2014年全国初中数学竞赛试题
2014年全国初中数学联赛初三组初赛试卷
第2题图DACB第4题图DACB2014年全国初中数学联赛(初三组)初赛试卷(3月7日下午4:00—6:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是( )A 、9504元B 、9600元C 、9900元D 、10000元 2、如图,在凸四边形ABCD 中,BD BC AB ==,︒=∠80ABC ,则ADC ∠等于( )A 、︒80B 、︒100C 、︒140D 、︒1603、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( )A 、04m <≤B 、3≥mC 、4≥mD 、34m <≤4、如图,梯形ABCD 中,CD AB //,︒=∠60BAD ,︒=∠30ABC ,6=AB 且CD AD =,那么BD 的长度是( )A 、7B 、4C 、72D 、245、如果20140a -<<,那么|2014||2014|||+-+++-a x x a x 的最小值是( ) A 、2014B 、2014+aC 、4028D 、4028+a6、方程()y x y xy x +=++322的整数解有( ) A 、3组B 、4组C 、5组D 、6组二、填空题(本大题满分28分,每小题7分)1、如图,扇形AOB 的圆心角︒=∠90AOB ,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 .2、已知四个自然数两两的和依次从小到大的次序是:23,28,33,39,x ,y ,则____=+y x .3、已知6=-y x ,922=-+-y xy xy x ,则22y xy xy x ---的值是 .4、有质地均匀的正方体形的红白骰子各一粒,每个骰子的六个面分别写有1、2、3、4、5、6的自然数,随机掷红、白两粒骰子各一次,红色骰子掷出向上面的点数比白色骰子掷出向上面的点数小的概率是 .三、(本大题满分20分)已知0422=-+a a ,2=-b a ,求ba 211++的值。
2014年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则(详解)
D A C B2014年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则(3月7日下午4:00—6:00)班级:: 姓名:成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是( B )A、9504元B、9600元C、9900元D、10000元解析:设该商品的进货价为x元,由题意得xx%108.013200=-⨯解得:9600=x答:该商品的进货价为9600元。
故选B2、如图,在凸四边形ABCD中,BDBCAB==,︒=∠80ABC,则ADC∠等于( C )A、︒80B、︒100C、︒140D、︒160解析:∵BDBCAB==∴BDCC∠=∠,ADBA∠=∠∵︒=∠+∠+∠+∠+∠360ABCAADBBDCC∴()︒=︒-︒=∠+∠280803602BDABDC∴︒=∠+∠140BDCADB,即︒=∠140ADC故选C第2题图3、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( D )A 、40≤mB 、3≥mC 、4≥mD 、43≤m解析:∵方程()()0422=+--m x x x 的有三根∴21=x ,042=+-m x x 有根,方程042=+-m x x 的0416≥-=∆m ,得4≤m 又∵原方程有三根,且为三角形的三边长∴有2132=+x x x ,2132=-x x x ,由根系关系得2432 =+x x ,m x x =32成立,; 当232 x x -时,两边平方得:()4432232 x x x x -+代入相应数据得4416 m -,解得,3 m ∴43≤m 故选D4、如图,梯形ABCD 中,CD AB //,︒=∠60BAD ,︒=∠30ABC ,6=AB 且CD AD =,那么BD 的长度是( C )A 、7B 、4C 、72D 、24解析:过点C 作AD CE //交AB 于E ,过点D 作AB DF ⊥于F 则四边形ADCE 是菱形,︒=∠=∠60A CEB ∵︒=∠30ABC ∴BE AE DC EC AD 21==== ∵6=AB∴2====AE DC EC AD ∴1=AF ,3=DF ,5=BF 由勾股定理得:72=BD 故选C5、如果02014 a -,那么|2014||2014|||+-+++-a x x a x 的最小值是( A ) A 、2014 B 、2014+a C 、4028 D 、4028+a解析:本题分类讨论∵02014 a - ∴a a 20142014-- 当2014-a x 时|2014||2014|||+-+++-a x x a x20142014-+----=a x x x a 20142014340282 a x a ---=当20142014-≤- x a|2014||2014|||+-+++-a x x a xF E 第4题图DACB()()()20142014+-++---=a x x a xx -=当a x ≤-2014时|2014||2014|||+-+++-a x x a x()()()20142014+-+++--=a x x a x 4028+=x当x a ≤时|2014||2014|||+-+++-a x x a x()()()20142014+-+++-=a x x a x 20144028402823 a a x +≥+-=综上|2014||2014|||+-+++-a x x a x 的最小值为2014 6、方程()y x y xy x +=++322的整数解有( D ) A 、3组B 、4组C 、5组D 、6组解析:∵()y x y xy x +=++322 ∴()()()1833222=++-+-y x y x则符合条件的整数解为:⎩⎨⎧==03y x ,⎩⎨⎧==30y x ,⎩⎨⎧=-=21y x ,⎩⎨⎧-=-=11y x ,⎩⎨⎧-==12y x ,⎩⎨⎧==00y x二、填空题(本大题满分28分,每小题7分)1、如图,扇形AOB 的圆心角︒=∠90AOB ,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 .答案:10解析:过点O 作EF OH ⊥于点H ,交DC 于点K ,连接OF ∵OH 过圆心 ∴FH EH =∵四边形CDEF 是正方形 ∴DC OH ⊥,CK DK =∴OCK ∆是等腰直角三角形,KC OK = 设x CF =,则x KH =,2xCK OK HF === 在OHF Rt ∆中,222OF HF OH =+ 即222522=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+x x x ,解得10=xH G KD FE O AC B即CF 的长为10 故答案为:102、已知四个自然数两两的和依次从小到大的次序是:23,28,33,39,x ,y ,则____=+y x . 答案:93解析:设四个自然数满足D C B A∴D C D B C B C A B A +++++ 且D C D B D A C A B A +++++ 又∵23=+B A ,28=+C A ∴512=++=+++C B A C A B A ∴33=+C B∴9=A ,14=B ,19=C ,30=D ∴443014=+=x ,493019=+=y ∴93=+y x 故答案为:933、已知6=-y x ,922=-+-y xy xy x ,则22y xy xy x ---的值是 . 答案:4解析:∵6=-y x ∴()()6=-+y x yx ∴yx y x -=+6∵()9=+-y x yx∴966=-yx ,即966=-y x ∴()4966622=⨯=--=---y x yx y xy xy x 4、有质地均匀的正方体形的红白骰子各一粒,每个骰子的六个面分别写有1、2、3、4、5、6的自然数,随机掷红、白两粒骰子各一次,红色骰子掷出向上面的点数比白色骰子掷出向上面的点数小的概率是 .答案:125 解析:机会均等的可能共有36种,其中当红色骰子掷出上面的点数为1时,白色骰子掷出上面的点数比它的可能有5种;当红色骰子掷出上面的点数为2时,白色骰子掷出上面的点数比它的可能有4种;当红色骰子掷出上面的点数为3时,白色骰子掷出上面的点数比它的可能有3种;当红色骰子掷出上面的点数为4时,白色骰子掷出上面的点数比它的可能有4种;当红色骰子掷出上面的点数为5时,白色骰子掷出上面的点数比它的可能有1种。
