福建省南平市2019届九年级数学下册适应性试题

合集下载

福建省南平市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

福建省南平市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

福建省南平市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )A.52B.154C.83D.1032.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.125°B.75°C.65°D.55°3.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线()A.x=1 B.x=49C.x=﹣1 D.x=﹣494.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()百合花玫瑰花小华6支5支小红8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元5.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°6.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)7.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.23﹣2 D.4﹣238.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°9.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B 两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米D.800tanα米10.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是25﹣2A .①②⑤B .①③④⑤C .①②④⑤D .①②③④11.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .12.如图所示,在平面直角坐标系中A (0,0),B (2,0),△AP 1B 是等腰直角三角形,且∠P 1=90°,把△AP 1B 绕点B 顺时针旋转180°,得到△BP 2C ;把△BP 2C 绕点C 顺时针旋转180°,得到△CP 3D ,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P 2018的坐标为( )A .(4030,1)B .(4029,﹣1)C .(4033,1)D .(4035,﹣1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:24xy x -=____14.分式方程34x x +=1的解为_________. 15.若关于x 的方程230x x m --=有两个相等的实数根,则m 的值是_________.16.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为______dm .17.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).18.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F 处,连接CF,则CF的长度为_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)20.(6分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN3)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?21.(6分)如图,Rt ABP V 的直角顶点P 在第四象限,顶点A 、B 分别落在反比例函数k y x =图象的两支上,且PB x ⊥轴于点C ,PA y ⊥轴于点D ,AB 分别与x 轴,y 轴相交于点F 和.E 已知点B 的坐标为()1,3.()1填空:k =______;()2证明://CD AB ;()3当四边形ABCD 的面积和PCD V 的面积相等时,求点P 的坐标.22.(8分)先化简,再求代数式(22222x y x x xy y x xy ---+-)÷2y x y-的值,其中x=sin60°,y=tan30°. 23.(8分)如图,已知⊙O,请用尺规做⊙O 的内接正四边形ABCD ,(保留作图痕迹,不写做法)24.(10分)下面是一位同学的一道作图题:已知线段a 、b 、c (如图),求作线段x ,使::a b c x =他的作法如下:(1)以点O 为端点画射线OM ,ON .(2)在OM 上依次截取OA a =,AB b =.(3)在ON 上截取OC c =.(4)联结AC ,过点B 作//BD AC ,交ON 于点D .所以:线段________就是所求的线段x .①试将结论补完整②这位同学作图的依据是________③如果4OA =,5AB =,AC π=u u u r u r ,试用向量πu r 表示向量DB uuu r .25.(10分)解方程:2(x-3)=3x(x-3).26.(12分)如图,为了测量山顶铁塔AE 的高,小明在27m 高的楼CD 底部D 测得塔顶A 的仰角为45°,在楼顶C 测得塔顶A 的仰角36°52′.已知山高BE 为56m ,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE .(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)27.(12分)如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为¶AB ,P 是半径OB 上一动点,Q 是¶AB 上的一动点,连接PQ .(1)当∠POQ = 时,PQ 有最大值,最大值为 ;(2)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求¶BQ的长; (3)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.【详解】过E作EG∥BC,交AC于G,则∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=56,∴EF=3k=52.故选A.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.2.D【解析】【分析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.D【解析】【分析】设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴.【详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a ). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab a a ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x=﹣49. 故选D .【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.4.A【解析】【分析】设每支百合花x 元,每支玫瑰花y 元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x 、y 的二元一次方程,整理后即可得出结论.【详解】设每支百合花x 元,每支玫瑰花y 元,根据题意得:8x+3y ﹣(6x+5y )=8,整理得:2x ﹣2y =8,∴2支百合花比2支玫瑰花多8元.考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.5.B【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF 的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.6.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.7.C先判断出PQ⊥CF,再求出AC=23,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=12∠AFC=30°,∠QFC=12∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,∴3AF=2,CF=2AF=4,∴S△ACF=12AF×AC=12×2×33过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=12AF×PM+12AC×PN+12CF×PG=12×2×PG+12×3PG+12×4×PG=(3)PG =(3PG3∴1,∴1-2.故选C.【点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.8.C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.9.D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=ACAB,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=AC AB,∴AB=800 tan tanACαα=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.10.B【解析】【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.11.A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.12.D【解析】【分析】根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.【详解】解:由题意可得,点P1(1,1),点P2(3,-1),点P3(5,1),∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,即P2018的坐标为(4035,-1),故选:D.【点睛】本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x(y+2)(y-2)【解析】【分析】原式提取x,再利用平方差公式分解即可.【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x (y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.x=1【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=6≠0,所以分式方程的解为x=1,故答案为:x=1.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.m=-34【解析】【分析】根据题意可以得到△=0,从而可以求得m 的值.【详解】∵关于x 的方程20x m -=有两个相等的实数根,∴△=2(41()0m -⨯⨯-=, 解得:34m =-. 故答案为34-.16.【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm ,圆柱高为2dm ,∴AB=2dm ,BC=BC′=2dm ,∴AC 2=22+22=8,∴dm.∴这圈金属丝的周长最小为dm.故答案为:dm【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.17.【解析】【分析】本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.【详解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B点,∴∠C=30°,∴A答:乙船的路程为海里.故答案为【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.18.18 5【解析】【分析】分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式1122AB BE AE BH⨯⨯=⨯⨯可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的, ∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE2=AB2+BE2代入数据求得AE=5根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯得BH=12 5即可得BF=24 5由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC2-BF2=CF2代入数据求得CF=18 5故答案为18 5【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答20.(1)MN不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.【解析】试题分析:(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.试题解析:(1)如图,过C作CH⊥AB于H,设CH=x,由已知有∠EAC=45°, ∠FBC=60°则∠CAH=45°, ∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=CH HB∴HB=tan30CHo=3=3x,∵AH+HB=AB∴x+3x=600解得x≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5根据题意得:15y-=(1+25%)×1y,解得:y=25知:y=25的根.答:原计划完成这项工程需要25天.21.(1)1;(2)证明见解析;(1)P点坐标为()1323-,.【解析】【分析】()1由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;()2设A 点坐标为3a,a ⎛⎫ ⎪⎝⎭,则D 点坐标为30,a ⎛⎫⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0,进而可得出PB ,PC ,PA ,PD 的长度,由四条线段的长度可得出PC PD PB PA=,结合P P ∠∠=可得出PDC V ∽PAB V ,由相似三角形的性质可得出CDP A ∠∠=,再利用“同位角相等,两直线平行”可证出CD//AB ; ()3由四边形ABCD 的面积和PCD V 的面积相等可得出PAB PCD S 2S =V V ,利用三角形的面积公式可得出关于a 的方程,解之取其负值,再将其代入P 点的坐标中即可求出结论.【详解】()1解:B Q 点()1,3在反比例函数k y x=的图象, k 133∴=⨯=.故答案为:1.()2证明:Q 反比例函数解析式为3y x=, ∴设A 点坐标为3a,.a ⎛⎫ ⎪⎝⎭PB x ⊥Q 轴于点C ,PA y ⊥轴于点D ,D ∴点坐标为30,a ⎛⎫ ⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0, 3PB 3a ∴=-,3PC a=-,PA 1a =-,PD 1=, 3PC 1a 3PB 1a 3a-∴==--,PD 1PA 1a=-, PC PD PB PA∴=. 又P P Q ∠∠=,PDC V ∴∽PAB V ,CDP A ∠∠∴=,CD//AB ∴.()3解:Q 四边形ABCD 的面积和PCD V 的面积相等,PAB PCD S 2S ∴=V V ,()131331a 212a 2a ⎛⎫⎛⎫∴⨯-⨯-=⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭, 整理得:2(a 1)2-=,解得:1a 1=2a 1=舍去), P ∴点坐标为()1,3-.【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:()1根据点的坐标,利用反比例函数图象上点的坐标特征求出k 值;()2利用相似三角形的判定定理找出PDC V ∽PAB V ;()3由三角形的面积公式,找出关于a 的方程.22.-【解析】【分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可【详解】 原式()()22,2x y x x y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦112,2x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦ ()()22,2x y x y x y x y x y y--+-=⋅-- ()()2,2y x y x y x y y --=⋅-- 1,x y=--sin60tan30x y =︒==︒=Q∴原式23333=-=-=--. 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.23.见解析【解析】【分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键. 24.①CD ;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③94DB π=-u u u r u r . 【解析】【分析】①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证OAC OBD ∆∆∽得OA AC OB BD =,即94BD AC =,从而知999DB CA AC 444π==-=-u u u r u u u r u u u r u r . 【详解】①∵//BD AC ,∴OA :AB=OC :CD ,∵OA a =,AB b =,OC c =,::a b c x =,∴线段CD 就是所求的线段x ,故答案为:CD ②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例; ③∵4OA =、5AB =,且//BD AC ,∴OAC OBD ∆∆∽, ∴OA AC OB BD =,即49AC BD=, ∴94BD AC =, ∴999444DB CA AC π==-=-u u u r u u r u u u r u r . 【点睛】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.25.1223,3x x ==. 【解析】【分析】先进行移项,在利用因式分解法即可求出答案.【详解】 ()()2333x x x -=-,移项得:()()23330x x x ---=,整理得:()()3230x x --=,30x -=或230x -=,解得:13x =或223x =. 【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.26.52【解析】【分析】根据楼高和山高可求出EF ,继而得出AF ,在Rt △AFC 中表示出CF ,在Rt △ABD 中表示出BD ,根据CF=BD 可建立方程,解出即可.【详解】如图,过点C 作CF ⊥AB 于点F.设塔高AE=x ,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m ,在Rt △AFC 中,∠ACF=36°52′,AF=(x+29)m , 则29411636520.7533AF x CF x tan +=≈=+︒', 在Rt △ABD 中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD , ∴41165633x x +=+, 解得:x=52,答:该铁塔的高AE 为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般. 27.(1)90,102︒;(2)103π;(3)251002100π- 【解析】【分析】(1)先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论;(2)先判断出∠POQ =60°,最后用弧长用弧长公式即可得出结论;(3)先在Rt △B'OP 中,OP 2+2(10210) =2( 10 - O P ) ,解得OP =10210- ,最后用面积的和差即可得出结论.【详解】解:(1)∵P 是半径OB 上一动点,Q 是¶AB 上的一动点,∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,此时,∠POQ =90°,PQ =22102+=OA OB ,故答案为:90°,2 ;(2)解:如图,连接OQ ,∵点P 是OB 的中点,∴OP =12OB =12 OQ . ∵QP ⊥OB ,∴∠OPQ =90°在Rt △OPQ 中,cos ∠QOP =OP 12=OQ , ∴∠QOP =60°,∴l BQ 6010101803ππ=⨯= ; (3)由折叠的性质可得,,102''===BP B P AB AB , 在Rt △B'OP 中,OP 2+2(10210)- =2( 10 - O P ) ,解得OP =10210-,S 阴影=S 扇形AOB ﹣2S △AOP =290110210(10210)2510021003602ππ⨯-⨯⨯⨯-=-+.【点睛】此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键.。

福建省南平市2019-2020学年中考第四次适应性考试数学试题含解析

福建省南平市2019-2020学年中考第四次适应性考试数学试题含解析

福建省南平市2019-2020学年中考第四次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.(ab)3=ab3D.a2•a4=a62.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6 米,CD=4 米,∠BCD=150°,在D 处测得电线杆顶端A 的仰角为30°,则电线杆AB 的高度为()A.2+23B.4+23C.2+32D.4+323.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃4.如图图形中,可以看作中心对称图形的是()A.B.C.D.5.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.1006.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°7.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°8.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.C.D.9.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.21021051.5x x-=B.21021051.5x x-=-C.21021051.5x x-=+D.2102101.55x=+10.下列图形中,阴影部分面积最大的是A.B.C.D.11.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8B.7×10﹣8C.7×10﹣9D.7×10﹣1012.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.14.如图,⊙O的直径CD垂直于AB,∠AOC=48°,则∠BDC=度.15.二次函数y=x2-2x+1的对称轴方程是x=_______.16.已知一组数据-3,x,-2,3,1,6的众数为3,则这组数据的中位数为______.17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.18.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k x的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?20.(6分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?21.(6分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?22.(8分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.23.(8分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元) 3 4 5 6 7 8 10 销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?24.(10分)已知:二次函数C 1:y 1=ax 2+2ax+a ﹣1(a≠0)把二次函数C 1的表达式化成y =a(x ﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C 1的图象经过点A(﹣3,1). ①求a 的值;②点B 在二次函数C 1的图象上,点A ,B 关于对称轴对称,连接AB .二次函数C 2:y 2=kx 2+kx(k≠0)的图象,与线段AB 只有一个交点,求k 的取值范围.25.(10分)吴京同学根据学习函数的经验,对一个新函数y =2545x x --+的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x 的取值范围是 .列表: x … ﹣2﹣10 123 4 56…y…517-m ﹣152-﹣5n﹣112- 517-…表中m = ,n = .描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy 中,描出上表中各对对应值为坐标的点(其中x 为横坐标,y 为纵坐标),并根据描出的点画出该函数的图象:观察所画出的函数图象,写出该函数的两条性质:①;②.26.(12分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?27.(12分)如图①,一次函数y=12x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=12x2+bx+c的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】 【分析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答. 【详解】∵3a ﹣2a =a ,∴选项A 不正确; ∵a 2+a 5≠a 7,∴选项B 不正确; ∵(ab )3=a 3b 3,∴选项C 不正确; ∵a 2•a 4=a 6,∴选项D 正确. 故选D . 【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键. 2.B 【解析】 【分析】 【详解】延长AD 交BC 的延长线于E ,作DF ⊥BE 于F ,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,22CD DF -3 由题意得∠E=30°, ∴EF=23tan DFE= , ∴3∴AB=BE×tanE=(3×3(3+4)米, 即电线杆的高度为(3+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.3.D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是313233334357++⨯++=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.4.D【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义.5.B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.C试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=5,AB=10.∵(5)1+(5)1=(10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.7.C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.8.B【解析】试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选B.考点:1.概率公式;2.完全平方式.9.A【解析】设原计划每天生产零件x 个,则实际每天生产零件为1.5x 个,根据提前5天完成任务,列方程即可. 【详解】设原计划每天生产零件x 个,则实际每天生产零件为1.5x 个, 由题意得,21021051.5x x-= 故选:A . 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可. 10.C 【解析】 【分析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可: 【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C . 11.C 【解析】 【分析】本题根据科学记数法进行计算. 【详解】因为科学记数法的标准形式为a×10n (1≤|a|≤10且n 为整数),因此0.000000007用科学记数法法可表示为7×910﹣,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.12.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=3x-1【解析】∵y=3x+1的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.故答案为y=3x﹣1.14.20【解析】解:连接OB,∵⊙O的直径CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°15.1 【解析】 【分析】利用公式法可求二次函数y=x 2-2x+1的对称轴.也可用配方法. 【详解】 ∵-2b a =-22-=1,∴x=1. 故答案为:1 【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决. 16.2 【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个. 详解:∵-3,x ,-1, 3,1,6的众数是3, ∴x=3,先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3, ∴这组数的中位数是132+=1. 故答案为: 1.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 17.59. 【解析】 【分析】根据题意,画出树状图,然后根据树状图和概率公式求概率即可. 【详解】 解:画树状图得:Q 共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:59.故答案为:59.【点睛】此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键. 18.1 【解析】试题分析:设点C 的坐标为(x ,y ),则B (-2,y )D (x ,-2),设BD 的函数解析式为y=mx ,则y=-2m ,x=-2m ,∴k=xy=(-2m )·(-2m)=1. 考点:求反比例函数解析式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)()20320416y x x =-+≤≤;(2)80米/分;(3)6分钟 【解析】 【分析】(1)根据图示,设线段AB 的表达式为:y=kx+b ,把把(4,240),(16,0)代入得到关于k ,b 的二元一次方程组,解之,即可得到答案,(2)根据线段OA ,求出甲的速度,根据图示可知:乙在点B 处追上甲,根据速度=路程÷时间,计算求值即可,(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案. 【详解】(1)根据题意得:设线段AB 的表达式为:y=kx+b (4≤x≤16), 把(4,240),(16,0)代入得:4240160k b k b +=⎧⎨+=⎩, 解得:20320k b =-⎧⎨=⎩,即线段AB 的表达式为:y= -20x+320 (4≤x≤16), (2)又线段OA 可知:甲的速度为:2404=60(米/分), 乙的步行速度为:()24016460164+-⨯-=80(米/分),答:乙的步行速度为80米/分,(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),与终点的距离为:2400-960=1440(米),相遇后,到达终点甲所用的时间为:144060=24(分),相遇后,到达终点乙所用的时间为:144080=18(分),24-18=6(分),答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.20.原计划每天种树40棵.【解析】【分析】设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.【详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得1000 x −1000+%x (125)=5,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.21.(1)甲80件,乙20件;(2)x≤90【解析】【分析】(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【详解】解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得30x+20(100﹣x)=2800,解得x=80,则100﹣x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得:30x+20(100﹣x)≤2900,解得:x≤90,【点睛】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.22.(1)13(2)14【解析】【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【详解】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为13;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为21 84 .【点睛】本题主要考查了列表法与树状图法;概率公式.23.(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解析】【分析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.(2)根据平均数,中位数,众数的意义回答.【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.24.(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k的取值范围是16≤k≤12或k=﹣1.【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k =1, ∴k =﹣1,综上,二次函数C 2:y 2=kx 2+k x(k≠0)的图象,与线段AB 只有一个交点,k 的取值范围是16≤k≤12或k =﹣1. 【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键. 25.(1)一切实数(2)-12,-52(3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x =2对称 【解析】 【分析】(1)分式的分母不等于零; (2)把自变量的值代入即可求解; (3)根据题意描点、连线即可;(4)观察图象即可得出该函数的其他性质. 【详解】 (1)由y =2545x x --+知,x 2﹣4x+5≠0,所以变量x 的取值范围是一切实数. 故答案为:一切实数; (2)m =251(1)452-=--++,n =25531252-=--+,故答案为:-12,-52; (3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称【点睛】本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.26.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.27.(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值3;(3)点M 的坐标为(52,12)或(52,.【解析】 【分析】(1)先求出A 、B 的坐标,然后把A 、B 的坐标分别代入二次函数的解析式,解方程组即可得到结论; (2)先证明△PDE ∽△OAB ,得到PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -),PD+PE =3PE ,然后配方即可得到结论.(3)分两种情况讨论:①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.求出圆心O 1的坐标和半径,利用MO 1=半径即可得到结论.②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.求出点O 2的坐标,算出DM 的长,即可得到结论. 【详解】 解:(1)令y =122x -=0,得:x =4,∴A (4,0). 令x =0,得:y =-2,∴B (0,-2).∵二次函数y =212x bx c -++的图像经过A 、B 两点,∴8402b c c -++⎧⎨-⎩==,解得:522b c ⎧⎪⎨⎪-⎩==,∴二次函数的关系式为y =215222x x -+-.令y =215222x x -+-=0,解得:x =1或x =4,∴C (1,0).(2)∵PD ∥x 轴,PE ∥y 轴, ∴∠PDE =∠OAB ,∠PED =∠OBA ,∴△PDE ∽△OAB .∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -).∴PD +PE =3PE =3×[(215222m m -+-)-(122m -)]=2362m m -+=()23262m --+.∵0<m <4,∴当m =2时,PD +PE 有最大值3.(3)①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ). ∴()22522t ⎛⎫+- ⎪⎝⎭=22512t ⎛⎫-+ ⎪⎝⎭,解得:t =2,∴圆心O 1的坐标为(52,-2),∴半径为52. 设M (52,y ).∵MO 1=52,∴522y +=,解得:y=12,∴点M 的坐标为(5122,). ②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2. ∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA .∵O 1B ∥x 轴,∴∠O 1BA =∠OAB , ∴∠O 1AB =∠OAB ,O 2在x 轴上,∴点O 2的坐标为 (32,0),∴O 2D =1, ∴DM =225()12-=21,∴点M 的坐标为(52,21-).综上所述:点M 的坐标为(52,12)或(52,21-).点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC 外接圆的圆心坐标.。

