最新高三数学复习知识点整理精选5篇

合集下载

高三数学必考知识点复习梳理5篇

高三数学必考知识点复习梳理5篇

高三数学必考学问点复习梳理5篇与高一高二不同之处在于,高三复习学问是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的同学,此时需要进展查漏补缺,但也需要同时提升力气,填补学问、技能的空白。

下面就是我给大家带来的高三数学复习学问点,期望大能关怀到大家!高三数学复习学问点11、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。

组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。

元素常用小写字母a、b、c、…来表示。

集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a∉A。

3、集合中元素的特性(1)确定性:设A是一个给定的集合,x是某一具体对象,那么x或者是A的元素,或者不是A的元素,两种状况必有一种且只有一种成立。

例如A={0,1,3,4},可知0∈A,6ÎA。

(2)互异性:“集合张的元素必需是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

4、集合的分类集合科依据他含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。

如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于全部点”“全部的三角形”,组成上述集合的元素不行数的,因此他们是无限集。

特殊的,我们把不含有任何元素的集合叫做空集,记错F,如{xÎR|+1=0}。

5、特定的集合的表示为了书写便利,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

高三数学知识点总结范文(4篇)

高三数学知识点总结范文(4篇)

高三数学知识点总结范文1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-b>0;a-b=0;a-b<0.另外,若b>0,则有>1;=1;<1.概括为:作差法,作商法,中间量法等.3.不等式的性质(1)对称性:a>b;(2)传递性:a>b,b>c;(3)可加性:a>ba+cb+c,a>b,c>da+cb+d;(4)可乘性:a>b,c>0ac>bc;a>b>0,c>d>0;(5)可乘方:a>b>0(n∈N,n≥2);(6)可开方:a>b>0(n∈N,n≥2).1、梳理基础知识以前学过的知识要全面掌握和理解,在心中建立知识网络。

打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。

这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。

如函数可以利用框图的形式由粗到细进行回忆。

概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。

在平时学习时,不要满足于得到答案就行了,而其他的方法却不去研究,尤其课堂上,老师通过一个典型的例题介绍处理这种问题有哪些方法,可以从哪些不同的角度来思考问题。

方法没有好坏之分,只是在解决具体的问题时才有优劣之分,更重要的是要关注通性、通法的掌握,而不是仅关注此问题特殊的、简单的方法。

2、重视“三基”高考数学学科的考试既考查中学数学的基础知识和方法,又考查考生进人高校继续学习的潜能。

因此,既突出对基础知识、基本技能、基本数学思想方法的考察,又强调能力立意,以数学的基础知识为载体,考察学生的数学能力,同时注意考察学生的创新能力。

最新高考高三数学知识点总结5篇

最新高考高三数学知识点总结5篇

最新高考高三数学知识点总结5篇第一篇:高三数学知识点总结-函数函数是高中数学的基础,高三数学中也是重中之重。

重要的函数知识点有:函数的定义、函数的分类、函数的性质、函数的图像和函数的应用等。

1. 函数的定义函数是数学中一个非常基本和重要的概念,它是一种对应关系,将一个自变量对应一个因变量。

一个函数通常写作f(x) = y,其中x为自变量,y为因变量,f(x)表示函数名称。

函数的定义域是指所有能够被输入到函数中的自变量的值,而值域则是函数所有可能的因变量的值。

2. 函数的分类函数可以按照其输入和输出的类型分类为以下几种:一次函数、二次函数、指数函数、对数函数、三角函数以及复合函数等。

3. 函数的图像函数的图像就是在平面直角坐标系内把对应关系中的自变量和因变量的值画出来的结果。

通过画出函数的图像,我们可以更容易地理解函数的性质。

例子:考虑函数f(x) = x²,其图像可以描述为一个抛物线,开口朝上,顶点坐标为(0, 0)。

第二篇:高三数学知识点总结-三角函数三角函数是高中数学中另一个重要的知识点。

三角函数包括正弦、余弦、正切、余切、正割和余割等。

1. 正弦、余弦和正切函数正弦、余弦和正切函数是最基本的三角函数。

它们可以用三角形中各条边的比例去定义。

正弦函数f(x) = sin(x)定义为对边(x)除以斜边(h),余弦函数f(x)=cos(x)定义为邻边(a)除以斜边(h),正切函数f(x)=tan(x)定义为对边(x)除以邻边(a)。

