2音频信号光纤传输技术实验
信号光纤传输技术实验.
音频信号光纤传输技术实验预习要求通过预习应理解以下几个问题:1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理;2.LED 调制、驱动电路工作原理3.LED 偏置电流和调制信号的幅度应如何选择、;4.测量SPD 光电流的I-V 变换电路的工作原理。
实验目的1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法;2.了解音频信号光纤传输系统的结构及各主要部件的选配原则;3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术;4.学习音频信号光纤传输系统的调试技术。
实验原理一.系统的组成音频信号光纤传输系统的原理图如图8-1-1所示。
它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。
光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。
本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。
为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围。
对于音频信号,其频谱在20Hz ~20KHz 的范围内。
光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。
二、光纤的结构及传光原理衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。
前者决定于光纤的损耗特性,后者决定于光纤的频率特性。
目前光纤的损耗容易做到每公里零点几dB 水平。
光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。
光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。
2音频信号光纤传输实验报告
实验报告:音频信号光纤传输(本报告仅供参考,每个同学应根据指导老师讲解和实际实验过程自行撰写)实验目的:1、 学习音频信号光纤传输系统的基本结构和各部件的选配原则。
2、 熟悉光纤传输系统中电光/光电转换器件的基本性能。
3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。
实验仪器TKGT-1型音频信号光纤传输实验仪 信号发生器 双踪示波器实验原理光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。
1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。
目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。
目前商用光纤制作工艺多为渐变折射率芯层光纤。
从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。
普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。
目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。
一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。
光纤的工作基础是光的全反射。
由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。
附:光的全反射原理根据光的反射和折射定律,即11θθ=' 2211s i n n s i n n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。
由于在临界状态下,22πθ=,代入上式,则⎪⎪⎭⎫⎝⎛=12c n n arcsin θ ,称为全反射临界角。
音频信号光纤传输技术实验报告
光纤广泛应用于各种工业控制、分布式数据采集等场合,特别适合电力系统自动化、交通控制等部门。
在光纤端面上,当光线入射角小于一定值?a时,折射光线在纤芯和包层界面上的入射角Ф才会大于临界角Фm,光线才能在光纤内多次全反射而传递到另一端。在光纤端面上,入射角θ′>θa的那些光线,折射后在界面上的入射角小于临界角Фm,光线将射出界面,如图40-2中光线2。这个入射角θa称为光学纤维的孔径角,它的数值由光学纤维的数值孔径决定。光纤的数值孔径N定义为