2014年全国初中数学联赛参考答案
2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C 2、B 3、B 4、D 5、D 6、C二、填空题(本题满分28分,每小题7分)1、41n - 2、4 3、1 4、3三、(本大题满分20分)解不等式13|2|-<-x x解:(1)当2<x 时,不等式化为132-<-x x ,解此不等式得43>x ,故此时243<<x ;(2)当2≥x 时,不等式化为132-<-x x ,解此不等式得21->x ,此时2≥x .(15分) 综上所述,不等式的解为:34x >.(20分) 四、(本大题满分25分)如图,在等腰梯形ABCD 中,//AD BC ,DE BC ⊥于E .若3,5DE BD ==,求梯形ABCD 的面积.解:在直角△BDE 中,由勾股定理有:422=-=DE BD BE ;(5分) 过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF ,则ACFD 是平行四边形,故CF =AD ,DF AC BD ==,所以DE 是等腰△DBF 底边上的高,故28BF BE ==(15分) 所以1221)(21=⋅=+=DE BF DE AD BC S ABCD (25分).五、(本大题满分25分)已知正整数a 、b 满足332)(b a b a +=+,试求a 、b 的值.解:由已知得b a b ab a +=+-22,(5分)则2)1()1()(222=-+-+-b a b a .(10分)因为a 、b 均为正整数,故01≥-a ,01≥-b ,(1)当a=b 时,1)1()1(22=-=-b a ,即a =b=2;(15分)(2)当a b ≠时,2()1a b -=,从而2(1)1a -=且2(1)0b -=;或者2(1)0a -=且2(1)1b -=;所以,2,1a b ==,或者1,2a b ==.(20分)综上所述,所求,a b 的值是:2a b ==;或者1,2a b ==;或者2,1a b ==.(25分)。
2014年全国初中数学竞赛试题参考答案及评分标准
2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。
所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。
2014年全国初中数学联赛初三组初赛试卷及答案
第2题图DACB第4题图DACB2014年全国初中数学联赛(初三组)初赛试卷(3月7日下午4:00—6:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是( )A 、9504元B 、9600元C 、9900元D 、10000元 2、如图,在凸四边形ABCD 中,BD BC AB ==,︒=∠80ABC ,则ADC ∠等于( )A 、︒80B 、︒100C 、︒140D 、︒1603、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( )A 、04m <≤B 、3≥mC 、4≥mD 、34m <≤4、如图,梯形ABCD 中,CD AB //,︒=∠60BAD ,︒=∠30ABC ,6=AB 且CD AD =,那么BD 的长度是( )A 、7B 、4C 、72D 、24 5、如果20140a -<<,那么|2014||2014|||+-+++-a x x a x 的最小值是( )A 、2014B 、2014+aC 、4028D 、4028+a6、方程()y x y xy x +=++322的整数解有( ) A 、3组B 、4组C 、5组D 、6组二、填空题(本大题满分28分,每小题7分)1、如图,扇形AOB 的圆心角︒=∠90AOB ,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 .2、已知四个自然数两两的和依次从小到大的次序是:23,28,33,39,x ,y ,则____=+y x .3、已知6=-y x ,922=-+-y xy xy x ,则22y xy xy x ---的值是 .4、有质地均匀的正方体形的红白骰子各一粒,每个骰子的六个面分别写有1、2、3、4、5、6的自然数,随机掷红、白两粒骰子各一次,红色骰子掷出向上面的点数比白色骰子掷出向上面的点数小的概率是 .三、(本大题满分20分)已知0422=-+a a ,2=-b a ,求ba 211++的值。
2014年全国初中数学联赛(初二组)试题
2014年全国初中数学联赛(初二组)决赛试题(3月23日 上午10:30——12:00)一、 选择题 (本大题42分,每小题7分)1,若2x y y x y =-,则22222343x xy y x xy y --++的值是 ( )(A )0 (B )32- (C )-15 (D )-15或32-2,设1,2,3a b c =-==,则a 、b 、c 的大小关系 () (A )a b c << (B )a c b << (C )b c a << (D )c b a <<3,设a,b,c 均为正整数,且a ≥b ≥c ,满足a+b+c=15,那么以a,b,c 为边长的三角形有 ( )(A )5个 (B )7个 (C )10个 (D )12个 4,如图,已知在平行ABCD 中,邻边邻角均不相等,E 、F 分别为BO,DO 的中点,那么这个图形中全等三角形的对数是 ( )(A )5对 (B )6对 (C )7对 D )8对5,若整数a,b 都不能被5整除,但a+b 能被5整除,则下列式子不能被5整除的是 ( )(A )2a+b (B)2a-3b (C)3a+8b (D)3a-7b6,有盐水若干克,盐水浓度为3%,加入a 克清水后,盐水浓度为2%,再加入a 克清水后,,则此时盐水浓度为 ( )(A )1% (B )1.25% (C )1.5% (D )1.75%二、填空题(本大题满分28分,每小题7分)1、a,b,c 为常数,且()()3221x x c x x ax b ++=+++对任意实数x 都成立,则abc 的值为2、如图,两张相同的长方形纸片,长为2宽为1,横竖紧靠放在一起,过F 的直线分别交AH 于M ,CB 于N ,且∆HMF 与梯形DEFN 面积相等,则AM 的长度为3、若a,b 是正整数,且满足5a+7b=50,则ab 的值为4、已知∆ABC 的面积为4,3AB =2BC ,作∠ABC 的角平分线BE 交AC 于E ,过C 作BE 的垂线,垂足为D ,则∆BDC 的面积为三、(本大题满分20分)如图,已知凸四边形ABCD 中,∠ABC+∠ADC =180°,AC 平分∠BAD ,过C作AB 的垂线交AB 于E 。
2014年全国初中数学联合竞赛试题(第一试)参考答案
第一试
一、选择题: (本题满分 42 分,每小题 7 分) 1.已知 x, y 为整数,且满足 ( A. 1 个 B. 2 个
1 x
1 1 1 2 1 1 )( 2 2 ) ( 4 4 ) ,则 x y 的可能的值有( C ) y x y 3 x y
C. 3 个 D. 4 个 ( A )
2.已知非负实数 x, y, z 满足 x y z 1 ,则 t 2 xy yz 2 zx 的最大值为 A.