2. 逆三角函数可以通过三角函数的函数关系,如sin²(x)+cos²(x)=1,推出三角函数的逆函数。

这些逆三角函数的命名包括反正弦、反余弦、反正切和反余切函数等。

用记号arcsin(x)、arccos(x)、arctan(x)和arcctan(x)等表示。

例子:cos(π/4) = sin(π/4) = 1/√2,因为90度的等腰直角三角形斜边长和两边之一的长度是相等的。

高中数学知识点全总结(精选10篇)

高中数学知识点全总结(精选10篇)

高中数学知识点全总结(精选10篇)第一篇:代数与函数代数与函数是高中数学的重要基础内容,包括多项式、因式分解、分式方程等知识点。

代数与函数的学习对于理解和应用其他数学知识具有重要的作用。

第二篇:几何几何是高中数学不可或缺的一部分,包括平面几何、立体几何、三角形及其性质、相似三角形等知识点。

几何的学习能够培养学生的空间想象力和推理能力。

第三篇:概率与统计概率与统计是高中数学的实用内容,包括事件的概率、统计图表的分析与应用等知识点。

概率与统计的学习对于培养学生的数据分析能力具有重要的意义。

第四篇:数列与数学归纳法数列与数学归纳法是高中数学中的重要知识点,包括等差数列、等比数列、递推公式的求解等内容。

数列与数学归纳法的学习对于培养学生的逻辑思维和数学推理能力具有重要作用。

第五篇:函数与导数函数与导数是高中数学中的重要内容,包括函数的性质、导数的定义与求解等知识点。

函数与导数的学习对于培养学生的数学建模能力和问题解决能力具有重要作用。

第六篇:三角函数三角函数是高中数学中常见且重要的内容,包括三角函数的定义、性质、图像与应用等知识点。

三角函数的学习对于理解三角关系、解决相关问题具有重要意义。

第七篇:立体几何立体几何是高中数学中的重要内容,包括立体的表面积与体积的计算、空间几何体的相交与相切等知识点。

立体几何的学习对于培养学生的空间想象力和几何思维具有重要作用。

第八篇:平面向量平面向量是高中数学中的一项重要内容,包括向量的定义、运算、共线与垂直等知识点。

平面向量的学习对于培养学生的几何直观和向量运算能力具有重要作用。

第九篇:三角变换三角变换是高中数学中常见的内容,包括三角函数的基础知识、三角函数的图像变换等。

三角变换的学习对于理解函数的图像与性质具有重要的帮助。

第十篇:数学推理与证明数学推理与证明是高中数学中的重要内容,包括逻辑推理、数学证明的方法与技巧等知识点。

数学推理与证明的学习对于培养学生的严密思维和推理能力具有重要作用。

高三数学知识点归纳总结(优秀8篇)

高三数学知识点归纳总结(优秀8篇)

高三数学知识点归纳总结(优秀8篇)高三数学知识点归纳篇一高三上册数学知识点整理1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点。

3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:二次函数。

1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

人教版高三数学知识点总结1、定义:用符号〉,=,〈号连接的式子叫不等式。

2、性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3、分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4、考点:①解一元一次不等式(组)②根据具体问题中的数量关系列不等式(组)并解决简单实际问题③用数轴表示一元一次不等式(组)的解集高三数学知识点归纳总结篇二线线平行常用方法(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两只直线互相平行。

(3)初中所学平面几何中判断直线平行的方法(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。

高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。

需要特别注意能够对含有一个量词的全称命题进行否定。

2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。

3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。

第二部分的位置关系侧重于利用空间向量来进行证明和计算。

4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。

5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。

6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。

我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。

7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。

能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。

会用基本不等式解决简单的最大(小)值问题。

9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。

10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。

11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。

要想成功就必须付出汗水。

12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。

数学高三知识点总结归纳5篇高中数学知识点总结归纳

数学高三知识点总结归纳5篇高中数学知识点总结归纳

数学高三知识点总结归纳5篇高中数学知识点总结归纳数学高三知识点总结归纳1第一章:三角函数。

考试必考题。

诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及恒等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。