2019年南平市初中毕业班质量检查试卷及答案(1)

2019年南平市初中毕业班质量检查试卷及答案(1)

D H
且 E,F,G,H 分别是 AO,BO,CO,DO 的
F
OG
中点.求证:四边形 EFGH 是平行四边形.
B
C 第 19 题图
数学试题 第 3页(共 6 页)
20.(本小题满分 8 分) 某校开展以“学习朱子文化,弘扬理学思想”为主题的读书月活动,并向学生征集读后 感,学校将收到的读后感篇数按年级进行统计,绘制了以下两幅统计图(不完整).
正数,斜放表示负数.如图,根据刘徽的这种表示法,观察
图①,可推算图②中所得的数值为
A.-2
B.+2
C.-6
D.+6
A B
第 4 题图
1 表示(+1)+(-1)=0

第 5 题图
数学试题 第 1页(共 6 页)
6.下列说法正确的是
A. 了解某型导弹杀伤力的情况应使用全面调查
B. 一组数据 3,6,6,7,9 的众数是 6
A.1.5 1012
B.1.5 1011
C
C.1.5 1010
D.150 108
O
4.如图,在⊙O 中,∠ACB=34°,则∠AOB 的度数是
A.17°
B.34°
C.56°
D.68°
5. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”
的注文中指出,可将算筹(小棍形状的记数工具)正放表示
A
D
EA
D
EA
D
E
B
C
F
作 AD=AB
B
C
F
作 CD=CB
B
CF
作∠ABC 的平分线
A
D
EA
EA D

2019南平市质检数学答案

2019南平市质检数学答案

2019年南平市初中毕业班适应性考试数学试题参考答案及评分说明说明:(1) 解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分. (2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.A ; 2.C ; 3.B ; 4.A ; 5.B ; 6.C ; 7.D ; 8.A ; 9.D ; 10.B . 二、填空题(本大题共6小题,每小题4分,共24分) 11.16; 12.2(1)a x -; 13.2x =; 14.如:2+-=x y (答案不唯一,只要满足0k <且2b =即可); 15.6; 16.()3,3-. 三、解答题(本大题共9小题,共86分)17.解:原式321=+-…………………………………6分 4=…………………………………8分 18.解:由①得2x >…………………………………3分由②得1322-≥+x x …………………………………5分 ∴3x ≤…………………………………6分∴原不等式组的解集为23x <≤…………………………………8分19.解:原式)9(222a a a ---=………………………6分2292a a a +--=…………………………………7分 92-=a …………………………………8分20.解:(1)400 ,补全图形…………………………………(各2分)4分 (2)75.6 ………………………6分 (3)72529.02500=⨯(人)答:估计去九曲溪的游客约有725人.…………………………8分 21.证明:∵AB ∥CD ,∴∠B=∠C ………………………3分又∵AE =DF , ∠A=∠D ,∴△ABE ≌△DCF …………………………………6分 ∴AB =CD …………………………………8分22.(1)证明:连接OA 、OD ,过O 作OE ⊥AC 垂足为E ,∵AB 与⊙O 相切于点D ,∴OD ⊥AB …………………………………2分 ∵AB =AC ,O 为BC 的中点,∴AO 是∠BAC 的平分线…………………4分 又OD ⊥AB ,OE ⊥AC ,∴OD =OE …………………………………5分 ∵OD 是⊙O 的半径,∴AC 是⊙O 的切线……………………6分 (2)解:∵⊙O 的半径为1,∴OD =1 在Rt △BOD 中,tan ∠B =ODBD…………………………………8分 ∴54.133tan 1tan ≈︒=∠=B OD BD …………………………………10分23.解:(1)10………………………………2分(2)∵B (12,18),∴2161812=⨯=k …………………………6分(3)由x y 216=,当18=x 时,1218216==y 答:当18=x h 时,大棚内的温度约为12℃…………………………………10分24.(1)依题意,得-3)41(2=-⨯m , 得23=m ……………………………………2分 把A (-2,0)代入n x x y ++-=23412中,得4=n ………………………………4分∴抛物线的解析式为423412++-=x x y ……………………………………5分(2)易得)08(,B ,)40(,C 设直线BC :b kx y +=⎩⎨⎧=+=084b k b ,∴⎪⎩⎪⎨⎧=-=421b k∴直线BC :421+-=x y …………6分设点P (p ,421+-p ),F (p ,423412++-p p )∴p p p p p FP 2414214234122+-=⎪⎭⎫⎝⎛+--++-=…………………………7分 CBF CD B CD BF S S S ∆∆+=∴四边形…………………………8分OB FP OC DB ⋅+⋅=2121 108824121452122++-=⨯⎪⎭⎫⎝⎛+-⨯+⨯⨯=p p p p …………………………9分 在Rt △BCO 中,5422=+=BO CO BC 过点P 作PG ⊥y 轴于点G ,∴PG ∥OB方法一:∴△PCG ∽△BCO ……………………………10分 ∴OB PG BC PC =,∴8545pt =,∴t p 2=……………………………11分 ∴101642++-=t t S CD BF 四边形……………………………………12分 方法二:∴∠CPG=∠CBO , ∴cos ∠CPG=cos ∠CBO 548==BC OB ………………………10分 ∴GP =CP ·cos ∠CPG ,∴t t p 25485=⋅=………………………11分∴101642++-=t t S CD BF 四边形……………………………………12分 25.(1)证明:∵CD 为AB 边上的中线,∴DB =DA ……………2分 ∵DC DEDB DF =,∴DF DE DA DC=………………………………3分 又∵∠FDE =∠ADC ,∴△DFE ∽△DAC .……………………4分 (2)解:点H 为AC 的中点. …………………………………5分理由如下:∵△DFE ∽△DAC ,∴∠DFE =∠DAC ,∴EF ∥AC ,………………6分 ∴△DGF ∽△DHA ,△DEG ∽△DCH ,∴DG FG DH AH =,DG EGDH HC=, ∴EG FGHC AH= ……………………………………………………………………7分 ∵点G 是EF 的中点,∴EG =FG ,∴HC =AH ,即点H 为AC 的中点.…………8分 (3)解:①当点M 在线段BC 上时(不与B ,C 重合), ∠BMD +∠A BD '=180°………………9分方法一:∵BD =AD ,HC =AH ,∴DH ∥BC ,∴∠BMD=∠HDH '………………10分∵将△ADH 绕点D 旋转至△H D A '', ∴∠HDH '=∠ADA '. ∵∠BDA '+∠ADA '=180°,∴∠BMD +∠BDA '=180°………………11分 方法二:∵BD =AD ,HC =AH ,∴DH ∥BC ,∴∠ADH=∠ABC ,…………10分 ∵△ADH ≌△H D A '',∴∠A D H ''=∠ADH ,∴∠A D H ''=∠ABC , ∵∠ABC +∠DB H '+∠BMD =180°, ∴∠A D H ''+∠DB H '+∠BMD =180°∴∠BMD +∠BDA '=180°.……………………………11分方法三:∵BD =AD ,HC =AH ,∴DH ∥BC ,∴∠ADH=∠ABC ,…………10分 ∵△ADH ≌△H D A '',∴∠A D H ''=∠ADH ,∴∠A D H ''=∠ABC , ∵∠DKM =∠BKD ,∴△ DKM ∽△BKD ,∴∠BDA '=∠DMK∵∠DMK +∠BMD =180°,∴∠BMD +∠BDA '=180°.………………11分 ②当点M 在CB 的延长线上时,∠BMD =∠A BD '…………12分 方法一:∵BD =AD ,HC =AH ,∴DH ∥BC ∴∠BMD=∠NDH ………13分 ∵将△ADH 绕点D 旋转至△H D A '', ∴∠HDH '=∠ADA ' ∵∠BDA '+∠ADA '=180°,∠NDH +∠HDH '=180°,∴∠NDH =∠BDA ', ∴∠BMD =∠BDA '.…………………14分方法二:∵BD =AD ,HC =AH ,∴DH ∥BC ,∴∠ADH=∠ABC ………13分 ∵△ADH ≌△H D A '',∴∠A D H ''=∠ADH∴∠A D H ''=∠ABC ,∵∠DKC =∠A D H ''+∠BMD ,∠DKC =∠BDA '+∠ABC , ∴∠BDA '=∠BMD .……………………14分方法三:∵BD =AD ,HC =AH ,∴DH ∥BC ,∴∠ADH=∠ABC ………13分 ∵△ADH ≌△H D A '',∴∠A D H ''=∠ADH ,∴∠A D H ''=∠ABC ,∵∠DKM =∠BKD ,∴△ DKM ∽△BKD ,∴∠BDA '=∠BMD .……………14分MBCDE F GH H 'A 'K MABCDEF G H H ''NK。

福建省南平市2019-2020学年中考第二次适应性考试数学试题含解析

福建省南平市2019-2020学年中考第二次适应性考试数学试题含解析

福建省南平市2019-2020学年中考第二次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A .2x 2-3x 2=x 2B .x +x =x 2C .-(x -1)=-x +1D .3+x =3x2.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D .3.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D . 4.如图,矩形ABCD 中,12AB =,13BC =,以B 为圆心,BA 为半径画弧,交BC 于点E ,以D 为圆心,DA 为半径画弧,交BC 于点F ,则EF 的长为( )A .3B .4C .92D .55.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -,的平均数和方差分别是( ).A.12,3B.2,1C.24,3D.4,36.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107B.4.67×106C.46.7×105D.0.467×1077.甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,……,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,……,每一页写的数均比前一页写的数多1.若甲同学在某一页写的数为49,则乙同学在这一页写的数为()A.116 B.120 C.121 D.1268.下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A.1 B.2 C.3 D.49.运用乘法公式计算(3﹣a)(a+3)的结果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2D.a2﹣3a+910.下列计算,正确的是()A.222()-=-B.(2)(2)2-⨯-=C.3223-=D.8210+=11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°12.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知线段a=4,线段b=9,则a,b的比例中项是_____.14.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.15.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.16.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.17.因式分解:-3x2+3x=________.18.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x的分式方程11mx+-=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.20.(6分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?21.(6分)先化简,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.22.(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?23.(8分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.26.(12分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.27.(12分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据合并同类项法则和去括号法则逐一判断即可得.【详解】解:A.2x2-3x2=-x2,故此选项错误;B.x+x=2x,故此选项错误;C.-(x-1)=-x+1,故此选项正确;D.3与x不能合并,此选项错误;故选C.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.2.D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图3.C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.4.B【解析】【分析】连接DF,在Rt DCF△中,利用勾股定理求出CF的长度,则EF的长度可求.连接DF ,∵四边形ABCD 是矩形∴12,13AB CD BE AD BC DF ======在Rt DCF △中,90C ∠=︒222213125CF DF CD ∴-=-=13121EC BC BE =-=-=Q514EF CF EC ∴=-=-=故选:B .【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.5.D【解析】【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x 1,x 2,x 3,x 4,x 5的平均数是2,∴数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是3×2-2=4;∵数据x 1,x 2,x 3,x 4,x 5的方差为13, ∴数据3x 1,3x 2,3x 3,3x 4,3x 5的方差是13×32=3, ∴数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的方差是3,故选D .【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.6.B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.7.C【解析】【分析】根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数.【详解】甲所写的数为1,3,1,7,…,49,…;乙所写的数为1,6,11,16,…,设甲所写的第n个数为49,根据题意得:49=1+(n﹣1)×2,整理得:2(n﹣1)=48,即n﹣1=24,解得:n=21,则乙所写的第21个数为1+(21﹣1)×1=1+24×1=121,故选:C.【点睛】考查了有理数的混合运算,弄清题中的规律是解本题的关键.8.D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C【解析】【分析】根据平方差公式计算可得.【详解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故选C.【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.10.B【解析】【分析】根据二次根式的加减法则,以及二次根式的性质逐项判断即可.【详解】=2,∴选项A不正确;,∴选项B正确;∵,∴选项C不正确;,∴选项D不正确.故选B.【点睛】本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.11.B【解析】【分析】利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=13∠AOC进行计算即可.【详解】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=13∠AOC=13×84°=28°.故选:B.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.12.C【解析】【分析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6【解析】【分析】根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵a=4,b=9,设线段x是a,b的比例中项,∴a xx b ,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案为6【点睛】本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.14.1.1【解析】【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.【详解】∵一组数据4,x,1,y,7,9的众数为1,∴x,y中至少有一个是1,∵一组数据4,x,1,y,7,9的平均数为6,∴16(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一个是1,另一个是6,∴这组数为4,1,1,6,7,9,∴这组数据的中位数是12×(1+6)=1.1,故答案为:1.1.【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.15.21 4【解析】【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=52,mn=12,∴m2+n2=(m+n)2-2mn=(52)2-2×12=214,故答案为:214.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211x x、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.16.80°.【解析】【分析】如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.17.-3x(x -1)【解析】【分析】原式提取公因式即可得到结果.【详解】解:原式=-3x (x-1),故答案为-3x (x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.18.34. 【解析】【详解】解:根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,故P (所作三角形是等腰三角形)=34; 故答案为34. 【点睛】 本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)3m ≥-且1m ≠-,0m ≠;(2)当m=1时,方程的整数根为0和3.【解析】【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出m 的取值;(2)根据根与系数的关系得到x 1+x 2=3,12111m x x m m -⋅==-,根据方程的两个根都是整数可得m=1或1-.结合(1)的结论可知m =1.解方程即可.【详解】解:(1)∵关于x 的分式方程121m x +=-的根为非负数, ∴0x ≥且1x ≠.又∵302m x +=≥,且312m +≠, ∴解得3m ≥-且1m ≠-.又∵方程2310mx mx m -+-=为一元二次方程,∴0m ≠.综上可得:3m ≥-且1m ≠-,0m ≠.(2)∵一元二次方程2310mx mx m -+-=有两个整数根x 1、x 2,m 为整数,∴x 1+x 2=3,12111m x x m m -⋅==-, ∴11m-为整数,∴m=1或1-. 又∵3m ≥-且1m ≠-,0m ≠,∴m =1.当m=1时,原方程可化为230x x -=.解得:10x =,23x =.∴当m=1时,方程的整数根为0和3.【点睛】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.20.(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解析】【分析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利润是30m+20(50﹣m)=1000+10m,当m取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.21.2【解析】试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将a的值代入化简后的式子得出答案.试题解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,当a=1时,原式=14+16﹣1﹣1=2.22.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.23.1 3【解析】【分析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2, 所以两次抽取的牌上的数字都是偶数的概率=26=13. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.24.(1)40y x =-+;(2)此时每天利润为125元.【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:(1)设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩, ∴40y x =-+;(2)将35x =代入(1)中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.25. (1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a ,b 的等式,进而得出a=b ,即可判断△ABC 的形状; (2)利用根的判别式进而得出关于a ,b ,c 的等式,进而判断△ABC 的形状;(3)利用△ABC 是等边三角形,则a=b=c ,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.26.证明见解析.【解析】【分析】由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案. 【详解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.27.证明见解析.【解析】【分析】易证△DAC≌△CEF,即可得证.【详解】证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC 和△CEF 中:90DCA CFE A E CD CF ∠=∠⎧⎪∠=∠=⎨⎪=⎩o , ∴△DAC ≌△CEF(AAS), ∴AD=CE,AC=EF, ∴AE=AD+EF【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.。