9 12 D. 16 25 3. 在△ ABC 中,AB AC ,D 为 BC 的中点,BE AC 于 E , 交 AD 于 P , 已知 BP 3 ,PE 1 , 则 AE = ( B )
B. C. A.
4 7
5 9
6 2
B. 2
C. 3
D. 6
4.6 张不同的卡片上分别写有数字 2,2,4,4,6,6,从中取出 3 张,则这 3 张卡片上所写的数字 可以作为三角形的三边长的概率是 ( B ) A.
1 2
B.
2 5
C.
2 3
D.
3 4
3
5.设 [t ] 表示不超过实数 t 的最大整数,令 {t} t [t ] .已知实数 x 满足 x
点 E ,如果点 P 为△ ABE 的内心,则 PAC
48
. 36 .
4.已知正整数 a, b, c 满足: 1 a b c , a b c 111, b2 ac ,则 b
第二试 (A)
一、 (本题满分 20 分)设实数 a, b 满足 a (b 1) b(b 2a) 40 , a(b 1) b 8 ,求
2014年全国初中数学联合竞赛试题参考答案和评分标准
初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。
初中数学联赛(初联)历年真题
2014年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( )A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( )A .47B .59C .916D .1225 3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE =( )A .2B C D 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .12 B .25 C .23 D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x+=,则1{}{}x x +=( )A .12B .3-C .1(32- D .16.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为( )A .4-B .2C .11)2D 1二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =__ __. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值.二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠,AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.FB一.(本题满分20分)同(A )卷第一题.二.(本题满分25分)如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P . (1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?2013年全国初中数学联合竞赛试题第一试一、选择题(本题满分42分,每小题7分)1.计算=( )(A 1- (B )1 (C (D )22.满足等式()2221m m m ---=的所有实数m 的和为( )(A )3 (B )4 (C )5 (D )63.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠=o,ABC ∠的平分线交圆O 于点D ,若CD =AB=( )(A )2 (B(C )(D )34.不定方程23725170x xy x y +---=的全部正整数角(x,y )的组数为( ) (A )1 (B )2 (C )3 (D )45矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在线段BC 上,且BF :FC=1:2, AF 分别与DE ,DB 交于点M ,N ,则MN=( )(A )7 (B )14 (C )28 (D )286.设n 为正整数,若不超过n 的正整数中质数的个数等于合个数,则称n 为“好数”,那么,所有“好数”之和为( ) (A )33 (B )34 (C )2013 (D )2014 二、填空题(本题满分28分,每小题7分)1.已知实数,,x y z 满足4,129,x y z xy y +=+=+-则23x y z ++=2.将一个正方体的表面都染成红色,再切割成3(2)n n >个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= 3.在ABC V 中,60,75,10A C AB ∠=∠==oo,D ,E ,F 分别在AB ,BC ,CA 上,则DEF V 的周长最小值为4.如果实数,,x y z 满足()2228x y z xy yz zx ++-++=,用A 表示,,x y y z z x ---的最大值,则A 的最大值为第二试(A )一、(本题满分20分)已知实数,,,a b c d 满足()2222223236,a c b d ad bc +=+=-=求()()2222ab c d ++的值。
2014年全国初中数学竞赛试题及答案
中国教育学会中学数学教学专业委员会2014年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知关于x 的不等式组255332x x x t x +⎧->-⎪⎨+⎪-<⎩,恰有5个整数解,则t 的取值范围是( ).(A )6-<t <112-(B )6-≤t <112-(C )6-<t ≤112-(D )6-≤t ≤112-3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不.一定..是有理数的为( ). (A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )85.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967二、填空题(共5小题,每小题7分,共35分)6.设33a =,b 是a 的小数部分,c 是2a 的小数部分,则(4)b b c ++的值为 .7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,则其朝上的面的数和为3的倍数的概率是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.444444222222121231991001121231991001++++++++++-+-+-…的值为 .三、解答题(共4题,每题20分,共80分)11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC ∠CBE.12.设△ABC的外心、垂心分别为O H、,若B C H O、、、共圆,对于所有的△ABC,求BAC∠所有可能的度数.13.如图,设点D 在△ABC 外接圆上,且为BC 的中点,点X 在BD 上,E 是AX 的中点,过△ABC 的内心I 作直线R T 平行于DE ,分别与BC ,AX 交于点R ,T ,设直线DR 与ET 交于点S .证明:点S 在△ABC 的外接圆上.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛试题参考答案一、选择题 1.A解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.C解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 3.D解:因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC =都是有理数,而AC=·AD AB 不一定是有理数. 4.C解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC .连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.C解:设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.2解:由于2123a a <<<<,故1=-b a ,22=-c a .所以223(4)(1)(124)(1)(1)12b b c a a a a a a a ++=--+-+=-++=-=.7.13解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且3=1+1+1,6=1+1+4=1+2+3=2+2+2,9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6.记掷三次正方体面朝上的数分别为x ,y ,z .则使x +y +z 为3的倍数的(x ,y ,z )中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.