整体法和隔离法受力分析(答案版)doc资料
(完整版)整体法和隔离法专题(带答案)
n e i n g整体法和隔离法1、用轻质细线把两个质量未知的小球悬挂起来,如右图所示.今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大的恒力,最后达到平衡. 表示平衡状态的图可能是( A )2、如图<1>,在粗糙的水平面上放一三角形木块a ,若物体b 在a 的斜面上匀速下滑,则( A )A 、a 保持静止,而且没有相对于水平面运动的趋势;B 、a 保持静止,但有相对于水平面向右运动的趋势;C 、a 保持静止,但有相对于水平面向左运动的趋势;D 、因未给出所需数据,无法对a 是否运动或有无运动趋势作出判断;3、A 、B 、C 三物块质量分别为M 、m 和m 0,作图<2> 所示的联结. 绳子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计. 若B 随A 一起沿水平桌面作匀速运动,则可以断定( A )A 、物块A 与桌面之间有摩擦力,大小为m 0g ;B 、物块A 与B 之间有摩擦力,大小为m 0g ;C 、桌面对A ,B 对A ,都有摩擦力,两者方向相同,合力为m 0g ;D 、桌面对A ,B 对A ,都有摩擦力,两者方向相反,合力为m 0g ;4、质量为m 的物体放在质量为M 的物体上,它们静止在水平面上。
现用水平力F 拉物体M,它们仍静止不动。
如右图所示,这时m 与M 之间,M 与水平面间的摩擦力分别是( C ) A .F ,F B .F ,0 C .0,F D .0,05、如右图所示,物体a 、b 和c 叠放在水平桌面上,水平力F b =4N 、F c =10N 分别作用于物体b 、c 上,a 、b 和c 仍保持静止。
以f 1、f 2、f 3分别表示a 与b 、b 与c 、c 与桌面间的静摩擦力的大小。
则f 1= 0 ,f 2= 4N ,f 3= 6N 。
6、质量为m 的四块砖被夹在两竖夹板之间,处于静止状态,如右图所示,则砖2对砖1的摩擦力为 mg 。
高一物理整体法隔离法试题答案及解析
高一物理整体法隔离法试题答案及解析1. 如图所示,在粗糙水平面上放一质量为M 的斜面体,质量为m 的木块在竖直向上力F 作用下,沿斜面体匀速下滑,此过程中斜面体保持静止,则地面对斜面( )A .无摩擦力B .有水平向左的摩擦力C .支持力为(M+m )gD .支持力小于(M+m )g【答案】AD【解析】对物体M 和m 整体受力分析,受拉力F 、重力(M+m )g 、支持力F N ,根据共点力平衡条件竖直方向 F N +F-(M+m )g=0,解得:F N =(M+m )g-F <(M+m )g ;水平方向不受力,故没有摩擦力. 故选AD .【考点】整体法及隔离法。
2. 如图所示,两个等大的水平力F 分别作用在B 和C 上.A 、B 、C 都处于静止状态.各接触面与水平地面平行.A 、C 间的摩擦力大小为f 1,B 、C 间的摩擦力大小为f 2,C 与地面间的摩擦力大小为f 3,则( )A .f 1=0,f 2=0,f 3=0B .f 1=0,f 2=F ,f 3=0C .f 1=F ,f 2=0,f 3=0D .f 1=0,f 2=F ,f 3=F 【答案】B【解析】以ABC 整体为研究对象,分析整体在水平方向的受力易知,地面对C 的摩擦力为零,以A 为研究对象,A 处于平衡状态,故C 与A 之间无摩擦力,以B 为研究对象,易知C 与B 之间的摩擦力为F ,故选B 【考点】考查整体隔离法点评:本题难度较小,处理此类问题,研究对象的选择是灵活的,例如分析BC 间摩擦力时,可以以A 、C 整体为研究对象3. 如图水平向左的拉力F 作用在木块2上,三木块一起向左匀速运动,以下说法正确的是A .木块1受到了向左的摩擦力B .木块2受到了2对平衡力C .木块1、2间有2对作用力和反作用力D .木块2、3间有2对作用力和反作用力【答案】D【解析】三木块一起向左匀速运动,说明整体合外力为零。
将1物体隔离开,则水平方向静摩擦力为零,所以A错。
连接体问题中的整体法和隔离法
连接体问题中的整体法和隔离法“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。
在“连接体运动”的解题中,常常要用到两种解题方法──“整体法”和“隔离法”。
例题1、如图1-15所示:把质量为M 的的物体放在光滑..的水平..高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大?⒈ “整体法”解题 采用此法解题时,把物体M 和m 看作一个整体..,它们的总质量为(M+m )。
把通过细绳连接着的M 与m 之间的相互作用力看作是内力..,既然水平高台是光滑无阻力的,那么这个整体所受的外力..就只有mg 了。
又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。
现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g mM ma +=⒉ “隔离法”解题采用此法解题时,要把物体M 和m 作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M 与m 之间的相互..作用力T 必须标出,而且对M 和m 单独..来看都是外力..(如图1-16所示)。