2019年南平市市质检数学试卷

2019年南平市市质检数学试卷

2019年南平市初中毕业班适应性检测数学试题(考试时间:120分钟:满分:150分)一 、选择题:本题共10小题,每小题4分,共40分 1.实数-6的相反数是 A.-6 B. 6 C.61 D. -61 2.下列图形既是轴对称图形,又是中心对称图形的是 A.三角形 B.菱形 C.角 D.平行四边形3.小说《流浪地球》中提到“华北794号地球发动机,全功率运行时能向大地产生15 000 00 000吨的推力”,这里的数据“15 000 000 000科学计数法表示为 A.1.5×1012 B.1.5×1011 C. 1.5×1010 D. 150×1084.如图,在⊙O 中,∠ACB =34°,则∠AOB 的度数是 A.17° B. 34° C. 56° D. 68°5.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术” 的注文中指出,可将算筹(小棍形状的记数工具)正放表示 正数,斜放表示负数. 如图,根据刘徽的这种表示法,观察 图①,可推算图②中所得的数值为 A. -2 B. +2 C. -6 D.+6 6.下列说法正确的是A.了解某型导弹杀伤力的情况应使用全面调查B.一组数据3、6、6、7、9的众数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为200D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是 S 2甲=03,S 2乙=0.4,则乙的成绩更稳定7.如图,直线AB ∥CD ,MN 分别与AB 、CD 交于点E 、F , 且∠AEM =50°,则∠DFN 的大小为 A. 130° B. 60° C.50 ° D.40 °8.如图,在等腰直角△ABC 中,∠ACB =90 °,D 为△ABC 内一 点,将线段CD 绕点C 逆时针旋转90°后得到CE ,连接BE ,若∠DAB =10°,则∠ABE 是A.75 °B. 78°C. 80°D.92°9.现有甲,乙两种机器人都被用来搬运某体育馆室内装潢材料甲型机器人比乙型机器人每小时少搬运30千克,甲型机器人搬运600千克所用的时间与乙型机器人搬运800千克所用的时N①表示(+1)+(-1)②间相同,两种机器人每小时分别搬运多少千克?设甲型机器人每小时搬运x 千克,根据题意,可列方程为 A.x 600=30800+x B. x600=30800-x C. 30600+x =x 800 D. 30600-x =x 800 10.如图,在△ABC 中,AB=AC ,BC =6,E 为AC 边上的点且AE =2EC ,点D 在BC 边上且满足BD=DE ,设BD =y , △ABC 的面积S △ABC =x ,则y 与x 的函数关系式为A. y =8101x 2+25 B. y =8104x 2+25 C. y =8101x 2+2 D. y =8104x 2+2二、填空题:本题共6小题,每小题4分,共24分 11.分解因式:x 2+ x =________.12请写出一个比1大且比3小的无理数:________.13一个凸多边形的内角和为720°,则这个多边形的边数是________. 14已知扇形的弧长为4π,半径为8,则此扇形的面积为________.15.n 个数据2、4、6、8、….、2n ,这组数据的 中位数是________. (用含n 的代数式表示) 16.已知,Rt △ABC 中,∠ACB =90°,AC =5,BC =12 点D 在边AB 上,以AD 为直径的圆,与边BC 有公 共点E ,则AD 的最小值是________. 二、解答题:本大题共9小题,共86分 17.(8分)计算:2sin 30°-(π-2) °+|3-1|+(21)-118.(8分)解不等式组: ⎩⎨⎧->-<-1232)2(2x x x x①②19.(8分)如图,□ABCD 的对角线AC 、BD 相交于点O , 且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的 中点. 求证:四边形EFGH 是平行四边形20.( 8分)某校开展以“学习朱子文化,弘扬理学思想”为主题的读书月活动,并向学生征集读后感,学校将收到的读后感篇数按年级进行统计,绘制了以下两幅统计图(不完整). 据图中提供的信息完成以下问题 (1)扇形统计图中“八年级”对应的圆心角 是度,并补全条形统计图(2)经过评审,全校有4篇读后感荣获特 等奖,其中有一篇来自七年级,学校 准备从特等奖读后感中任选两篇在校 广播电台上播出,请利用画树状图或列表的方法求出七年级特等奖读后感 被校广播电台播出的概率21.( 8分)如图,AE ∥BF ,AC 平分∠BAE ,交BF 于点C. (1)求证:AB=BC ;(2)尺规作图:在AE 上找一点D ,使得四边形ABCD 为菱形(不写作法,保留作图痕迹)七年级 25%八年级九年级读后感篇数扇形统计图 读后感篇数条形统计图22.( 10分)如图,已知反比例函数y=xm的图象经过第一象限内的一点 A(n ,4),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为2. (1)求m 和n 的值;(2)若一次函数y=kx +2的图象经过点A ,并且与x 轴相交于点C ,求线段AC 的长.23.( 10分)某超市为了扩大影响,对商品A 和B 进行打折促销打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元打折后,买500件A 商 品和500件B 商品用了9600元,比不打折少花多少钱?24.( 12分)如图,OA 是⊙O 的半径,点E 为圆内一点,且OA ⊥OE ,AB 是⊙O 的切线,EB 交⊙O 于点F ,BQ ⊥AF 于点Q . (1)如图1,求证:OE ∥AB ; (2)如图2,若AB =AO ,求BQAF的值; (3)如图3,连接OF ,∠EOF 的平分线交射线AF 于点P ,若OA =2,cos ∠PAB =54, 求OP 的长.25.(14分)已知m 、n 分别是关于x 的一元二次方程ax 2+bx+c=a 与ax 2+bx+c=b 的一个根, 且m=n +1.(1)当m =2,a =-1时,求b 与c 的值; (2)用只含字母a 、n 的代数式表示b ;(3)当a <0时,函数y =ax 2+bx+c 满足b 2-4ac=a ,b+c ≥2a ,n ≤-21,求a 的取值范围.图1 图2 图3参考答案一、ABCDA ;B CCAA . 二、11.x (x +1); 12(答案不唯一); 13.六; 14.16π; 15.n +1; 16.659. 三、解答题(本大题共9小题,共86分) 17.(本小题满分8分)解:原式=121+22⨯--…………………………………………………… 4分111+2=--, ………………………………………………………6分+1=. ………………………………………………………………8分 18.(本小题满分8分)解:由①得,242-<-x x , ……………………………………………………2分2<x ,……………………………………………………………3分由②得,1>-x , ………………………………………………………… 6分所以不等式组的解集是12-<<x . ………………………………………8分19.(本小题满分8分)证明:∵四边形ABCD 是平行四边形,∴OA=OC , OB = OD , ………………2分又∵E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,∴11112222OE OA OG OC OF OB OH OD ====,,,, ……………4分∴OE=OG , OF = OH , ……………6分 ∴四边形EFGH 是平行四边形. …8分 (说明:本题解法较多,请参考评分标准酌情给分)20.(本小题满分8分) (1)填空:144,…………………………2分条形统计图补全如下:准确补全条形图………………………………………4分(2)设获特等奖4篇读后感编号为A ,B ,C ,D ,其中七年级获特等奖读后感为A ,依GF H E O DB C A 第19题图各年级参赛读后感篇数条形统计图图1题意,画树状图如下:准确画出树状图 …………………………………………………………………6分 由列表(树状图)知,一共有12种情况,而七年级特等奖读后感被广播电台上播 出的有6种可能,所以P (七年级特等奖读后感被广播电台播出)=61=122.………………8分 21.(本小题满分8分)(1)证明:∵AE ∥BF ,∴∠EAC=∠ACB , ………………………………………………2分 又∵AC 平分∠BAE ,∴∠BAC=∠EAC , ………………………………………………3分 ∴∠BAC=∠ACB , ………………………………………………4分 ∴BA=BC . ………………………………………………………5分(2)主要作法如下:画出正确图形2分,标示点D 得1分,共3分.………………………8分22.(本小题满分10分)解:(1)由点A (n ,4),AB ⊥x 轴于点B ,且点A 在第一象限内,得AB =4,OB = n ,所以S △AOB =114222AB OB n n =⨯=,…………1分由S △AOB =2,得 n =1,…………………………2分所以A (1,4), …………………………3分把A (1,4)代入=m y x中,得4=m ;…………4分 (2)由直线2=+y kx 过点A (1,4),得 2=k ,…………5分所以一次函数的解析式为22=+y x ;…………………………………6分 令0=y ,得1=-x所以点C 的坐标为(-1,0),………………7分ABCDA A A A A A 作AD=AB作∠ABC 的平分线过点B 作AC 的垂线 作线段的AC 垂直平分线 作∠DCF =∠ABC由(1)可知OB =1, 所以BC =2,………………8分在Rt △ABC中,==AC .…………10分23.(本小题满分10分)解:设商品A 每件原价x 元,商品B 每件原价y 元,依题意,得603010805010840x y x y +=⎧⎨+=⎩,…………………………………………………………4分 (列一个正确的方程得2分)解得164x y =⎧⎨=⎩, …………………………………………………………8分(解出一个正确的解得2分)则买500件A 商品和500件B 商品打折前后相差:5001650049600400⨯+⨯-=(元),……………………………………10分 答:打折买500件A 商品和500件B 商品比不打折少花了400元.24.(本小题满分12分) (1)证明:∵OA ⊥OE , ∴∠AOE=90°,……………………………1分 又∵AB 是⊙O 的切线,OA 是⊙O 的半径, ∴OA ⊥AB ∴∠OAB=90°, …………………………2分 ∴∠AOE +∠OAB =180°,∴OE ∥AB . ……………………………3分(2)证明:过O 点作OC ⊥AF 于点C ,………4分∴AF=2AC , ∠OCA=90°,……………5分 ∴∠AOC +∠OAC =90°, 又∵OA ⊥AB ,∴∠OAC +∠CAB =90°,∴∠AOC=∠CAB , ……………………6分 又∵BQ ⊥AF , ∴∠AQB =90°, ∴∠ACO =∠AQB 又∵OA =AB ,∴△AOC ≌△BAQ (AAS ),……………7分 ∴AC =BQ ,∴AF=2AC =2BQ ,即2AFBQ=;………………………………8分 (3)证明:过O 点作OC ⊥AF 于点C ,由(2)得∠AOC =∠PAB ,∴4cos cos 5PA O B A C ∠=∠=,在Rt △AOC 中, OA =2, ∴OC=cos OA AOC ∠,QFAO BE 图1图2P QFAOBE 图3C=425⨯=85,………………9分又∵OA=OF,OC⊥AF于点C,∴∠COF=12∠AOF,………………10分又∵OP平分∠EOF,∴∠POF=12∠EOF,∴∠POC=∠COF+∠POF=12∠AOF+12∠EOF=12∠EOA=45°,∴△POC为等腰直角三角形……………………………………………11分(只要判断出△POC为等腰直角三角形即得1分,过程写得不完整不扣分;若得到∠POC=12∠EOA=45°也得1分)∴OP==…………………………………………………12分25.(本小题满分14分)(1)解:因为m ,n 分别是关于x 的一元二次方程2ax bx c a ++=与2ax bx c b ++=的一个根,所以22am bm c a an bn c b⎧++=⎪*⎨++=⎪⎩①②(),……………………………………………2分 (考查方程根的概念,正确写出一个等式得1分) 由m =n +1,m =2得n = 1把n =1,m =2,a = -1,代入(*)得,4211b c b c b -++=-⎧⎨-++=⎩, ……………………………………………………………4分 (正确代入写出一个等式得1分) 解得11b c =⎧⎨=⎩, ……………………………………………………………………5分 (考查解方程组,要求方程组的解正确及书写正确给1分,否则不得分)(2)解:由(1)的方程组(*)中①-②,得22()()a m n b m n a b -+-=-,…………………………………………………6分()[()]m n a m n b a b -++=-,…………………………………………………7分(考查因式分解的应用,学生不写上式,但能解出正确答案,不扣分) 由m =n +1,得m -n =1,故a ()m n b a b ++=-, ………………………………………………………8分 (考查转换思想,学生只要是代入正确得1分) 所以(21)a n b a b ++=-,从而b na =-, …………………………………………………………………9分(3)解:把b na =-代入方程组(*)中②,得c na =-,…………………………………………………………………10分由b c +≥2a 得2na -≥2a , 当a <0时,n ≥-1,由n ≤-12得,-1≤n ≤-12,……………………………………………………11分(考查学生审题能力,学生只算出n ≥-1,而没有完整的得出-1≤n ≤-12不给分)由24b ac a -=,且b c na ==-,得24)na a na a ---=()(,整理得,2224n a na a +=,因为a <0南平质检 (彭雪林制) 第11页 共5页所以,214n n a =+, 即21+24n a=-(),…………………………………………………………12分 由于1a 在-1≤n ≤-12时随n 的增大而增大,………………………………13分 (考查二次函数的性质,只要学生能用性质即得分,若没有写“随n 的增大而增大”,不扣分)所以当n = -1时,a = -13,当n = -12时,a = -47即-47≤a ≤-13 ………………………………………………………14分 (最后一步考查学生思维的完整性,学生要能完整的写出-47≤a ≤-13才得分)。