第二章:平面向量。

个人觉得这一章难度较大,这也是我掌握最差的一章。

向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。

向量共线和垂直的数学表达,这是计算当中经常要用的公式。

向量的共线定理、基本定理、数量积公式。

难点在于分点坐标公式,首先要准确记忆。

向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。

有同样情况的同学建议多看有关题的图形。

第三章:三角恒等变换。

这一章公式特别多。

和差倍半角公式都是会用到的公式,所以必须要记牢。

由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。

而且三角函数变换都有一定的规律,记忆的时候可以结合起来去记。

除此之外,就是多练习。

要从多练习中找到变换的规律,比如一般都要化简等等。

这一章也是考试必考,所以一定要重点掌握。

数学高三知识点总结归纳2(1)赋值语句:在表述一个算法时,经常要引入变量,并赋给该变量一个值,用来表明赋给某一个变量的一个具体的确定值的语句叫做赋值语句。

赋值语句的一般格式:变量名表达式①“=”的意义和作用:赋值语句中的“=”号,称作赋值号。

②赋值语句的作用:先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值。

③关于赋值语句,需要注意几点:ⅰ赋值号左边只能是变量名,而不是表达式。

例如 3.6=X,5=y;都是错误的.ⅱ赋值号左右不能对换:赋值语句是将赋值号右边的表达式赋值给赋值号左边的变量,例如:Y=X,表示用X的值替代变量Y原先的取值,不能改写成X=Y,因为后者表示用Y的值替代变量X的值。

最新高考高三数学知识点总结5篇

最新高考高三数学知识点总结5篇

最新高考高三数学知识点总结5篇高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。

在读书、听课、研习、总结这四个环节都比初中的学习有更高的要求。

下面就是小编给大家带来的高三数学知识点,希望大能帮助到大家!高三数学知识点1(1)不等关系感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式①经历从实际情境中抽象出一元二次不等式模型的过程。

②通过函数图象了解一元二次不等式与相应函数、方程的联系。

③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题①从实际情境中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

(4)基本不等式:。

①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的(小)值问题。

高三数学知识点21.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。

高三数学知识点整理精选五篇分享

高三数学知识点整理精选五篇分享

高三数学知识点11.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-b>0?;a-b=0?;a-b<0?.另外,若b>0,则有>1?;=1?;<1?.概括为:作差法,作商法,中间量法等.3.不等式的性质(1)对称性:a>b?;(2)传递性:a>b,b>c?;(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;(5)可乘方:a>b>0?(n∈N,n≥2);(6)可开方:a>b>0?(n∈N,n≥2).复习指导1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.3.“两条常用性质”(1)倒数性质:①a>b,ab>0?<;②a<0③a>b>0,0;④0(2)若a>b>0,m>0,则①真分数的性质:<;>(b-m>0);②假分数的性质:>;<(b-m>0).高三数学知识点21.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.3.等差中项如果A=(a+b)/2,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N_.(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_.(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项).注意:一个推导利用倒序相加法推导等差数列的前n项和公式:Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn=n(a1+an)/2两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.高三数学知识点3定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