根据牛顿第二定律对物体M 可列出下式:T=Ma ①根据牛顿第二定律对物体m 可列出下式: mg-T=ma ②将①式代入②式:mg-Ma=ma mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g mM ma +=练习:如图1-17所示,用细绳连接绕过定滑轮的物体M 和m ,已知M>m ,可忽略阻力,求物体M 和m 的共同加速度a 。
解:g mM mM a +-=例题2、如图,质量为M 的木板,放在倾角为θ的光滑斜面上,木板上一质量为m 的人应以多大的加速度沿斜面跑下,才能使木板静止在斜面上?解一:隔离法。
M 静止,其受合外力为0。
M 受到重力Mg 、支持力N 、人的摩擦力f 而平衡。
故: f=Mgsin θ 人受到重力mg 、支持力N ′、木板的摩擦力f F 合= mgsin θ+f= mgsin θ+ Mgsin θ ∴ a= (m+M)gsin θ/ma m M解二.整体法。
高中物理整体法和隔离法
1. 物体的受力分析(隔离法与整体法)2. 共点力作用下的物体的平衡【要点扫描】一、物体的受力分析(隔离法与整体法)(一)物体受力分析方法把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。
对物体进行正确地受力分析,是解决好力学问题的关键。
1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)2、受力分析的几个步骤.①灵活选择研究对象:也就是说根据解题的目的,从体系中隔离出所要研究的某一个物体,或从物体中隔离出某一部分作为单独的研究对象,对它进行受力分析。
所选择的研究对象要与周围环境联系密切并且已知量尽量多;对于较复杂的问题,由于物体系各部分相互制约,有时要同时隔离几个研究对象才能解决问题.究竟怎样选择研究对象要依题意灵活处理。
②对研究对象周围环境进行分析:除了重力外查看哪些物体与研究对象直接接触,对它有力的作用。
凡是直接接触的环境都不能漏掉分析,而不直接接触的环境千万不要考虑进来.然后按照重力、弹力、摩擦力的顺序进行力的分析,根据各种力的产生条件和所满足的物理规律,确定它们的存在或大小、方向、作用点。
③审查研究对象的运动状态:是平衡状态还是加速状态等等,根据它所处的状态有时可以确定某些力是否存在或对某些力的方向作出判断。
④根据上述分析,画出研究对象的受力分析图;把各力的方向、作用点(线)准确地表示出来。
3、受力分析的三个判断依据:①从力的概念判断,寻找施力物体;②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。
(二)隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。
在许多问题中用整体法比较方便,但整体法不能求解系统的内力。
2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分析,分别列出方程,再联立求解的方法。
3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
高一物理受力分析(整体法和隔离法)
受力分析—隔离法与整体法一、物体受力分析方法把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。
对物体进行正确地受力分析,是解决好力学问题的关键。
1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)2、受力分析的几个步骤.①灵活选择研究对象②对研究对象周围环境进行分析③审查研究对象的运动状态:根据它所处的状态有时可以确定某些力是否存在或对某些力的方向作出判断.④根据上述分析,画出研究对象的受力分析示意图;把各力的方向、作用点(线)准确地表示出来.3、受力分析的三个判断依据:①从力的概念判断,寻找施力物体;②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。
二、隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。
在许多问题中可以用整体法比较方便,但整体法不能求解系统的内力。
(区分内力和外力,对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现,当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。
)2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分根据地,分别列出方程,再联立求解的方法。
3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用注意:实际问题中整体法与隔离法要结合起来灵活运用........。