福建省南平市中考数学适应性考试试卷(解析版) 新人教版

福建省南平市中考数学适应性考试试卷(解析版) 新人教版

福建省南平市中考适应性考试数学试卷一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确的选项)1.(4分)(•南平模拟)的倒数是()A.﹣3 B.C.3D.考点:倒数分析:根据乘积是1的两数互为倒数,即可得出答案.解答:解:根据题意得:﹣×(﹣3)=1,可得﹣的倒数为﹣3.故选A.点评:本题考查了倒数的性质:乘积是1的两数互为倒数,可得出答案,属于基础题.2.(4分)(•南平模拟)在统计学中,样本的方差可以近似地反映总体的()A.平均状态B.分布规律C.波动大小D.最大值和最小值考点:方差.分析:方差是用来衡量一组数据波动大小的量,所以样本的方差可以近似地反映总体的波动大小.解答:解:根据方差的意义知,方差是用来衡量一组数据波动大小的量.故选C.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.(4分)(•南平模拟)下列计算正确的是()A.a2•a3=a6B.a2﹣b2=﹙a﹣b﹚2C.﹙3b3﹚2=3b6D.﹙﹣a﹚5÷﹙﹣a﹚3=a2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式专题:计算题.分析:A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、利用平方差公式化简得到结果,即可做出判断;C、利用积的乘方及幂的乘方运算法则计算得到结果,即可找出判断;D、利用同底数幂的除法法则计算得到结果,即可做出判断.解答:解:A、a2•a3=a5,本选项错误;B、a2﹣b2=(a+b)(a﹣b),本选项错误;C、(3b3)2=9b6,本选项错误;D、(﹣a)5÷(﹣a)3=(﹣a)2=a2,本选项正确,故选D点评:此题考查了同底数幂的乘除法,积的乘方与幂的乘方,以及平方差公式,熟练掌握公式及法则是解本题的关键.4.(4分)(•南平模拟)下列图形中,不是中心对称图形的是()A.圆B.正方形C.正六边形D.等边三角形考点:中心对称图形分析:根据中心对称图形的概念结合选项所给的图形即可得出答案.解答:解:A、圆是中心对称图形,故本选项错误;B、正方形是中心对称图形,故本选项错误;C、正六边形形是中心对称图形,故本选项错误;D、等边三角形不是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.(4分)(•南平模拟)以下事件中,不可能发生的是()A.打开电视,正在播广告B.任取一个负数,它的相反数是负数C.掷一次骰子,向上一面是2点D.经过某一有交通信号灯的路口,遇到红灯考点:随机事件分析:不可能事件是指在一定条件下,一定不发生的事件,即发生的概率是0的事件.解答:解:A、C、D都是有可能发生,也由可能不发生的事件,是随机事件;B、∵任何一个负数数的相反数是正数,不存在一个负数的相反数是负数的数,∴是不可能事件.故选B.点评:解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.关键是理解不可能事件是指在一定条件下,一定不发生的事件.6.(4分)(•南平模拟)已知⊙O1、⊙O2的半径分别是2、3,若⊙O1O2=4,则⊙O1与⊙O2的位置关系是()A.相交B.内切C.外切D.内含考点:圆与圆的位置关系分析:由⊙O1、⊙O2的半径分别是2、3,O1O2=4,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、3,∴半径和为:2+3=5,半径差为:3﹣2=1,∵O1O2=4,1<4<5,∴⊙O1与⊙O2的位置关系是:相交.故选A.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.7.(4分)(•南平模拟)下列图形能折成正方体的是()A.B.C.D.考点:展开图折叠成几何体分析:利用正方体及其表面展开图的特点解题.解答:解:A,B,C围成几何体时,有两个面重合,故不能围成正方体;只有D能围成正方体.故选D.点评:只要有“田”字格的展开图都不是正方体的表面展开图.8.(4分)(•南平模拟)九年级某班的每位同学都将自己的相片向全班其他同学各赠送一张作为留念,全班共送出1 560张相片,如果全班有x名学生,根据题意,可列方程()A.x(x+1)=1 560 B.x﹣1=1 560 C.x(x﹣1)=1 560 D.x2﹣1=1560考点:由实际问题抽象出一元二次方程分析:如果全班有x名学生,那么每名学生应该送的相片为(x﹣1)张,根据“全班共送出1560张相片”,可得出方程为x(x﹣1)=1560.解答:解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1560,故选:C.点评:此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.9.(4分)(•南平模拟)给定一列按规律排列的数:,则这列数的20个数是()A.B.C.D.考点:规律型:数字的变化类专题:规律型.分析:观察不难发现,分子是从1开始的连续的自然数,分母是以2为底数的幂,然后写出的第20个数即可.解答:解:∵分子是从1开始的连续的自然数,∴第20个数的分子是20,∵4=22,8=23,16=24,∴第20个数的分母是220,∴这列数的20个数是=.故选B.点评:本题是对数字变化规律的考查,把分数从分子与分母两个部分考虑是解题的关键.10.(4分)(•南平模拟)如图,过双曲线上的点A作AC⊥x轴于C,OA的垂直平分线交OC于点B,若∠AOC=30°.则△ABC的周长为()A.B.C.2+D.3考点:反比例函数综合题分析:根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据题干条件可得到关于a、b的方程组,解之即可求出△ABC的周长.解答:解:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:,解得a=3,b=,即△ABC的周长=OC+AC=3+.故选A.点评:本题考查反比例函数图象性质和线段中垂线性质,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.二、填空题(本大题有8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(•南平模拟)计算:= 4 .考点:二次根式的乘除法分析:根据二次根式的乘法运算法则解答.解答:解:原式===4.故答案为:4.点评:本题主要考查二次根式的乘除法,二次根式的乘法运算法则•=(a≥0,b≥0).12.(3分)(•南平模拟)一个多边形的内角和为540°,则这个多边形的边数是 5 .考点:多边形内角与外角分析:n边形的内角和公式为(n﹣2)•180°,由此列方程求n.解答:解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.点评:本题考查了多边形外角与内角.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.13.(3分)(•南平模拟)分解因式:ab2+4ab+4a= a(b+2)2.考点:提公因式法与公式法的综合运用分析:首先提取公因式a,再利用完全平方公式进行二次分解即可.解答:解:原式=a(b2+4b+4)=a(b+2)2,故答案为:a(b+2)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(•南平模拟)某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表.最喜欢观看的项目游泳体操球类田径人数 30 75 200 95如果你是电视台负责人,在现场直播时,将优先考虑转播球类比赛.考点:用样本估计总体专题:图表型.分析:根据样本中提供的数据,找到人数最多的一项,即为优先考虑的人群.解答:解:根据样本中提供的数据,显然观看球类节目的人数较多,以此可以估计总体中观看球类的人数较多,所以优先考虑转播球类节目.点评:掌握用样本估计总体的方法.15.(3分)(•南平模拟)已知关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,则m= .考点:根的判别式分析:由已知一元二次方程根的情况与判别式△的关系知△=0,据此可以求得m的值.解答:解:∵关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,∴△=(﹣3)2﹣4×2m=0,即9﹣8m=0,解得,m=.故答案是:.点评:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.(3分)(•南平模拟)有10张形状大小完全一致的卡片,分别写有1~10十个数字,将它们背面朝上洗匀后,任意抽出一张,抽到数字是3的倍数的概率是.考点:概率公式分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:根据题意可知,共有10张卡片,数字是3的倍数的是3,6,9,故任意抽出一张,抽到数字是3的倍数的概率是3÷10=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.(3分)(•南平模拟)用一个圆心角为120°,半径为2的扇形一个圆锥的侧面,则这个圆锥底面的半径为.考点:圆锥的计算专题:计算题.分析:设圆锥底面的半径为r,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,则2πr=,然后解方程即可.解答:解:设圆锥底面的半径为r,根据题意得2πr=,解得r=.故答案为.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.18.(3分)(•南平模拟)如图,在平面直角坐标系xOy中,直线y=x+b与y轴交于点A且经过点B(2,3),已知点C坐标为(2,0),点C1,C2,C3,…,C n﹣1(n≥2)将线段OCn等分,图中阴影部分由n个矩形构成,记梯形AOCB面积为S,阴影部分面积为S′.下列四个结论中,正确的是②③④.(写出所有正确结论的序号)①S=2﹔②S′=4﹣﹔③随着n的增大,S′越来越接近S﹔④若从梯形AOCB 内任取一点,则该点取自阴影部分的概率是.考点:一次函数综合题分析:将点B的坐标代入直线解析式可求出b的值,继而确定函数解析式,利用梯形的面积公式计算出S,可判断①;计算出空白小三角形的面积和,用S减去这些小三角形的面积即可得出S',则可判断②;根据S'的表达式可判断③,用阴影部分的面积÷梯形面积,可判断④.解答:解:将点B(2,3)代入直线解析式可得:3=2+b,解得:b=1,故直线解析式为:y=x+1,令x=0,则y=1,故点A的坐标为(0,1),S=(OA+BC )×OC=×4×2=4,故①错误;将OC n 等分,则每一部分的长为,S小三角形=×(3﹣1)=,则S′=4﹣,故②正确;∵S′=4﹣,∴随着n的增大,S′越来越接近S,故③正确;若从梯形AOCB内任取一点,则该点取自阴影部分的概率===,故④正确;综上可得:②③④正确.故答案为:②③④.点评:本题考查了一次函数的综合,解答本题的关键是确定直线解析式,求出点的A的坐标,技巧在于S'的求解,小三角形的高之和为点B的纵坐标与点A的纵坐标之差,这是需要我们仔细观察得出.三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(14分)(•南平模拟)(1)计算:(﹣2)3+2﹣1.(2)先化简,再求值:,其中a=﹣2.考点:分式的化简求值;实数的运算;负整数指数幂专题:计算题.分析:(1)本题涉及乘方、负指数幂、绝对值、立方根,分别根据其性质计算出结果,再进行加减运算;(2)先把原式通分,再相加即可.解答:解:(1)原式=﹣24﹣(π﹣3)+4=﹣16﹣π+3+4=﹣9﹣π.(2)原式=+==,当a=﹣2时,原式==﹣.点评:本题考查了分式的化简求值,熟悉通分、约分、因式分解是解题的关键.20.(8分)(•南平模拟)解方程:.考点:解分式方程专题:计算题.分析:∵x2﹣1=(x﹣1)(x+1),∴本题的最简公分母是(x﹣1)(x+1).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解答:解:方程两边同乘(x﹣1)(x+1),得2(x﹣1)﹣x=0,解这个方程,得x=2.检验:当x=2时,(x﹣1)(x+1)≠0.∴x=2是原方程的解.点评:当分母是多项式,又能进行因式分解时,应先进行因式分解,再确定最简公分母.(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解;(2)解分式方程一定注意要代入最简公分母验根.21.(8分)(•南平模拟)如图,已知四边形ABCD.请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予证明.关系:①AD∥BC;②AB=CD;③∠B=∠C=180°;④∠A=∠C.已知:在四边形ABCD 中,①,③.(填序号,写出一种情况即可)求证:四边形ABCD是平行四边形.考点:平行四边形的判定分析:可以选择:①,③作为条件,首先根据∠B+∠C=180°可得AB∥DC,再根据AD∥BC,可根据两组对边分别平行的四边形是平行四边形判定出四边形ABCD是平行四边形.此题答案不唯一.解答:选择:①,③,证明:∵∠B+∠C=180°,∴AB∥DC,又∵AD∥BC,∴四边形ABCD是平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.22.(10分)(•南平模拟)以下是根据某班学生一次数学测试成绩(成绩取整数,单位:分)绘制成的不完整的统计图表,请根据统计图表提供的信息,回答下列问题:分组频数50≤x<60 560≤x<7070≤x<80 1580≤x<9090≤x<100 8合计(说明:不合格:50≤x<60﹔合格;60≤x<80﹔良好:80≤x<90﹔优秀;90≤x<100)(1)分别补全以上统计表和扇形图﹔(2)统计表中,本次测试成绩的中位数所在的小组是70≤x<80 ﹔(3)估计该班这次测试的平均成绩(用组中值来表示各组的平均成绩,精确到1分)考点:频数(率)分布表;扇形统计图;加权平均数;中位数分析:(1)根据频数分布表以及扇形统计图分别求出各组人数和所占百分比即可;(2)根据中位数定义得出中位数所在位置即可;(3)用组中值来表示各组的平均成绩,进而求出平均数即可.解答:解:(1)∵不合格:50≤x<60,且在扇形图中占10%,∴该班人数为:=50(人),∴50×50%=25,∴60≤x<70的人数为:25﹣15=10(人),∴良好所占比例为:1﹣10%﹣16%﹣50%=24%,∴人数为:24%×50=12(人),如图所示:﹔分组频数50≤x<60 560≤x<70 1070≤x<80 1580≤x<90 1290≤x<100 8合计 50(2)∵第25和第26个数据都落在70≤x<80范围,∴本次测试成绩的中位数所在的小组是:70≤x<80;故答案为:70≤x<80;(3)(55×5+65×10+75×15+85×12+95×8)=76.6≈77,答:该班这次测试的平均成绩约为77分.点评:本题考查读频数分布表获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数;以及圆心角的计算方法.23.(10分)(•南平模拟)某校组织部分学生分别到A、B两公园参见植树活动,已知道A公园每人需往返车费2元.平均每人植树5棵,到B公园每人需往返车费3元,平均每人植树3棵,且到A公园的学生比到B 公园的学生5人.设到A公园的学生x人,在公园共植树y棵.(1)求y与x之间的函数关系;(2)若往返车费总和不超过300元,求y的最大值?考点:一次函数的应用分析:(1)根据植树的总棵数=在A公园植树的棵数+在B公园植树的棵数建立等式就可以求出y与x之间的关系式;(2)先设往返车费的总和为W元,就可以表示出W关于x的一次函数的解析式,根据一次函数的性质就可以求出y的最大值.解答:解:(1)由题意,得y=5x+3(x﹣5),y=8x﹣15;(2)设往返车费的总和为W元,由题意,得W=2x+3(x﹣5),=5x﹣15.∵W≤300∴5x﹣15≤300,∴x≤63.∵y=8x﹣15,k=8>0,∴y随x的增大而增大,∴x=63时.y最大=489,答:y的最大追为489.点评:本题时一道一次函数的综合试题,考查了求一次函数的解析式的运用,一次函数的性质的运用,解答本题时先求y与x之间的函数解析式时关键,运用一次函数的性质解答是难点.24.(10分)(•南平模拟)如图,某校门前有一个石球,一研究学习小组要测量石球的直径:某一时刻在阳光照射下,设光线DA、CB分别与球相切于点E、F,测得石球的影长AB=112cm.∠ABC=42°.请你帮助计算出球的直径EF.(精确到1cm)考点:切线的性质;解直角三角形分析:首先过点A作AG⊥BC于点G,易证得四边形AGFE是矩形,然后在Rt△AGB中,由AG=AB•sin∠ABC,求得答案.解答:解:过点A作AG⊥BC于点G,∵光线DA、CB分别与球相切于点E、F,∴DA⊥EF,C⊥EF,∴∠FEA=∠EFG=∠AGC=90°,∴四边形AGFE是矩形,∴AG=EF,在Rt△AGB中,AB=112cm.∠ABC=42°,∴AG=AB•sin∠ABC=11°×sin42°≈75(cm),∴EF=AG=75cm.∴球的直径EF约为75cm.点评:此题考查了切线的性质、矩形的判定与性质以及三角函数的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.25.(12分)(•南平模拟)在△ABC中,D为AC的中点,将△ABD绕点D顺时针旋转α°(0<α<360)得到△DEF,连接BE、CF.(1)如图,若△ABC为等边三角形,BE与CF有何数量关系?证明你的结论﹔(2)若△ABC为等边三角形,当α的值为多少时,ED∥AB?(3)若△ABC不是等边三角形时,(1)中结论是否仍然成立?若不成立,请添加一个条件,使得结论成立.(不必证明,不再添加其它的字母和线段)考点:等边三角形的性质;全等三角形的判定与性质专题:计算题.分析:(1)BE=CF,理由为:由BD为等边三角形ABC的中线,利用三线合一得到BD垂直于AC,得到一对直角相等,利用等式的性质得到一对角相等,再由旋转的性质及D为中点得到DE=DC,BD=FD,利用SAS 得出三角形EBD与三角形CDF全等,利用全等三角形的对应边相等即可得证;(2)由三角形ABC为等边三角形,利用等边三角形的性质得到∠A=60°,利用平行线的判定即可得出旋转角α的度数;(3)若△ABC不是等边三角形时,(1)中结论不成立,需添加的条件为AB=BC,证明方法同(1).解答:解:(1)BE=CF,理由为:证明:∵BD为等边△ABC的中线,∴BD⊥AC,即∠BDA=∠BDC=90°,∵∠EDA=∠FDB,∴∠EDA+∠BDA=∠FDB+∠BDC,即∠EDB=∠CDF,由旋转的性质得到DE=DA=DC,BD=FD,∵在△EDB和△CDF中,,∴△EDB≌△CDF(SAS),∴BE=CF;(2)α=60°或240°,当α=60°时,由△ABC为等边三角形,得到∠A=60°,∴∠A=∠EDA=60°,∴ED∥AB;当α=240°时,∠A=∠EDC=60°,∴ED∥AB;(3)不成立,添加的条件为AB=BC,理由为:∵AB=BC,BD为中线,∴BD⊥AC,即∠BDC=∠BDA=90°,DA=DC,∵∠EDA=∠FDB,∴∠EDA+∠BDA=∠FDB+∠BDC,即∠EDB=∠CDF,由旋转的性质得到BD=FD,DA=DC=DE,∵在△EDB和△CDF中,,∴△EDB≌△CDF(SAS),∴BE=CF.点评:此题考查了等边三角形的性质,旋转的性质,以及全等三角形的判定与性质,熟练掌握等边三角形的性质是解本题的关键.26.(14分)(•南平模拟)在平面直角坐标系xOy中,矩形ABCD如图放置,边AB在x轴上,点A坐标为(1,0),点C坐标为(3,m)(m>0).连接OC交AD与E,射线OD交BC延长线于F.(1)求点E、F的坐标﹔(2)当x的值改变时:①证明﹕经过O、E、F三点的抛物线的最低点一定为原点﹔②设经过O、E、F三点的抛物线与直线CD的交点为P,求PD的长﹔③探究﹕△ECF能否成为等腰三角形?若能,请求出△ECF 的面积.考点:二次函数综合题分析:(1)根据相似三角形的判定和性质即可求出点E、F的坐标﹔(2)①二次函数的图象经过坐标原点O,可设二次函数为y=ax2+bx,根据待定系数法求出二次函数的解析式,即可证明经过O、E、F三点的抛物线的最低点一定为原点﹔②根据纵坐标相等可得方程,求得x的值,从而得到PD的长﹔③根据等腰三角形的性质可得关于m的方程,求得m的值,再根据三角形的面积公式即可求解.解答:(1)解:∵点A坐标为(1,0),点C坐标为(3,m),∴OA=1,OB=3,BC=AD=m,∵AE∥BC,∴△OAE∽△OBC,∴=,即AE==,∴点E坐标为(1,),同理,得△OAD∽△OBF,∴=,即BF==3m,∴点F坐标为(1,3m);(2)证明:∵二次函数的图象经过坐标原点O,∴设二次函数为y=ax2+bx,又∵二次函数的图象经过E、F,∴,解得.∴二次函数的解析式为y=x2,∴抛物线的最低点一定为原点﹔②解:∵m=x2,解得x=±,∴PD 的长为﹣1,+1;③答:能.∵∠ECF为钝角,∴仅当EC=FC时,△ECF为等腰三角形,由EC2=FC2,得CD2+ED2=FC2,即22+(m ﹣)2=(3m﹣m)2,解得m=±,∵m>0,∴m=,∴△ECF的面积=FC•CD=×2m×2=.点评:考查了二次函数综合题,涉及的知识点有:平行线的性质,相似三角形的判定和性质,待定系数法求二次函数的解析式,等腰三角形的性质,三角形的面积,方程思想的运用,综合性较强,有一定的难度.。