如图2所示,在立体角2θmax范围内入射到光纤端面的光线1在光纤内部界面产生全反射而得以传输,在2θmax范围外入射到光纤端面的光线2则在光纤内部界面不产生全反射而是透射到包层而马上被衰减掉。多模光纤具有较大的数值孔径,单模光纤的数值孔径相对较小,所以一般单模光纤需用LED半导体激光器作为其光源。
(2)光纤的损耗:
多模折射率阶跃型光纤由于各模传输的群速度不同而产生模间色散,传输的带宽受到限制。多模折射率渐变型光纤由于其折射率特殊分布使各模传输的群速度一样而增加信号传输的带宽。单模光纤是只传输单种光模式的光纤,单模光纤可传输信号带宽最高,目前长距离光通讯大都采用单模光纤。
光纤是玻璃细丝,性脆、易断,为提高其抗拉强度,保护表面和使用方便,在包层表面又涂履一层硅酮树脂一类的材料,称涂履层。
通过本实验的学习,在了解光导纤维的基本结构和光在其中传播规律的基础上,要建立起光导纤维的数值孔径、光纤色散、光纤损耗、集光本领等基本概念。
音频信号光纤传输技术实验
音频信号光纤传输技术实验[目的要求]1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法。
2.了解音频信号光纤传输的结构及选配各主要部件的原则。
3.学习分析集成运放电路的基本方法。
[仪器设备]1.YOF—B型音频信号光纤传输技术实验仪。
2.数字万用表。
[实验原理]一.系统的组成图(1)示给出了一个音频信号直接光强调制光纤传输系统的结构原理图,它主要包括由LED及其调制、驱动电路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器的三个部分。
图1 音频信号光纤传输实验系统原理图本实验采用中心波长0.85μm附近的GaAs半导体发光二极管(LED)作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。
由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。
二.光导纤维的结构及传光原理光纤按其模式性质通常可以分成两大类①单模光纤②多模光纤。
无论单模或多模光纤,其结构均由纤芯和包层两部分组成。
纤芯的折射率较包层折射率大,对于单模光纤,纤芯直径只有5~10μm,在一定的条件下,只允许一种电磁场形态的光波在纤芯内传播,多模光纤的纤芯直径为50μm或62.5μm ,允许多种电磁场形态的光波传播;以上两种光纤的包层直径均为125μm 。
按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常数,但纤芯一包层界面处减到某一值后,在包层的范围内折射率保持这一值不变,根据光射线在非均匀介质中的传播理论分析可知:经光源耦合到渐变型光纤中的某些光射线,在纤芯内是沿周期性地弯向光纤轴线的曲线传播。
本实验采用阶跃型多模光纤作为信道,现应用几何光学理论进一步说明这种光纤的传光原理。
阶跃型多模光纤结构如图所示,它由纤芯和包层两部分组成,芯子的半径为a ,折射率为1n ,包层的外径为b ,折射率为2n ,且1n >2n 。
音频信号光纤通信物理实验报告(有数据)
4、光信号接收端
光信号的接收主要是利用硅光电二极管(SPD)把传输光纤出射端输出的光信号的光功率转变为与之成正比的光电流I0,然后经I / V转换电路再把光电流转换成电压V0输出。
2、本实验中光传输系统哪几个环节引起光信号的衰减?
答:光发射机、光接续点、光放大器、光分路器以及光接收机,也就是说在光传输的各个节点处都有可能引起光衰。
请在两周内完成,交教师批阅
附件:(实验曲线请附在本页)
3.然后观察两曲线。完成课后题。
实验数据记录(注意:单位、有效数字、列表)
1.光信号发送端-LED的电光转换特性的测定
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
0
2.9
4.7
7.1
9.8
12.7
15.5
18.3
21.1
45.0
50.0
55.0
60.0
65.0
70.0
75.0
784
768
请认真填写
数据处理、误差分析和实验结论
1、LED-传输光纤组件电光特性的测定:依LED偏置电流与光功率实验曲线,线性响应的偏置电流区间为(27.5,46.4)mA,取此区间中值I=39.0mA为最佳偏置电流。
2、光纤传输系统频响的测定:由光纤系统幅频特性曲线得到,
低频截止频率f=26.2Hz
80.0
85.0
音频信号的光纤传输实验报告
音频信号光纤传输实验摘要:实验通过对LED-传输光纤组件的电光特性的测量,得出了在合适的偏置电流下,其具有线性。
验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流。