高三数学复习知识点归纳精选5篇

高三数学复习知识点归纳精选5篇

高三数学复习知识点归纳精选5篇数学是一门理性思维和逻辑推理的学科,是高中阶段必修的科目之一。

对于高三的学生来说,数学的学习和复习占据了极其重要的地位。

为了帮助大家更好地复习数学,本文将为大家总结出五篇数学复习知识点归纳。

一、高中数学复习——函数与导数函数与导数是高中数学中的重要章节,它是后续数学学科的基础。

我们主要从以下几个方面进行归纳:函数的定义、图像、性质;导数的定义、计算、应用等方面。

通过本篇文章的复习,可以帮助学生更好地掌握函数与导数这一章节的知识点。

二、高中数学复习——三角函数三角函数是数学中非常复杂和常见的一个部分,因此对于高三学生来说学习三角函数显得尤为重要。

我们主要从以下几个方面进行归纳:基本概念、诱导公式、三角函数值的变化范围及其图像等方面。

通过本篇文章的复习,可以让学生掌握三角函数的相关知识点,从而更好地完成数学学习。

三、高中数学复习——数列与数学归纳法数列与数学归纳法是高中数学的基本章节,是后续数学应用的重要基础。

我们主要从以下几个方面进行归纳:数列的概念与分类、递推公式、等差与等比数列等;数学归纳法的基本概念、方法及其应用等。

通过本篇文章的复习,可以让学生更好地掌握数列与数学归纳法的相关知识点。

四、高中数学复习——平面几何平面几何是高中数学中的重要章节之一,是数学中非常基础的部分。

我们主要从以下几个方面进行归纳:基本概念、关键公式及定理、直线、圆等多个方面,通过本篇文章的复习,可以让学生更全面地掌握平面几何的相关知识点。

五、高中数学复习——概率论概率论是高中数学的重要部分,其涉及到的知识点非常广泛,并且在实际应用中具有非常重要的地位。

我们主要从以下几个方面进行归纳:基本概念、频率分布、概率分布、排列组合等方面。

通过本篇文章的复习,可以让学生掌握概率论的相关知识点,从而更好地运用到实际生活和学业中。

以上就是本篇文章精选的高三数学复习知识点归纳,希望对学生们对数学知识的深入学习和掌握提供有所帮助。

高三数学知识点重难点梳理最新5篇

高三数学知识点重难点梳理最新5篇

高三数学知识点重难点梳理最新5篇抱歉,我是 AI 语言模型,无法给出最新的高三数学知识点重难点梳理文章,以下是数学知识点重难点梳理的示例,供您参考:1.一元二次方程重点:解方程的方法、判别式、求根公式难点:实数解、根的性质(多项式函数图像的研究)例子:(1)解方程:$2x^2+5x-3=0$(2)当方程$x^2+px+q=0$ 有实数解的充分必要条件是什么?(3)求函数 $y=x^2+3x+2$ 的图像:顶点坐标、对称轴、开口方向等。

2.向量重点:向量的表示、加减、数量积、向量共线、平面向量的坐标表示难点:向量共面、夹角计算、空间向量的坐标表示例子:(1)设 $\vec{a}=\begin{pmatrix}2 \\ 1 \\ 3\end{pmatrix}$,$\vec{b}=\begin{pmatrix}-1 \\ 0 \\ 2\end{pmatrix}$,求$\vec{a}+\vec{b}$,$\vec{a}-\vec{b}$,$2\vec{a}-3\vec{b}$ 。

(2)写出 $\vec{a}=\begin{pmatrix}3 \\2\sqrt{3}\end{pmatrix}$,$\vec{b}=\begin{pmatrix}-4 \\4\sqrt{3}\end{pmatrix}$ 的数量积表达式,计算它们的数量积和夹角。

(3)在空间直角坐标系中,直线 $l:\begin{cases}x+y+z=1 \\ x+2y=z\end{cases}$ 上找一点 $A(x_0,y_0,z_0)$ 和$\vec{n}=\begin{pmatrix}1 \\ -1 \\ 1\end{pmatrix}$ 垂直,把直线 $l$ 的参数式写出。

3.导数与微分重点:导数的定义、导函数、函数的单调性、函数的极值和最值、凹凸性、微分难点:函数的单调区间、极值的判定、最值求解、凹凸点和拐点的求解例子:(1)求函数 $f(x)=x^4-4x^3+5$ 的导数和导函数,并判断$f(x)$ 的单调性和极值。