........................,通常先整体后隔离三、例题例1.在粗糙的水平面上有一个三角形木块,在它的两个粗,糙的斜面上分别放置两个质量为m1和m2的木块,m m12如图1所示,已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块()A. 有摩擦力作用,方向水平向右;B. 有摩擦力作用,方向水平向左;C. 有摩擦力作用,但方向不确定;图1D. 以上结论都不对。
高考物理——相互作用之整体法和隔离法应用(含答案)
高考物理——相互作用1 如图所示,倾角为θ的斜面体C置于水平面上,B置于斜面上,通过细绳跨过光滑的定滑轮与A相连接,连接B的一段细绳与斜面平行,A、B、C都处于静止状态.则()A.物块B、C间的摩擦力一定不为零B.斜面体C受到水平面的摩擦力一定为零C.不论B、C间摩擦力大小、方向如何,水平面对C的摩擦力方向一定向左D.水平面对C的支持力与B、C的总重力大小相等答案:C 2如图所示,一根铁链一端用细绳悬挂于A点,为了测量这个铁链的质量,在铁链的下端用一根细绳系一质量为m的小球,待整个装置稳定后,测得两细绳与竖直方向的夹角为α和β,若tanα:tanβ=1:3,则铁链的质量为()A.m B.2m C.3m D.4m答案:B3如图所示,物体甲和物体乙通过不可伸长的轻绳跨过定滑轮连接,斜面体固定,甲、乙处于静止状态。
下列说法正确的是()A.甲一定受到沿斜面向上的摩擦力B.甲一定受到沿斜面向下的摩擦C.甲的质量可能等于乙的质量D.甲的质量一定大于乙的质量答案:C4如图所示,水平固定且倾角为37°(sin 37°=0.6,cos 37°=0.8)的光滑斜面上有两个质量均为m=1 kg的小球A、B,它们用劲度系数为k=200 N/m的轻质弹簧连接,弹簧的长度为l0=20 cm,现对B 施加一水平向左的推力F,使A、B均在斜面上以加速度a=4 m/s2向上做匀加速运动,此时弹簧的长度l和推力F的大小分别为()A.0.15 m,25 N B.0.25 m,25 NC.0.15 m,12.5 N D.0.25 m,12.5 N答案:B5如图所示,顶端装有光滑定滑轮的斜面体放在粗糙水平地面上,A、B两物体通过轻质细绳连接,并处于静止状态。
现用水平向右的力F将物体B缓慢拉动一定的距离(斜面体与物体A始终保持静止)。
在此过程中,下列判断正确的是()A.水平力F大小不变B.物体A所受斜面体的摩擦力逐渐变大C.斜面体所受地面的支持力逐渐变大 D.斜面体所受地面的摩擦力逐渐变大答案:D6如图,穿在一根光滑的固定杆上的两个小球A和B连接在一条跨过定滑轮的细绳两端,杆与水平面成θ=37°,不计所有摩擦。
整体法隔离法习题附答案
1.如图为一直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑。
AO上套有小环P,OB上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在图示位置平衡。
现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力F N和摩擦力f的变化情况是()A.F N不变,f变大B.F N不变,f变小C.F N变大,f变大D.F N变大,f变小【答案】B【解析】分析受力作出示意图。
再把两环、细绳作为“整体”研究可知,小环P所受支持力等于2mg即其中,FN 、FN/分别为环P、Q所受支持力。
由①式可知,FN大小不变。
然后,依“极限思维”分析,当环P向左移至O点时,环Q所受的拉力T、支持力FN/逐渐减小为mg、0。
由此可知,左移时环P所受摩擦力将减小。
因此,正确的答案为:选B。
静力学中存在着大量的类似此例的“连接体”问题。
解题思维方法,无非为“整体”、“隔离”两种分析方法的交替使用,至于是先“整体”、还是“隔离”,则因题而异,变通确定。
2.如图所示,叠放在一起的A、B两绝缘小物块放在水平向右的匀强电场中,其中B带+Q的电量,A不带电;它们一起沿绝缘水平面以某一速度匀速运动。
现突然使B带电量消失,A带上+Q的电量,则A、B的运动状态可能为A.一起匀速B.一起加速C.一起减速D.A加速,B匀速【答案】A【解析】试题分析:由题意知B受到的向右的电场力与地面对B向左的摩擦力大小相等,当B带电量消失,A带上+Q的电量时,要讨论AB间的的摩擦力与地面对B的摩擦力之间的大小关系,当AB间的的摩擦力大于或等于地面对B的摩擦力时,AB还是一起运动,可把AB看成整体,整体受到的电场力与摩擦力平衡,所以仍然一起做匀速运动,A对,BC错;当AB间的的摩擦力小于地面对B的摩擦力时,此时A做加速运动,B做减速运动,D错。
考点:本题考查受力分析,整体法点评:本题学生要讨论AB间的的摩擦力与地面对B的摩擦力之间的大小关系,从而去判断AB是一起运动还是分开运动。
牛顿第二定律(整体法和隔离法)(自己上课用)
问题涉及物体间的内力。
已知外力求内力:先整体后隔离 已知内力求外力:先隔离后整体
例:A、B两物体用轻绳连接,置于光滑水平面上,它们的质
量分别为M和m,现以水平力F拉A,求AB间绳的拉力T1为多少? (1)系统的合力 F (M m)a
F a M m
隔离B
mF T1 ma M m
M
F
水平面还是光滑,F改拉m,要使 m和M不发生相对滑动,F不能超 过多少?