AbstracfThe experimental transmission through the LED-fiber components of theelectro-optical properties Measuring obtained at the right bias current, with its linear. Verification of the silicon photodiode fiber can transmit a radio-signal output into with the current proportional to the light.一.前言:1.实验的历史地位:光纤自20世纪60年代问世以来,其在远距离信息传输方面的应用得到了突飞猛进的发展,以光纤作为信息传输介质的“光纤通信”技术,是世界新技术革命的重要标志,也是未来信息社会各种信息网的主要传输工具。
随着光纤通信技术的发展,一个以微电子技术,激光技术,计算机技术呵现代通信技术为基础的超高速宽带信息网将使远程教育.远程医疗.电子商务.智能居住小区越来越普及.光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段.2.实验目的了解音频信号光纤传输系统的结构熟悉半导体电光/光电器件的基本性能及主要特性的测试方法了解音频信号光纤传输系统的调试技能3.待解决的几个主要问题:声音是一种低频信号,你可能有这样的经历,当你说话的声音较低时,只有你旁边的人可以听见你的声音,要让声音传的远些你必须大声喊。
这说明了低频信号的传播受周围环境的影响很大,传播的范围有限。
为了解决上述的问题,在通信技术中一般是使用一个高频信号作为载波利用被传输的信号(如音频信号)对载波进行调制。
大学光纤传输实验报告
一、实验目的1. 了解光纤传输系统的基本结构和各部件的选配原则。
2. 熟悉光纤传输系统中电光/光电转换器件的基本性能。
3. 训练如何在光纤传输系统中获得较好的信号传输质量。
二、实验原理光纤传输技术是一种利用光导纤维传输信号的通信技术。
光纤具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰等优点,已成为现代通信的主要传输手段。
光纤传输系统主要由以下几部分组成:1. 光源:将电信号转换为光信号,常用的光源有LED、激光二极管等。
2. 光纤:传输光信号的介质,分为单模光纤和多模光纤。
3. 光发射机:将电信号转换为光信号,并驱动光源。
4. 光接收机:将光信号转换为电信号,并进行放大处理。
5. 传输介质:连接光发射机和光接收机的介质,如光缆等。
实验中,我们主要研究LED-传输光纤组件的电光特性,并验证硅光电二极管可以将传输的光信号转换为电信号。
三、实验仪器1. TKGT-1型音频信号光纤传输实验仪2. 信号发生器3. 双踪示波器四、实验步骤1. 连接实验仪器,包括光源、光纤、光发射机、光接收机和传输介质。
2. 将信号发生器输出的电信号输入光发射机,驱动光源发光。
3. 通过光纤将光信号传输到光接收机。
4. 在光接收机输出端连接示波器,观察接收到的电信号波形。
5. 调整光源的偏置电流和调制信号的幅度,观察信号传输质量的变化。
五、实验结果与分析1. 在合适的偏置电流下,LED-传输光纤组件具有线性电光特性,信号传输质量较好。
2. 随着偏置电流的增加,LED-传输光纤组件的光输出功率增加,信号传输质量提高。
3. 调整调制信号的幅度,可以改变信号传输质量。
当调制信号幅度过大时,会产生谐波失真,信号传输质量下降。
六、实验结论1. 光纤传输技术具有损耗低、频带宽、抗干扰能力强等优点,是现代通信的主要传输手段。
2. 通过调整光源的偏置电流和调制信号的幅度,可以优化信号传输质量。
3. 本实验验证了LED-传输光纤组件的电光特性,为实际应用提供了理论依据。
光纤音频信号传输实验指导
光纤信号传输实验【教学目的】1.学习光纤信号传输系统的基本结构及各部件选配原则;2.熟悉光纤传输系统中电光/光电转换器件的基本性能;3.训练如何在光纤传输系统中获得较好信号传输质量。
【教学重点】1.光纤信号的发射、传输、接收原理2.光纤信号传输系统幅度的调制【教学难点】1.光纤信号传输系统的基本结构2.光电转换器件的基本性能【课程讲授】提问1.光信号是如何获得的?2.光信号在光纤中是如何进行传输的?一、实验原理光纤传输系统如图一所示一般由三部分组成:光信号发送端;用于传送光信号的光纤;光信号接收端。
光信号发送端的功能是将待传输的电信号经电光转换器件转换为光信号,光纤的功能是将发送端光信号以尽可能小的衰减和失真传送到光信号接收端,目前光纤一般采用在近红外波段0.84μm、1.31μm、1.55μm有良好透过率的多模或单模石英光纤。
光信号接收端的功能是将光信号经光电转换器件还原为相应的电信号,光电转换器件一般采用半导体光电二极管或雪崩光电二极管。