高三数学重要知识点总结五篇课文

高三数学重要知识点总结五篇课文

高三数学重要知识点总结五篇课文高三数学重要知识点总结第一篇:函数与方程函数与方程是数学中最基础且重要的知识点之一。

函数是一种关系,它描述了输入和输出之间的关系。

而方程是一个等式,其中包含一个未知数,我们需要找到这个未知数的值使得等式成立。

在高三数学中,我们经常遇到的函数包括一次函数、二次函数、指数函数和对数函数等。

一次函数的表达式为y=ax+b,其中a和b为常数。

二次函数则是y=ax^2+bx+c,其中a、b和c为常数。

指数函数和对数函数是互逆关系,指数函数的表达式为y=a^x,对数函数的表达式为y=loga(x),其中a为一个正常数。

方程的解是使得等式成立的值。

我们需要通过一系列的解题方法来求解方程,比如配方法、因式分解、分式方程的通分和二次函数的根与系数之间的关系等。

在高三数学中,我们需要运用这些方法来解题,并且要理解解的意义和方法的适用条件。

第二篇:几何与图形几何与图形是数学中的重要分支之一。

几何研究空间和形状,图形则是几何的一种特殊形式。

高三数学中,我们需要掌握的几何知识包括线段的垂直、平行关系,三角形的定理,如勾股定理、正弦定理、余弦定理,以及圆的相关概念,如圆心角、弦、弧等。

在解决几何题目时,我们需要应用这些知识,运用勾股定理或者三角函数来求解各种角度或边长的关系。

同时,我们需要灵活运用画图、标注和推理等方法,来辅助解决几何问题。

第三篇:概率与统计概率与统计是数学中的另一重要分支。

概率是研究随机事件发生的可能性,统计则是研究收集、整理和分析数据的方法。

在高三数学中,我们需要掌握概率的基本概念和计算方法,如事件的概率、条件概率等。

我们还需要了解概率的性质,如概率的加法规则和乘法规则。

统计方面,我们需要学会如何收集和整理数据,如何通过图表和统计量来描述数据特征。

同时,我们需要学会如何应用概率的知识来分析数据,并作出合理的推断和判断。

第四篇:数列与数列极限数列是一系列按照一定规律排列的数,数列极限则是数列中的数随着项数无限增大或减小时的极限值。

高三数学复习知识点归纳5篇

高三数学复习知识点归纳5篇

高三数学复习知识点归纳5篇高三学生要根据自己的条件,以及高中阶段学科知识交叉多.综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的复习方法.下面就是小编给大家带来的高三数学复习知识点,希望大能帮助到大家!高三数学复习知识点1圆锥曲线_2y2_1.2?2?1的一条渐近线方程为?y?0.则此双曲线的离心率为 ( ) ab3 A. _ B. 3 C. D2.已知椭圆C以坐标原点为中心,坐标轴为对称轴,且椭圆C以抛物线_2?_y 的焦点为焦点,y2_2以双曲线??1的焦点为顶点,则椭圆C的标准方程为 _93.已知圆:.,且与圆交于.两点,若,设,求直线的方程; 与轴的交点为,若向量 (1)直线过点 (2)过圆上一动点,求动点作平行于轴的直线的轨迹方程,并说明此轨迹是什么曲线.高三数学复习知识点21.求数列极限求数列极限可以归纳为以下三种形式.抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除.此外,也可以按照定义.基本性质及运算法则直接验证.求具体数列的极限,可以参考以下几种方法:a.利用单调有界必收敛准则求数列极限.首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值.b.利用函数极限求数列极限如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解.求项和或项积数列的极限,主要有以下几种方法:a.利用特殊级数求和法如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果.lb.利用幂级数求和法若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值.c.利用定积分定义求极限若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限.d.利用夹逼定理求极限若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解.e.求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算.高三数学复习知识点31.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的〝属于〞关系;(2)能选择自然语言.图形语言.集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn二.【命题走向】的直观性,注意运用Venn预测_题的表达之中,相对独立.具体题型估计为高三数学复习知识点4一.基础知识(理解去记)(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体.其中,这条定直线称为旋转体的轴.(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.侧面母线2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.3.1棱锥——有一个面是形,其余各面是有一个公的三角形,由这些面所围多边共顶点成的几B何体叫做棱锥.4.1圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥.5.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.B .6.1圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.7.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球;相关公式侧面积=各个侧面面积之和表面积(全面积)=侧面积+底面积体积公式:V柱体=S底hV锥体= S底h/31V棱台S?S`)h, 3__S?S`)h?r??rR??R)h, V圆台3R为球的半径)(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影.2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;俯视图——光线从几何体的上面向下面正投影,得到的投影图;3.直观图:3.1直观图——是观察着站在某一点观察一个空间几何体而画出的图形.直观图通常是在平行投影下画出的空间图形.3.2斜二测法:结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的高三数学复习知识点5第一,函数与导数.主要考查集合运算.函数的有关概念定义域.值域.解析式.函数的极限.连续.导数.第二,平面向量与三角函数.三角变换及其应用.这一部分是高考的重点但不是难点,主要出一些基础题或中档题.第三,数列及其应用.这部分是高考的重点而且是难点,主要出一些综合题.第四,不等式.主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小.是高考的重点和难点.第五,概率和统计.这部分和我们的生活联系比较大,属应用题.第六,空间位置关系的定性与定量分析.主要是证明平行或垂直,求角和距离.第七,解析几何.是高考的难点,运算量大,一般含参数.高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键.针对数学高考强调对基础知识与基本技能的考查我们一定要全面.系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理.原理.法则.公式.并形成记忆,形成技能.以不变应万变.高三数学复习知识点归纳精选5篇。

高三数学重点复习必考知识点整理精选5篇

高三数学重点复习必考知识点整理精选5篇

高三数学重点复习必考知识点整理精选5篇只有高效的学习方法,才可以很快的掌握知识的重难点。

有效的读书方式根据规律掌握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的掌握知识。

下面就是给大家带来的高三数学复习知识点,希望对大家有所帮助!高三数学复习知识点11.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。

2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。

3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C0(或≥0),另一部分对应二元一次不等式Ax+By+C0(或≤0)。

4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。

5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。

“线定界,点定域”。

6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。

所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。

7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。

8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C 符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。

高三数学重要复习知识点总结归纳5篇

高三数学重要复习知识点总结归纳5篇

高三数学重要复习学问点总结归纳5篇高三同学要依据自己的条件,以及高中阶段学科学问穿插多、综合性强,以及考察的学问和思维触点广的特点,找寻一套行之有效的复习方发。

下面就是我给大家带来的高三数学学问点,期望能关怀到大家!高三数学学问点11.对于函数f(x),假设对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;2.对于函数f(x),假设对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),那么y=f(x)的图象关于点(a,b)成中心对称;4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),那么它的图象关于x=a成轴对称。

