我们 就可以得到一个关于角度的函数值。将这 些值在坐标系中表示,就可以形成锐角三 角函数的图像。
证明方法
通过正弦定理将角的关系转化为 边的关系,再利用勾股定理推导 得出。
正切定理的公式及证明
01
02
总结词
详细描述
正切定理是指在一个三角形中,任意 两边长度的比值等于这两边所夹角的 正切值与第三边所对应角的正切值的 比值。
正切定理的公式为 tan(A)/tan(B) = c/b。其中,A、B、C 分别代表与三 边相对应的角度,a、b、c 分别代表 三角形的三边长。
求边长
已知直角三角形的一个锐角和对应的边长,可以应用锐角三 角函数来求解另一条边长。例如,在直角三角形ABC中,已 知角A为30度,对应边a为10单位长度,那么对应边b的长度 可以通过应用三角函数求解。
在实际问题中求解角度或边长
地球定位
在地球上定位一个点,需要知道该点与北极的夹角和该点到北极的距离。这些信息可以通过应用锐角 三角函数来求解。
余弦定理
对于任意三角形ABC,有cosA = (b² + c² - a²) / (2bc),其中a、b、c分别是三角形的三边长度。这表明一个 角的余弦值等于由该角两边长度和它们夹角所确定的三角形的另一边的平方与两邻边平方和的差与两邻边的积 之比。
九年级人教版数学第二学期第28章锐角三角函数整章知识详解
九年级数学第28章锐角三角函数
【例】求下列各式的值.
(1) cos260°+sin260°
(2) csoins4455
-tan45
【解析】(1)cos²60°+sin²60°
cos²60°表示 (cos60°)², 即cos60°的平方.
=( 12)²+(
3 2
)²
=1;
(2)cos 45 tan 45
九年级数学第28章锐角三角函数
2.(黄冈中考)在△ABC中,∠C=90°,sinA=
则tanB=( B )
A. 4
B. 3
C. 3
D. 4
3
4
5
5
3.(丹东中考)如图,小颖利用有一
个锐角是30°的三角板测量一棵树的高度, 30 已知她与树之间的水平距离BE为5m,AB为 °A
B 1.5m(即小颖的眼睛距地面的距离),那
九年级数学第28章锐角三角函数
【例】如图,在Rt△ABC中,∠C=90°,BC=6,sinA= 3 ,
求cosA,tanB的值.
5
B
【解析】 sinA BC ,
AB
6
AB BC 6 5 10,
sinA 3
又 AC AB2 BC2 102 62 8,
A
C
cosA AC 4 , tanB AC 4 .
100
D.不能确定
3.如图 A
B
1
3
,则 sinA=___2___ .
30°
C
7
九年级数学第28章锐角三角函数
1.(温州中考)如图,在△ABC中,∠C=90°, AB=13,
勾股定理与锐角三角函数
勾股定理在几何图形中的应用
在平面几何中,勾股 定理常用于解决与直 角三角形相关的问题。
勾股定理与锐角三角 函数
在立体几何中,勾股 定理可以用于判断空 间几何体的形状和大 小。
THANKS
感谢观看
利用勾股定理求三角形面积
对于直角三角形,可以利用勾股定理 求出斜边长度,进而计算面积。
对于非直角三角形,可以通过作高线 将其转化为多个直角三角形,再利用 勾股定理求出高线长度,进而计算面 积。
三角形面积与三角函数的关系
三角函数是描述三角形角度和边长之间关系的函数,而面积是描述三角形大小的 量。
三角函数和三角形面积之间存在一定的关系,例如在直角三角形中,正弦、余弦 和正切函数都可以用于计算面积。
04
勾股定理与三角形的面积
三角形面积的计算方法
1 2
底乘高的一半
这是计算三角形面积最常用的方法,适用于任何 三角形。
海伦公式
对于已知三边长度的三角形,可以使用海伦公式 计算面积。
3
正弦定理
对于直角三角形,面积可以用正弦定理计算,即 面积=1/2ab*sinC,其中a和b是直角三角形的两 条直角边,C是直角。
。
在解决实际问题时,勾股定理 可以用来计算直角三角形的边
长、角度等量。
在三角函数中,勾股定理可以 用来计算锐角三角函数的值, 进而解决与锐角三角形相关的
问题。
在代数中,勾股定理可以用来 解方程和证明一些数学性质。
02
锐角三角函数
正弦函数
定义
应用
正弦函数是直角三角形中锐角的对边 与斜边的比值,记作sinθ,其中θ为 锐角。
在几何学中,正弦函数常用于计算直角 三角形中的角度和边长;在物理学中, 正弦函数用于描述振动、波动等现象。
中考数学专卷2020届中考数学总复习(29)锐角三角函数-精练精析(2)及答案解析
图形的变化——锐角三角函数2一.选择题(共8小题)1.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km2.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.40海里B.40海里C.80海里D.40海里3.如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.4.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的()A.B.C.D.5.在△ABC中,若AC:BC:AB=5:12:13,则sinA=()A.B.C.D.6.如图,在△ABC中,∠ACB=90°,CD为边AB上的高,若AB=1,则线段BD的长是()A.sin2A B.cos2A C.tan2A D.cot2A7.如图,Rt△ABC中,∠ACB=90°,CD是AB上中线,若CD=5,AC=8,则sinA为()A. B. C. D.8.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2二.填空题(共6小题)9.如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为_________ m(精确到1m).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)10.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为_________ 米(用含α的代数式表示).11.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB 的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为_________ m(结果保留根号)12.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于_________ 海里.13.如图,∠BAC位于6×6的方格纸中,则tan∠BAC=_________ .14.△ABC中,AB=AC=5,BC=8,那么sinB= _________ .三.解答题(共9小题)15.解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为_________ m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).16.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图2是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm).(参考数据:≈1.73,≈1.41)17.根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M距羲皇大道l(直线)的距离MN为30米(如图所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.(1)计算AB的长度.(2)通过计算判断此车是否超速.18.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)19.如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)20.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比).21.如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)22.如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1:4的斜坡向上走了1千米达到点C.问小明从A点到点C上升的高度CD是多少千米(结果保留根号)?23.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).图形的变化——锐角三角函数2参考答案与试题解析一.选择题(共8小题)1.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.2.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A.40海里B.40海里C.80海里D.40海里考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点P作垂直于AB的辅助线PC,利三角函数解三角形,即可得出答案.解答:解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.点评:此题主要考查了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.3.如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:先构建格点三角形ADC,则AD=2,CD=4,根据勾股定理可计算出AC,然后根据余弦的定义求解.解答:解:在格点三角形ADC中,AD=2,CD=4,∴AC===2,∴cosC===.故选B.点评:本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考查了勾股定理.4.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的()A.B.C.D.考点:锐角三角函数的定义.分析:利用两角互余关系得出∠B=∠ACD,进而利用锐角三角函数关系得出即可.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠B=∠ACD,∴sinB===,故不能表示sinB的是.故选:B.点评:此题主要考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题关键.5.在△ABC中,若AC:BC:AB=5:12:13,则sinA=()A.B.C.D.考点:锐角三角函数的定义;勾股定理的逆定理.分析:先根据三角形的三边长判断出三角形的形状,再根据锐角三角函数的定义求解即可.