组成光纤传输系统光源的发光波长必须与传输光纤呈现低损耗窗口的波段、光电检测器件的峰值响应波段匹配。
2.光信号发送端的工作原理系统采用的发光二极管的驱动和调制电路如图二所示,信号调制采用光强度调制的方法,发送光强度调节电位器用以调节流过LED的静态驱动电流,从而相应改变发光二极管的发射光功率。
图(二)3.光信号接收端的工作原理图四是光信号接收端的工作原理图,传输光纤把从发送端发出的光信号通过光纤藕合器将光信号藕合到光电转换器件光电二极管,光电二极管把光信号转变为与之成正比的电流信号,光电二极管使用时应反偏压,经运放的电流电压转换把光电流信号转换成与之成正比的电压信号。
光电二极管的频响一般较高,系统的高频响应主要取决于运放等的响应频率。
图(三)4.传输光纤的工作原理目前用于光通讯的光纤一般采用石英光纤,它是在折射率n2较大的纤芯内部,覆上一层折射率n1较小的包层,光在纤芯与包层的界面上发生全发射而被限制在纤芯内传播,如图五所示。
音频信号光纤传输实验研究性报告
音频信号光纤传输实验研究性报告摘要:光导纤维技术是近40年发展起来的一项新兴技术,是现代信息技术的重要组成部分,其最主要的应用是光纤通信。
光纤通信是目前通信技术中最有发展前途的通信方式之一,它以光载波载送信息,光纤作为传输介质传动关在信息,具有通信容量大,传输质量高,频带宽,保密性好,抗电磁干扰性强等优点。
声音是一种低频信号,低频信号的传播受周围环境影响较大,传播范围有限,使用光纤传输音频信号可方便地解决失真,速度限制等问题,故得到越来越广泛的应用。
本实验目的在于了解光纤通信的基本工作原理,了解音频信号光纤传输系统的结构,熟悉半导体电光-光电器件的基本性能并掌握其主要特性的测试方法,学会音频信号光纤传输调试技能。
关键词:光纤通信;半导体发光二极管(LED);调制放大电路;硅光电二极管(SPD)中图分类号:文献标识码:AExperimental study of the audio signal optical fiber transmissionexperimentSunXiaoqing(BeiJing University of Posts and Telecommunications BeiJing 100876,China)Abstract: Optical fiber engineering is a new technology developed in recent 40 years. As an important part of modern information technology, it is the most important application of fiber communication. Optical fiber communication is one of the most promising way of communication in communication technology, it takes light carrier to carry information, optical fiber as transmission medium transmission in information, has a large capacity of communication, high quality of transmission ,wide frequency band, good secrecy and strong resistance to electromagnetic interference. Sound is a kind of low frequency signal, which will be greatly influenced by the surrounding so that its transmission range is limited. The use of optical fiber transmission of audio signals can easily solve problems of distortion, speed limited and so on, thus has been accepted more and more widely. The purpose of this experiment is to understand the basic working principle of optical fiber communication, understand the structure of the audio signal optical fiber transmission system, be familiar with the basic properties of the semiconductor