5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,那么-x也确定是定义域内的一个自变量(即定义域关于原点对称).高三数学学问点2一个推导利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2++a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3++a1qn,两式相减得(1-q)Sn=a1-a1qn,Sn=(q1).两个防范(1)由an+1=qan,q0并不能马上断言{an}为等比数列,还要验证a10.(2)在运用等比数列的前n项和公式时,必需留意对q=1与q1分类商量,防止因无视q=1这一特殊情形导致解题失误.三种方法等比数列的推断方法有:(1)定义法:假设an+1/an=q(q为非零常数)或an/an-1=q(q 为非零常数且n2且nN_),那么{an}是等比数列.(2)中项公式法:在数列{an}中,an0且a=anan+2(nN_),那么数列{an}是等比数列.(3)通项公式法:假设数列通项公式可写成an=cqn(c,q均是不为0的常数,nN_),那么{an}是等比数列.注:前两种方法也可用来证明一个数列为等比数列.高三数学学问点3立体几何初步(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。

高三必背数学复习知识点整理5篇分享

高三必背数学复习知识点整理5篇分享

高三必背数学复习知识点整理5篇分享高三数学复习知识点1等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分.不等式基本性质有:(1)a bb(2)a b,b ca c(传递性)(3)a ba+c b+c(c∈R)(4)c 0时,a bac bcc 0时,a bac运算性质有:(1)a b,c da+c b+d.(2)a b 0,c d 0ac bd.(3)a b 0an bn(n∈N,n 1).(4)a b 0 (n∈N,n 1).应注意,上述性质中,条件与结论的逻辑关系有两种:〝〞和〝〞即推出关系和等价关系.一般地,证明不等式就是从条件出发施行一系列的推出变换.解不等式就是施行一系列的等价变换.因此,要正确理解和应用不等式性质.②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立.(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小.(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系. 高三数学复习知识点21.对于函数f(_),如果对于定义域内任意一个_,都有f(-_)=-f(_),那么f(_)为奇函数;2.对于函数f(_),如果对于定义域内任意一个_,都有f(-_)=f(_),那么f(_)为偶函数;3.一般地,对于函数y=f(_),定义域内每一个自变量_,都有f(a+_)=2b-f(a-_),则y=f(_)的图象关于点(a,b)成中心对称;4.一般地,对于函数y=f(_),定义域内每一个自变量_都有f(a+_)=f(a-_),则它的图象关于_=a成轴对称.5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个_,则-_也一定是定义域内的一个自变量(即定义域关于原点对称). 高三数学复习知识点31向考生强调:确保简单题全拿分,中档题少失分>中要求〝高考数学考查中学的基础知识.基本技能的掌握程度〞,在〝考查基础知识的同时,注重考查能力〞.〝试题设计力求情境熟.入口宽.方法多.有层次.〞高考试题很大部分是简单题与中档题,所以,学生如果基础知识不掌握,那么还谈什么能力呢?因此建议:老师们一定要引导考生在最后一个学期,加强基础知识.基本方法的巩固,保证简单题全拿分.中档题少失分.对于难题,则要鼓励考生切不可放弃,第一小题要拿下,最后小题多角度地思考努力寻找恰当方法,尽可能多拿分,平时一定要养成不会做的难题拿步骤分的习惯.2引导考生学会反思归纳,学会反思命题者出题意图>指出,试题要〝注重通性通法〞.〝常规方法〞.根据此,老师们要做的是:首先,引导考生反思归纳,寻找〝通性通法〞〝常规方法〞.数学需要一定的训练量,几天不练就会感觉手生,但题海战术并不可取,因为题海战术会挤占反思的时间.因此平时在做练习模拟卷时,做完题目,除了订正,还应该反思.>中关于空间想象能力是这样叙述的:〝能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解.组合;会运用图形与图表等手段形象地揭示问题的本质.〞其次,引导考生反思命题人为什么出这个题,想考查什么?比如立体几何解答题为什么是这样出题的?显而易见,要考查空间想象能力.因此做完立体几何解答题后,要再审视一下,这个几何体是怎样构成的,几何元素间有哪些关系.再比如,对于很多考生而言,解析几何难于计算,为什么难?因为不会〝寻找与设计合理.简捷的运算途径〞!解析几何解答题没有过关的学生,引导他们反思下自己的运算求解能力,平时遇到计算时,不可畏难退却,认认真真地做透几个解析几何解答题,体会其中的基本技巧,运算求解能力也就培养起来了.3用考试说明,引导考生查漏补缺,提高复习效率用>引导学生查漏补缺,看看有哪些知识点考生已经达到了考试要求,有哪些还没有达到.比如〝会求一些简单的函数的值域〞,考生不仅要能够说出求值域的常用方法——观察法.配方法.换元法.图象法.