解答:解:∵△ABC中,AC:BC:AB=5:12:13,即52+122=132,∴△ABC是直角三角形,∠C=90°.sinA==.故选:A.点评:本题考查了直角三角形的判定定理及锐角三角函数的定义,属较简单题目.6.如图,在△ABC中,∠ACB=90°,CD为边AB上的高,若AB=1,则线段BD的长是()A.sin2A B.cos2A C.tan2A D.c ot2A考点:锐角三角函数的定义.分析:求出∠=∠BCD,解直角三角形求出BC、求出BD即可得出答案.解答:解:∵在Rt△ACB中,∠ACB=90°,AB=1,∴BC=AB•sinA=sinA,∵CD为边AB上的高,∴∠CDB=90°,∴∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,∴BD=BC•sin∠DCB=1×sinA×sinA=sin2A,故选A.点评:本题考查了锐角三角形函数的定义,三角形内角和定理的应用,关键是求出BC的长和BD的长.7.如图,Rt△ABC中,∠ACB=90°,CD是AB上中线,若CD=5,AC=8,则sinA为()A.B.C.D.考点:锐角三角函数的定义;直角三角形斜边上的中线.分析:根据斜边中线等于斜边一半得出AB,利用勾股定理求出BC,继而可计算sinA 的值.解答:解:∵CD是AB上中线,∴AB=2CD=10,BC==6,∴sinA==.故选C.点评:本题考查了锐角三角函数的定义,解答本题的关键是掌握直角三角形的斜边中线等于斜边一半.8.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2考点:互余两角三角函数的关系.分析:由cosA=,知道∠A=60°,得到∠B的度数即可求得答案.解答:解:∵,∠C=90°,cosA=,∴∠A=60°,得∠B=30°,所以tanB=tan30°=.故答案选:C.点评:本题考查了特殊角的锐角三角函数值,解题的关键是正确识记30°角的正切值.二.填空题(共6小题)9.如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为59 m(精确到1m).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:根据灯塔顶部B的仰角为35°,BC=41m,可得tan∠BAC=,代入数据即可求出观测点A到灯塔BC的距离AC的长度.解答:解:在Rt△ABC中,∵∠BAC=35°,BC=41m,∴tan∠BAC=,∴AC==≈59(m).故答案为:59.点评:本题考查了解直角三角形的应用,解答本题的关键是利用仰角构造直角三角形,利用三角函数求解.10.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.11.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB 的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为(5+5)m(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:作CE⊥AB于点E,则△BCE和△BCD都是直角三角形,即可求得CE,BE的长,然后在Rt△ACE中利用三角函数求得AE的长,进而求得AB的长,即为大树的高度.解答:解:作CE⊥AB于点E,在Rt△BCE中,BE=CD=5m,CE==5m,在Rt△ACE中,AE=CE•tan45°=5m,AB=BE+AE=(5+5)m.故答案为:(5+5).点评:本题考查解直角三角形的应用﹣仰角俯角问题的应用,要求学生能借助仰角构造直角三角形并解直角三角形.12.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于10海里.考点:解直角三角形的应用-方向角问题.分析:根据方向角的定义及余角的性质求出∠CAD=30°,∠CBD=60°,再由三角形外角的性质得到∠CAD=30°=∠ACB,根据等角对等边得出AB=BC=20,然后解Rt△BCD,求出CD即可.解答:解:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=20海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=12×sin60°=20×=10海里,故答案为:10.点评:本题考查了解直角三角形的应用,难度适中.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.13.如图,∠BAC位于6×6的方格纸中,则tan∠BAC= .考点:锐角三角函数的定义.分析:根据三角函数的定义解答.解答:解:观察图形可知,tan∠BAC==.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.14.△ABC中,AB=AC=5,BC=8,那么sinB= .考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.分析:过A作AD⊥BC于D,求出BD,根据勾股定理求出AD,解直角三角形求出即可.解答:解:过A作AD⊥BC于D,∵AB=AC=5,BC=8,∴∠ADB=90°,BD=BC=4,由勾股定理得:AD==3,∴sinB==,故答案为:.点评:本题考查了解直角三角形,勾股定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力.三.解答题(共9小题)15.解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为23.5 m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).考点:解直角三角形的应用.专题:应用题.分析:(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.解答:解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.点评:本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.16.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图2是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm).(参考数据:≈1.73,≈1.41)考点:解直角三角形的应用.专题:几何图形问题.分析:根据题意得出AP,BP的长,再利用三角形面积求法得出NP的长,进而得出容器中牛奶的高度.解答:解:过点P作PN⊥AB于点N,∵由题意可得:∠ABP=30°,AB=8cm,∴AP=4cm,BP=AB•cos30°=4cm,∴NP×AB=AP×BP,∴NP===2(cm),∴9﹣2≈5.5(cm),答:容器中牛奶的高度约为:5.5cm.点评:此题主要考查了解直角三角形以及三角形面积求法等知识,得出PN的长是解题关键.17.根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M距羲皇大道l(直线)的距离MN为30米(如图所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.(1)计算AB的长度.(2)通过计算判断此车是否超速.考点:解直角三角形的应用.专题:应用题.分析:(1)已知MN=30m,∠AMN=60°,∠BMN=45°求AB的长度,可以转化为解直角三角形;(2)求得从A到B的速度,然后与60千米/时≈16.66米/秒,比较即可确定答案.解答:解:(1)在Rt△AMN中,MN=30,∠AMN=60°,∴AN=MN•tan∠AMN=30.在Rt△BMN中,∵∠BMN=45°,∴BN=MN=30.∴AB=AN+BN=(30+30)米;(2)∵此车从A点行驶到B点所用时间为6秒,∴此车的速度为:(30+30)÷6=5+5≈13.66,∵60千米/时≈16.66米/秒,∴13.66<16.66∴不会超速.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形,难度不大.18.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)考点:解直角三角形的应用.专题:几何图形问题.分析:(1)作CH⊥A B于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH 中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.解答:解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.19.如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE 中,根据三角函数可得DE,再根据DB=DC﹣BE即可求解.解答:解:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.点评:考查了解直角三角形的应用﹣坡度坡角问题,两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点.20.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比).考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.解答:解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,在Rt△ABE中,=,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=CFcot∠D=20米,∴AD=AE+EF+FD=50+6+20≈90.6(米).故坝底AD的长度约为90.6米.点评:本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.21.如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:在直角三角形中利用20°角和AB的长求得线段AC的长后看是否在5.3﹣5.7范围内即可.解答:解:由题意得:Rt△ACB中,AB=6米,∠A=20°,∴AC=AB•cos∠A≈6×0.94=5.64,∴在5.3~5.7米范围内,故符合要求.点评:本题考查了解直角三角形的应用,解题的关键是弄清题意,并整理出直角三角形.22.如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1:4的斜坡向上走了1千米达到点C.问小明从A点到点C上升的高度CD是多少千米(结果保留根号)?考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:根据题意画出图形,进而利用锐角三角函数关系分别求出BF,CE的长,即可得出点C相对于起点A升高的高度.解答:解:如图所示:过点B作BF⊥AD于点F,过点C作CD⊥AD于点D,由题意得:AB=0.65千米,BC=1千米,∴sinα===,∴BF=0.65×=0.25(km),∵斜坡BC的坡度为:1:4,∴CE:BE=1:4,设CE=x,则BE=4x,由勾股定理得:x2+(4x)2=12解得:x=,∴CD=CE+DE=BF+CE=+,答:点C相对于起点A升高了(+)km.点评:此题主要考查了解直角三角形的应用,正确选择锐角三角函数得出BF,CE 的长是解题关键.23.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.专题:计算题;几何图形问题.分析:由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.解答:解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.点评:命题立意:此题主要考查解直角三角形的应用.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.。