f
M
m
F
f
有相互作用力的系统
整体与隔离体法
【例2】A、B的质量分别为m1和m2,叠放置于光滑的水 平地面上,现用水平力F拉A时,A、B一起运动的最大 加速度为a1,若用水平力F改拉B时,A、B一起运动的最 大加速度为a2,则a1:a2等于:( )
对m,由牛顿第二定律得:
M
m
mgT ma
对滑块M,由牛顿第二定律得:
T Mg Ma
联立以上两式子得:
mg Mg a M m
( 1) M T mg M m
求2对3的作用力
F 1
2
3
4
5
有相互作用力的系统
连接体问题可以分为三大类
整体与隔离体法
1、连接体中各物体均处于平衡状态
对B受力分析: 水平方向:
FAB m2 g m2a
m2 F m1 m2
联立以上各式得: FAB
思考:用水平推力F向左推,A、B间的作用 力与原来相同吗?
没有摩擦力时:
解:对整体,根据牛顿第二定律得
F (m1 m2 )a
对 A 受力分析根据牛顿第二定律得:
FBA m1a
(1)当地面光滑时,A,B作为一个整体,根据牛顿第二定律得:
力学专题:整体法和隔离法
专题整体法和隔离法1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。
体之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
通常在分析外力对系统的作用时,用整体法。
2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。
在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。
例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力(取)解析:(1)隔离法:先对物体m受力分析,如图甲所示。
由平衡条件有垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。
(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。
但并非所有情况都可以用整体法,当要求出物体之间的相互作用力时,则必须用隔离法求出物体间的相互作用力,因为整体法不能暴露出物体之间的相互作用力。
整体法和隔离法在力学中的具体应用
到 的一些 关于解 连接体 问题 的经 验介 绍给大 家 , 目的是 想让 大家
在解 这类 问题 上有所 突破。 处理连 接体 问题 的有效 方法就 是 整体法 和隔离 法 ,充分理 解 和正 确应 用整体 法和 隔离法 将对 正确分 析物体 的 况下采 用整体 法 ,什么情 况 下又采 用隔 离法 呢? 当物体 系统 处于平 衡状 态时 , 整体 的合外 力 为零 。 一个 物体 每 的合 外力也 为零 。根据 不 同的具体 问题 , 可选取 不 同的研 究对 象 。 当不 涉及 物体 系统 内各物体 之 间的相 互作用 时 。可 优先 选用 整体 法; 当涉及物 体 系统 内各 物体 之间 的相互 作用 力 时 , 可选 取某一 物 体 用隔离法进 行研 究 , 并结合 力 的平 衡条件 进一步 求解 。当物体 系 统不 平衡 时 , 在不 需要 知道物 体之 间的相 互作 用 , 各个 物体都 具 且
【 注】 l 理 研究l 关 数 化
整体 法 和 隔离 法在 力学 中的具 体 应用
●陈 先 容
受力分 析是 高 中物 理 的一个重 点 , 因为 它是 整个力学 的基 础 ,
贯 穿了整个 力学部分 . 且在 电磁学部 分也有 所应 用。但 它 同时又是
一
法 分 析 系 统 水 平 方 向 的 受 力 。 由 此 可 知 。 拉 力 F的 大 小 为 F 2+ = g = T 2 mg 4 m 。答案 : 。 A 例 2 如图 ( : 图略 ) 示, 为 m 的物 块 A 放在质 量 为 M 的物 所 质量 t 块 B的水 平表 面上 , A B保持相 对静 止 , 起沿 着倾 角为 e的光 且 、 一 滑斜 面 下滑 , 则物块 A对物块 8的压 力和 A所 受摩擦 力 的大小 各 为 多少?