南平市建阳区2019届中考适应性考试数学试卷含答案

南平市建阳区2019届中考适应性考试数学试卷含答案

2019 年建阳区初中毕业班适应性考试数学试题(满分: 150 分;考试时间: 120 分钟)一、选择题(本大题共 10 小题,每题 4 分,共 40 分.每题只有一个正确的选项,请在答题卡 的相应地点填涂)...1. 2016 的绝对值等于1 1 A . 2016B . 2016C .D .201620162. 以下图的几何体的主视图是A .B .C .D .正面3. 以下图案中,不是中心对称图形的是A .B .C .D .4.我区 5 月份连续五天的日最高气温 (单位 :℃ )分别为: 33,30,30,32, 35.则这组数据的中位数和均匀数分别是 A . 32,32 B . 32, 33C .30, 31D . 30,325.某科研小组,为了考察某水库野生鱼的数目,从中捕捞 100 条,作上标志后,放回水库,经过一段时间,再从中捕捞300 条,发现有标志的鱼有15 条,则预计该水库中有野生鱼A . 8000 条B . 4000 条C .2000 条D . 1000 条6. 以下多边形中,内角和是外角和的两倍的是A .四边形B .五边形C .六边形D .八边形7. 以下计算正确的选项是A . a 2 ·a 3 a 6B . ( m 2 )3 m 6C . b 6 b 3 b 2D .8. 不等式组x 4 22x 5 的解集是xA . x 2B . x 5C . x 2D .9. 直线 yx 2 沿 y 轴向上平移 2 个单位后与 x 轴的交点坐标是3a 3b 6ab2 x 5ABA .( 4,0)B .( 0, 4)C .( 2, 0)D .(0, 2)10. 如图,在边长为 1 的正方形 ABCD 中,动点 F E分别以同样的速 ,度从 D ,C 两点同时出发向 C 和 B 运动(任何一个点抵达即停止),过P M EDF NC(第 10 题图)点 P 作 PM ∥CD 交 BC 于 M 点, PN∥ BC 交 CD 于 N 点,连结MN ,在运动过程中,则以下结论:①△ ABE≌△ BCF ;② AE=BF;③ AE⊥BF;④ CF2=PE·BF ;⑤线段 MN 的最小值为 5 1 .2此中正确的结论有A.2 个B.3 个C.4 个D.5 个二、填空题(本大题共 6 小题,每题 4 分,共 24 分.请将答案填入答题卡的相应位...置)11.写出一个第二象限内的点的坐标:(,).12.想认识某电视台对正在播出的某电视节目收视率的状况, 合适采纳的检查方式是.(填“全面检查”或“抽样检查”)x2 x= .13.计算:1x 1 x14.分解因式:3a2 6a 3 = .15.圆锥的侧面积为15π,底面积半径为3,则该圆锥的高为.16.如图,已知点 A 是双曲线y 2在第一象限的分支上的一x个动点,连结 AO 并延伸交另一分支于点B,以 AB 为斜边做等腰直角△ ABC,点 C 在第四象限.跟着点 A 的运动,点 C 的位置也不停变化,但点 C 一直在双曲线yk( k 0)上运动,xyAO xC则 k 的值是. B(第 16 题图)三、解答题(本大题共 8 小题,共 86 分.请在答题卡 的相应地点作答)...17.( 8 分) 计算: 4 ( 2) 22tan45 0(﹣2016) .18.( 8 分) 先化简以下的代数式,再求值: [(2 x y) 2y( x y)] x ,此中 x 1, y 1.19.( 8 23A分) 解分式方程:2 x 1x20.( 8 分)如图, ABBD 于点 B , ED BD 于点 D ,AE 交 BD 于点 C ,且 BCDC .求证: ABED .CBD(第 20 题图)E21.( 8 分) 2019 年为更好地宣传 “开车不饮酒,饮酒不开车 ”的驾车理念,某市一家报社设计了如图的检盘问卷(单项选择).在随机检查了某市所有 10000 名司机中的部分司机后,统计整理并制作了以下的统计图:依据以上信息解答以下问题:( 1)补全条形统计图,并计算扇形统计图中 m=;( 2)该市支持选项 C 的司机大概有多少人?(3)若要从该市支持选项 C 的司机中随机选择 200 名,给他们签署“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?E22.( 10 分) 如图, CD 为⊙ O 的直径,点 B 在⊙ O 上,连结 BC 、BD ,过点 B 的切线 AE 与 CD 的延伸线交于点 A ,BOE ∥ BD ,交 BC 于点 F ,交 AE 于点 E.F( 1)求证:△ BEF ∽△ DBC.;( 2)若⊙ O 的半径为 3,∠ C=32°,求 BE 的长 .CODA(精准到 0.01)(第 22 题图)23.( 10 分) 2019 年春天,建阳区某服饰商铺分两次从批发市场购进同一款服饰,数目之比是2: 3,且第一、二次进货价分别为每件50 元、 40 元,总合付了4400 元的货款.( 1)求第一、二次购进服饰的数目分别是多少件?( 2)因为该款服饰刚推出时,很受欢迎,按每件70 元销售了x 件;以后,因为该服饰滞销,为了实时办理库存,缓解资本压力,其节余部分的按每件30 元所有售完.当x 的值起码为多少时,该服饰商铺才不会赔本.24(. 12 分)如图,抛物线y x2 bx c 与x 轴交于点A(- 1,0),B( 5,0)两点,直线y 3 x3 4与 y 轴交于点 C,与 x 轴交于点D.点 P 是 x 轴上方的抛物线上一动点,过点交直线 CD 于点 E(点 C 不与 E 重合),设点P 的横坐标为m.P 作 PF ⊥ x 轴于点 F ,(1)求抛物线的分析式;(2)若 PE=5EF ,求 m 的值;( 3)若点 E′是点 E 对于直线PC 的对称点,能否存在点P,使点 E′落在接写出相应的点P 的坐标;若不存在,请说明原因.y 轴上?若存在,请直25.( 14 分)如图,在四边形 ABCD 中,∠ D = ∠ BCD = 90°,∠ B = 60 °, AB = 6 , AD = 9,点 E 是CD 上的一个动点( E 不与 D 重合),过点 E 作 EF∥ AC,交 AD 于点 F(当 E 运动到 C 时, EF 与 AC 重合),把△ DEF 沿着 EF 对折,点 D 的对应点是点 G.设 DE = x,△ GEF 与四边形 ABCD 重叠部分的面积为 y.(1)求 CD 的长及∠ 1 的度数;(2)若点 G 恰幸亏 BC 上,求此时 x 的值;(3)求何值时,y 与 x 之间的函数关系式,并求y 的值最大?最大值是多少?x 为2019 年建阳区初中毕业班适应性考试数学试题参照答案及评分说明说明:1 150234一、选择题(本大题共10 小题,每题 4 分,共 40 分)1 B2 C3 D4 A5 C6 C7 B8 D9 A; 10 D二、填空题(本大题共 6 小题,每题 4 分,共 24 分)11-1 1 12 13 x14 3(a 1)2 15 4 16 -2三、解答题(本大题共9 小题,共 86 分)17824 21148 2 1 67 8 188[(2 x y) 2 y( x y)] x(4 x2 4xy y2 xy y2 ) x 2(4 x2 5xy) x 44x2 x 5xy x 54x 5 y 6x 1, y 1 = 4 1 5 1 7=9 8198 x(2 x 1) 12(2 x 1) 3x4x 2 6x 2x(2 x 1) 0 7x 2 820.8: AB BD, ED BDABC D 90o2ABCEDCABC D A4BC DCACB ECDABC EDC 6D B CEAB ED8218169÷23% 60 69 36 45=90C90.2m%=60 ÷ 69÷23% =20%m= 20 , 4202C90÷300=30% 10000×30%=30005C 3000 . 63 C=10000×30%=3000200 173000 151. 81522. 10(1)OB 1BAECD AOB AEOBE= EBF+ CBO=90 ° 2CDOCBD= CBO+ OBD=90 ° 3EEBF= OBD 4OBODOBOB=ODFCDAOOBD= CDBEBF = CDB 5OE BD22 EFB= CBDBEF DBC. 6(2)1BEFDBC.OBE=90 °E= CC=32 °E=C=32 °7O3OB=3 8Rt BOEOBE=90 ° E =32 ° OB=3OBtan E9BEtan32o3BE BE3 4.8010tan32o23 10ab11:.a :b 2: 3350a 40b4400a404b604060. 52:70x 30( 40 60 x) 44000 8x35 9x351024. 121AB1 bc0 b 4 25 5bc 2c 05yx 2 4x 532Pm Pmm 2+4m+5E mm+3F m 04 PE=|y Py E |=|m 2+4m+5m+3 |=| m 2+m+2|24 2EF=|y EyF |=| m+3 0|=| m+3|由题意, PE=5EF ,即: |﹣ m 2+ m+2|=5|﹣ m+3|=| m+15|5 分①若﹣ m 2+m+2=m+15 ,整理得:2m 2﹣ 17m+26=0 , 解得: m=2 或 m=; 6 分②若﹣ m 2+m+2= ﹣(m+15 ),整理得: m 2﹣ m ﹣ 17=0,解得: m=或 m=. 7 分由题意, m 的取值范围为:﹣ 1<m < 5,故 m= 、 m=这两个解均舍去.∴ m=2 或 m= . 8 分( 3)答:存在, 9 分P 点的坐标为(﹣ , ),( 4, 5),( 3﹣, 2 ﹣ 3), 12 分原因以下:作出表示图以下:∵点 E 、E ′对于直线 PC 对称,∴∠ 1=∠2, CE=CE ′, PE=PE ′.∵ PE 平行于 y 轴,∴∠ 1=∠ 3,∴∠ 2=∠3,∴ PE=CE ,第 24 题图(3)∴ PE=CE=PE ′=CE ′,即四边形 PECE ′是菱形.1). 当四边形 PECE ′是菱形存在时,由直线 CD 分析式 y=﹣x+3,可得 OD=4 , OC=3,由勾股定理得CD=5 .过点 E 作 EM ∥ x 轴,交 y 轴于点 M ,易得△ CEM ∽△ CDO ,∴,即 ,解得 CE= |m|,∴ PE=CE= |m|,又由( 2)可知: PE=|﹣ m 2+ m+2|∴ |﹣ m 2+ m+2|= |m|.①若﹣ m 2+ m+2= m ,整理得: 2m 2﹣7m ﹣ 4=0 ,解得 m 1=4 或 m 2=﹣ ; ②若﹣ m 2+m+2= ﹣ m ,整理得: m 2﹣ 6m ﹣ 2=0 ,解得 m 1=3+, m 2=3 ﹣.由题意, m 的取值范围为:﹣ 1<m < 5,故 m=3+这个解舍去.因此, m=﹣ , m=4 或 m=3﹣ ,则点 P 坐标为(﹣ ,),( 4, 5),( 3﹣ , 2 ﹣ 3)2). 当四边形 PECE ′是菱形这一条件不存在时,此时 P 点横坐标为 0, E , C , E'三点重合与 y 轴上,菱形不存在,因为点 C 不与 E 重合,因此该状况不切合题意。

福建省南平市2019年初中毕业班质量检测数学试卷(含答案)

福建省南平市2019年初中毕业班质量检测数学试卷(含答案)