锐角三角形函数重点难点突破
《锐角三角形函数》重点难点突破本章是在直角三角形的概念、性质、判定以及作图的基础上,继续深入研究几何图形,前后在直角三角形中两锐角互余,三边关系有勾股定理,那么边与角之间有什么样的关系呢?通过锐角三角形函数的学习,从而实现这部分知识与实际生活的紧密结合.锐角三角函数不仅是初中数学学习的重点内容,也是高中数学后继学习内容的基础.一、准确理解概念,掌握本章知识的重点1.明确锐角是在什么样三角形中,在哪个直角三角形中;正弦、余弦、正切的定义.2.三角函数值是比值,与三边大小无关.3.必须熟记所有特殊角的三角函数值,并做到准确运算(既能知角求值,又能知值求角).4.掌握三角函数基本关系式以及余角的三角函数关系式,例:22sin cos 1+=S αα;sin tan cos =S αααsin(90)cos ︒-=αα,cos(90)sin ︒-=αα5.锐角三角函数的增减性.6.解直角三角形的基本类型(已知一边一角,已知两边).7.弄清仰角、俯角、坡度、坡角、垂直距离、水平距离等常用的概念的意义.8.能把实际问题中的已知条件和未知元素归结到某个直角三角形中(这是两年中考命题常见的一类题型).二、本章重点是以上几个方面,也是学好本章知识的关键.那么难点是什么呢?本章难点是把几何图形和实际生活,生产中的计算问题添辅助线转化为解直角三角形问题.三、例1,如图ABC △中,⊥AD BC 于D ,74=BD DC ∶∶,2tan 3=B ,求:tan C . “遇此可设辅助未知数”,这是解数学问题的重要方法之一:分析:∵74=BD DC ∶∶,设7=BD x ,4=DC x在Rt ABC △中,2tan 3==AD B BD D CA设2=AD y ,3=BD y 由7=BD x ,3=BD y ,得37=y x ∴312477=⋅=y DC y ∴27tan 1267===AD y C DC y例2,如图在ABC △中,5=AC ,3=AB ,7=BC ,求:∠A .解:过C 作⊥CD AB 垂足为D ,设=AD x , 则有22227(3)5-+=-x x 22496925---=-x x x 52=x 512cos 52∠===AD DAC AC ∴60∠=︒DAC 则120∠=︒BAC C B A 73D A B C。
第11讲 勾股定理与锐角三角函数(题型训练)【有答案】-【2022年】中考数学大复习(知识点·易错点
第11讲 勾股定理与锐角三角函数题型一 勾股定理1.(2021·福建·福州十八中九年级期中)若二次函数y =ax 2+bx +c 的图像与x 轴有两个交点A 和B ,顶点为C ,且b 2﹣4ac =12,则∠ACB 的度数为( )A .30°B .45°C .60°D .90°【答案】C【解析】解:令y =0,则ax 2+bx +c =0,∴x =2b a -,∴AB =|. ∵b 2﹣4ac =12,∴C (﹣2b a ,﹣3a).∴AC .由抛物线的对称性可知BC =, ∴AC =BC =AB ,∴∠ACB =60°.故选:C .2.(2021·内蒙古呼和浩特·九年级期中)已知AB ,CD 是⊙O 的两条平行弦,AB =8,CD =6,⊙O 的半径为5,则弦AB 与CD 的距离为( )A .1B .7C .4或3D .7或1【答案】D【解析】①当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB =8,CD =6,∴AE =4,CF =3,∵OA =OC =5,∴由勾股定理得:EO =2254-=3,OF =2253-=4,∴EF =OF ﹣OE =1;②当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,EF =OF +OE =7,所以AB 与CD 之间的距离是1或7.故选:D .3.(2021·河南·洛阳市洛龙区教育局教学研究室九年级期中)如图,在矩形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,连接EF ,G 是EF 的中点,连接DG .在中,2BE =,,若将绕点B 逆时针旋转,则在旋转的过程中,线段DG 长的最大值是( )A 67B .217C .10D .12【答案】C【解析】解:如图,△ BEF 旋转到图中位置,连接BD 、BG ,∵在△BEF 中,∠EBF =90°,BE =2,∠BFE =30°,∴EF =2BE =4,BF 3,∵旋转前点E 是AB 的中点,点F 是BC 的中点,∴AB =CD =4,BC 3∴BD =8.∵在Rt △BEF 中,点G 是EF 的中点,∴BG =12EF =2.在△BEF 的旋转过程中,BG 的长不变,∵在△DBG 中,BG+BD >GD ,∴当D ,B ,G 三点共线且B 点在D 、G 之间时,DG 最大,此时,DG=BG+BD =2+8=10,∴DG 的最大值为10.故选C.4.(2021·浙江·杭州市杭州中学九年级期中)如图,点C ,D 在以AB 为直径的⊙O 上,且CD 平分∠ACB ,若CD =23,∠CBA =15°,则AB 的长是( )A .23B .4C .33D .43【答案】B【解析】解:过点O 作OE CD ⊥交于点E ,连接OC ,则123CE DE CD , ∵OC OB =,15CBA ∠=︒,∴,∵AB 是⊙O 的直径,∴,∵CD 平分ACB ∠,∴1452BCDACB ,∴,设OE =x ,则OC =2x ,在中,由勾股定理得, 222OC OE CE =+222(2)3x x =+ 2243x x =+233x =21x =解得11x =,21x =-(舍),∴OC =2,∴,故选B .5.(2021·浙江台州·九年级期中)如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,点P 在△ABC 内一点,连接P A ,PB ,PC ,若∠BAP =∠CBP ,且AP =6,则PC 的最小值是( )A .B .3C .3-3D . 【答案】D【解析】把△BPC 绕点B 逆时针旋转90°得到△ABP ’,连接PP ’则AP ’=PC ,BP =BP ’,∠PBP ’=90°,∠AP ’B =∠CPB故△PP ’B 是等腰直角三角形∴∠PP ’B =45°∵∠BAP =∠CBP∴∠BAP =∠ABP ’∴BP ’∥AP∴∠APB =90°当P ’、P 、C 在同一直线上,且AP ’⊥P ’C 时,AP ’最短∴∠AP ’B =90°+45°=135°∴∠P AP ’=180°-∠AP ’B =45°∴△APP ’是等腰直角三角形∴AP ’=6∴PC =AP故选D .6.(2021·陕西师大附中九年级期中)如图所示,在边长为12的正方形中ABCD 中,有一个小正方形EFGH ,其中点E 、F 、G 分别在线段AB 、BC 、FD 上,若3BF ,则小正方形的边长为( )A .6B .5C .154D .【答案】C【解析】解:在△BEF 与△CFD 中∵∠1+∠2=∠2+∠3=90°,∴∠1=∠3∵∠B =∠C =90°,∴△BEF ∽△CFD ,∵BF =3,BC =12,∴CF =BC −BF =12−3=9,又∵DF =222212915CD CF +=+=,∴BF EF CD DF =,即31215EF =, ∴154EF =, 故选:C .7.(2021·江西省临川第二中学九年级期中)如图,在Rt ABC △中,AB AC =,D ,E 是斜边BC 上两点,且,将绕点A 顺时针旋转90°后,得到AFB △,连接EF ,下列结论:①;②ACD ;③BE DC DE +=;④222BE DC DE +=.其中正确的是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:∵△ADC 绕A 顺时针旋转90°后得到△AFB ,∴△ABF ≌△ACD ,∴AF =AD ,∠CAD =∠BAF ,∵在直角三角形ABC 中,AB =AC ,∴∠BAC =90°,即∠CAD +∠BAD =90°,∴∠BAF +∠BAD =90°,即∠F AD =90°,∵∠DAE =45°,∴∠DAE =∠F AE =45°,在△AED 和△AEF 中, DA FA DAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△AEF (SAS ),故①正确,∵AE 与AD 不一定相等,∴AE AD 不一定与1AB AC=相等 ∴△ABE 与△ACD 不一定相似,②错误;∵△AED ≌△AEF ,∴DE =EF ,由旋转可知:△ADC ≌△AFB ,∴BF =CD ,∵BE +BF >EF=DE ,∴BE +DC >DE ,③错误;∵在Rt △ABC 中,AB =AC ,∴∠BAC =90°,∠ABC =∠C =45°,由旋转可知:∠ABF =∠C =45°,∴∠EBF =90°,∴BE 2+BF 2=EF 2,∴BE 2+DC 2=DE 2,④正确;故选B .8.(2021·浙江·杭州市十三中教育集团(总校)九年级期中)如图,⊙O 是以坐标原点O 为圆心,半径的圆,点P 的坐标为(2,2),弦AB 经过点P ,则图中阴影部分面积的最小值为( )A .8πB .323πC .8π﹣16D .323π-【答案】D【解析】解:由题意当OP ⊥A'B'时,阴影部分的面积最小,∵P (2,2),∴OP ,∵OA '=OB '=∴P A'=PB '= ,∴tan ∠A'OP =tan ∠B'OP , ∴∠A'OP =∠B'OP =60°,∴∠A'OB'=120°,∴S阴=S 扇形OA'B'-S △A'OB''=()212042132462236023ππ-=-, 故答案为:D .9.