lighting-photoelectric device and master the main testing methods and characteristic of institute of audio signal optical fiber transmission debugging skills.Keywords: optical fiber communications; semiconductor light-emitting diode(LED); modulation amplifier circuit; silicon photodiode引言:声音为一种低频信号,以前进行音频信号传输时,通信技术中多使用一个高频信号作为载波,利用被传播音频信号对载波信号进行调频,当信号到达传输地时需进行解调,滤除高频载波。
音频信号光纤传输技术实验
音频信号光纤传输技术实验[目的要求]1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法。
2.了解音频信号光纤传输的结构及选配各主要部件的原则。
3.学习分析集成运放电路的基本方法。
4.训练音频信号光纤传输系统的测试技术。
[仪器设备]1.YOF—B型音频信号光纤传输技术实验仪。
2.音频信号发生器。
3.示波器。
4.数字万用表。
[实验原理]一.系统的组成图(1)示给出了一个音频信号直接光强调制光纤传输系统的结构原理图, 它主要包括由LED及其调制、驱动电路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器的三个部分。
图1 音频信号光纤传输实验系统原理图本实验采用中心波长0.85μm附近的GaAs半导体发光二极管(LED)作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。
由于光导纤维对光信号具有很宽的频带, 故在音频范围内, 整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。
二.光导纤维的结构及传光原理光纤按其模式性质通常可以分成两大类①单模光纤②多模光纤。
无论单模或多模光纤, 其结构均由纤芯和包层两部分组成。
纤芯的折射率较包层折射率大, 对于单模光纤, 纤芯直径只有5~10μm, 在一定的条件下, 只允许一种电磁场形态的光波在纤芯内传播, 多模光纤的纤芯直径为50μm或62.5μm, 允许多种电磁场形态的光波传播;以上两种光纤的包层直径均为125μm。
按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤, 对于阶跃型光纤, 在纤芯和包层中折射率均为常数, 但纤芯一包层界面处减到某一值后, 在包层的范围内折射率保持这一值不变, 根据光射线在非均匀介质中的传播理论分析可知: 经光源耦合到渐变型光纤中的某些光射线, 在纤芯内是沿周期性地弯向光纤轴线的曲线传播。
本实验采用阶跃型多模光纤作为信道, 现应用几何光学理论进一步说明这种光纤的传光原理。
音频信号的光纤传输 实验报告
音频信号的光纤传输实验报告
实验目的:通过实验了解和掌握音频信号的光纤传输原理和方法,培养实验操作和实验设计的能力。
实验原理:光纤传输是一种利用光学的方式携带信息的通讯方式。
当光线由光纤中传播时,在光线与光纤界面上发生反射,波动在光纤的芯和壳之间传递。
光纤传输的优点是可以输送高速数据,同时也可以很好的保障信息的安全性,适用于具有强抗干扰能力要求的音频信号传输场合。
实验仪器:音频采集卡、电脑、光纤接口、光纤线。
实验步骤:
1.将音频采集卡与电脑相连,启动电脑,打开音频采集卡的软件,保证采集卡和电脑连接正常。
2.将光纤接口插入音频采集卡的光纤接口处,将光纤线的一端连至光纤接口,将另一端的光纤线连接音频播放器的音源输出端口。
3.将音频播放器打开,选择要播放的音频文件,将音量调到适当大小。
4.在音频采集卡的软件中,打开音频输入通道的设置框,选择光纤接口,确认连接无误后,闭合设置框。
5.打开音频采集卡的录音控制面板,按下“开始录音按钮”,开始录制音频。
6.在录制过程中,调整音量大小、增益等参数,保证录制的音频质量良好。
7.录制完毕后,停止录制,最后保存文件。
实验结果:经过实验测试,将音源通过光纤线传输到音频采集卡的效果比较理想,音色清晰饱满,无杂音,可达到很好的传输效果,适用于多种音频领域,如电视电影、歌曲音乐等方面。
实验结论:由于光纤传输具有抗干扰强、传输速度快、传输距离长等优点,因此在音频传输领域得到了广泛的应用,能够大大提高音频传输的质量和速度,也是未来音频传输领域的重要发展方向。
物理实验报告音频信号光纤传输技术实验