故所求概率为83263616663⨯⨯+⨯+=⨯⨯.8.2013解:由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.(1212),,,--,(00),,,-t t (t 为任意实数) 解:由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b 由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10解:设0k >,那么=11111(1)1k k k k ⎤⎫=+=+-⎪⎥++⎝⎭⎣⎦. 上式对1=k ,2,…,99求和,得原式11991100100100⎫⎫=+-=-=⎪⎪⎝⎭⎝⎭.三、解答题11.解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25. 因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.解:分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒;当90A ∠<︒时,不妨假设90B ∠>︒,因为2BHC A BOC A ∠=∠∠=∠,,所以由180BHC BOC ∠+∠=︒,可得3180A ∠=︒,于是60A ∠=︒.…………15分(iii )若△ABC 为直角三角形.当90A ∠=︒时,因为O 为边BC 的中点,B C H O ,,,不可能共圆,所以A ∠不可能等于90︒;当90A ∠<︒时,不妨假设90B ∠=︒,此时点B 与H 重合,于是总有B C H O ,,,共圆,因此A ∠可以是满足090A ︒<∠<︒的所有角.综上可得,A ∠所有可能取到的度数为所有锐角及120︒.…………20分13.证明:如图,设DR 与△ABC 的外接圆交于点S ',AX 与S E '交于点T ',连接S C CD S A AE AD '',,,,.由D 为BC 的中点知,A ,I ,D 三点共线,且∠CS D '=∠RCD ,△S CD '∽△CRD ,所以S D CDCD RD'=, ① 即2CD S D RD '=⋅. ②…………5分由E 为AX 的中点知,∠AS E '=∠T AE ',△AS E '∽△T AE ',所以S E AEAE T E'=', ③ 即2AE S E T E ''=⋅. ④由IR ∥DE ,知180IRD S'DE S'AE ∠=︒-∠=∠.又因为IDR S DA S EA ''∠=∠=∠,所以△IRD ∽△S AE ',则有ID S ERD AE'=. ⑤ …………10分由I 为△ABC 的内心,连接CI ,由CID CAI ACI DCB BCI ICD ∠=∠+∠=∠+∠=∠知ID CD =.由式①,⑤,得S D S ECD AE''=, 即S D CDS E AE'='. ⑥ 由式②,④,得22CD S D RDAE S E T E'⋅=''⋅. ⑦ 由式⑥,⑦得S D RDS E T E'='', …………15分于是RT '∥DE .又RT ∥DE ,故点T '与T 重合,即点S '在直线ET 上.从而,点S '与S 重合,即点S 在△ABC 的外接圆上.…………20分14.解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12na a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.…………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10k i m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾.故必存在一个正整数i (1≤i ≤7),使得7|(10)k i m +,即i 为m 的魔术数. 所以,n 的最小值为7.…………20分。
2014年全国初中数学联赛决赛试题和参考题答案
2014年全国初中数学联赛决赛试题一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3xyxyxy,则x y 的可能的值有【】A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ,则22t xy yz zx 的最大值为【】A .47B .59C .916D .12253.在△ABC 中,ABAC ,D 为BC 的中点,BE AC 于E ,交AD 于P ,已知3BP ,1PE,则AE =【】A .62B .2C .3D .64.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是【】A .12B .25C .23D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t tt .已知实数x 满足33118xx,则1{}{}x x 【】A .12B .35C .1(35)2D .16.在△ABC 中,90C,60A ,1AC ,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,90ADE ,则BE 的长为【】A .423B .23C .1(31)2D .31二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ,1111abcbc ac ab,则abc____.2.使得不等式981715n nk对唯一的整数k 成立的最大正整数n 为.3.已知P 为等腰△ABC 内一点,ABBC ,108BPC ,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC.4.已知正整数,,a b c 满足:1ab c ,111a b c ,2b ac ,则b.三、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a ,(1)8a b b ,求2211ab的值.四、.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECDACB , AC 的延长线与△ABD 的外接圆交于点F. 证明:DFE AFB .五、(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333nxyzxyz ,则称n 具有性质P .(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?FCA BDE2014年全国初中数学联赛决赛试题和参考答案一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3xyxyxy,则x y 的可能的值有【】A. 1个B. 2个C. 3个D. 4个【答】 C. 由已知等式得2244224423x y xyx yxyx y x y,显然,x y 均不为0,所以x y =0或32()xy x y .若32()xy x y ,则(32)(32)4x y .又,x y 为整数,可求得12,x y,或21.x y,所以1x y 或1x y .因此,x y 的可能的值有3个.2.已知非负实数,,x y z 满足1xyz,则22txyyzzx 的最大值为【】A .47B .59C .916D .1225【答】 A.21222()2()()4t xyyzzx x yz yz x y z y z 212(1)(1)4x x x 2731424xx2734()477x,易知:当37x ,27yz时,22t xy yzzx 取得最大值47.3.在△ABC 中,ABAC ,D 为BC 的中点,BEAC 于E ,交AD 于P ,已知3BP ,1PE,则AE =【】A .62B .2C .3D .6【答】 B.因为AD BC ,BE AC ,所以,,,P D C E 四点共圆,所以12BD BC BP BE ,又2BCBD ,所以6BD,所以3DP.又易知△AEP ∽△BDP,所以AE PE BDDP,从而可得1623PE AEBD DP.4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是【】A .12B .25C .23D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205.5.设[]t 表示不超过实数t 的最大整数,令{}[]t tt .已知实数x 满足33118xx,则1{}{}x x【】A .12B .35C .1(35)2D .1【答】 D. 设1x a x,则32223211111()(1)()[()3](3)xxxxxa axxxxx,所以2(3)18a a,因式分解得2(3)(36)0a a a ,所以3a .由13xx解得1(35)2x,显然1{}1,0{}1x x ,所以1{}{}x x1.6.在△ABC 中,90C,60A ,1AC,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,90ADE ,则BE 的长为【】A .423B .23C .1(31)2D .31【答】 A.