(2021·福建省福州第十九中学九年级期中)如图,在矩形ABCD 中,点E 、F 是对角线AC 上的两点,AB =EF =BC ,点G 是边AB 上的中点,连接GE 、DF .当GE +DF 取最小值时,线段CF 的长是( )A .1BC .43D .【答案】C【解析】解:取BC 的中点H ,连接GH 、HF 、HD ,∵在矩形ABCD 中, AB EF =BC ,∴BC =2,EF =BC =2,∴AC 4,∵点G 是边AB 上的中点,点H 是边BC 上的中点,∴GH =12AC =2,GH ∥AC ,∴GH = EF =2,GH ∥EF ,∴四边形EGHF 是平行四边形,∴EG =HF ,∴GE +DF = HF +DF ≥DH ,∴当H 、F 、D 共线时,GE +DF 有最小值,最小值为DH ,如图:在矩形ABCD 中,CH ∥AD ,CH =12BC =12AD ,∠DAC =∠HCF ,∴△CFH △AFD ,∴12CF CHAF AD ==,∵AC =4,∴CF =43, 故选:C .10.(2021·江苏·无锡市江南中学九年级期中)如图1,若△ABC 内一点P 满足∠P AC =∠PBA =∠PCB ,则点P 为△ABC 的布洛卡点,已知在等腰直角三角形DEF 中,如图2,∠EDF =90°,若点Q 为△DEF 的布洛卡点,DQ EQ +FQ =( )A .4B .C .D .【答案】D【解析】解:如图2,在等腰直角△DEF 中,∠EDF =90°,DE =DF , ∠1=∠2=∠3,∴∠1+∠QEF =∠3+∠DFQ =45°,∴∠QEF =∠DFQ ,且∠2=∠3,∴△DQF ∽△FQE , ∴DQ FQ DF FQ QE EF ===∵DQ∴2,FQ EQ ==∴EQ +FQ =2+,故选:D .11.(2021·广东·深圳市龙岗区百合外国语学校九年级期中)如图,在四边形ABCD 中,AE ⊥BC ,垂足为E ,∠BAE =∠ADC ,BE =CE =2,CD =5,AD =kAB (k 为常数),则BD 的长为____.(用含k 的式子表示)【解析】解:如图,连接AC ,∵AE ⊥BC ,BE =CE =2,∴BC =4,AE 垂直平分BC ,AB =AC ,将△ABD 绕点A 逆时针旋转至△ACG ,如图所示,连接DG ,则AD =AG ,BD =CG ,由旋转的性质可得:∠BAC =∠DAG ,∵AB=AC,AD=AG,∴△ABC∽△ADG,∴AD DG AB BC=,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ABC+∠ADC=90°,∵△ABC∽△ADG,∴∠ABC=∠ADG,∴∠ADG+∠ADC=90°,即:∠CDG=90°,∴,∴.12.(2021·四川·中江县凯江中学校九年级期中)在⊙O中,AB、CD是两条弦,AB=6,CD=8,且AB∥CD,⊙O的半径为5,则AB、CD之间的距离是____.【答案】1【解析】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=6,CD=8,∴CE=4,AF=3,∵OA=OC=5,∴由勾股定理得:EO3=,OF4,∴EF=OFOE=1;②当弦AB和CD在圆心异侧时,如图②,过点O 作OE ⊥CD 于点E ,反向延长OE 交AB 于点F ,连接OA ,OC ,EF =OF +OE =7,所以AB 与CD 之间的距离是1或7.故答案为:1或7.13.在等边△ABC 中,AB =6,BD =4,点E 为AC 边上一个动点,连接DE ,将△CDE 沿着DE 翻折得到△FDE ,则点F 到AB 距离的最小值是_____.【答案】2【解析】解:如图,过点D 作DT AB ⊥于T .ABC ∆是等边三角形,,6BC AB ==,90DTB ∠=︒,4BD =,2CD DF ∴==,sin 60DT BD =︒=观察图象可知,当点F 落在DT 上时,点F 到AB 距离的最小,最小值为2,故答案为:2.14.(2021·山东李沧·九年级期中)如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,AD DGH 是AF 的中点,那么CH 的长是 __________________.【解析】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,AD =DG =2AC ∴=,CG =, 143CF ∴=,∠ACD =∠GCF =45°, ∴∠ACF =90°,由勾股定理得,2222142582()33AF AC CF =+=+=, ∵H 是AF 的中点,11258582233CH AF ∴==⨯=. 故答案为:583. 15.(2021·浙江·温州市第四中学九年级期中)如图,在中,AD BC ⊥,BE AC ⊥交AD 于点F ,且BD AD =.(1)求证:.(2)若F 为AD 的中点,且1DC =.求AC 的长.【答案】(1)见解析;(2)5AC =【解析】(1)证:∵AD BC ⊥,BE AC ⊥,∴∠BDF =∠ADC =∠FEA =90°,∵∠AFB =∠CAD +∠FEA =∠FBD +∠BDF ,∴∠CAD =∠FBD ,在△BDF 和△ADC 中,∴;(2)∵,∴DF =DC ,∵F 为AD 的中点,1DC =,∴AD =2DF =2DC =2,∴在Rt △ADC 中,225AC AD DC =+=∴5AC =16.(2021·北京教育学院附属中学九年级期中)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且∠MAN =45°.把△ADN 绕点A 顺时针旋转90°得到△ABE .(1)求证:△AEM ≌△ANM .(2)若BM =3,DN =2,求正方形ABCD 的边长.【答案】(1)见解析(2)6【解析】(1)证明:由旋转的性质得,△ADN≌△ABE,∴∠DAN=∠BAE,AE=AN,∠D=∠ABE=90°,∴∠ABC+∠ABE=180°,∴点E,点B,点C三点共线,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x−3,CN=x−2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x−2)2+(x−3)2,解得,x=6或−1(舍弃),∴正方形ABCD的边长为6.17.(2021·天津河西·九年级期中)如图,已知BC为⊙O的直径,BC=5,AB=3,点A点B点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)求AC的长;(Ⅱ)求BD,CD的长..【答案】(Ⅰ)4;(Ⅱ)CD BD【解析】解:(Ⅰ)连接OD,∵BC为直径,∴.在Rt CAB △中, 2222534AC BC AB =-=-=.(Ⅱ)∵ AD 平分CAB ∠,∴ ∠CAD =∠BAD ,∴CD BD =.在中,5BC =,222CD BD BC +=,∴ 522BD CD ==. 18.(2021·河南·永城市实验中学九年级阶段练习)如图,在正方形ABCD 中,点,E F 分别在AB 和BC 上,4BE =.1AE BF ==,将绕点F 顺时针旋转,当点H 落在CD 边上时,得到GHF △.(1)求证:.(2)求,E H 两点之间的距离.【答案】(1)见解析;(2)34【解析】(1)将绕点F 顺时针旋转得到GHF △,,四边形ABCD 是正方形,1AE BF ==, 4CF BE ∴==,22(17)41CH ∴=-=,,在EBF △与FCH △中,,,;(2)如图,连接EH ,作EM CD ⊥交于点M ,,,225334EH ∴+19.(2021·四川江油·九年级期中)如图1,将两块全等的直角三角形纸片和叠放在一起,其中,6BC DE ==,8AC FE ==,顶点D 与边AB 的中点重合.(1)若DE 经过点C ,DF 交AC 于点G ,求重叠部分(DCG △)的面积:(2)合作交流:“希望”小组受问题(1)的启发,将绕点D 旋转,使DE AB ⊥交AC 于点H ,DF 交AC 于点G ,如图2,求DH 的长.【答案】(1)6;(2)154【解析】(1)∵,D 是AB 的中点,∴DC DB DA ==.∴∠B =∠DCB .又∵ABC FDE △≌△,∴FDE B ∠=∠.∴.∴DG BC ∥.∴,∴DG AC ⊥.又∵DC DA =,∴G 是AC 的中点. ∴118422CG AC ==⨯=,116322DG BC ==⨯=. ∴1143622DCG SCG DG =⨯⋅=⨯⨯=.(2)如图2所示:∵ABC FDE △≌△,∴1B ∠=∠.∵90C ∠=︒,ED AB ⊥,∵,,∴2B ∠=∠,∴12∠=∠,∴GH GD =,∵,1390∠+∠=︒,∴3A ∠=∠,∴AG GD =,∴AG GH =,∴点G 为AH 的中点;在Rt ABC △中,10AB ==,∵D 是AB 中点, ∴152AD AB ==, 连接BH .∵DH 垂直平分AB ,∴AH BH =.设AH x =,则BH x =,8CH x =-,由勾股定理得:()22286x x -+=, 解得254x =,∴154DH =. 20.(2021·北京师范大学第二附属中学西城实验学校九年级期中)如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E .(1)求证:∠CAE =∠CBD ;(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE . ①依题意补全图形;②用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.【答案】(1)见解析;(2)①见解析;②EF BE =,见解析【解析】(1)如图1,∵,AE BD ⊥,∴,又∵12∠=∠,∴CAE CBD ∠=∠;(2)①补全图形如图2;②EF BE =.理由如下:在AE 上截取AM ,使AM BE =.又∵AC CB =,CAE CBD ∠=∠,∴ACM BCE ∆∆≌,∴CM CE =,,又∵,∴,∴ME =,又∵射线AE 绕点A 顺时针旋转45︒,后得到AF ,且,∴.题型二 锐角三角函数1.(2021·上海市金山初级中学九年级期中)已知在△ABC 中,∠C =90°,∠B <∠A ,设sin B =n ,那么n 的取值范围是( )A .0<n <1B .102n <<C .0n <<D .0n < 【答案】C【解析】解:在△ABC 中,∠C =90°,∠B <∠A ,且,∴0°<∠B <45°,∴0sin B <<,即0n << 故选C .2.