整体法与隔离法的应用(附答案)
整体法与隔离法的应用整体法和隔离法在力的平衡问题和牛顿运动定律中的连接体问题中经常遇到这样的题目。
方法剖析:整体法:解题一般比较简单,但整体法整体法不能求内力。
隔离法:对系统内的物体受力分析时,一般先从受力简单的物体入手,采用隔离法进行分析, 注意事项:整体法的适用条件系统内各个物体的运动状态必须相同,两种方法实际问题常常需要整体法与实际应用隔离法交叉运用 精准练习巩固:1.如图,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A (A 、B 接触面竖直),此时A 恰好不滑动,B 刚好不下滑。
已知A 与B 间的动摩擦因数为μ1,A 与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力。
A 与B 的质量之比为( ) A.1μ1μ2 B.1-μ1μ2μ1μ2 C.1+μ1μ2μ1μ2 D.2+μ1μ2μ1μ22.如图所示,在粗糙水平地面上放着一个截面为半圆的柱状物体A ,A 与竖直墙之间放一光滑半圆球B ,整个装置处于静止状态。
已知A 、B 两物体的质量分别为m A 和m B ,则下列说法正确的是( )A.A 物体对地面的压力大小为m A gB.A 物体对地面的压力大小为(m A +m B )gC.B 物体对A 物体的压力大于m B gD.地面对A 物体没有摩擦力3.如图所示,甲、乙两个小球的质量均为m ,两球间用细线连接,甲球用细线悬挂在天花板上。
现分别用大小相等的力F 水平向左、向右拉两球,平衡时细线都被拉紧。
则平衡时两球的可能位置是下面的( )4.在上题目的图中,如果作用在乙球上的力大小为F,作用在甲球上的力大小为2F,则此装置平衡时的位置可能是()5.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3∶4B.4∶ 3C.1∶2D.2∶16.(多选)如图所示,质量分别为m A、m B的A、B两个楔形物体叠放在一起,B靠在竖直墙壁上,在水平力F的作用下,A、B静止不动,则()A.A物体受力的个数可能为3B.B受到墙壁的摩擦力方向可能向上,也可能向下C.力F增大(A、B仍静止),A对B的压力也增大D.力F增大(A、B仍静止),墙壁对B的摩擦力也增大7.如图所示,一个质量为m的滑块置于倾角为30°的固定粗糙斜面上,一根轻弹簧一端固定在竖直墙上的P点,另一端系在滑块上的Q点,直线PQ与斜面垂直,滑块保持静止.则()A.弹簧可能处于原长状态B.斜面对滑块的摩擦力大小可能为零C.斜面对滑块的支持力大小可能为零D.滑块一定受到四个力作用8.物体B放在物体A上,A、B的上下表面均与斜面平行(如图),当两者以相同的初速度靠惯性沿光滑固定斜面C向上做匀减速运动时( )A.A受到B的摩擦力沿斜面方向向上。
受力分析--整体法与隔离法
受力分析——整体法与隔离法一、整体法与隔离法的解析:【例1】一只重为G1的木箱放在大磅秤上,木箱内有一个重为G2的人站在小磅秤上,如图所示,站在小磅秤上的人用力推木箱的顶板,此时小磅秤的示数将______,大磅秤的示数将______。
(填“增大”、“减小”、“不变”)二、摩擦力专练:1.方法:利用二力平衡求大小(一定是平衡状态)引入:一个小车在推力10N的作用下在水平桌面上以2m/s的速度匀速运动,此时摩擦力为多大?若现在使得小车以5m/s的速度匀速运动,此时摩擦力为多大?推力增大到20N,摩擦力为多大?结论:滑动摩擦力大小只与压力和接触面粗糙程度有关,与速度,推力大小及接触面积大小等无关。
【例2】如下图甲所示,同种材料制成的木块A和B叠放在水平桌面上,在12N的水平推力F1作用下,A、B一起作匀速直线运动,此时木块A所受的摩擦力为N;若将A、B紧靠着放在水平桌面上,如下图乙用水平力F2推A使它们一起匀速运动,则推力F2=N。
1.整体法和隔离法专练:【例3】如图所示,在光滑水平桌面上叠放着甲、乙两个物体。
甲物体用细线拴在左边竖直墙上。
现用力F把乙物体从右端匀速拉出来;所用力F=15N。
则甲、乙二物体受到的摩擦力的大小和方向是( )A.f甲=0,f乙=15N,方向向左B.f甲=f乙=15N ,方向都向右C.f甲=f乙=15N ,方向都向左D.f甲=f乙=15N ,f甲向右,f乙向左2.摩擦力反向【例4】(2010海淀二模改编)将重为4N的足球竖直向上踢出,足球在竖直向上运动的过程中,如果受到的空气阻力大小为1 N,则足球受到的合力大小为N 。
足球下落的过程中,受到的合力为_______。
【例5】一个载有重物的气球所受重力(气球及所载重物)为G,在空气中受到2000N的浮力时,匀速竖直上升,若将所载重物再增加200N的物体,该气球就能匀速竖直下降。
设气球上升和下降时受到的空气浮力和阻力大小不变,则汽球受到的重力G为______N,所受的空气阻力为_____N。
物体受力分析的常用方法
物体受力分析的常用方法(1)整体法和隔离法:将研究对象与周围物体分隔或将相对位置不变的物体系作为一个整体来分析。
分析两个以上的物体所组成的系统的受力情况时,若每个物体的运动状态都相同,可以先取整体研究,若分析物体间的相互作用时,需将物体隔离分析。
注意:区分内力和外力,对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。