过E 作EF BC 于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB .设EFx ,则2BEx ,22AEx ,2(1)DEx ,1DFAC ,故2221[2(1)]x x,即2410x x .又01x ,故可得23x.故2423BE x .二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ,1111abcbc ac ab,则abc____.【答】0. 由题意知1111121212cab,所以(12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c 整理得22()8a b c abc ,所以abc 0.2.使得不等式981715n n k对唯一的整数k 成立的最大正整数n 为.【答】144. 由条件得7889k n,由k 的唯一性,得178k n且189k n,所以FEBCAD2118719872k k nnn,所以144n .当144n 时,由7889k n可得126128k ,k 可取唯一整数值127.故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,ABBC ,108BPC ,D 为AC 的中点,BD与PC 交于点E ,如果点P 为△ABE 的内心,则PAC .【答】48.由题意可得PEA PEB CED AED ,而180PEA PEB AED ,所以60PEA PEB CED AED ,从而可得30PCA . 又108BPC ,所以12PBE ,从而24ABD . 所以902466BAD ,11()(6630)1822PAEBAD CAE ,所以183048PAC PAE CAE 4.已知正整数,,a b c 满足:1ab c ,111a b c ,2b ac ,则b.【答】36. 设,a c 的最大公约数为(,)a c d ,1aa d ,1c c d ,11,a c 均为正整数且11(,)1a c ,11a c ,则2211bacd a c ,所以22|d b ,从而|d b ,设1b b d (1b 为正整数),则有2111ba c ,而11(,)1a c ,所以11,a c 均为完全平方数,设2211,a m c n ,则1b m n ,,m n均为正整数,且(,)1m n ,mn .又111a b c ,故111()111d a b c ,即22()111d m nmn .注意到222212127m nmn,所以1d或3d .若1d ,则22111mnmn ,验算可知只有1,10m n 满足等式,此时1a ,不符合题意,故舍去.若3d,则2237m nmn ,验算可知只有3,4m n 满足等式,此时27,36,48a bc,符合题意.EDAB PC因此,所求的36b .三、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a ,(1)8a b b ,求2211ab的值.解由已知条件可得222()40a bab ,()8ab a b .设a b x ,ab y ,则有2240xy,8xy,…………5分联立解得(,)(2,6)x y 或(,)(6,2)x y .………10分若(,)(2,6)x y ,即2a b ,6ab ,则,a b 是一元二次方程2260tt 的两根,但这个方程的判别式2(2)24200,没有实数根;……………15分若(,)(6,2)x y ,即6ab,2ab ,则,a b 是一元二次方程2620tt 的两根,这个方程的判别式2(6)8280,它有实数根.所以2222222222211()262282a ba b ab aba b a b.………20分四、.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB , AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB .证明由ABCD 是平行四边形及已知条件知ECDACB DAF .………5分又A 、B 、F 、D四点共圆,所以B D CA B D,………… ….10分所以△ECD ∽△DAF ,………15分所以ED CD AB DFAFAF.………20分又EDFBDF BAF ,所以△EDF ∽△BAF ,故DFE AFB .……………………25分五、(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333nxyzxyz ,则称n 具有性质P .FCA BDE(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解取1x ,0y z ,可得3331103100,所以1具有性质P ;取1xy,0z,可得33321103110,所以2具有性质P ;…………………5分若3具有性质P ,则存在整数,,x y z 使得33()3()()xy z x yz xyyzzx ,从而可得33|()x y z ,故3|(x yz,于是有39|()3()()x y z x yz xyyzzx ,即9|3,这是不可能的,所以3不具有性质P .……………………10分(2)记333(,,)3f x y z xy zxyz ,则33(,,)()3()3f x y z x y zxy x y xyz 3()3()()3()xy z x y z x yz xy x y z =3()3()()xy z xy z xy yz zx 2221()()2x y z x yzxy yzzx 2221()[()()()]2xyz x y y z zx . 即(,,)f x y z 2221()[()()()]2xy z xy yz z x ①……………………15分不妨设xy z ,如果1,0,1x y y z x z ,即1,x z y z ,则有(,,)31f x y z z ;如果0,1,1x y y z x z ,即1x yz ,则有(,,)32f x y z z ;如果1,1,2xyyzxz,即2,1xz y z ,则有(,,)9(1)f x y z z ;由此可知,形如31k 或32k或9k(k 为整数)的数都具有性质P .……………………20分又若33|(,,)()3()()f x y z xyz x y z xy yz zx ,则33|()x y z ,从而3|()x yz ,进而可知39|(,,)()3()()f x y z xyz xyz xyyzzx .综合可知:当且仅当93n k 或96n k (k 为整数)时,整数n 不具有性质P .又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数共有224×2=448个.…………………25分我们对服务人员的配备以有经验、有知识、有技术、懂管理和具有高度的服务意识为准绳,在此基础上建立一支高素质的物业管理队伍,为销售中心的物业管理创出优质品牌。
2014年全国初中数学联赛答案及评分标准(初三)
2014年全国初中数学联赛(初三组)初赛评 分 细 则一、选择题(本题满分42分,每小题7分) 1、B . 2、C . 3、D . 4、C . 5、A . 6、D .二、填空题(本大题满分28分,每小题7分)12、 93 .3、 4 .4、512.三、(本大题满分20分) 解:由已知得2b a =-, 所以121a b ++2123122aa a a a =+=+---. ··················································· (10分) 显然0a ≠,由2240a a +-=得222aa -=-. ············································· (15分)所以233222a aa a a a ==-----, 所以121a b++2=-.······················································································ (20分) 四、(本大题满分25分)解:(1)因为CD 是AB 边上的中线, 所以CD =DB ,∠ABC =∠DCB =∠CAE , ∠ACB =∠ECA =90︒,所以△ACB ∽△ECA , ··················································································· (5分) 所以AC CBEC CA=, 所以2AC BC CE =⋅. ···················································································· (10分) (2)因为CD 是Rt △ABC 的中线, 所以CD=AD=BD 。
2014年全国初中数学联赛(初三年级组)试题和评分标准