物理实验报告音频信号光纤传输技术实验实验目的:1.了解音频信号光纤传输的原理和技术;2.掌握音频信号光纤传输的实验方法和步骤;3.研究光纤传输对音频信号的传输质量的影响。
实验器材:1.音源:使用一个音频扬声器;2.音频接口设备:使用一个音频接口设备将音频信号输入到计算机中;3.计算机:用于控制音频接口设备,产生和录制音频信号;4.光纤:选择一段长度较长的光纤;5.光纤传输设备:包括光纤发送器和光纤接收器;6.示波器:用于测量和观察音频信号。
实验原理:1.音频信号光纤传输是利用光纤的优异特性将音频信号通过光的折射传输到远处。
2.音频信号光纤传输系统主要包括光纤发送器和光纤接收器两个主要部分。
光纤发送器将音频信号转化为光信号,并通过光纤传输到光纤接收器,光纤接收器将光信号转换为音频信号。
实验步骤:1.将音源连接到音频接口设备上,通过计算机调节音频信号的频率和振幅。
2.连接光纤发送器和光纤接收器,确保光纤的连接端面干净,并避免光纤的弯曲和拉扯。
3.将音频接口设备的输出接口连接到光纤发送器的输入端,将光纤接收器的输出接口连接到音频接口设备的输入端。
4.打开音频接口设备和光纤传输设备,启动计算机。
5.调节音频信号的频率和振幅,观察光纤发送器的光信号是否正常发出,光纤接收器是否能正确接收到光信号并将之转换为音频信号。
6.使用示波器测量音频信号的频率和幅度,与原始音频信号进行比较,分析光纤传输对音频信号的传输质量的影响。
实验结果:通过实验观察和测量,得到了以下结果:1.音频信号经过光纤传输后,频率和幅度会有一定的损耗;2.光纤传输会引入一定的噪声,使音频信号的质量下降;3.光纤传输的距离会影响音频信号的传输质量,随着距离的增加,信号的损耗和噪声会增加。
实验结论:音频信号光纤传输技术是一种非常有效的传输技术,通过光纤传输可以将音频信号远距离传输,但需要注意传输距离对信号质量的影响。
同时,光纤传输还需要保证光纤连接的质量,避免光纤连接端面的污染和光纤的弯曲拉扯。
密立根油滴实验和光纤音频信号传输技术实验
大学物理实验
5. LED的偏置电流与失真
•LED为非线性元件。为避免失真,LED的偏置电流 要合适。
•偏置电流ID太大,饱和失真;ID太小,截止失真。
ID-P0曲线 偏置电流ID
偏置电流过大,出现饱和失真
LED无失真时的调制输出信号 偏置电流过小,出现截止失真
最大调制幅度 无失真时的偏置电流I
光功率P0
重复上述过程6次,分别记录平衡电压和匀速下 降时间td。选择5颗油滴进行测量。 注意:每次测量都应检查和调整平衡电压,以减少因 油滴挥发引起平衡电压变化,而产生的系统误差。 第n粒油滴数据 平衡电压U(V) 下落时间td(s) 第1次测量数据 第2次测量数据 第3次测量数据 第4次测量数据 第5次测量数据 第6次测量数据
大学物理实验
油滴选择是实验成功的关键
(1)找得到 喷雾:
—喷管底有油:油在内管雾化 —油路不能被堵:管口无油,否 则油易流出,没有油雾,造成堵塞。 喷完管朝上
调焦
大学物理实验
(2)大小合适
通常选择平衡电压在100~500伏特,在 10~30秒时间内匀速下降1.5毫米(0.25mm×6格) 的油滴,其大小和带电量都比较合适。
将已调平衡的油滴用 “提升”控制移到起跑线 上,立即将电压拨至“平 衡”,按动“计时/停” 开关,使计时器处于停止 计时状态。然后拨向 “0V”,油滴开始匀速下 降(从第二道线)的同时, 计时器开始计时,当油滴 到终点时(倒数第二道线 处),迅速将电压拨至 “平衡”,计时立即停止, 然后“提升”。
大学物理实验
密立根(R. A. Millikan)
大学物理实验
二、实验目的
1. 理解密立根油滴实验测量基本电 荷的原理和方法。
音频信号光纤传输实验报告
音频信号光纤传输实验报告音频信号光纤传输实验报告引言:音频信号的传输一直以来都是一个重要的研究领域。
随着科技的进步,传统的电缆传输方式逐渐被光纤传输所取代。
本实验旨在通过光纤传输音频信号,探究其传输效果和优势。
实验设备和方法:实验中使用的设备包括音频发生器、光纤传输装置和音频接收器。
首先,将音频发生器与光纤传输装置相连,再将光纤传输装置与音频接收器相连。
然后,通过调节音频发生器的频率和振幅,观察音频信号在光纤中的传输效果。
实验结果:在实验过程中,我们发现光纤传输音频信号相比传统的电缆传输有以下几个明显的优势。
1. 传输距离远:光纤传输音频信号可以达到几十公里甚至上百公里的传输距离,远远超过了电缆传输的限制。
这使得音频信号可以在更广阔的范围内传输,满足不同场景下的需求。
2. 传输质量高:光纤传输音频信号不受外界干扰的影响,传输质量更加稳定。
相比之下,电缆传输容易受到电磁干扰和信号衰减的影响,导致音频信号质量下降。
3. 带宽大:光纤传输具有较大的带宽,可以同时传输多个音频信号。
这使得光纤传输在多媒体应用中具有更广泛的应用前景。
4. 体积小:光纤传输装置相对于传统的电缆传输设备来说更加小巧轻便。