2019年南平市初中毕业班适应性检测数学试题(考试时间:120分钟:满分:150分)一、选择题:本题共10小题,每小题4分,共40分 1.实数-6的相反数是( ) A .-6 B . 6 C .61 D . -61 2.下列图形既是轴对称图形,又是中心对称图形的是( ) A .三角形 B .菱形 C .角 D .平行四边形3.小说《流浪地球》中提到“华北794号地球发动机,全功率运行时能向大地产生15 000 00 000吨的推力”,这里的数据“15 000 000 000科学计数法表示为( )A .1.5×1012B .1.5×1011C . 1.5×1010D . 150×108 4.如图,在⊙O 中,∠ACB =34°,则∠AOB 的度数是( ) A .17° B . 34° C . 56° D . 68°5.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术” 的注文中指出,可将算筹(小棍形状的记数工具)正放表示 正数,斜放表示负数. 如图,根据刘徽的这种表示法,观察 图①,可推算图②中所得的数值为( ) A . -2 B . +2 C . -6 D .+6 6.下列说法正确的是( )A .了解某型导弹杀伤力的情况应使用全面调查B .一组数据3、6、6、7、9的众数是6C .从2000名学生中选200名学生进行抽样调查,样本容量为2000D .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同, 方差分别是S 2甲=0.3,S 2乙=0.4,则乙的成绩更稳定7.如图,直线AB ∥CD ,MN 分别与AB 、CD 交于点E 、F ,且∠AEM =50°,则∠DFN 的大小为( )N8.如图,在等腰直角△ABC 中,∠ACB =90 °,D 为△ABC 内一点,将线段CD 绕点 C 逆时针旋转90°后得到CE ,连接BE ,若∠DAB =10°,则∠ABE 是( )A .75 °B . 78°C . 80°D .92°9.现有甲,乙两种机器人都被用来搬运某体育馆室内装潢材料甲型机器人比乙型机器人每小时少搬运30千克,甲型机器人搬运600千克所用的时间与乙型机器人搬运800千克所用的时间相同,两种机器人每小时分别搬运多少千克?设甲型机器人每小时搬运x 千克,根据题意,可列方程为( ) A .x 600=30800+x B . x600=30800-x C . 30600+x =x 800 D . 30600-x =x 800 10.如图,在△ABC 中,AB=AC ,BC =6,E 为AC 边上的点且AE =2EC ,点D 在BC 边上 且满足BD=DE ,设BD =y ,△ABC 的面积S △ABC =x ,则y 与x 的函数关系式为( )A . y =8101x 2+25 B . y =8104x 2+25 C . y =8101x 2+2 D . y =8104x 2+2二、填空题:本题共6小题,每小题4分,共24分 11.分解因式:x 2+ x =________.12请写出一个比1大且比3小的无理数:________.13一个凸多边形的内角和为720°,则这个多边形的边数是________. 14已知扇形的弧长为4π,半径为8,则此扇形的面积为________.15.n 个数据2、4、6、8、….、2n ,这组数据的 中位数是________. (用含n 的代数式表示) 16.已知,Rt △ABC 中,∠ACB =90°,AC =5,BC =12点D 在边AB 上, 以AD 为直径的圆,与边BC 有公共点E ,则AD 的最小值是________. 三、解答题:本大题共9小题,共86分 17.(8分)计算:2sin 30°-(π-2) °+|3-1|+(21)-118.(8分)解不等式组: ⎩⎨⎧->-<-1232)2(2x x x x19.(8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别 是AO 、BO 、CO 、DO 的中点.求证:四边形EFGH 是平行四边形20.( 8分)某校开展以“学习朱子文化,弘扬理学思想”为主题的读书月活动,并向学生征集读后感,学校将收到的读后感篇数按年级进行统计,绘制了以下两幅统计图(不完整). 据图中提供的信息完成以下问题 (1)扇形统计图中“八年级”对应的圆心角 是 度,并补全条形统计图.(2)经过评审,全校有4篇读后感荣获特等奖,其中有一篇 来自七年级,学校准备从特等奖读后感中任选两篇在校广播电台上播出,请利用画树状图或列表的方法求出七年级特等奖读后感 被校广播电台播出的概率 ①② 七年级 25%八年级九年级读后感篇数扇形统计图读后感篇数条形统计图21.( 8分)如图,AE ∥BF ,AC 平分∠BAE ,交BF 于点C . (1)求证:AB=BC ;(2)尺规作图:在AE 上找一点D ,使得四边形ABCD 为菱形(不写作法,保留作图痕迹)22.( 10分)如图,已知反比例函数y =xm的图象经过第一象限内的一点A (n ,4),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为2. (1)求m 和n 的值;(2)若一次函数y=kx +2的图象经过点A ,并且与x 轴相交于点C ,求线段AC 的长.23.( 10分)某超市为了扩大影响,对商品A 和B 进行打折促销打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花多少钱?24.( 12分)如图,OA 是⊙O 的半径,点E 为圆内一点,且OA ⊥OE ,AB 是⊙O 的切线,EB 交⊙O 于点F ,BQ ⊥AF 于点Q .(1)如图1,求证:OE ∥AB ; (2)如图2,若AB =AO ,求BQAF的值; (3)如图3,连接OF ,∠EOF 的平分线交射线AF 于点P ,若OA =2,cos ∠PAB =54,求OP 的长. 图1 图2 图325.(14分)已知m 、n 分别是关于x 的一元二次方程ax 2+bx+c=a 与ax 2+bx+c=b 的一个根,且m=n +1. (1)当m =2,a =-1时,求b 与c 的值; (2)用只含字母a 、n 的代数式表示b ;(3)当a <0时,函数y =ax 2+bx+c 满足b 2-4ac=a ,b+c ≥2a ,n ≤-21,求a 的取值范围.2019年南平市初中毕业班适应性检测数学试题参考答案一、BBCDB ;BCCAA . 二、11.x (x +1); 12答案不唯一); 13.六; 14.16π; 15.n +1; 16.659. 三、解答题(本大题共9小题,共86分) 17.(本小题满分8分)解:原式=121+22⨯-…………………………………………………… 4分11+2=-, ………………………………………………………6分=. ………………………………………………………………8分18.(本小题满分8分)解:由①得,242-<-x x , ……………………………………………………2分2<x ,……………………………………………………………3分由②得,1>-x , ………………………………………………………… 6分所以不等式组的解集是12-<<x . ………………………………………8分 19.(本小题满分8分)证明:∵四边形ABCD 是平行四边形, ∴OA=OC , OB = OD , ………………2分又∵E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,∴11112222OE OA OG OC OF OB OH OD ====,,,, ……4分∴OE=OG , OF = OH , ……………6分 ∴四边形EFGH 是平行四边形. …8分(说明:本题解法较多,请参考评分标准酌情给分) 20.(本小题满分8分)(1)填空:144,…………………………2分条形统计图补全如下:准确补全条形图………………………………………4分(2)设获特等奖4篇读后感编号为A ,B ,C ,D ,其中七年级获特 等奖读后感为A ,依题意,画树状图如下:GF HEODBC A第19题图5各年级参赛读后感篇数条形统计图准确画出树状图 …………………………………………………………………6分 由列表(树状图)知,一共有12种等可能情况,而七年级特等奖读后感被广播电台上播 出的有6种可能,所以P (七年级特等奖读后感被广播电台播出)=61=122.………………8分 21.(本小题满分8分)(1)证明:∵AE ∥BF ,∴∠EAC=∠ACB , ………………………………………………2分 又∵AC 平分∠BAE ,∴∠BAC=∠EAC , ………………………………………………3分 ∴∠BAC=∠ACB , ………………………………………………4分 ∴BA=BC . ………………………………………………………5分(2)主要作法如下:画出正确图形2分,标示点D 得1分,共3分.………………………8分 22.(本小题满分10分)解:(1)由点A (n ,4),AB ⊥x 轴于点B ,且点A 在第一象限内,得AB =4,OB = n ,所以S △AOB =114222AB OB n n =⨯=,…………1分由S △AOB =2,得 n =1,…………………………2分C DAC DCAD AA A作AD=AB作∠ABC 的平分线过点B 作AC 的垂线 作线段的AC 垂直平分线 作∠DCF =∠ABC把A (1,4)代入=my x中,得4=m ;…………4分 (2)由直线2=+y kx 过点A (1,4),得 2=k ,…………5分所以一次函数的解析式为22=+y x ;…………………………………6分 令0=y ,得1=-x所以点C 的坐标为(-1,0),………………7分 由(1)可知OB =1, 所以BC =2,………………8分 在Rt △ABC中,==AC .…………10分23.(本小题满分10分)解:设商品A 每件原价x 元,商品B 每件原价y 元,依题意,得603010805010840x y x y +=⎧⎨+=⎩,…………………………………………………………4分 (列一个正确的方程得2分) 解得164x y =⎧⎨=⎩, …………………………………………………………8分(解出一个正确的解得2分)则买500件A 商品和500件B 商品打折前后相差:5001650049600400⨯+⨯-=(元),……………………………………10分答:打折买500件A 商品和500件B 商品比不打折少花了400元.24.(本小题满分12分) (1)证明:∵OA ⊥OE ,∴∠AOE=90°,……………………………1分 又∵AB 是⊙O 的切线,OA 是⊙O 的半径, ∴OA ⊥AB∴∠OAB=90°, …………………………2分 ∴∠AOE +∠OAB =180°,∴OE ∥AB . ……………………………3分(2)证明:过O 点作OC ⊥AF 于点C ,………4分∴AF=2AC , ∠OCA=90°,……………5分 ∴∠AOC +∠OAC =90°, 又∵OA ⊥AB ,QFOBE图1∴∠AOC=∠CAB , ……………………6分 又∵BQ ⊥AF , ∴∠AQB =90°, ∴∠ACO =∠AQB 又∵OA =AB ,∴△AOC ≌△BAQ (AAS ),……………7分 ∴AC =BQ , ∴AF=2AC =2BQ , 即2AFBQ=;………………………………8分 (3)证明:过O 点作OC ⊥AF 于点C ,由(2)得∠AOC =∠PAB , ∴4cos cos 5PA O B A C ∠=∠=, 在Rt △AOC 中, OA =2, ∴OC=cos OA AOC ∠,=425⨯=85, ………………9分又∵OA=OF ,OC ⊥AF 于点C , ∴∠COF =12∠AOF ,………………10分 又∵OP 平分∠EOF , ∴∠POF =12∠EOF , ∴∠POC=∠COF +∠POF =12∠AOF +12∠EOF =12∠EOA =45°, ∴△POC 为等腰直角三角形……………………………………………11分 (只要判断出△POC 为等腰直角三角形即得1分,过程写得不完整不扣分;若得 到∠POC=12∠EOA =45°也得1分)∴OP ==…………………………………………………12分 25.(本小题满分14分)(1)解:因为m ,n 分别是关于x 的一元二次方程2ax bx c a ++=与2ax bx c b ++=的一个根,2am bm c a ⎧++=⎪①P QFOBE图3C(考查方程根的概念,正确写出一个等式得1分)由m =n +1,m =2得n = 1把n =1,m =2,a = -1,代入(*)得,4211b c b c b-++=-⎧⎨-++=⎩ , ……………………………………………………………4分 (正确代入写出一个等式得1分)解得11b c =⎧⎨=⎩, ……………………………………………………………………5分 (考查解方程组,要求方程组的解正确及书写正确给1分,否则不得分)(2)解:由(1)的方程组(*)中①-②,得22()()a m n b m n a b -+-=-,…………………………………………………6分 ()[()]m n a m n b a b -++=-,…………………………………………………7分 (考查因式分解的应用,学生不写上式,但能解出正确答案,不扣分)由m =n +1,得m -n =1,故a ()m n b a b ++=-, ………………………………………………………8分 (考查转换思想,学生只要是代入正确得1分)所以(21)a n b a b ++=-,从而b na =-, …………………………………………………………………9分(3)解:把b na =-代入方程组(*)中②,得c na =-,…………………………………………………………………10分由b c +≥2a 得2na -≥2a ,当a <0时,n ≥-1,由n ≤-12得,-1≤n ≤-12,……………………………………………………11分 (考查学生审题能力,学生只算出n ≥-1,而没有完整的得出-1≤n ≤-12不给分) 由24b ac a -=,且b c na ==-,得24)na a na a ---=()(, 整理得,2224n a na a +=,因为a <0 所以,214n n a=+,即21+24n a=-(),…………………………………………………………12分 由于1a 在-1≤n ≤-12时随n 的增大而增大,………………………………13分 (考查二次函数的性质,只要学生能用性质即得分,若没有写“随n 的增大而增大”,不扣分)所以当n = -1时,a = -13,当n = -12时,a = -47即-47≤a ≤-13 ………………………………………………………14分 (最后一步考查学生思维的完整性,学生要能完整的写出-47≤a ≤-13才得分)。

福建省南平市2019-2020学年中考中招适应性测试卷数学试题(2)含解析

福建省南平市2019-2020学年中考中招适应性测试卷数学试题(2)含解析

福建省南平市2019-2020学年中考中招适应性测试卷数学试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列计算正确的是( ) A .a+a=2aB .b 3•b 3=2b 3C .a 3÷a=a 3D .(a 5)2=a 72.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >43.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( ) A .8.1×106B .8.1×105C .81×105D .81×1044.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .65.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )A .B .C .D .6.计算:()()223311aa a ---的结果是( )A .()21ax - B .31a -. C .11a - D .31a + 7.下列命题中真命题是( )A .若a 2=b 2,则a=bB .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角8.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,»BD的长为43π,则图中阴影部分的面积为( )A .4633π-B .8933π-C .3323π-D .8633π-9.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( ) A .4.8,6,6B .5,5,5C .4.8,6,5D .5,6,610.计算3()a a •- 的结果是( ) A .a 2B .-a 2C .a 4D .-a 411.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( ) A .3804.2×103B .380.42×104C .3.8042×106D .3.8042×10512.如果解关于x 的分式方程2122m xx x-=--时出现增根,那么m 的值为 A .-2B .2C .4D .-4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图△ABC 中,AB=AC=8,∠BAC=30°,现将△ABC 绕点A 逆时针旋转30°得到△ACD ,延长AD 、BC 交于点E ,则DE 的长是_____.14.现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.15.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.16.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y 与x的函数关系式为______.17.唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:分数(单位:分)100 90 80 70 60 人数 1 4 2 1 2 则这10名学生的数学成绩的中位数是_____分.18.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组22(4)113x xxx-≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解.20.(6分)今年3 月12 日植树节期间,学校预购进A、B 两种树苗,若购进A种树苗3 棵,B 种树苗 5 棵,需2100 元,若购进 A 种树苗 4 棵,B 种树苗10棵,需3800 元.(1)求购进A、B 两种树苗的单价;(2)若该单位准备用不多于8000 元的钱购进这两种树苗共30 棵,求A 种树苗至少需购进多少棵?21.(6分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.6≈2.449,结果保留整数)22.(8分)如图,在Rt△ABC中,∠C=90°,AC5=,tanB12=,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.23.(8分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 n根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.24.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.25.(10分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.26.(12分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=23,且OC=4,求BD的长.27.(12分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解. 【详解】A.a+a=2a ,故本选项正确;B.336 b b b ⋅=,故本选项错误;C.32a a a ÷= ,故本选项错误;D.525210()a a a ⨯==,故本选项错误. 故选:A. 【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键. 2.C 【解析】 【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可. 【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0), ∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4, 故选C . 【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.3.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】810 000=8.1×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=23, ∴AC=2BC=43, ∴AB=22AC BC -=22(43)(23)-=6,故选D .点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 5.A 【解析】 【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可 【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为: P (奇数)= = .故此题选A .【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键. 6.B 【解析】 【分析】根据分式的运算法则即可求出答案. 【详解】 解:原式=()23-31a a -=()23-11a a -()=31a - 故选;B 【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型. 7.B 【解析】 【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.8.D【解析】【分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵»BD的长为43π,∴604 1803Rππ=g g解得:R=4,∴AB=ADcos30°=3,∴BC=12AB=3∴AC3=6,∴S △ABC =12×BC×AC =12×6= ∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =260483603ππ⨯=故选:D . 【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键. 9.C 【解析】 【分析】 【详解】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5, 平均数是:(3+4+5+6+6)÷5=4.8, 故选C . 【点睛】本题考查众数;算术平均数;中位数. 10.D 【解析】 【分析】直接利用同底数幂的乘法运算法则计算得出答案. 【详解】解:34()=a a a •--,故选D . 【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键. 11.C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】∵3804.2千=3804200,∴3804200=3.8042×106;故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】过点C 作CH AE ⊥于H ,根据三角形的性质及三角形内角和定理可计算ACB 75∠=︒再由旋转可得,CAD BAC 30∠∠==︒,根据三角形外角和性质计算E 45∠=︒,根据含30︒角的直角三角形的三边关系得CH 和AH 的长度,进而得到DH 的长度,然后利用E 45∠=︒得到EH 与CH 的长度,于是可得DE EH DH =-.【详解】如图,过点C 作CH AE ⊥于H ,∵AB AC 8==, ∴()()11B ACB 180BAC 180307522∠∠∠==︒=︒︒=︒﹣﹣. ∵将ABC V 绕点A 逆时针旋转,使点B 落在点C 处,此时点C 落在点D 处,∴AD AB 8==, CAD BAC 30,∠∠==︒∵ACB CAD E ,∠∠∠=+∴E 753045.∠=︒-︒=︒在Rt ACH V 中,∵CAH 30∠=︒,∴1CH AC 42==, AH ==∴DH AD AH 8=-=-,在Rt CEH V 中,∵E 45∠=︒,∴EH CH 4==, ∴()DE EH DH 4843434=-=--=-.故答案为434-. 【点睛】本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含30︒角的直角三角形的三边关系,旋转图形的性质.14.18°【解析】试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=×360°=90°,则θ=108°-90°=18°. 考点:圆锥的展开图15.4π【解析】根据扇形的面积公式可得:扇形AOB 的面积为29044360ππ⨯=,故答案为4π. 16.y=2x 2﹣6x+2【解析】【分析】由AAS 证明△DHE ≌△AEF ,得出DE=AF=x ,DH=AE=1-x ,再根据勾股定理,求出EH 2,即可得到y 与x 之间的函数关系式.【详解】如图所示:∵四边形ABCD 是边长为1的正方形,∴∠A=∠D=20°,AD=1.∴∠1+∠2=20°,∵四边形EFGH 为正方形,∴∠HEF=20°,EH=EF .∴∠1+∠1=20°,∴∠2=∠1,在△AHE 与△BEF 中23D A EH EF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DHE ≌△AEF (AAS ),∴DE=AF=x ,DH=AE=1-x ,在Rt △AHE 中,由勾股定理得:EH 2=DE 2+DH 2=x 2+(1-x )2=2x 2-6x+2;即y=2x 2-6x+2(0<x <1),故答案为y=2x 2-6x+2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y 与x 之间的函数关系式是解题的关键.17.1【解析】【分析】根据中位数的概念求解即可.【详解】这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100, 则中位数为:90802+=1. 故答案为:1.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.18.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴AB=()()2234x x +=5x ,∵AB=20m ,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i lα==. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩①②, 解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,20.(1)购进A 种树苗的单价为200 元/棵,购进B 种树苗的单价为300 元/棵(2)A 种树苗至少需购进 1 棵【解析】【分析】(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B 种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【详解】设购进 A 种树苗的单价为x 元/棵,购进 B 种树苗的单价为y 元/棵,根据题意得:,解得:.答:购进A 种树苗的单价为200 元/棵,购进 B 种树苗的单价为300 元/棵.(2)设需购进A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A种树苗至少需购进1 棵.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.21.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45° ,AP=80(海里),在Rt △APC 中,cos ∠APC=PC PA , ∴PC=PA•cos ∠APC=403(海里),在Rt △PCB 中,cos ∠BPC=PC PB, ∴PB=403cos PC BPC =∠=406≈98(海里), 答:此时轮船所在的B 处与灯塔P 的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键. 22. (1)证明见解析;(2)1-π.【解析】【分析】(1)解直角三角形求出BC ,根据勾股定理求出AB ,根据三角形面积公式求出CF ,根据切线的判定得出即可;(2)分别求出△ACB 的面积和扇形DCE 的面积,即可得出答案.【详解】(1)过C 作CF ⊥AB 于F .∵在Rt △ABC 中,∠C =90°,AC 5=,tanB 12AC BC ==,∴BC =25,由勾股定理得:AB 22AC BC =+=1.∵△ACB 的面积S 1122AB CF AC BC =⨯⨯=⨯⨯,∴CF 5255⨯==2,∴CF 为⊙C 的半径. ∵CF ⊥AB ,∴AB 为⊙C 的切线;(2)图中阴影部分的面积=S△ACB﹣S扇形DCE219025252360π⨯=⨯⨯-=1﹣π.【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.23.(1)m=30,n=20,图详见解析;(2)90°;(3)7 27.【解析】分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D组人数m=100×30%=30,E组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E组学生王云参加鄂州市“汉字听写”比赛的概率为7 27.点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.24.(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC 中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,22-=201612设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴22+=.12915考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.25.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.26.(1)证明见解析;(2)243【解析】试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.试题解析:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵PA PB PO PO OA OB=⎧⎪=⎨⎪=⎩,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO=23OCAC=,且OC=4,∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得22313PC BC+=,∵AC=BC,OA=OE,即OC为△ABE的中位线.∴OC=12BE,OC∥BE,∴BE=2OC=3.∵BE∥OP,∴△DBE∽△DPO,∴BD BEPD OP=813313BD=+,解得2413.27.(1)20%;(2)能.【解析】【分析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.。