2014年全国初中数学联合竞赛(初三年级组)试题及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( ) A .47 B .59 C .916 D .12253.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE = ( )A B C D .4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A .12B .25C .23D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( )A .12 B .3 C .1(32D .1 6.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为 ( )A .4-B .2C .11)2D 1 二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b ++=+-+-+-,则abc =____. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 .3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .第二试 (A )一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b +的值.二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠, AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.。
全国初中数学竞赛2014年预赛.doc
全国初中数学竞赛(2014年预赛)(竞赛时间:2014年3月2日上午9:00--11:00)一、选择题(共6小题,每小题6分,共36分)以下每小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.若是最大的负整数,是绝对值最小的有理数,是倒数等于它本身的自然数,则的值为【】(A)2013(B)2014(C)2015(D)02. 已知实数满足则代数式的值是【】(A)(B)3(C)(D)73.如图,将表面展开图(图1)还原为正方体,按图2所示摆放,那么,图1中的线段MN在图2中的对应线段是【】(A)(B)(C)(D)4. 已知二次函数的图象如图所示,则下列7个代数式,,,,,,中,其值为正的式子的个数为【】(A)2个(B)3个(C)4个(D)4个以上5. 如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数(x>0)的图象上移动时,B点坐标满足的函数解析式为【】(A)(x<0)(B)(x<0)(C)(x<0)(D)(x<0)6.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP 和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为【】(A)1 (B)2 (C)3 (D)6二、填空题(共6小题,每小题6分,共36分)7.已知,化简得.8. 一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为,那么,随机摸出一个为红色玻璃球的概率为.9. 若,则= .10.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为.11.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE 沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,CA1= .12.已知a、b、c、d是四个不同的整数,且满足a+b+c+d =5,若m是关于x 的方程(x-a)(x-b)(x-c)(x-d)=2014中大于a、b、c、d的一个整数根,则m的值为.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?14.如图,在矩形ABCD中,AD=8,直线DE交直线AB于点E,交直线BC于F,AE=6.(1)若点P是边AD上的一个动点(不与点A、D重合),设DP 为x,四边形AEHP的面积为y,试求y与x的函数解析式;(2)若AE=2EB. ①求圆心在直线BC上,且与直线DE、AB都相切的⊙O的半径长;②圆心在直线BC上,且与直线DE及矩形ABCD的某一边所在直线都相切的圆共有多少个?(直接写出满足条件的圆的个数即可.)15. 如图1,等腰梯形OABC的底边OC在x轴上,AB∥OC,O为坐标原点,OA =AB=BC,∠AOC=60°,连接OB,点P为线段OB上一个动点,点E为边OC中点.(1)连接PA、PE,求证:PA=PE;(2)连接PC,若PC+P E=,试求AB的最大值;(3)在(2)在条件下,当AB取最大值时,如图2,点M坐标为(0,-1),点D为线段OC上一个动点,当D点从O点向C点移动时,直线MD与梯形另一边交点为N,设D点横坐标为m,当△M NC为钝角三角形时,求m的范围.答案1.【答】D.解:最大的负整数是-1,∴=-1;绝对值最小的有理数是0,∴=0;倒数等于它本身的自然数是1,∴=1.∴==0.2. 【答】A.解:两式相减得3.【答】C.解:将图1中的平面图折成正方体,MN和线段c重合.不妨设图1中完整的正方形为完整面,△AMN和△ABM所在的面为组合面,则△AMN和△ABM所在的面为两个相邻的组合面,比较图2,首先确定B点,所以线段d 与AM重合,MN与线段c重合.4【答】C.解:由图象可得:,,,∴,,.抛物线与轴有两个交点,∴.当=1时,,即.当=时,,即.从图象可得,抛物线对称轴在直线=1的左边,即,∴.因此7个代数式中,其值为正的式子的个数为4个.5. 【答】B.解:如图,分别过点分别做轴的垂线,那么∽,则,故..6.【答】B.解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点, 即在点P运动过程中,G始终为PS的中点,所以G的运行轨迹为△CSD的中位线,∵CD=AB-AC-BD=6-1-1=4,∴点G移动的路径长为=2.7.【答】.解:∵,∴,,原式=.8.【答】.解:设口袋中蓝色玻璃球有个,依题意,得,即=10,所以P(摸出一个红色玻璃球)=.9.【答】8.解:∵,∴.则,即.∴10. 【答】.解:∵Rt△OAB中,∠AOB=30°,AB=2,∴AO=CO=,BO=DO=4,∴阴影部分面积====.【答】.解:过A1作A1M⊥BC,垂足为M,设CM=A1M=x,则BM=4-x,在Rt△A1BM中,,∴=,∴x =A1M=,∴在等腰Rt△A1CM中,C A1=.12. 【答】20.解:∵(m-a)(m-b)(m-c)(m-d)=2014,且a、b、c、d是四个不同的整数,由于m是大于a、b、c、d的一个整数根,∴(m-a)、(m-b)、(m-c)、(m-d)是四个不同的正整数. ∵2014=1×2×19×53,∴(m-a)+(m-b)+(m-c)+(m-d)=1+2+19+53=75.又∵a+b+c+d =5,∴m =20.13. 解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有,.易知0<x≤69,0<y≤49,0<z≤34,……………………………………4分∴,,即.∵x,y,z均为正整数,≥0,即0<z≤14∴z只能取14,9和4 (8)分①当z为14时,=2,=28. .②当z为9时,=26,=18. .③当z为4时,=50,=8. .综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支.……………………………………………………………………14分14. 14、解:(1)在Rt中,…………………………………………………………5分(2)①∽.………………………7分若⊙与直线DE、AB都相切,且圆心在AB的左侧,过点作于,则可设. 解得…………………10分若⊙与直线DE、AB都相切,且圆心在AB的右侧,过点作于,则可设解得即满足条件的圆的半径为或6.…………………………………………13分②6个.………………………………………………………………………………………16分15. 解:(1)证明:如图1,连接AE.…………………………………………………………5分(2)∵PC+P E=,∴PC+PA=.显然有OB=AC≤PC+P A=.……………7分在Rt△B OC中,设AB=OA=BC=x,则OC=2x,OB=,∴≤,∴≤2.即AB的最大值为2.…………………………10分(3) 当AB取最大值时,AB=OA=BC=2,OC=4.分三种情况讨论:①当N点在OA上时,如图2,若CN⊥M N时,此时线段OA上N点下方的点(不包括N、O)均满足△M NC为钝角三角形.过N作NF⊥x轴,垂足为F,∵A点坐标为(1,),∴可设N点坐标为(,),则D F=a-m,NF=,FC=4-a. ∵△O MD∽△FN D∽△FCN,∴.解得,,即当0<<时,△M NC为钝角三角形; (14)分②当N点在AB上时,不能满足△M NC为钝角三角形; (15)分③当N点在BC上时,如图3,若CN⊥M N时,此时BC上N点下方的点(不包括N、C)均满足△M NC为钝角三角形.智浪教育—普惠英才文库∴当<<4时,△M NC为钝角三角形.综上所述,当0<<或<<4时,△M NC为钝角三角形 (1)。