单调性法等,还应该说得出与方法对应的经典例题.对于没有达到考试要求的知识点,就需要重点加强.专项突破. 对于不知道的〝数学概念.性质.法则.公式.公理.定理〞,需要认真地看教材,补上短板.比如〝理解函数的(小)值及其几何意义,并能求出函数的值〞,如果说不出最值的几何意义,就应该再看一遍教材上关于(小)的定义.通过研读考试说明,把考试说明先读厚再读薄,对基础知识.基本技能进行网络化的加工整理,发现知识内在的联系与规律,形成脉络清晰.主线突出的知识体系,从而有利于快速提取知识解决问题.比如关于〝恒成立问题〞的知识网络构建,应该知道有四种常见的解法,一是变量分离,二是转化为最值问题,三是图象法,四是转换主元法,应该知道四种解法内在的联系与区别是什么,除此之外,还应该知道〝恒成立问题〞与〝存在性问题〞的区别.建议考生画出这张知识网络,在考试中遇到〝恒成立问题〞,就可以根据这张网络快速探索合适的解题方法.数学对于文科生来说是个大难题,有些同学甚至〝谈数学色变〞.其实只要掌握恰当的学习方法,文科生一样可以学好数学并在高考中取得满意的分数.■杜绝负面的自我暗示首先对数学学习不要抱有放弃的想法.有些同学认为数学差一点没关系,只要在其他三门文科上多用功就可以把总分补回来,这种想法是非常错误的.我高三时的班主任曾经说过一个〝木桶原理〞:一只木桶盛水量的多少取决于它最短的一块木板.高考也是如此,只有各科全面发展才能取得好成绩.其次是要杜绝负面的自我暗示.高三一年会有许许多多的考试,不可能每一次都取得自己理想的成绩.在失败的时候不要有〝我肯定没希望了〞.〝我是学不好了〞这样的暗示,相反的,要对自己始终充满信心,最终成功会到你的身边.■抄笔记别丢了〝西瓜〞高考数学试卷中大部分的题目都是基础题,只要把这些基础题做好,分数便不会低了.要想做好基础题,平时上课时的听课效率便显得格外重要.一般教高三的都是有着丰富经验的老师,他们上课时的内容可谓是精华,认真听讲45分钟要比自己在家复习2个小时还要有效.听课时可以适当地做些笔记,但前提是不影响听课的效果.有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是〝捡了芝麻丢了西瓜〞,反而有些得不偿失.■题目做两遍要想学好数学,平时的练习必不可少,但这并不意味着要进行题海战术,做练习也要讲究科学性.在选择参考书方面可以听一下老师的意见,一般来说老师会根据自己的教学方式和进度给出一定的建议,数量基本在1—2本左右,不要太多.在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好.做题的时候要多做简单题,并且要定好时间,这样可以提高解题速度.在高考前的冲刺阶段要保证1—2天做一套试卷来保持状态.最重要的是要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握.在这里有两个小建议:一是在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习;二是题目做两遍以上,可以加深印象.■应考时要舍得放弃对于大部分数学基础不是很扎实的同学来说,放弃最后两题应该是一个比较明智的选择.高考数学试卷的最后两题对于能力的要求较高,数学较弱的同学不要花太多的时间在上面,而应把精力放在前面的基础题上,这样成绩反而会有所提高.高考的大题目都是按过程给分的,所以万一遇到不会的题也不要空着,应根据题意尽量多写一些步骤.在对待粗心这个常见问题上,我有两个建议:一是少打草稿,把步骤都写在试卷上;二是规范草稿,让草稿一目了然,这样便不太会出现看错或抄错的现象了.考试中有时可以用代数字.特殊情况和计算器等方法来提高解题速度解决难题,但在考试过后一定要把题目正规的解题思路了解清楚.每一次考试的试卷和高考前各区的模拟卷都是珍贵的复习资料,一定要妥善保存.高三数学复习知识点4立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱柱.四棱柱.五棱柱等.表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面.对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥.四棱锥.五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面.对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态.四棱台.五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.高三数学复习知识点5①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高.斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高.侧棱.侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(_)(各个侧面的等腰三角形不知是否全等)ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.简证:AB⊥CD,AC⊥BDBC⊥AD.令得,已知则.iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC中点,则平面90°易知EFGH为平行四边形EFGH为长方形.若对角线等,则为正方形._高三必背数学复习知识点整理5篇分享。