2019年南平市初中毕业班适应性检测 数学(含答案与解析)

2019年南平市初中毕业班适应性检测 数学(含答案与解析)

2019年南平市初中毕业班适应性检测数学试题参考答案及评分说明说明:(1) 解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分. (2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.选择题和填空题不给中间分.第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分)1.A ; 2.B ; 3.C ; 4.D ; 5.A ;6.B ; 7.C ; 8.C ; 9.A ; 10.A .第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 11.x (x +1); 12答案不唯一); 13.六; 14.16π; 15.n +1; 16.659. 三、解答题(本大题共9小题,共86分) 17.(本小题满分8分)解:原式=121+22⨯-…………………………………………………… 4分11+2=-, ………………………………………………………6分=. ………………………………………………………………8分18.(本小题满分8分)解:由①得,242-<-x x , ……………………………………………………2分2<x ,……………………………………………………………3分由②得,1>-x , ………………………………………………………… 6分所以不等式组的解集是12-<<x . ………………………………………8分19.(本小题满分8分)证明:∵四边形ABCD 是平行四边形, ∴OA=OC , OB = OD , ………………2分又∵E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,GFHE ODBC A第19题图∴11112222OE OA OG OC OF OB OH OD ====,,,, ……………4分 ∴OE=OG , OF = OH , ……………6分 ∴四边形EFGH 是平行四边形. …8分(说明:本题解法较多,请参考评分标准酌情给分) 20.(本小题满分8分)(1)填空:144,…………………………………………………………………2分条形统计图补全如下:准确补全条形图………………………………………………………………4分(2)设获特等奖4篇读后感编号为A ,B ,C ,D ,其中七年级获特等奖读后感为A ,依题意,(方法一)列举所有可能结果如下:准确列表…………………………………………………………………………6分(方法二:)画树状图如下:准确画出树状图 由列表(树状图)知,一共有12种情况,而七年级特等奖读后感被广播电台上播 出的有6种可能,各年级参赛读后感篇数条形统计图 图1所以P (七年级特等奖读后感被广播电台播出)=61=122.………………8分 21.(本小题满分8分)(1)证明:∵AE ∥BF ,∴∠EAC=∠ACB , ………………………………………………2分 又∵AC 平分∠BAE ,∴∠BAC=∠EAC , ………………………………………………3分 ∴∠BAC=∠ACB , ………………………………………………4分 ∴BA=BC . ………………………………………………………5分(2)主要作法如下:画出正确图形2分,标示点D 得1分,共3分. …………………………………8分22.(本小题满分10分)解:(1)由点A (n ,4),AB ⊥x 轴于点B ,且点A 在第一象限内,得AB =4,OB = n ,所以S △AOB =114222AB OB n n =⨯=,…………1分由S △AOB =2,得 n =1,…………………………2分 所以A (1,4), …………………………………………………………3分把A (1,4)代入=my x中,得4=m ;………………………………4分(2)由直线2=+y kx 过点A (1,4),得 2=k ,…………………………5分所以一次函数的解析式为22=+y x ;…………………………………6分 令0=y ,得1=-x所以点C 的坐标为(-1,0),………………7分由(1)可知OB =1, 所以BC =2,………………8分在Rt△ABC中,=AC 10分23.(本小题满分10分)解:设商品A 每件原价x 元,商品B 每件原价y 元,依题意,得A作AD=AB 作∠ABC 的平分线过点B 作AC 的垂线 作线段的AC 垂直平分线 作∠DCF =∠ABC603010805010840x y x y +=⎧⎨+=⎩,…………………………………………………………4分 (列一个正确的方程得2分) 解得164x y =⎧⎨=⎩, …………………………………………………………8分(解出一个正确的解得2分)则买500件A 商品和500件B 商品打折前后相差: 5001650049600400⨯+⨯-=(元),……………………………………10分 答:打折买500件A 商品和500件B 商品比不打折少花了400元.24.(本小题满分12分) (1)证明:∵OA ⊥OE , ∴∠AOE =90°,……………………………1分 又∵AB 是⊙O 的切线,OA 是⊙O 的半径,∴OA ⊥AB∴∠OAB=90°, …………………………2分 ∴∠AOE +∠OAB =180°,∴OE ∥AB . ……………………………3分(2)证明:过O 点作OC ⊥AF 于点C ,………4分∴AF =2AC , ∠OCA=90°,……………5分∴∠AOC +∠OAC =90°, 又∵OA ⊥AB ,∴∠OAC +∠CAB =90°, ∴∠AOC=∠CAB , ……………………6分 又∵BQ ⊥AF ,∴∠AQB =90°,∴∠ACO =∠AQB 又∵OA =AB ,∴△AOC ≌△BAQ (AAS ),……………………………………………7分 ∴AC =BQ ,∴AF =2AC =2BQ ,即2AFBQ=;………………………………………………………8分(3)证明:过O 点作OC ⊥AF 于点C ,由(2)得∠AOC =∠P AB , ∴4cos cos 5PA O B A C ∠=∠=, 在Rt △AOC 中, OA =2, ∴OC=cos OA AOC ∠,=425⨯Q F O B E 图1图2 P QFOBE图3C=85, …………………………………9分 又∵OA=OF ,OC ⊥AF 于点C ,∴∠COF =12∠AOF , ……………………………………………10分 又∵OP 平分∠EOF , ∴∠POF =12∠EOF , ∴∠POC=∠COF +∠POF =12∠AOF +12∠EOF =12∠EOA =45°, ∴△POC 为等腰直角三角形……………………………………………11分(只要判断出△POC 为等腰直角三角形即得1分,过程写得不完整不扣分;若得到∠POC=12∠EOA =45°也得1分)∴OP ==12分 25.(本小题满分14分)(1)解:因为m ,n 分别是关于x 的一元二次方程2ax bx c a ++=与2ax bx c b ++=的一个根,所以22am bm c a an bn c b ⎧++=⎪*⎨++=⎪⎩①②(),……………………………………………2分(考查方程根的概念,正确写出一个等式得1分)由m =n +1,m =2得n = 1把n =1,m =2,a = -1,代入(*)得,4211b c b c b-++=-⎧⎨-++=⎩ , ……………………………………………………………4分 (正确代入写出一个等式得1分)解得11b c =⎧⎨=⎩, ……………………………………………………………………5分 (考查解方程组,要求方程组的解正确及书写正确给1分,否则不得分)(2)解:由(1)的方程组(*)中①-②,得22()()a m n b m n a b -+-=-,…………………………………………………6分()[()]m n a m n b a b -++=-,…………………………………………………7分(考查因式分解的应用,学生不写上式,但能解出正确答案,不扣分)由m =n +1,得m -n =1,故a ()m n b a b ++=-, ………………………………………………………8分 (考查转换思想,学生只要是代入正确得1分)所以(21)a n b a b ++=-,从而b na =-, …………………………………………………………………9分(3)解:把b na =-代入方程组(*)中②,得c na =-,…………………………………………………………………10分由b c +≥2a 得2na -≥2a ,当a <0时,n ≥-1,由n ≤-12得,-1≤n ≤-12,……………………………………………………11分 (考查学生审题能力,学生只算出n ≥-1,而没有完整的得出-1≤n ≤-12不给分) 由24b ac a -=,且b c na ==-,得24)na a na a ---=()(, 整理得,2224n a na a +=,因为a <0 所以,214n n a =+, 即21+24n a=-(),…………………………………………………………12分 由于1a 在-1≤n ≤-12时随n 的增大而增大,………………………………13分 (考查二次函数的性质,只要学生能用性质即得分,若没有写“随n 的增大而增大”,不扣分)所以当n = -1时,a = -13,当n = -12时,a = -47即-47≤a ≤-13………………………………………………………14分 (最后一步考查学生思维的完整性,学生要能完整的写出-47≤a ≤-13才得分)。