2014年全国初中数学联赛试题及答案(修正版)
2014年全国初中数学联赛试题及答案(修正版)2014年全国初中数学联合竞赛试题参考答案第一试一、选择题:1.已知x ,y 为整数,且满足(1x +1y ) (1x 2+1y2)=-23(1x 4-1y4),则x +y 的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个2.已知非负实数x ,y ,z 满足x +y +z =1,则t =2xy +yz +2xz 的最大值为( )A .47B .59C .916D .12253.在△ABC 中,AB =AC ,D 为BC 的中点,BE ⊥AC 于E ,交AD 于P ,已知BP =3,PE =1,则AE =( )A .62B .2等腰直角三角形,∠ADE=90° ,则BE的长为()A.4-23B.2-3C.12(3-1)D.3-1二、填空题:1.已知实数a,b,c满足a+b+c=1,1a+b-c+1a+c-b+1b+c-a=1,则abc=__2.使得不等式917<nn+k<815对唯一的整数k成立的最大正整数n为________.3.已知P为等腰△ABC内一点,AB=BC,∠BPC=108°,D为AC的中点,BD与PC交于点E,如果点P为△ABE的内心,则∠PAC=________.4.已知正整数a ,b ,c 满足: 1<a <b <c ,a +b +c =111,b 2=ac ,则b =________.第一试 参考答案一、选择题1.C2.A3.B4.B5.D6.A 二、填空题1. 02. 1443. 48°4. 36第二试 (A )一、 设实数,a b 满足22(1)(2)40a bb b a +++=,(1)8a b b ++=,求2211a b+的值.FCA BDE 二、如图,在□ABCD 中, D 为对角线BD 上一点,且满足∠ECD =∠ACB , AC 的延长线与△ABD 的外接圆交于点F . 证明:∠DFE =∠AFB三、设n 是整数,如果存在整数x ,y ,z 满足n =x 3+y 3+z 3-3xyz ,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.第二试 (A )答案一、解 由已知条件可得222()40a ba b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240xy +=,8x y +=,联立解得(,)(2,6)x y =或(,)(6,2)x y =.若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260tt -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根;若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====.二、证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF∠=∠=∠.又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD∠=∠=∠,所以△ECD∽△DAF,所以ED CD AB DF AF AF==.又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故DFE AFB∠=∠.三、解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P .取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P .为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz=++-,则33(,,)()3()3f x y z x y z xy x y xyz=++-+-3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++2221()()2x y z x y z xy yz zx =++++---2221()[()()()]2x y z x y y z z x =++-+-+-.即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+-①不妨设x y z ≥≥, 如果1,0,1x y y z x z -=-=-=,即1,x z y z=+=,则有(,,)31f x y z z =+;如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+;如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有FMHN AOBCD(,,)9(1)f x y z z =+;由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .因此,1,5和2014都具有性质P .若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P .第二试 (B )试题及答案一.同(A )卷第一题.二.如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .解延长BD交⊙O于点N,延长OD交⊙O于点E,由题意得NDE ODB OCB OBC CDE∠=∠=∠=∠=∠,所以DE为BDC∠的平分线.又点D在⊙O的半径OE上,点C、N在⊙O上,所以点C、N关于直线OE对称,DN DC=.延长AH交⊙O于点M,因为O为圆心,AM OD⊥,所以点A、M关于直线OD对称,AH MH=.因此==.MN AC AB又FNM FAB∠=∠,所以△ABF≌△NMF,∠=∠,FBA FMN所以MF BF=.=,FN AF因此,AM AF FM FN BF BN BD DN BD DC=+=+==+=+AH=.AH=,所以57310=+=,即210三.设n 是整数,如果存在整数x ,y ,z 满足n =x 3+y 3+z 3-3xyz ,则称n 具有性质P ..(1)试判断1,2,3是否具有性质P ; (2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P ;取1x y ==,0z =,可得33321103110=++-⨯⨯⨯,所以2具有性质P ;若3具有性质P ,则存在整数,,x y z 使得33()3()()x y z x y z xy yz zx =++-++++,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|3,这是不可能的,所以3不具有性质P .(2)记333(,,)3f x y z xy z xyz=++-,则33(,,)()3()3f x y z x y z xy x y xyz =++-+-3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++2221()()2x y z x y z xy yz zx =++++---2221()[()()()]2x y z x y y z z x =++-+-+-.即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+-①不妨设x y z ≥≥, 如果1,0,1x y y z x z -=-=-=,即1,x z y z=+=,则有(,,)31f x y z z =+;如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+; 如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+;由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .又若33|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++,则33|()x y z ++,从而3|()x y z ++,进而可知39|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++.综合可知:当且仅当93n k =+或96n k =+(k 为整数)时,整数n 不具有性质P .又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P的数共有224×2=448个.。
2014年全国初中数学联合竞赛试卷有答案
yz
2x( y
z)
1 (y
z) 2
4
2x(1 x)
1 (1
x)2
4
7 x2
3 x
1
4 24
7 (x
3)2
4
,
4 77
易知:当 x
3,y
z
2 时, t
2 xy
yz
2zx 取得最大值
4
.