高三数学重要知识点总结五篇

高三数学重要知识点总结五篇

高三数学重要知识点总结总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,它能够使头脑更加清醒,目标更加明确,快快来写一份总结吧。

总结一般是怎么写的呢?下面是小编为大家收集的高三数学重要知识点总结五篇,仅供参考,欢迎大家阅读。

高三数学重要知识点总结五篇1①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。

⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心。

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心。

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心。

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心。

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心。

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心。

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径。

[注]:i、各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥。

(×)(各个侧面的等腰三角形不知是否全等)ii、若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直。

简证:AB⊥CD,AC⊥BDBC⊥AD。

令得,已知则。

iii、空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形。

iv、若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形。

简证:取AC中点,则平面90°易知EFGH为平行四边形EFGH为长方形。

高三数学必考知识点总结【五篇】

高三数学必考知识点总结【五篇】

高三数学必考知识点总结【五篇】学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个方程式知识点,这样也方便同学们日后的复习。

高三数学知识点11、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α180°2、直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

高三数学知识点2a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证明。

n=1时,a(1)=a+(1-1)r=a。

成立。

假设n=k时,等差数列的通项公式成立。

a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通项公式也成立。

因此,由归纳法知,等差数列的通项公式是正确的。

求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2n-1)]r不等于1时,S(n)=a[1-r]/[1-r]r=1时,S(n)=na.同样,可用归纳法证明求和公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高三数学复习知识点整理精选5篇
高三数学复习知识点1
圆锥曲线
x2y2x1、2?2?1的一条渐近线方程为?y?0.则此双曲线的离心率为()ab3
A
.10B
.3C
.D
2、已知椭圆C以坐标原点为中心,坐标轴为对称轴,且椭圆C以抛物线x2?16y的焦点为焦点,y2x2
以双曲线??1的焦点为顶点,则椭圆C的标准方程为169
3、已知圆:.
,且与圆交于、两点,若,设,求直线的方程;与轴的交点为
,若向量(1)直线过点(2)过圆上一动点,求动点作平行于轴的直线的轨迹方程,并说明此轨迹是什么曲线.
高三数学复习知识点2
1.求数列极限
求数列极限可以归纳为以下三种形式.
抽象数列求极限
这类题一般以选择题的形式出现,因此可以通过举反例来排除.此外,也可以按照定义、基本性质及运算法则直接验证。

求具体数列的极限,可以参考以下几种方法:
a.利用单调有界必收敛准则求数列极限.
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从
而得到数列的极限值。

b.利用函数极限求数列极限
如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

求项和或项积数列的极限,主要有以下几种方法:
a.利用特殊级数求和法
如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

lb.利用幂级数求和法
若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的
方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变
量求出函数值。

c.利用定积分定义求极限
若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。

d.利用夹逼定理求极限
若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

e.求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

高三数学复习知识点3
1.集合的含义与表示
(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定集合的子集;
(2)在具体情境中,了解全集与空集的含义;
3.集合的基本运算
(1(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能使用Venn二.【命题走向】
的直观性,注意运用Venn预测2010题的表达之中,相对独立。

具体题型估计为
高三数学复习知识点4
一、基础知识(理解去记)
(一)空间几何体的结构特征
(1)多面体——由若干个平面多边形围成的几何体.
围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共
边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转
形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征
1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱
柱。

侧面
母线
2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.
3.1棱锥——有一个面是形,其余各面是有一个公的三角形,由这些面所围
多边
共顶点成的几
B
何体叫做棱锥。

4.1圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

5.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.
B.
6.1圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.
7.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球;
相关公式
侧面积=各个侧面面积之和
表面积(全面积)=侧面积+底面积
体积公式:
V柱体=S底h
V锥体=S底h/3
1V棱台S?S`)h,3
1122S?S`)h?r??rR??R)
h,V
圆台3
R为球的半径)
(二)空间几何体的三视图与直观图
1.投影:区分中心投影与平行投影。

2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出
的图形;
正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;俯视图——光线从几何体的上面向下面正投影,得到的投影图;
3.直观图:
3.1直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3.2斜二测法:
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的
高三数学复习知识点5
第一,函数与导数。

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计。

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析。

主要是证明平行或垂直,求角和距离。

第七,解析几何。

是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的
考查我们一定要全面、系统地复习高中数学的基础知识,正确理解
基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成
技能。

以不变应万变。

相关文档
最新文档