例1:如图6-10所示,物体A 、B 和C 叠放在水平桌面上,水平力为F b =5N ,F c =10N ,分别作用于物体B 、C 上,A 、B 和C 均保持静止,以F f1、F f2、F f3分别表示A 与B ,B 与C ,C 与桌面间的静摩擦力的大小,则( )A .F f1=5N ,F f2=0N ,F f3=5NB .F f1=5N ,F f2=5N ,F f3=0NC .F f1=0N ,F f2=5N ,F f3=5ND .F f1=0N ,F f2=10N ,F f3=5N例2:质量均为m 的四块砖被夹在两竖直夹板之间,处于静止状态,如图6-11所示。
试求砖3对砖2的摩擦力。
例3:(08年崇文二模)如图6-12所示,A 、B 两物体叠放在动摩擦因数μ=0.50的水平 地 面上,A 物体质量 m =10kg , B 物体质量M =30kg 。
处于水平位置的轻弹簧一端固定于墙壁,另一端与A 物体相连,弹簧处于自然状态,其劲度系数为250N/m 。
现有一水平推力F 作用于物体B 上,使A 、B 两物体一起缓慢地向墙壁移动,当移动0.4m 时,水平推力F 的大小为( ) (g 取10m/s 2) A .100N B .200N C .250N D .300N例4:如图6-13所示,c 是水平地面,a 、b 是两个长方形物块,F 是作用在物块b 上沿水平方向的力,物体a 和b 以相同的速度作匀速直线运动。
(完整word版)用整体法和隔离法解决连接体问题
用整体法和隔离法解决连接体问题一、问题背景整体法与隔离法的运用在高考命题中由来已久,主要是考查考生综合分析能力,多物体问题虽然是一种常见的题型,但由于涉及整体法和隔离法、正交分解法等方法的应用,许多学生均感到很困难,这就要求考生能熟练掌握整体法与隔离法的解题技巧.二、重点概述1。
研究物理问题时,把所有的研究对象最为一个整体来处理的方法称为整体法.2。
研究物理问题时,把所有的研究从整体中隔离出来进行单独研究,最终得出结论的方法称为隔离法。
3.基本特点:(1)采用整体法时,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的受力本质和变化规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
(2)采用隔离法时,容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。
三、难点释疑1。
整体法和隔离法交替使用原则:若系统内各物体具有相同的加速度,且要求物体之间的相互作用力时,可以先整体求加速度,再用隔离法选取合适对象,应用牛顿第二定律求作用力。
即“先整体求加速度,再隔离求内力"。
2. 整体法和隔离法不是相互对立的,一般在问题的求解中,随着研究对象的转化,往往两种方法交叉使用.因此,两种方法的取舍,并没有绝对的界限,需要具体分析,灵活运用。
无论哪种方法,均以尽可能避免或减少中间未知量的出现为原则。
四、典型例题例1:如图所示,质量为m1=5kg的滑块置于一粗糙的斜面上,用一平行于斜面的大小为30N的力F推滑块,滑块沿斜面向上匀速运动,斜面体质量m2=10kg,且始终静止,取g=10m/s2,求:(1)斜面对滑块的摩擦力.(2)地面对斜面体的摩擦力和支持力.解答:(1)以滑块为研究对象,分析受力情况如图1,滑块向上匀速运动时,有:F=m 1gsin30°+f 1, 得斜面对滑块的摩擦力:f 1=F-m 1gsin30°=30-50×0.5(N)=5N(2)以整体为研究对象,整体的合力为零,分析受力情况,根据平衡条件得:水平方向:f 2=Fcos30°竖直方向:N+Fsin30°=(m 1+m 2)g 解得:f 2=15N,N=135N评析:当需要求出相互作用物体之间的作用力时(内力),必须用隔离法求出物体之间的力,而整体法不能求出他们之间的作用力.当要求外界物体对几个物体组成的系统的作用力时,整体法则是事半功倍。
整体法和隔离法受力分析(答案版)
For personal use only in study and research; not forcommercial use专题三 整体法和隔离法选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。
合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。
隔离法与整体法都是物理解题的基本方法。
隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。
整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。
隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。
这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。
对于连结体问题,通常用隔离法,但有时也可采用整体法。
如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。
对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。
一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D .【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么?【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q,两环A O P质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。