7
7
7
12
D.
25
()
3.在△ ABC 中, AB AC ,D 为 BC 的中点, BE AC 于 E ,交 AD 于 P ,已知 BP 3,PE 1 ,
2014 年全国初中数学联合竞赛试题参考答案及评分标准 第一试
一、选择题: (本题满分 42 分,每小题 7 分)
11 1 1
21 1
1. 已知 x, y 为整数,且满足
( x
+
)( y
x2
+
y2 )
=
-
3 ( x4 -
y 4 ) , 错误!未找到引用源。
则 x+y的
可能的值有(
)
A. 1 个 【答】 C.来自故21
2
x
[
2(1
2
x)] ,即
2
x
4x 1
0.又 0
x 1,故可得 x
2
3.
A
F
B E
故 BE 2x 4 2 3 .
2
则
错
误
!
未
找
到
引
用
源
。
=
()
6
A.
2
【答】 B .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年全国初中数学竞赛试题
一.单项选择题(5×7分=35分)
1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ).
A .0
B .1
C .3
D .5
【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .
2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x x x 2
35352恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2
116.-≤≤-t D 【分析】20232
35352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .
注意到15=x 时,只有4个整数解.所以211
6152314-≤<-⇒<-≤t t ,本题选C
3.已知关于x 的方程x
x x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )
个.
A .1
B .2
C .3
D .4
【分析】422222222+-=⇒--=-+-x x a x
x x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍); 再考虑等根:
ⅲ)对04222=-+-a x x ,2
70)4(84=
→=--=∆a a ,当21,272,1==x a . 故27,8,4=a ,21,1,1-=x 共3个.本题选C .
4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ).
A .3
B .4
C .5
D .6
【分析】设ABC ∆底边BC 上的高为h ,则
DE CF CF BC h 121244848====,
)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=
+∆∆ 本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE
5.在分别标有号码2,3,4,...,10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ).
41.A 92.B 185.C 36
7.D 【分析】9
236811291214==+++=C C C P 本题选B . 二.填空题(5×7'=35')
6.设33=a ,b 是a 2的小数部分,则
3)2+b (的值为 . 【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b (
7.一个质地均匀的正方体的六个面上分别标有数1、2、3、4、5、6.掷这个正方体三次,则其朝上的面的数的和为3的倍数的概率是 .
【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为3
1666612=⨯⨯⨯=P . 8.已知正整数a 、b 、c 满足a +b 2-2c -2=0,3a 2-8b +c=0,则abc 的最大值为 .
【分析】先消去c ,再配方估算.24
166)8()121(621662222+=-++⇒=-++b a b b a a 观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113max =⨯⨯=abc .
9.实数a 、b 、c 、d 满足:一元二次方程x 2+cx +d=0的两根为a 、b ,一元二次方程x 2+ax +b=0的两根为c 、d ,则所有满足条件的数组(a 、b 、c 、d )为 .
【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得 (a 、b 、c 、d )=(1,-2,1,-2)
本题在化简过程中,总感觉还有,此处仅给出一组,好像不严谨,期待官方答案.
10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,园珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔.
【分析】设4元的卖x 支,7元的卖y 支,则350,2013
74<+=+y x y x 41
25031820124201374++-=⇒++-=⇒=+y y x y y x y x 令144
1-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523
151350147505≥−−→−≥⇒≤-+-∈k k k k N k ,
207152414=-⨯≥-=k y
即他至少卖了207支圆珠笔.
三.解答题(4×20'=80')
11.如图,抛物线y =ax 2+bx -3,顶点为E ,该抛物线与
x 轴交于A 、B 两点,与y 轴交于点C ,且OB=OC=3O
A .直线13
1+-=x y 与y 轴交于点D ,求∠DBC -∠CBE .
【分析】易知4)1(3222--=--=x x x y ,
)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥CO 于F ,连
CE ,易知△OBC 、△CEF 都是等腰直角三角形,则△CB
E 是直角三角形.分别在Rt △OBD 、Rt △BCE 中运用正切定义,即有3
1232tan 31tan =====BC CE ,OB OD βα,则βα=从而可得∠DBC -∠CBE=45º.
12.如图,已知AB 为圆O 的直径,C 为圆周上一点,
D 为线段OB 内一点(不是端点),满足CD ⊥AB ,D
E ⊥
CO ,E 为垂足,若CE =10,且AD 与DB 的长均为正整
数,求线段AD 的长.
【分析】设圆O 半径为r ,则由相似或三角函数或射影
定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又
r r DE CE CD 10)10(10102222=-+=+=
由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知
r CD BD AD 102==⋅①,而r BD AD 2=+②
令y BD x AD ==,,①/②即
155210-=⇒==+y x y r r y x xy ,显然有x y <<0,则10<<x y ,即105115
0<<⇒<-<y y ,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD .
13.设a 、b 、c 是素数,记c b a z b a c y a c b x -+=-+=-+=,,,当2,2=-=y x y z 时,a 、b 、c 能否构成三角形的三边长?证明你的结论.
【分析】281102222a z a z z y z a z y c
b a z b a
c y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+= a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有
a k k 2)1(=+⎩
⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数 2,332811-=−−→−=+±-=
z a a z ⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,
c b a b =<=+=+=1720173,17不能围成三角形;
ⅱ)是合数9,16,4,2====b x y z
综上所述,以a 、b 、c 不能围成三角形.
14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数) .求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,...,a n ,满足对任意一个正整数m ,在a 1,a 2,...,a n 中都至少有一个为m 的“魔术数”.
【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,
(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a k i +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,k i a 10⋅与m 二者余数的和至少有一个是7,此时m a k i +⋅10被7整除,即n =7.。