(2021·吉林·长春市净月实验中学九年级期中)如图,在△ABC 中,∠C =90°,AB =5,AC =4,下列三角函数表示正确的是( )A .sin A =45B .tan A =43C .cos A =45D .tan B =34【答案】C【解析】解:∵∠ACB =90°,AB =5,AC =4,∴BC3,∴sin A =35,故选项A 错误; tan A =34,故选项B 错误; cos A =45,故选项C 正确; tan B =43,故选项D 错误. 故选:C .3.(2021·安徽省马鞍山市第七中学九年级期中)如图,将AOB ∠放在正方形网格中,则cos AOB ∠的值为( )A .B C .2 D .12 【答案】A【解析】解:如图所示,在直角三角形OBE 中,OE =2,BE =4,∠OEB =90°, ∴OB∴,故选A .4.如图,已知Rt △ABC 中,∠ACB =90°,AC =3,AB =5,则cos A 的值为( )A .35B .43C .34D .45【答案】A 【解析】解:在Rt △ABC 中,∠ACB =90°,∴cos A =35AC AB =.5.(2021·四川·成都嘉祥外国语学校九年级期中)在Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为点D ,下列四个三角比正确的是( )A .sinA =AC AB B .cosA =AD AC C .tanA =CD BD D .cosA =CD AD【答案】B【解析】解:因为∠ACB =90°,CD ⊥AB ,所以sinA BC AB =,cosA =AD AC AC AB =,tanA =CD AD , 故选:B .6.(2021·陕西师大附中九年级期中)如图所示,在矩形ABCD 中,3AB =,4BC =,点C 沿对角线BD 折叠,点C 的对应点为E ,线段BE 交AD 于点F ,则tan EDF ∠的值为( )A .724B .C .725D .247【答案】A【解析】∵在矩形ABCD 中,3AB =,4BC =,∴AD =BC =4∵点C 沿对角线BD 折叠,得到△EDF∴DE =DC =AB又∠A =∠E =90°,∠AFB =∠EFD∴△ABF ≌△DEF ,∴BF =DF ,AF =EF设EF =x =AF ,则DF =4-x在Rt △DEF 中,DF 2=EF 2+DE 2即(4-x )2=x 2+32解得x =78∴EF =78, ∴tan EDF ∠=778324EF DE ==7.已知a =3,且2(4tan 45)0b -°,则以a 、b 、c 为边长的三角形面积等于( ) A .6B .7C .8D .9【答案】A 【解析】解:∵2(4tan 45)0b -=°, ∴4tan 450,130,2b b c ︒-=⎧⎪⎨+-=⎪⎩ 解得 4,5.b c =⎧⎨=⎩所以a =3,b =4,c =5,即222+=a b c ,∴∠C =90°, 所以162S ab ==. 8.(2021·山东新泰·九年级期中)已知α是锐角,sin cos30α=︒,则α的值为( )A .30°B .60°C .45°D .无法确定 【答案】B【解析】解:α是锐角,sin cos30α=︒,.故选:B .9.(2021·浙江鄞州·九年级期末)角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误..的是( )A.0sin α<<B .0tan 1β<<C .cos sin βα<D .sin cos βα<【答案】C【解析】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小, tan β随β的增大而增大, A.∵sin 45︒∴0<sin α<,选项A 正确,不合题意; B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C.sin 45︒,cos 45︒,cos βα><,cos sin βα>,选项C 不正确,符合题意; D.sin 45︒,cos 45︒,cos αβ><sin cos βα<,选项D 正确,不符合题意. 故选择:C .10.(2021·四川乐山·中考真题)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足,则m n +的值为( )A .3B .3或32C .3+3D .3【答案】A 【解析】根据题意,得3,33A ⎛⎫ ⎪⎝⎭,33,3B ⎛⎫ ⎪⎝⎭,即()1,3A ,()3,1B ∵直线2l 过原点O 和点C∴直线2l :y x =∵(,)P m n 在直线2l 上∴m n =∴PC = 连接PA ,PB ,FB∴PA PB =,线段AB 的中点为点C∴()2,2C ,OC AB ⊥过点C 作x 轴的垂线,垂足为点D∴()2,0D∴AD ==AB =BD = ∴222AD AB BD =+∴∴点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F 为圆心∴cos BD ADB AD ∠== ∵AC BC =,12FB FA AD ==∴12BFC AFB ∠=∠ ∵,且12APB AFB ∠=∠ ∴∴cos cos FC APB BFC FB ∠=∠===∴FC ∴或 当时,APB ∠和ADB ∠位于直线AB 两侧,即∴不符合题意∴PC PF FC =+=2m < ∴)2PC m ==-,∴)2m -=∴32m =∴23m n m +==故选:A .11.(2021·山东·潍坊市寒亭区教学研究室九年级期中)在Rt ABC 中,90C ∠=︒,1sin 3A =,2BC =,则AC =______.【答案】【解析】解:在Rt △ABC 中,∠C =90°,∵1sin 3BC A AB==, 又∵BC =2,∴AB =6,∴,故答案为:12.(2021·上海市松江九峰实验学校九年级期中)如图,折线AB ﹣BC 中,AB =3,BC =5,将折线AB ﹣BC 绕点A 按逆时针方向旋转,得到折线AD ﹣DE ,点B 的对应点落在线段BC 上的点D 处,点C 的对应点落在点E 处,连接CE ,若CE ⊥BC ,则tan ∠EDC =_________________.【答案】247【解析】解:如图,连接AC ,AE ,过点A 作AF ⊥BC 于F ,作AH ⊥EC 于H ,∵CE ⊥BC ,AF ⊥BC ,AH ⊥EC ,∴四边形AFCH 是矩形,∴AF =CH ,∵将折线AB ﹣BC 绕点A 按逆时针方向旋转,得到折线AD ﹣DE ,∴AD =AB =3,BC =DE =5,∠ABC =∠ADE ,∴△ABC ≌△ADE (SAS ),∴AC =AE ,∵AC =AE ,AB =AD ,AF ⊥BC ,AH ⊥EC ,∴BF =DF ,CH =EH ,∵AB 2=AF 2+BF 2,DE 2=DC 2+CE 2,∴9=AF 2+BF 2,25=(5﹣2BF )2+4AF 2,∴BF =95,AF =125, ∴EC =2CH =2AF =245,CD =5﹣2×95=75, ∴tan ∠EDC =EC CD =247, 故答案为:247.13.(2021·重庆南开中学九年级期中)计算:02tan 45)π+︒=___.【答案】3【解析】解:原式=2×1+1=2+1=3,故答案为:3.14.若三个锐角,,αβγ满足sin 48,cos 48,tan 48αβγ===,则,,αβγ由小到大的顺序为________________.【答案】βαγ<<【解析】解:根据锐角三角函数的性质可得:cos48°=sin42°,sin42°<sin48°<1,tan45°<tan48°,tan45°=1,∴cos48°<sin48°<1<tan48°,∴β<α<γ,故答案为β<α<γ.15.(2021·福建·泉州五中九年级期中)如果α是锐角,且22sin cos 481α+︒=,那么α= _________度【答案】48【解析】∵α是锐角,22sin cos 481α+︒=,又∵22sin cos 1αα+=,∴α=48°.故答案是48.16.(2021·陕西·西北工业大学附属中学九年级阶段练习)如图,在边长为4的正方形ABCD 内有一动点P ,且BP .连接CP ,将线段PC 绕点P 逆时针旋转90°得到线段PQ .连接CQ 、DQ ,则12DQ +CQ 的最小值为 ___.【答案】5【解析】解:如图,连接AC 、AQ ,∵四边形ABCD 是正方形,PC 绕点P 逆时针旋转90°得到线段PQ ,∴∠ACB =∠PCQ =45°,∴∠BCP =∠ACQ ,cos ∠ACB =BC AC cos ∠PCQ =PC QC = ∴∠ACB =∠PCO ,∴△BCP ∽△ACQ ,∴AQ BP =∵BP ,∴AQ =2,∴Q 在以A 为圆心,AQ 为半径的圆上,在AD 上取AE =1, ∵12AE AQ =,12AQ AD =,∠QAE =∠DAQ , ∴△QAE ∽△DAQ , ∴12EQ QD =即EQ =12QD , ∴12DQ +CQ =EQ +CQ ≥CE ,连接CE , ∴5CE =, ∴12DQ +CQ 的最小值为5.故答案为:5.17.(2021·河北·广平县第二中学九年级期中)(1)(1﹣sin45°)0﹣tan60°+.(2)cos30°﹣3tan60°﹣2sin45°•cos45°.【答案】(1)(2)1. 【解析】解:(1)(1﹣sin45°)0﹣tan60°+,,(2)cos30°﹣3tan60°﹣2sin45°•cos45°,3222-⨯,1-,=1.18.(2021·四川·(﹣2014)0﹣(12)−2+|2sin45°﹣2|.【答案】−2(﹣2014)0﹣(12)﹣2+|2sin45°﹣2|4+=−2.19.(2021·广东·佛山市华英学校九年级期中)计算:tan60cos30 2sin60tan45-︒-︒︒︒【答案】3 2【解析】解:tan60cos30 2sin60tan45--1-3=2.20.(2021·吉林·长春市净月实验中学九年级期中)图①、图②均是边长为1的小正方形组成的5×5网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.(要求:借助网格,只用无刻度的直尺,不要求写出画法)(1)在图①中的线段AB上画出点M,使AB=3AM.(2)在图②中作出△ABN,使点N在格点上,且tan∠BAN=12.【答案】(1)见解析;(2)见解析【解析】解:(1)如图,点M即为所求.(2)如图,点N即为所求.BN=AN=AB=∵222BN AN AB+=,∴△ABN是直角三角形,且∠ANB=90°,∴1tan2BNBANAN∠===.21.如图所示,△ABC 中,D 为AB 的中点,DC ⊥AC ,且∠BCD =30°,求∠CDA 的正弦值、余弦值和正切值.【答案】sin CDA ∠=cos 7CDA ∠=,tan CDA ∠= 【解析】解:过D 作DE ∥AC ,交BC 于点E .∵AD =BD ,∴CE =EB ,∴AC =2DE .又∵ DC ⊥ AC ,DE ∥AC ,∴DC ⊥DE ,即∠CDE =90°.