完整word版高中物理整体法和隔离法
整体法和隔断法一、整体法整体法就是把几个物体视为一个整体,受力解析时,只解析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力求或运动全过程的表示图;(3)采用合适的物理规律列方程求解。
二、隔断法隔断法就是把要解析的物体从相关的物系统中假想地隔断出来,只解析该物体之外的物体对该物体的作用力,不考虑该物体对其他物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔断法。
运用隔断法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔断出来;(3)画出某状态下的受力求或运动过程表示图;(4)采用合适的物理规律列方程求解。
三、应用整体法和隔断法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的要点。
研究对象的采用关系到能否获取解答或能否顺利获取解答,入采用所求力的物体,不能够做出解答时,应采用与它相互作用的物体为对象,即转移对象,或把它与周围的物体当作一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔断法是相对的,二者在必然条件下可相互转变,在解决问题时决不能够把这两种方法对峙起来,而应该灵便把两种方法结合起来使用。
为使解答简略,采用对象时,一般先整体考虑,尤其在解析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在解析系统内各物体(各部分)间相互作用力时(即系统内力),必定用隔断法。
2、如需隔断,原则上选择受力情况少,且又能求解未知量的物体解析,这一思想在今后牛顿定律中会大量表现,要注意熟练掌握。
3、有时解答一题目时需多次采用研究对象,整体法和隔断法交织运用,从而优化解题思路和解题过程,使解题简捷了然。
所以,注意灵便、交替地使用整体法和隔断法,不但能够使解析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也拥有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三 整体法和隔离法选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。
合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。
隔离法与整体法都是物理解题的基本方法。
隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。
整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。
隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。
这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。
对于连结体问题,通常用隔离法,但有时也可采用整体法。
如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。
对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。
一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D .【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么?【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。
现将P环向左移一小段距离,两环再 A O B P Q次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小【解析】隔离法:设PQ 与OA 的夹角为α,对P 有:mg +Tsinα=N对Q 有:Tsinα=mg所以 N=2mg , T=mg/sinα 故N 不变,T 变大.答案为B整体法:选P 、Q 整体为研究对象,在竖直方向上受到的合外力为零,直接可得N=2mg ,再选P 或Q 中任一为研究对象,受力分析可求出T=mg/s inα【点评】为使解答简便,选取研究对象时,一般优先考虑整体,若不能解答,再隔离考虑.【例3】如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动?【解析】(1)设A 、B 恰好滑动,则B 对地也要恰好滑动,选A 、B 为研究对象,受力如图,由平衡条件得:F=f B +2T选A 为研究对象,由平衡条件有T=f A f A =0.1×10=1N f B =0.2×30=6N F=8N 。
(2)同理F=11N 。
【例4】将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少?【解析】以整体为研究对象,木块平衡得F=f 合又因为 m A =2m B =2m C 且动摩擦因数相同,所以 f B =F/4再以B 为研究对象,受力如图所示,因B 平衡,所以F 1=f B sinθ 即:F 1=Fsinθ/4【点评】本题也可以分别对A 、B 进行隔离研究,其解答过程相当繁杂。