2019年南平市九年级适应性检测数学试题及答案

2019年南平市九年级适应性检测数学试题及答案

2019年南平市九年级适应性检测数 学 试 题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;② 可以携带使用科学计算器,并注意运用计算器进行估算和探究; ③ 未注明精确度、保留有效数字等的计算问题不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.2-的相反数等于A .2B .2-C .21 D .21-2.经济学家预计,2019年3月11日摧毁日本东北部的地震和海啸将造成的经济损失可能 超过5千亿美元,请将“5千亿(500 000 000 000)”用科学记数法表示 A .101050⨯ B .10105⨯ C .11105.0⨯ D .11105⨯3.下列运算中,正确的是A .325()a a =B .23a a a +=C .235a a a =· D .33a a a ÷=4.下列哪个图形不是正方体的展开图 5.下列成语所描述的事件必然发生的是A .瓮中捉鳖B .揠苗助长C .海市蜃楼D .海底捞针6.在等边三角形、平行四边形、矩形、等腰梯形和圆五种图形中,既是轴对称图形又是中心对称图形的有A .1种B .2种C .3种D .4种 7.南平市某年6月上旬日最高气温如下表所示:那么这10A .30B .31C .32D .33 8.已知一个圆锥的底面半径长是3,母线长为5,那么这个圆锥的侧面积是A .12πB .15πC .24πD .30π 9.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相 交于点O ,以下四个结论:①∠ABC =∠DCB ,②OA =OD ,(第9题)BADOA B C D14.已知数据1,3,2,x ,2的平均数是3,则这组数据的众数是 .15.已知1O ⊙和2O ⊙的半径分别是3cm 和5cm ,若12O O =1cm ,则1O ⊙与2O ⊙的位置关系是 . 16.100件产品中仅有4件是次品,从中随机抽出1件,则抽到次品的概率是 .17.2019年某市用于保障房建设资金为2 000万元,为了加大力度改善居民住房条件,计划2019年用于保障房建设资金达到2 420万元,则该项资金年平均增长率为 . 18.如图所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用2019个这样的三角形镶嵌而成的四边形的周长是 .三、解答题(本大题共8小题,共86分.请在答题卡...的相应位置作答) 19.(10分)先化简,再求值:)(222b a ba b a +++-,其中12==b a ,. 20.(10分)解不等式组:⎪⎩⎪⎨⎧+-51402x x x , 并把它的解集在数轴上表示出来. 21.(10分)如图,将平行四边形ABCD 的对角线BD 分别向两个方向延长至点E 和点F ,使BE =DF ,求证:四边形AECF 是平行四边形.A FC EBD(第21题) ---①② ≤ < ……CBA22.(10分)某校为了进一步丰富学生的课外体育活动,欲增购一些体育器材,为此该校对一部分学生进行了一次题为“你最喜欢的体育活动”的问卷调查(每人只选一项). 根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 名学生; (2)图①中,“踢毽”部分所对应的圆心角为 度; (3)“跳绳”部分的学生有 人;(4)如果全校有1 860名学生,问全校学生中,最喜欢“跳绳”活动的学生约有多少人? 23.(10分)为“节能减排,保护环境”,某村计划建造A 、B 两种型号的沼气池共20个,以解决所有农户的燃料问题.据市场调查:建造A 、B 两种型号的沼气池各1个,共需费用5万元;建造A 型号的沼气池3个,B 种型号的沼气池4个,共需费用18万元. (1)求建造A 、B 两种型号的沼气池造价分别是多少?(2)设建造A 型沼气池x 个,总费用为y 万元,求y 与x 之间的函数关系式;若要使投入总费用不超过52万元,至少要建造A 型沼气池多少个?24.(10分)如图,⊙O 的直径AB 与弦CD (不是直径)相交于E ,E 是CD 的中点,过点B 作BF ∥CD 交AD 的延长线于点F . (1)求证:BF 是⊙O 的切线;(2)连接BC ,若⊙O 的半径为5,∠BCD =38°,求线段BF 、BC 的长.(精确到0.1)图②(第22题)图①球类 40%跳绳 其它踢毽15%C(第24题)25.(12分)如图,在△ABC 中,∠ABC =∠CAB =72°,将△ABC 绕点A 顺时针旋转α度(36°<α<180°)得到△ADE ,连接CE ,线段BD (或其延长线)分别交AC 、CE 于G 、F 点.(1)求证:△ABG ∽△FCG ;(2)在旋转的过程中,是否存在一个时刻,使得△ABG 与△FCG 全等?若存在,求出此时旋转角α的大小.26.(14分)如图,已知以点A (2,-1)为顶点的抛物线经过点B (4,0). (1)求该抛物线的解析式;(2)设点D 为抛物线对称轴与x 轴的交点,点E 为抛物线上一动点,过E 作直线2y =-的垂线,垂足为N .① 探索、猜想线段EN 与ED 之间的数量关系,并证明你的结论;② 抛物线上是否存在点E 使△EDN 为等边三角形?若存在,请求出所有满足条件的点E 的坐标;若不存在,请说明理由. 【提示:抛物线c bx ax y ++=2(a ≠0)的对称轴是,ab x 2-= 顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac a b 4422,】(备用图) (第26题)(第25题) B A E D F C G (备用图)B A C2019年南平市九年级适应性检测 数学试题参考答案及评分说明说明:(1) 解答右端所注分数,表示考生正确作完该步应得的累计分数,全卷满分150分.(2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 如果考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.一、选择题(本大题共10小题,每小题4分,共40分)1.A ; 2.D ; 3.C ; 4.D ; 5.A ; 6.B ; 7.B ; 8.B ; 9.C ; 10.D . 二、填空题(本大题共8小题,每小题3分,共24分)11.5≥x ; 12.2)1(3-x ; 13.1∶3; 14.2; 15.内含; 16.251(或0.04); 17.%10; 18.2013. 三、解答题(本大题共8小题,共86分)19.解:原式=b a b a 22++-…………………5分 =b a +3…………………7分当1,2==b a 时,原式=7 …………………10分 20.解:解不等式①得 2≥x …………………3分由不等式②得 445+<x x …………………5分4x <…………………6分所以原不等式组的解集为24x ≤<…………………8分…………………10分21.证明:连接AC 交BD 于O ,在平行四边形ABCD 中,OA =OC ,OB =OD …………………4分 ∵BE =DF ,∴ OB +BE =OD +DF ,∴ OE =OF …………………8分 ∴四边形AECF 是平行四边形…………………10分22.解:(1)200 …………………2 分(2)54…………………4 分 (3)50…………………7分(4)465200501860=⨯(人)…………………10分 23.解:(1)设建造A 、B 两种型号的沼气池造价分别是x 万元,万元,y---依题意,得5=+y x1843=+y x …………………4分解得3,2==y x答:建造A 、B 两种型号的沼气池造价分别是2万元、3万元……………6分 (2)60)20(32+-=-+=x x x y …………………8分当526052≤-≤x y 时,,解得 8≥x 答:要使投入总费用不超过52万元,至少要建造A 型沼气池8个………10分24.(1)证明:直径AB 平分弦CD ,∴AB CD ⊥…………………2分 ∵CD BF ∥, AB BF ∴⊥…………………3分 ∴BF 是O ⊙的切线…………………4分(2)解法一:连接AC ,AB 是O ⊙的直径,1025==⨯∴AB ,BCA ∠=90° 又AB CD ⊥,∴BD BC 弧弧=∴BAC ∠=BAF ∠=BCD ∠=38°………6分在Rt △ABF 中,ABBFBAF =∠tan , BF =AB ⨯BAF ∠tan =8.738tan 10≈︒⨯…………………8分在Rt △ABC 中,ABBCBAC =∠sin ∴BC =AB ⨯BAD ∠sin 2.638sin 10≈︒⨯=………………10分解法二:连接BD ,AB 是O ⊙的直径,1025==⨯∴AB ,BDA ∠=90° 又AB CD ⊥,∴BD BC 弧弧=BD BC =∴,BAD ∠=BCD ∠=38°…………………6分在Rt △ABF 中,ABBFBAF =∠tan , ∴BF =AB ⨯BAF ∠tan =8.738tan 10≈︒⨯…………………8分在Rt △ABD 中,ABBDBAD =∠sin ∴BC =BD =AB ⨯BAD ∠sin 2.638sin 10≈︒⨯=…………10分(注意:其他正确解法所得的近似结果若不相同,同样给分!) 25.(1)证法一:∵△AED 是由△ABC 绕点A 顺时针旋转得到的,∴︒=∠=∠72DAE BAC CAE BAD ∠=∠,C(第24题)C(第24题)(第25题)BA ED F CGAE AC AD AB ==,…………………3分ECACAE BADABD ∠=∠-︒=∠-︒=∠∴21802180………………5分又CGF BGA ∠=∠∴△ABG ∽△FCG …………………7分证法二:∵△AED 是由△ABC 绕点A 顺时针旋转得到的,∴︒=∠=∠72DAE BAC CAE BAD ∠=∠,,AE AC AD AB ==,…………3分∴AEADAC AB =,∴ABD ∆∽ACE ∆,ECA DBA ∠=∠∴…………………4分 又CGF BGA ∠=∠ ,∴△ABG ∽△FCG …………………7分(2)答:存在…………………8分由(1)知△ABG ∽△FCG ,∴当BG =CG 时,△ABG ≌△FCG ………………9分 ∵∠ABC =∠CAB =72°,∴∠GCB =∠GBC =36°…………………10分AD AB = ,︒=∠=∠∴36BDA GBA …………………11分 ∴α=∠BAD =108°…………………12分26. 解:(1)设抛物线的解析式为,)(2k h x a y +-=∵抛物线的顶点A (2,-1)且过点B (4,0),,1)2(2--=∴x a y 且41140=∴-=a a ,…3分 ∴抛物线的解析式为x x x y -=--=22411)2(41…………………4分 (2)猜想:NE DE = …………………5分证明:易得D (2,0)…………………6分 当点E 与B 重合时,DE =2,EN =2,∴DE =EN 当点E 与O 重合时,DE =2,EN =2,∴DE =EN当点E 与A 重合时,DE =1,EN =1,∴DE =EN …………………7分(上述三种情况未讨论或讨论不完整,扣1分)当点E 不与B 、O 、A 重合时, 设E 点坐标为)41,(2x x x -,F x EN 轴于点交, 在Rt △DEF 中,22222)2(y x EF DF DE +-=+=…………8(第26题)分又∵,2+=y NE ∴4)41(4442222+-+=++=x x y y y NE4422+-+=x x y 22)2(y x +-=………9分∴NE DE =综上所述,NE DE =…………………10分(3)答:存在…………………11分当点E 在x 轴上时△EDN 为直角三角形,点E 在x 轴下方时△EDN 为钝角三角形,所以只当E 在x 轴上方时△EDN 才可能为等边三角形(注意:未作上述说明不扣分!) 理由一:若△EDN 为等边三角形,∵DN NE DE ==,且轴x EN ⊥, ∴2==FN EF ,2412=-=∴x x y …………………12分 解得 322±=x …………………13分∴点E 的坐标为),和(2322)2,322(-+…………………14分理由二:若△EDN 为等边三角形,∵DN NE DE ==,且轴x EN ⊥, ∴∠︒=30EFD ,2==FN EF …………………12分 在Rt △DEF 中,DFEFEFD =∠tan , ∴3230tan 2tan =︒=∠=EFD EF DF …………………13分∵DA 是抛物线的对称轴,且D (2,0),∴根据抛物线的对称性得点E 的坐标为),和(2322)2,322(-+…………14分。

福建2019年中考数学适应性测试试题

福建2019年中考数学适应性测试试题

福建2019年中考数学适应性测试试题一、精心选一选:本大题共10小题,每小题4分,共40分.1.21的绝对值是( ) A .2 B .﹣2 C .21 D .21- 2. 下列等式中,正确的是( )A .3a+2b=5abB . 2(a ﹣b) =2a-bC .(a ﹣b )2=a 2﹣b 2D .(﹣2a 3)2=4a 63. 如图,将一个小球摆放在圆柱上,该几何体的俯视图是( )A B CD4.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如A. 6B. 6.5C. 7D. 8 5.下列说法中错误..的是( ) A .两条对角线互相平分的四边形是平行四边形 B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的矩形是正方形D .两条对角线相等的菱形是正方形6.在数轴上表示不等式组20,2(1) 1.x x x +>⎧⎨-≤+⎩的解集,正确的是( )A B C D7.如图,AB 是⊙O 的切线,切点为B ,AO交⊙O于点C ,D 是优弧BC上一点,∠A =30°,则∠D 为( )A .25°B .30°C .35°D .45°第3题图8.一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球9.如图,菱形纸片ABCD的对角线AC、BD相交于点O,折叠纸片使点A与点O 重合,折痕为EF,若AB=5,BD=8,则△OEF的面积为().A.12 B.6 C.3 D.2310.规定:如图1,在平面内选一定点O,引一条有方向的射线OX,再选定一个单位长度,那么平面上任一点M的位置可由∠MOX的度数θ与OM的长度m确定,有序数对(θ,m)称为点M的“极坐标”,这样建立的坐标系称为“极坐标系”。

2019年南平市九年级数学下期中第一次模拟试题(及答案)

2019年南平市九年级数学下期中第一次模拟试题(及答案)

2019年南平市九年级数学下期中第一次模拟试题(及答案)一、选择题1.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是()A.B.C.D.2.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A.23DEBC=B.25DEBC=C.23AEAC=D.25AEEC=3.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大4.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.55.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则反比例函数的表达式为()A .y=12xB .y=24xC .y=32xD .y=40x6.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .17.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .19 8.若37a b =,则b a a-等于( ) A .34 B .43 C .73 D .379.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交CD 于点F ,交AD 的延长线于点E ,若AB =4,BM =2,则△DEF 的面积为( )A .9B .8C .15D .14.510.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:211.已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d12.给出下列函数:①y=﹣3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③二、填空题13.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.14.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.16.如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为_____.17.在ABC ∆中,若45B ∠=o ,102AB =,55AC =,则ABC ∆的面积是______.18.学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.19.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.20.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .三、解答题21.某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A 处测得山顶B 的仰角为45°,他们从A 处沿着坡度为31000 m 到达D 处,在D 处测得山顶B 的仰角为58°,若点A 处的海拔为12米,求该座山顶点B 处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60,sin 58°≈0. 85,cos 58°≈0.53322.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中()A 1,8,()B 3,8,()C 4,7. ()1ABC V 外接圆的圆心坐标是______;()2ABC V 外接圆的半径是______;()3已知ABC V 与DEF(V 点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是______;()4请在网格图中的空白处画一个格点111A B C V ,使111A B C V ∽ABC V ,且相似比为2:1.23.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在轴,轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数kyx的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.24.如图,在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=3 4 .(1)求证:ΔADM∽ΔBMN;(2)求∠DMN的度数.25.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、D不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A符合题意;故选C.【点睛】本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.2.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【详解】∵AD:DB=2:3,∴ADAB=25.∵DE∥BC,∴DEBC=ADAB=25,A错误,B正确;AE AC =ADAB=25,C错误;AE EC =ADDB=23,D错误.故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3.D解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.B解析:B 【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.5.C解析:C【解析】【分析】过A作AM⊥x轴于M,过B作BN⊥x轴于N,根据菱形性质得出OA=BC=AB=OC,AB ∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN,求出BN=AM=4,CN=OM=3,ON=8,求出B点的坐标,把B的坐标代入y=kx求出k即可.【详解】过A作AM⊥x轴于M,过B作BN⊥x轴于N,则∠AMO=∠BNC=90°,∵四边形AOCB是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.6.D解析:D【解析】 因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 7.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF , ∵12EAF CDF C C V V ,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 8.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.9.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE==∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.10.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.11.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选B.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.12.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.14.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x由题可得:17:085=x:11解得x=22则小刚举起的手臂超出头顶的高度为解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.15.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米∵AB∥CD∴∠PDC=∠PBF∠PCD=∠PAB∴△PDC∽△解析:5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴AB PF CD PE=,∴AB15x CD15+=,依题意CD=20米,AB=50米,∴15205015x=+,解得:x=22.5(米).答:河的宽度为22.5米.16.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:15【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.解:∵四边形ABCD 是平行四边形,∴AB =CD =12,AE ∥BC ,AB ∥CD ,∴∠CFB =∠FBA ,∵BE 平分∠ABC ,∴∠ABF =∠CBF ,∴∠CFB =∠CBF ,∴CB =CF =8,∴DF =12﹣8=4,∵DE ∥CB ,∴△DEF ∽△CBF , ∴EF BF =DF CF , ∴2BF =48, ∴BF =4,∵CF =CB ,CG ⊥BF ,∴BG =FG =2,在Rt △BCG 中,CG =故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.17.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,AC =∴5CD ==,∴15BC BD CD =+=或5BC BD CD =-=,∴1752ABCS BC AD∆=⋅=或25.故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.【解析】【分析】如图所示作BD⊥CA于D则在直角△ABD中可以求出BD 然后求出△ABC面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥CA于D则在直角△AB解析:6750【解析】【分析】如图所示,作BD⊥CA于D,则在直角△ABD中可以求出BD,然后求出△ABC面积;根据单价可以求出总造价.【详解】如图所示,AB=103,AC=30,∠BAC=120°,作BD⊥CA于D,则在直角△ABD中,∠BAD=60°,∴BD=ABsin60°=15,∴△ABC面积=12×AC×BD=225.又因为每平方米造价为30元,∴总造价为30×225=6750(元).【点睛】此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.19.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.20.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD=AB由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.三、解答题21.1488米.【解析】【分析】过D作DE⊥BC于点E,作DF⊥AC于点F,易知四边形DECF为矩形,在Rt△ADF中,利用三角函数可求出DF和AF,设BE=x米,在Rt△BDE中,利用三角函数可表示出DE 的长度,再根据AC=BC建立方程求出x的值,最后用BC加上A点的海拔高度即为B处的海拔高度.【详解】解:如图,过D作DE⊥BC于点E,作DF⊥AC于点F,∵DE⊥BC,DF⊥AC,∠C=90°∴四边形DECF为矩形,∴DE=FC,DF=EC∵山坡AD的坡度为3∴∠DAF=30°,∴1DF=AD sin30=1000=5002⋅⨯o米,3AF=AD cos30=1000=5003⋅o设BE=x米,在Rt△BDE中,∠BDE=58°,∴BE DE=tan 58 1.6≈o x 米, 在Rt △ABC 中,∠BAC=45°,∴AC=BC∴AF+FC=BE+EC ,即50035001.6+=+x x 解得4000340009763-=≈x ∴BC=BE+EC=976+500=1476米∵A 处的海拔高度为12米,∴B 处的海拔高度为1476+12=1488米答:该座山顶点B 处的海拔高度为1488米.【点睛】本题考查解直角三角形的应用,作辅助线构造直角三角形,再根据三角函数建立方程是解题的关键.22.(1)(2,6);(2)5; (3)(3,6) ;(4)见解析.【解析】【分析】(1)根据作图,结合网格特点解答;(2)根据线段垂直平分线的性质和三角形的外接圆的概念解答;(3)根据位似变换和位似中心的概念解答;(4)根据相似三角形的对应边的比相等,都等于相似比解答.【详解】解:(1)如图1,由作图可知△ABC 外接圆的圆心坐标是(2,6),故答案为(2,6);(2)作AB 、BC 的垂直平分线交于G ,连接AG ,根据网格特点可知,点G 的坐标为(2,6),则2212+5则△ABC外接圆的半径是5,故答案为5;(3)如图2,连接BE、FC,根据网格特点,BE与FC交于点M,点M的坐标为(3,6),根据位似中心的概念可知,位似中心M的坐标是(3,6),故答案为(3,6);(4)由网格特点可知,AB=2,BC=2,AC=10,∵△A1B1C1∽△ABC,且相似比为2:1,∴A1B1=22,B1C1=2,A1C1=25,所求的△A1B1C1如图3.【点睛】本题考查的是格点正方形、锐角三角函数的定义、位似变换与位似中心与相似三角形的性质,掌握如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段互相平行,这两个图形是位似图形是解题的关键.23.(1)2yx,E(2,1),F(-1,-2);(2)32.【解析】【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数kyx=的图象经过点D,∴21k=,∴k=2,∴函数kyx=的表达式为2yx=.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入2yx=得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:12AE•FG=131322⨯⨯=.24.(1)见解析;(2)90°【解析】【分析】(1)根据43ADMB=,43AMBN=,即可推出AD AMMB BN=,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,从而得出∠DMN的度数.【详解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵43ADMB=,14334AMBN==∴AD AMMB BN=又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【点睛】本题考查了正方形的性质的运用,相似三角形的判定及性质的运用,解答时证明△ADM∽△BMN是解答的关键.25.电视塔OC高为1003米,点P的铅直高度为()100313-(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=1003,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=1003100-,即PB=1003100-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档