又∵∠BCD =30°,∴EC =2DE ,DC .设DE =k ,则CD ,AC =2k .在Rt △ACD 中,.∴sinAC CDA AD ∠==cos CD CDA AD ∠===tanAC CDA CD ∠==22.(2021·上海市松江九峰实验学校九年级期中)如图1,已知在等腰△ABC 中,AB =AC =tan ∠ABC =3,BF ⊥AC ,垂足为F .点D 是边AB 上一点(不与A ,B 重合).(1)求边BC 的长;(2)如图2,联结DF ,DF 恰好经过△ABC 的重心,求线段AD 的长;(3)过点D 作DE ⊥BC ,垂足为E ,DE 交BF 于点Q .联结DF ,如果△DQF 和△ABC 相似,求线段BD 的长.【答案】(1)10;(2(3)BD BD 【解析】解(1)如图1,过点A 作AH ⊥BC 于H ,∴∠AHB =90°,∵AB =AC =∴BC =2BH ,在Rt △AHB 中,tan ∠ABC =AH BH=3, ∴AH =3BH , 根据勾股定理得,AH 2+BH 2=AB 2,∴(3BH )2+BH 2=(2,∴BH =5,∴BC =2BH =10;(2)∵BC =10,tan ∠ABC =3,∴CF BF =2,作BN ⊥BC ,CM ⊥BC ,∵G 为重心,∴AG =10,GH =5,∵AH ⊥BC ,CM ⊥BC∴CM AG ∥,∴∠ACM =∠CAG ,∠GMC =∠AGM∴△CMF ∽△AGF 则CM CF AG AF ==14, ∴CM =14AG =52, ∵AH ⊥BC ,CM ⊥BC ,BN ⊥BC∴CM AG BN ∥∥∴∴G 为MN 中点∴HG 为梯形CMNB 的中位线,∴BN =2GH ﹣CM =152, ∵NB AG ∥,∴∠DAG =∠NBD ,∠AGD =∠BND∴△ADG ∽△BDN ∴43AD AG BD BN ==,∴AD =47AB (3)∵BF ⊥AC ,DE ⊥BC ,∴∠BFC =∠DEB =90°,∴∠BQE =∠ACB (同角的余角相等)∵∠BQE =∠DQF ,∴∠DQF =∠ACB∵△DQF 和△ABC 相似,∴或DQ FQ BC AC=, ∵tan ∠BQE =tan ∠ACB =tan ∠ABC =3, ∴3BE QE =,3DE BE= 设QE =x ,BE =3x ,则DE =9x ,∴BQ BD =DQ =8x ,∵BF =3CF =∴QF =,(ⅰ解得x =1513,∴BD =(ⅱ)当DQ FQ BC AC =时,则,810x = 解得x 35=,∴BD ==,综上所述,BD BD 23.(2021·北京市第三中学九年级期中)如图,在△ABC 中,AC =BC ,∠ACB =90°,D 为AC 上一点(与点A ,C 不重合),连接BD ,过点A 作AE ⊥BD 的延长线于E .(1)①在图中作出△ABC 的外接圆⊙O ,并用文字描述圆心O 的位置;②连接OE ,求证:点E 在⊙O 上;(2)①延长线段BD 至点F ,使EF =AE ,连接CF ,根据题意补全图形;②用等式表示线段CF 与AB 的数量关系,并证明.【答案】(1)①见祥解,圆心O 在斜边AB 的中点;②见详解;(2)①见详解;②AB ,见详解.【解析】解:(1)①作AC 的垂直平分线GH 与AB 的交点O 为圆心O ,以点O 为圆心,以OA 为半径画圆,则⊙O 是△ABC 的外接圆,∵GH 为AC 的垂直平分线,OI ⊥AC ,AI =CI ,∠ACB =90°,连OC ,∴IO ∥CB , ∴1AI AO IC OB==, ∴AO =OB ,∴点O 为AB 中点,∴OC 为斜边中线,∴OC =OA =OB ,∴⊙O 是△ABC 的外接圆,圆心O 在斜边AB 的中点;②∵AE ⊥BD ,AO=BO ,∴OE 为斜边中线,∴OE =OA =OB ,∴点E 在⊙O 上;(2)①延长线段BD 至点F ,使EF =AE ,连接CF ,如图;②AB ,理由如下:∵AC =BC ,∠ACB =90°,∴∠BAC =∠ABC =()1180452ACB ︒-∠=︒, ∴∠CEB =∠CAB =45°,∴∠AEC =∠CEB +∠AEB =45°+90°=135°,∴∠FEC =180°-∠CEB =180°-45°=135°=∠AEC ,在△FEC 和△AEC 中,FE AE FEC AEC EC EC =⎧⎪∠=∠⎨⎪=⎩,∴△FEC ≌△AEC (SAS ),∴FC =AC∵AC =AB sin45°AB , ∴FC =ACAB ,∴AB .24.(2021·陕西·西安高新第一中学初中校区九年级期中)问题提出:西安市为迎接“十四运”计划实施扩大城市绿化面积.现有一块四边形空地(如图2,四边形ABCD )需要铺上草皮,但由于规划图纸被污损,仅能看清两条对角线AC ,BD 的长度分别为40cm ,30cm 及夹角∠BEC =60°,你能利用这些数据,帮助工作人员求出这块空地的面积吗?建立模型:我们先来解决较为简单的三角形的情况.(1)如图1,△ABC 中,D 为AB 上任意一点(不与A ,B 两点重合),连接CD ,CD =a ,AB =b ,∠ADC =α(α为CD 与AB 所夹的锐角),则△ABC 的面积为 .(用a ,b ,α表示)问题解决:请你解决工作人员的问题.(2)如图2,四边形ABCD 中,E 为对角线AC ,BD 的交点,已知AC =40cm ,BD =30cm ,∠BEC =60°,求四边形ABCD 的面积.(写出必要的解答过程)新建模型:(3)若四边形ABCD 中,E 为对角线AC ,BD 的交点,已知AC =a ,BD =b ,∠BEC =α(α为AC 与BD 所夹的锐角),直接写出四边形ABCD 的面积为 .(用a ,b ,α表示)模型应用:(4)如图3,四边形ABCD 中,AD +BC =AB ,∠BAD =∠ABC =60°.已知BD =a ,求四边形ABCD 的面积.(“新建模型”中的结论可直接利用)【答案】(1)12ab sinα;(2)2;(3)12ab sinα;(4)a 2.【解析】解:(1)过点C 作CM ⊥AB 于点M ,如图1所示:∴△CMD为直角三角形.又∵∠ADC=α,∴sinα=CMCD,∴CM=CD•sinα,∴S△ABC=12AB•CM=12AB•CD•sinα=12ab sinα,故答案为:12ab sinα;(2)过点D作DF⊥AC于F,过点B作BN⊥AC于N,如图2所示:∵∠BEC=60°,∴∠AED=60°,同(1)得:S△ACD=12AC•DE•sin60°=AC•DE,S△ABC=12AC•BE•sin60°=AC•BE,∴S四边形ABCD=S△ACD+S△ABC=AC•DE+AC•BE=AC(DE+BE)=AC•BD=×40×30=cm2);(3)如图2,过点D作DF⊥AC于F,过点B作BN⊥AC于N,∵∠BEC=α,∴∠AED=α,同(1)得:S△ACD=12AC•DE•sinα,S△ABC=12AC•BE•sinα,∴S四边形ABCD=S△ACD+S△ABD=12AC•DE•sinα+12AC•BE•sinα=12AC•(DE+BE)•sinα=12AC•BD•sinα=12ab sinα,故答案为:12ab sinα;(4)在AB上取BG=BC,连接DG、AC、CG,AC分别交DG、BD于H、P,如图3所示:∵AD+BC=AB,AG+BG=AB,∴AD=AG,∵∠BAD=∠ABC=60°,∴△ADG与△BCG均为等边三角形,∴DG=AG,CG=BG,∠AGD=∠BGC=60°,∴∠DGC=60°=∠BGC,∴∠AGC=∠DGB=120°,∴△AGC ≌△DGB (SAS ),∴AC =BD ,∠GAC =∠GDB ,∵∠DHC =∠AHG ,∴∠DPH =∠AGD =60°,∴S 四边形ABCD =12•a •a •sin60°=12•a •a •=a 2. 题型三 解直角三角形1.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =10m ,且tan ∠CEF =43,那么矩形ABCD 的面积为( )cm ;A .280B .300C .320D .360【答案】C【解析】解:在Rt △EFC 中,tan ∠CEF=CF CE =43, ∴设3CE k =,则4CF k =,根据勾股定理得到5EF k =,由折叠的性质知,∴8DC AB k ==,∵,,∴,∴,∴6BF k =,,在Rt AEF 中,由勾股定理可得:,∴2k =,∴,20BC =,∴矩形ABCD 的面积为;故选C .2.(2021·重庆八中九年级期中)如图,垂直于地面的通信基地AB 建在陡峭的山坡BC 上,该山坡的坡度i =1:2.4.小明为了测得通信基地AB 的高度,他首先在C 处测得山脚与通信基地AB 的水平距离CD =156米,然后沿着斜坡走了52米到达E 处,他在E 处测得通信基地顶端A 的仰角为60°,则通信基地AB 的高度约为( )≈1.414)A .136米B .142米C .148米D .87米【答案】B【解析】解:如图,作EH ⊥CD 于H ,EF ⊥AD 于F .在Rt △ECH 中,∵EH :CH =1:2.4,EC =52m ,设EH=x ,则CH =2.4x ,222EH CH EC +=,即()2222.452x x +=, 解得x=20(负值舍去),∴EH =DF =20m ,CH =48m ,∴EF =DH =CD ﹣CH =156﹣48=108m ,在Rt △AEF 中,∵∠AEF =60°,∴AF =EF •tan60°=∴AD =AF +DF =m ,在Rt △BCD 中,∵BD :CD =1:2.4,∴BD =65m ,∴AB =AD ﹣BD =207﹣65=142m ,故选:B .3.如图,在△ABC 中,∠A =120°,AB =4,AC =2,则sin B 的值是( )A B . C D 【答案】D【解析】解:如图所示,过点C 作CD ⊥AB 于D ,∵ ∠BAC =120°,∴ ∠CAD =60°,又∵ AC =2,∴ AD =1,CD∴ BD =BA +AD =5,在Rt △BCD 中,BC =∴ sin CD B BC ==.故选:D .4.(2021·天津河西·九年级期中)如图,在⊙O 中,点A ,B 在圆上,∠AOB =120°,弦AB 的长度为则半径OA 的长度为( )A .B .4C .D .【答案】B【解析】过点O 作OD ⊥AB ,垂足为D ,∵OA =OB ,∠AOB =120°,AB∴AD =BD =12AB ∠AOD =60°, ∵AD OA =sin ∠AOD = sin 60°=, ∴OA ==4,故选B .5.(2021·山东东昌府·九年级期中)如图所示,某拦水大坝的横断面为梯形ABCD ,AE ,DF 为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB =米,背水坡CD 的坡度i =则背水坡的坡长CD 为( )米.A .20B .C .10D .