【例5】如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为 A B F T T f B A T f A F A B C θ θ f B f 1 F 1 A BFA.4mg、2mg B.2mg、0 C.2mg、mg D.4mg、mg【解析】设左、右木板对砖摩擦力为f1,第 3块砖对第2块砖摩擦为f2,则对四块砖作整体有:2f1=4mg,∴ f1=2mg。
对1、2块砖平衡有:f1+f2=2mg,∴ f2=0,故B正确。
【例6】如图所示,两个完全相同的重为G的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。
问当F至少多大时,两球将发生滑动?【解析】首先选用整体法,由平衡条件得F+2N=2G ①再隔离任一球,由平衡条件得Tsin(θ/2)=μN②2·Tcos(θ/2)=F③①②③联立解之。
【例7】如图所示,重为8N的球静止在与水平面成370角的光滑斜面上,并通过定滑轮与重4N的物体A相连,光滑挡板与水平而垂直,不计滑轮的摩擦,绳子的质量,求斜面和挡板所受的压力(sin370=0.6)。
【解析】分别隔离物体A、球,并进行受力分析,如图所示:由平衡条件可得: T=4NTsin370+N2cos370=8N2sin370=N1+Tcos370得 N1=1N N2=7N。
【例8】如图所示,光滑的金属球B放在纵截面为等边三角形的物体A与坚直墙之间,恰好匀速下滑,已知物体A的重力是B重力的6倍,不计球跟斜面和墙之间的摩擦,问:物体A与水平面之间的动摩擦因数μ是多少?【解析】首先以B为研究对象,进行受力分析如图由平衡条件可得: N2=m B gcot300①再以A、B为系统为研究对象.受力分析如图。
由平衡条件得:N2=f,f=μ(m A+m B)g ②解得μ=√3/7【例9】如图所示,两木块的质量分别为m 1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为【分析】本题主要是胡克定律的应用,同时要求考生能形成正确的物理图景,合理选择研究对象,并能进行正确的受力分析。
求弹簧2原来的压缩量时,应把m1、m2看做一个整体,2的压缩量x1=(m1+m2)g/k2。
m1脱离弹簧后,把m2作为对象,2的压缩量x2=m2g/k2。
d=x1-x2=m1g/k2。
答案为C。
【例10】如图所示,有两本完全相同的书A、B,书重均为5N,若将两本书等分成若干份后,交叉地叠放在一起置于光滑桌面上,并将书A固定不动,用水平向右的力F 把书B匀速抽出。
观测得一组数据如下:根据以上数据,试求:(1)若将书分成32份,力 F 应为多大?(2)该书的页数。
(3)若两本书任意两张纸之间的动摩擦因数μ相等,则μ为多少?【解析】(l )从表中可看出,将书分成 2,4,8,16,…是2倍数份时,拉力F 将分别增加6N ,12N ,24N ,…,增加恰为2的倍数,故将书分成32份时,增加拉力应为 48N ,故力 F=46.5+48=94.5N ;(2)逐页交叉时,需拉力F=190.5N ,恰好是把书分成 64份时,增加拉力 48×2=96N,需拉力 F=94.5+96=190.5N可见,逐页交叉刚好分为64份,即该书有64页;(3)两张纸之间动摩擦因数为μ,则F=190.5=μG/64+μ2G/64+μ3G/64+……+μ128G/64=μG/64·(1+2+3+……+128)=129μ×5∴ μ=190.5/(129×5)=0.3。
【点评】请注意,将书分成份数不同,有所不同。
二、牛顿运动定律中的整体与隔离当系统内各物体具有相同的加速度时,应先把这个系统当作一个整体(即看成一个质点),分析受到的外力及运动情况,利用牛顿第二定律求出加速度.如若要求系统内各物体相互作用的内力,则把物体隔离,对某个物体单独进行受力分析,再利用牛顿第二定律对该物体列式求解.隔离物体时应对受力少的物体进行隔离比较方便。
【例11】如图所示的三个物体A 、B 、C ,其质量分别为m 1、m 2、m 3,带有滑轮的物体B 放在光滑平面上,滑轮和所有接触面间的摩擦及绳子的质量均不计.为使三物体间无相对运动,则水平推力的大小应为F =__________。
【解析】以F 1表示绕过滑轮的绳子的张力,为使三物体间无相对运动,则对于物体C 有:F 1=m 3g ,以a 表示物体A 在拉力F 1作用下的加速度,则有g m m m F a 1311==,由于三物体间无相对运动,则上述的a 也就是三物体作为一个整物体运动的加速度,故得F =(m 1+m 2+m 3)a =13m m (m 1+m 2+m 3)g【例12】如图,底座A 上装有一根直立竖杆,其总质量为M ,杆上套有质量为m 的环B ,它与杆有摩擦。
当环从底座以初速向上飞起时(底座保持静止),环的加速度为a ,求环在升起的过程中,底座对水平面的压力分别是多大?【解析】采用隔离法:选环为研究对象,则 f+mg=ma (1)选底座为研究对象,有F+f ’-Mg=0 (2) 要求出a又f=f ’ (3)联立(1)(2)(3)解得:F=Mg-m(a-g)采用整体法:选A 、B 整体为研究对象,其受力如图,A 的加速度为a ,向下;B 的加速度为0.选向下为正方向,有:(M+m)g-F=ma解之:F=Mg-m(a-g)【例13】如图,质量M=10kg 的木楔ABC 静置于粗糙水平地面上,与地面动摩擦因数μ=0.02.在木楔的倾角θ为300的斜面上,有一质量为m=1.0kg 的物块由静止开始沿斜面下滑。
当滑行路程s=1.4m 时,其速度v=1.4m/s 。
在这个过程中木楔没有动。
求地面对木楔的摩擦力的大小和方向。