这使得光纤传输在一些空间有限的场景下更为适用。
讨论与分析:通过本次实验,我们可以得出结论:光纤传输音频信号具有较大的优势,尤其在传输距离远、传输质量高和带宽大等方面。
然而,光纤传输也存在一些挑战和限制。
首先,光纤传输设备的成本较高,相比传统的电缆传输设备来说更加昂贵。
这使得光纤传输在一些经济条件较差的地区应用受限。
其次,光纤传输对于安装和维护的要求较高。
光纤传输装置需要专业的技术人员进行安装和维护,一旦出现故障需要专业人员进行修复。
这增加了光纤传输的使用成本和难度。
此外,光纤传输对于环境的要求也较高。
光纤传输装置需要在干燥、无尘、无腐蚀性气体的环境下运行,以保证传输质量和稳定性。
这对于一些特殊环境下的应用来说可能存在一定的限制。
音频信号光纤实验报告
一、实验目的1. 熟悉音频信号光纤传输系统的基本结构和各部件的选配原则。
2. 掌握光纤传输系统中电光/光电转换器件的基本性能。
3. 学习如何在音频信号光纤传输系统中获得较好的信号传输质量。
4. 了解光纤通信技术的基本原理和实际应用。
二、实验原理光纤通信技术是利用光波在光纤中传输信息的一种通信方式。
它具有传输速度快、通信容量大、抗干扰能力强等优点。
本实验主要研究音频信号在光纤中的传输过程,包括光源、光纤、光电检测器等部件的工作原理。
1. 光源:本实验采用中心波长为0.85μm的GaAs半导体发光二极管(LED)作为光源。
LED具有高效率、低功耗、体积小等优点,是光纤通信系统中常用的光源。
2. 光纤:本实验使用单模光纤,其芯径为5μm,外径为125μm。
单模光纤具有传输损耗低、频带宽、抗干扰能力强等特点。
3. 光电检测器:本实验采用峰值响应波长为0.8~0.9μm的硅光电二极管(SPD)作为光电检测器。
SPD具有响应速度快、灵敏度高等优点。
三、实验仪器1. LED驱动电源2. 信号发生器3. 双踪示波器4. 单模光纤5. 光电检测器6. 光纤连接器7. 信号放大器四、实验步骤1. 搭建实验系统:将LED驱动电源、信号发生器、单模光纤、光电检测器、光纤连接器等设备连接成音频信号光纤传输系统。
2. 测试系统性能:使用信号发生器产生音频信号,通过示波器观察LED输出光信号和SPD输出电信号的变化。
调整LED偏置电流和SPD光电流,使信号传输质量达到最佳。
3. 分析实验结果:根据实验数据,分析LED输出光信号的幅度、频率、相位等参数,以及SPD输出电信号的幅度、频率、相位等参数。
五、实验结果与分析1. LED输出光信号:实验结果显示,LED输出光信号的幅度随着偏置电流的增加而增加,但超过一定值后,幅度增加缓慢。
这表明LED具有非线性特性。
同时,实验发现,LED输出光信号的频率与输入音频信号的频率基本一致,说明LED具有良好的频率响应。
利用光缆解决音频信号传输问题
利用光缆解决音频信号传输问题引言音频信号传输在现代生活中扮演着重要的角色。
然而,随着传输距离的增加,传统的铜缆传输方式面临着一系列的挑战,如信号衰减、噪声干扰等。
为了解决这些问题,光缆作为一种可行的替代方案被广泛应用于音频信号传输领域。
本文将探讨利用光缆解决音频信号传输问题的原理和优势。
光缆的基本原理光缆是一种基于光学传输原理的传输介质。
它由内芯、纤维衬套、纤维护套和外护套等部分组成。
内芯是由高折射率的材料制成,用于光信号的传播。
纤维衬套和纤维护套分别用于保护和支撑内芯。
外护套则用于保护整个光缆。
通过利用光的全反射原理,光信号可以在光缆中无损传输。
光缆传输音频信号的原理在音频信号传输中,光缆主要起到两个作用:光电转换和光信号传输。
首先,音频信号经过光电转换器被转换为光信号。
光电转换器是一种设备,能将音频信号转换为与之匹配的光信号。
转换后的光信号被发送到光缆中传输。
在光缆中,光信号以光纤的形式沿着内芯不断传播。
当光信号到达目标位置时,它会被另一个光电转换器转换为音频信号,然后通过扬声器或耳机等设备播放出来。
这样,音频信号就完成了从源设备到目标设备的传输。
光缆传输音频信号的优势相比传统的铜缆传输方式,利用光缆传输音频信号具有许多优势。
1. 高质量音频传输光缆传输方式具有出色的音频传输质量。
由于光信号在传输过程中几乎没有衰减和噪声干扰,音频信号可以得到原汁原味的传输。
这使得音频信号能够保持高保真度和出色的音质。
2. 长距离传输光缆传输方式克服了传统铜缆在长距离传输中遇到的信号衰减问题。
光信号在光缆中传播损耗较小,具有较高的传输效率。
这意味着音频信号可以在较长的距离内进行传输,而无需担心信号的丢失或衰减。
3. 抗干扰能力强光缆传输方式不易受到外界干扰的影响。
相比铜缆,光缆对电磁干扰、无线干扰和射频干扰等具有更好的抗干扰能力。
这使得音频信号在光缆中传输时不易受到干扰,有助于提高传输的稳定性和可靠性。
4. 安全性高光缆传输方式具有较高的安全性。