【答案】A【解析】解:∵迎水坡AB 的坡角α=45°,坡长AB 米,∴AE sin45°=10(米),∴DF =AE =10,∵背水坡CD 的坡度i =1∠DFC =90°,∴tan ∠C =DF FC = ∴∠C =30°,∴DC=2DF=2AE=20(米),故选A.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.1 B.1.2 C.3 D.5【答案】B【解析】解:如下图:以点F为国心,以2为半径作圆F,过点F作AB的垂线,垂足为Q,FQ交圆F于P0,故点P在以F为圆心,以2为半径的圆上,依据垂线段最短可知当FQ⊥AB时,点P到AB的距离最短,在Rt△AFQ和Rt△ABC中,∵sin∠A=FQAF,sin∠A=BCAB,∴FQAF=BCAB,∵AC=6,BC=8,CF=2,∴AB=10,∴8 410 FQ=,∴FQ=3.2,∵FP0=2,∴P0Q=3.2-2=1.2.故选:B.7.(2021·山东沂源·九年级期中)在Rt△ABC中,AB是斜边,AB=10,BC=6,tan A=_________.【答案】3 4【解析】如图,∵Rt△ABC中,AB是斜边,AB=10,BC=6,∴∠C=90°,AC,∴tanA =68BC AC ==34, 故答案为:34. 8.(2021·上海市金山初级中学九年级期中)在△ABC 中,AB =6,BC =8,∠B =60°,则△ABC 的面积是 ___.【答案】123【解析】解:如图,过点A 作AD BC ⊥于点D ,在Rt ABD △中,sin AD B AB =,即3sin 6062AD =︒=, 解得33AD =, 则的面积是1183312322BC AD ⋅=⨯⨯ 故答案为:39.(2021·浙江·宁波市镇海蛟川书院九年级期中)如图,在菱形ABCD 中,tan ∠DAB =43,AB =3,点P 为边AB 上一个动点,延长BA 到点Q ,使AQ =2AP ,且CQ 、DP 相交于点T .当点P 从点A 开始向右运动到点B 时,求点T 运动路径的长度为__________.385 【解析】解:连接AT 并延长交CD 于N ,如图:∵CD ∥BQ ,∴AP DN=AT NT =AQ CN , ∴ AP AQ =12=DN CN , ∴点N 是CD 上靠近D 的三等分点,∴点T 在线段AN 上运动,当P 从点A 开始向右运动到点B ,即P 与B 重合时,如图:点T 运动路径即为AT ,过D 作DH ⊥AB 于H ,过T 作TM ⊥AB 于M ,在Rt△ADH中,tan∠DAB=43,设DH=4k,则AH=3k,AD=5k,∵AD=AB=3,∴5k=3,∴k=35,∴DH=125,AH=95,∴BH=AB﹣AH=65,∵DTPT=CDPQ=APAP AQ+=13,∴PTPD=34,∵DH⊥AB,TM⊥AB,∴TM∥DH,∴PTPD=TMDH=BMBH,即34=125TM=65BM,∴TM=95,BM=910,∴AM=AB﹣BM=21 10,在Rt△ATM中,AT,.10.(2021·广东·广州六中九年级期中)如图,△ABCAB=AC,∠BAC=120°,P为⊙O中优弧BC上一点,连接P A,PB,PC,则P A+PB+PC的最大值___.【答案】6+【解析】延长PC至F,使CF=BP,连接AF,∵四边形ABPC是圆内接四边形,∴∠ACF=∠ABP,在△ACF和△ABP中,AC AB ACF ABP CF BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABP (SAS ),∴AF =AP ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,∴∠APC =30°,过点A 作AE ⊥PF 于E ,∵AF =AP ,∴△APF 是等腰三角形,则PF =2PE ,在Rt △AEP 中,cos ∠APC =PE AP, ∴PE =AP •cos ∠APC =AP •cos 30°= AP ,∴PF =2PE,∵PF =PC +CF =PC +BP,即PC +PB,∴P A +PB +PC =(AP而AP 为⊙O∴AP 最大=∴P A +PB +PC 的最大值为(×故答案为:.11.(2021·山东泰山·九年级期中)在学习解直角三角形以后,数学兴趣小组测量了学校旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3.8米,AB ⊥BC ,同一时刻,光线与水平面的夹角为60°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1).【答案】旗杆的高度约为8.8米【解析】解:如图,过C 作CM ∥AB 交AD 于点M ,过M 作MN ⊥AB 于点N .则四边形BCMN 是矩形,∴MN =BC =4米,BN =CM , 由题意得:CM PQ CD QR =, 即13.82CM =, 解得:CM =1.9(米),在Rt △AMN 中,∠ANM =90°,MN =BC =4米,∠AMN =60°,∴tan60°=AN MN =4AN∴AN =.∵BN =CM =1.9米,∴AB =AN +BN =(米),答:旗杆的高度约为8.8米.12.(2021·广东·佛山市华英学校九年级期中)全球最长跨海大桥——港珠澳大桥连接香港、澳门、珠海三地,总长55千米.大桥某段采用低塔斜拉桥桥型,图2是从图1引申出的平面图.假设你站在桥上测得拉索AB 与水平桥面的夹角是30,拉索CD 与水平桥面的夹角是60︒,两拉索顶端的距离BC 为2米,两拉索底端距离AD 为20米,请求出立柱BH 的长.(结果精确到0.1 1.732).【答案】立柱BH 的长约为16.3米【解析】解:设DH 的长为x 米,由题意得∠AHB =90°,∵∠CDH =60°,∠AHB =90°,∴米∴()2BH CH BC =+=米,∵∠A =30°,∴米,∵AH=AD+DH,∴320=+,x x∴10x=∴米,答:立柱BH的长约为16.3米.13.(2021·山东阳谷·九年级期中)如图,小杰在高层楼A点处,测得多层楼CD最高点D的俯角为30°,小杰从高层楼A处乘电梯往下到达B处,又测得多层楼CD最低点C的俯角为10°,高层楼与多层楼CD之间的距离为CE,已知AB=CE=30米,求多层楼CD的高度.(结果精确到1米),sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【答案】18米【解析】解:如图所示,延长CD至F点,使得AF⊥CD,则四边形AECF为矩形,AF=CE=30,AE=CF,由题意,∠F AD=30°,在Rt△ADF中,,∵在B处测得最低点C的俯角为10°,∴∠BCE=10°,在Rt△BCE中,,∵AE=CF,∴AB+BE=DF+CD,即:30+5.4CD=,∴米,∴CD的高度约为18米.14.(2021·浙江·宁波市镇海蛟川书院九年级期中)校内数学兴趣小组组织了一次测量探究活动.如图,大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=12米,AE=24米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2 1.41≈,3≈1.73,sin53°≈45,34cos53,tan 5353︒︒≈≈) (1)求点B 距水平地面AE 的高度;(2)求广告牌CD 的高度.【答案】(1)点B 距水平地面AE 的高度为6米;(2)广告牌CD 的高约8.4米【解析】解:(1)如图,过点B 作BM AE ⊥,BN CE ⊥,垂足分别为M N 、,由题意可知,45CBN ∠︒=,53DAE ∠︒=,13i =:,12AB =米,24AE =米,∵13BM i tan BAM AM∠=:==, ∴30BAM ∠︒=,∴162BM AB ==(米), 即点B 距水平地面AE 的高度为6米;(2)在中,∴162NE BM AB ===(米), 3632AM AB ==(米), ∴()6324ME AM AE ++==米,∵45CBN ∠︒=,∴()6324CN BN ME +===米,∴()6330CE CN NE ++==米,在中,53DAE ∠︒=,24AE =米, ∴4·5324323DE AE tan ︒≈⨯==(米), ∴CD CE DE -=33032-=32=8.4≈(米)答:广告牌CD的高约8.4米.15.(2021·山东任城·九年级期中)如图,在小山的东侧A庄,有一热气球,由于受西风的影响,以每分钟35m的速度沿着与水平方向成75°角的方向飞行,40min时到达C处,此时气球上的人发现气球与山顶P点及小山西侧的B庄在一条直线上,同时测得B庄的俯角为30°.又在A庄测得山顶P的仰角为45°,求A庄与B≈1.4≈2.45,结果精确到个位).【答案】A庄与B庄的距离是1960米,山高是735米.【解析】如图,过点A作AD BC⊥于D,△中,,在Rt ACDAC=35×40=1400(米),则(米).△中,∠B=30°,在Rt ABD∴(米).过点P作PE AB⊥,垂足为E,则AE=PE•tan45°=PE,BE=PE•tan60°,∴,∴)1PE=PE=≈.解得:700735综上可得:A庄与B庄的距离是1960米,山高是735米.16.(2021·山东任城·九年级期中)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°.若已知旗杆的高度AB=5米,求建筑物BC的高度.(参考数据:sin50°≈0.8,tan50°≈1.2)【答案】建筑物BC的高度为25米.【解析】设BC=x米,则AC=(x+5)米,在Rt△BDC中,∠BDC=45°,∴DC=BC=x米,在Rt△ADC中,tan∠ADC=ACDC,即5xx+=1.2,解得:x=25,答:建筑物BC的高度为25米.17.(2021·上海交通大学附属第二中学九年级期中)交大二附中地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点.点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,(1)求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到真线BC的距离).(2)为了增加安全性,在保持车辆经过时栏杆EF段距离地面的高度不变的前提下.在图2中把连接点向右移动.若移动后∠EAB减小16°,则改进后栏杆平行地面时,图1中E向右移动的距离是多少?(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin37°=0.60,cos 37°=0.80,tan 37°=0.75)【答案】(1)2.2米;(2)0.6米【解析】解:(1)如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB-∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°-∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度约为2.2米.(2)把连接点E向右移动到E',连接A E',过点E'作E K AG'⊥,垂足为K,∴∴四边形EHKE'是矩形,∴EE HK'=,米∵∠EAH= =53°,.∴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学勾股定理与锐角三角函数(二)一、知识要点1.勾股定理的内容和它的证明方法.直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222c b a =+.2.锐角三角函数的概念.已知∆Rt ABC ,a 、b 、c 分别为∠A ,∠B ,∠C 的对边,则∠A 的四个三角函数分别为: ∠A的正弦:c a A A =∠=斜边的对边sin ,∠A 的余弦:c bA A =∠=斜边的邻边cos ,∠A 的正切:b a A A A =∠∠=的邻边的对边tan ,∠A 的余切:abA A A =∠∠=的对边的邻边cot . 它们揭示了三角形中边与角之间的关系.3.同角三角函数之间的关系:(1)平方关系:1cos sin 22=+A A(2)商数关系:A A A cos sin tan =;AAA sin cos cot = (3)倒数关系:1cot tan =⋅A A ;A A cot 1tan =;AA tan 1cot =.4.互为余角的正、余弦;正、余切之间的关系:∠A 的余角为(90°—A )任意锐角的余弦值等于它的余角的正弦值;任意锐角的正弦值等于它的余角的余弦值,即A A cos )90sin(=-︒;A A sin )90cos(=-︒;任意锐角的余切值等于它的余角的正切值;任意锐角的正切值等于它的余角的余切值,即A A cot )90tan(=-︒;A A tan )90cot(=-︒.5.在0°到90°之间,四个三角函数值的变化情况:(1)正弦函数随角度的增大而增大,从0增大到1,故有1sin 0≤≤A ; (2)余弦函数随角度的增大而减小,从1减少到0,故1cos 0≤≤A ; (3)正切函数随角度的增大而增大,最小是0,最大的不存在; (4)余切函数随角度的增大而减小,最大的不存在,最小的是0; 6.特殊角0°、30°、45°、60°、90°的四个三角函数值. 这些函数值可以根据四个函数在0度到90度的增减性帮助记忆.二、能力要求1.能理解勾股定理的证明方法,熟练应用勾股定理进行计算和证明.在直角三角形中已知两边求第三边就要用到勾股定理,有时没有直角三角形,通过作高线构造直角三角形.常用的勾股数(3、4、5)、(6、8、10)、(5、12、13)、(9、12、15)、(8、15、17)等,我们应该熟记.勾股定理是用面积来证明的.例1.在△ABC 中,AB =BC=3,AC=6, 求这个三角形的面积. 分析:要求此三角形的面积,关键要求出一边上的高.因为AB =BC=3,故可以作出AC 边上的高BD ,利用勾股定理直接求BD 的长,进而可求出它的面积.或者也可以作出BC 上的高,引入未知数,利用勾股定理建立代数方程,来解决问题.这种方法适用于一般的三角形. 解(1)作BD ⊥AC 于D ,∵AB =BC=3,AC=6 ∴AD=21AC=621在∆Rt ABD 中,由勾股定理得到 222AD BD AB += ∴222AD AB BD -==22)621(3-=215∴BD=3021,∴523302162121=⨯⨯=⨯=∆BD AC S ABC解(2)作AD ⊥BC 于D ,设BD 的长为x ,AD 的长为y ,则CD 的长为(3-x ).在∆Rt ABD 和∆Rt ACD 中,由勾股定理得到 222AD BD AB +=,222AD CD AC += 即2223y x +=,222)3()6(y x +-=由⎪⎩⎪⎨⎧-=+-=+3692222y x x y x 解得x =2,y =5,523532121=⨯⨯=⨯=∆AD BC S ABC .2.会求三角函数值.求三角函数的值要根据不同的条件,选用不同的方法.比如已知两条线段的比,常用设k 的方法,把线段的长度表示出来,再利用勾股定理求出另一条线段,三条线段表示好,则两个锐角的四个三角函数值边不难求出了;又如已知一个角的三角函数值求其它三角函数的值,我们可以利用三角函数的关系式进行求解;另外我们还可以利用角度来求三角函数的值. 例2.在∆Rt ABC 中,∠C=90°,32tan =B ,求∠B 的其它三个三角函数值. 分析:已知正切或余切求正弦及余弦如果套用公式,比较烦琐.这里引入未知数x ,将三边分别用x 表示,根据定义可以准确求出任何一个角的三角函数.但要注意,这类题目如果分母有无理数,必须要将分母有理化.解(1)用定义求解.因为在直角三角形ABC 中,BCACB =tan ,故我们可以设AC=2x ,BC=3x , 根据勾股定理得到:222213x BC AC AB =+=,所以x AB 13=故13132132sin ===xx AB AC B ,13x3x2x A BC13133133cos ===xx AB BC B ,23cot ==AC BC B . 解(2).利用三角公式求解.因为32cos sin tan ==B B B ,所以设B sin =2x ,B cos =3x 又1cos sin 22=+B B ,所以得到1)3()2(22=+x x ,解得1312=x ,因为0>x ,故1313131==x , 从而B sin =131322=x ,B cos =131333=x ,23cot =B3.准确计算含有三角函数的代数式的值.求含有三角函数的代数式值的步骤:首先正确代入数值,其次进行整理,然后化简,再就是合并同类项或同类根式. 例3.求代数式145cos 30cot 30sin 60cos 145tan 4222-︒︒+︒+︒-︒. 求这个代数式的值时正确的代入数值是关键,计算时要仔细,另外不要忘记进行分母有理化.解:原式=1223)21()21(114222-++-⨯ =222222324122324144++⨯--=--+- =63241)22(341--=+-. 4.能灵活应用函数的增减性解决比较大小、化简等问题 例4.解不等式1)17cos 72(sin >︒-︒x .分析:我们先要确定未知数的系数的性质,才能去化系数为1.这就需要比较两个函数的大小问题.在比较两个函数的大小时,不同名的要利用同角的余角关系转化成同名函数来比较大小. 解:因为︒17cos =)1790sin(︒-︒=︒73sin ,又正弦函数值随着角度的增加而增大,所以︒<︒73sin 72sin0)73sin 72(sin <︒-︒,从而原不等式的解为︒-︒<17cos 72sin 1x .例5.化简代数式:︒︒-32cos 32sin 21. 分析:(1)如果被开方数是一个完全平方数,就能去掉代数式的根号,从而使代数式化简.就被开方数而言,它已经有两数积的2倍,缺少两个数的平方和,又对任意角A ,都有:1cos sin 22=+A A ,由此想到化"1"为两数和的平方.化"1"法在解决此类问题中常常用到,应该灵活掌握.除可以用1cos sin 22=+A A 化"1"外,1cot tan =⋅A A 也常常用到.(2)对公式||2a a =的应用要特别注意,只有当a 非负时才可以去掉绝对值符号.上式化简后应为|32cos 32sin |︒︒-,要想去掉绝对值符号,就要先比较两个数的大小,这可以利用同角的余角关系式,将︒32cos 转化为︒58sin ,即转化为同名的两个函数的大小比较.解:原式=︒+︒︒-︒32cos 32cos 32sin 232sin 22 =2)32cos 32(sin ︒-︒=|32cos 32sin |︒-︒∵︒=︒-︒=︒58sin )3290sin(32cos ,又因为︒<︒5832,∴︒<︒58sin 32sin 所以原式=|58sin 32sin |︒-︒=︒-︒32sin 58sin =︒-︒32sin 32cos .例6.若α为锐角,53sin =α,则∠α的范围是( ) A .︒<<︒300α B .︒<<︒4530α C .︒<<︒6045α D .︒<<︒9060α解:因为53sin =α=0.6,而5.030sin =︒,707.045sin =︒,866.060sin =︒由正弦函数的增减性可知︒<<︒4530α.选B .5.根据已知的三角函数值求角. 例6.已知α为锐角,且2cos sin =+αα,求锐角α的值.解:因为2cos sin =+αα, 两边分别平方得,2cos sin 2cos sin 22=++αααα又αα22cos sin +=1,所以有21cos sin =αα故αsin 与αcos 是一元二次方程02122=+-x x 的两个根则有2221==x x ,从而有22cos sin ==αα,因为∠α为锐角,所以∠α=45°.三、课后练习1.在△ABC 中,∠C =90°,BC =4,sinA=32,则AC = . 2.在△ABC 中,若2cos 231sin ⎪⎪⎭⎫ ⎝⎛-+-B A =0,则∠C 等于() A.30°B. 45°C.60°D.75°3.若54sin =α,α为锐角,则cos(90°-α)等于() A.54 B.43 C.53 D.51 4.已知三角形的三条边长分别为22,5和3,则最大内角的余弦值为 ,最小内角的正切值为 。
5.已知32tan =α,则锐角α的取值范围是( ) A .︒︒<<300α B .︒︒<<4530α C .︒︒<<6045α D .︒︒<<9060α6.|60sin 30tan |)2145(cos 2︒-︒--︒7.已知,如图,∠ABD=∠C=90°, AC=BC ,BD=6,AD=12,求BC 边的长.8.已知α为锐角,且21tan =α,求αααα22sin cos sin 2cos 3-+的值. 9.已知α为锐角,且有21cos sin =-αα,求ααcos sin +的值.四、练习解答1.52; 2.C ; 3.A ; 4.0、515 5. B ; 6.3322-; 7.解:设AC=BC=x ,在直角三角形ABC 和直角三角形ABD 中分别用勾股定理得⎪⎩⎪⎨⎧=+=+222222ADAB BD ABx x 从而解得BC=x =63. 8.解:因为21tan =α,又αααcos sin tan =,所以21cos sin =αα设x =αsin ,则x 2cos =α,注意1cos ,sin 0≤≤αα,又1cos sin 22=+αα把x =αsin ,x 2cos =α代入平方关系式,得到152=x所以原式=2222)2(3x x x x -⋅+=215x =3.9.解:由21cos sin =-αα,平方得41cos sin 2cos sin 22=-+αααα所以43cos sin 2=αα,所以47431cos sin 2cos sin )cos (sin 222=+=++=+αααααα因为α为锐角,故ααcos sin +>0,则ααcos sin +=27.。