2018年广州一模理科数学试题
2018届广州市高三一模数学(理)
2018年广州市普通高中毕业班综合测试(一)数 学(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设复数z 满足()21i 4i z -=,则复数z 的共轭复数z =( )A .2-B .2C .2i -D .2i2、设集合301x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}3B x x =-≤,则集合{}1x x =≥( )A .B AB .B AC .B C A C R RD .B C A C R R3、若A ,B ,C ,D ,E 五位同学站成一排照相,则A ,B 两位同学不相邻的概率为( )A .45B .35C .25D .154、执行如图所示的程序框图,则输出的S =( )A .920B .49C .29D .9405、已知3sin 45x π⎛⎫-= ⎪⎝⎭,则cos 4x π⎛⎫+= ⎪⎝⎭( )A .45B .35C .45-D .35- 6、已知二项式212nx x ⎛⎫- ⎪⎝⎭的所有二项式系数之和等于128,那么其展开式中含1x项的系数是( ) A .84-B .14-C .14D .847、如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为( )A .44223++B .1442+C .104223++D .48、若x ,y 满足约束条件20,210,x y y -+⎧⎪-⎨≥≥ 则222z x x y =++的最小值为( )2,0n S ==是 否开始结束输出S 19?n ≥2n n =+ ()1+2S S n n =+A .12B .14C .12-D .34-9、已知函数()sin 6f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为( )A .80,3⎛⎤⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦10、已知函数()322f x x ax bx a =+++在1x =处的极值为10,则数对(),a b 为( ) A .()3,3- B .()11,4-C .()4,11-D .()3,3-或()4,11- 11、如图,在梯形ABCD 中,已知2AB CD =,→→=AC AE 52,双曲线过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为( )A .7B .22C .3D .1012、设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有()()22f x f x x +-=,当0x <时,()12f x x '+<,若()()121f a f a a +-++≤,则实数a 的最小值为( )A .12-B .1-C .32-D .2-二、填空题:本题共4小题,每小题5分,共20分.13、已知向量(),2m =a ,()1,1=b ,若+=+a b a b ,则实数m = .14、已知三棱锥P ABC -的底面ABC 是等腰三角形,AB AC ⊥,PA ⊥底面ABC ,1==AB PA ,则这个三棱锥内切球的半径为 .15、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()()2cos 2cos 0a B b A c θθ-+++=,则cos θ的值为 .16、我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到 图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S , 如11S =,22S =,32S =,44S =,……,则126S = .D C ABE三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17、(本小题满分12分)已知数列{}n a 的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足()121215452nn n a a an b b b ⎛⎫+++=-+ ⎪⎝⎭,求数列{}n b 的前n 项和n T .18、(本小题满分12分)某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =如下表:x(岁) 1 2 3 4 5 6 7 8 9 10y ()cm 76.5 88。
2018届广州市普通高中毕业班综合测试(一)(理数)
2018届广州市普通高中毕业班综合测试(一)数学(理科)本试卷共5页,23小题, 满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足()21i 4i z -=,则复数z 的共轭复数z =A .2-B .2C .2i -D .2i2.设集合301x A xx ⎧+⎫=<⎨⎬-⎩⎭,{}3B x x =-≤,则集合{}1x x =≥A .B AB .B AC .()()B C A C R RD .()()B C A C R R3.若A ,B ,C ,D ,E 五位同学站成一排照相,则A ,B 两位 同学不相邻的概率为A .45B .35C .25D .154.执行如图所示的程序框图,则输出的S =A .920B .49C .29 D .9405.已知3sin 45x π⎛⎫-= ⎪⎝⎭,则cos 4x π⎛⎫+= ⎪⎝⎭ A .45B .35C .45-D .35-6.已知二项式212nx x ⎛⎫- ⎪⎝⎭的所有二项式系数之和等于128,那么其展开式中含1x 项的系数是 A .84-B .14-C .14D .847.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为A .44223++B .1442+C .104223++D .48.若x ,y 满足约束条件20,210,10,x y y x -+⎧⎪-⎨⎪-⎩≥≥≤ 则222z x x y =++的最小值为A .12B .14C .12-D .34-9.已知函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为 A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦10.已知函数()322f x x ax bx a =+++在1x =处的极值为10,则数对(),a b 为A .()3,3-B .()11,4-C .()4,11-D .()3,3-或()4,11-11.如图,在梯形ABCD 中,已知2AB CD =,AC AE 52=,双曲线 过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为A .7B .22C .3D .1012.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有()()22f x f x x +-=,当0x <时,()12f x x '+<,若()()121f a f a a +-++≤,则实数a 的最小值为 A .12-B .1-C .32-D .2-DC ABE二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(),2m =a ,()1,1=b,若+=+a b a b ,则实数m = .14.已知三棱锥P ABC -的底面ABC 是等腰三角形,AB AC ⊥,PA ⊥底面ABC ,1==AB PA ,则这个三棱锥内切球的半径为 .15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()()2cos 2cos 0a B b A c θθ-+++=, 则cos θ的值为 .16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如11S =,22S =,32S =,44S =,……,则126S = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足()121215452nn n a a an b b b ⎛⎫+++=-+ ⎪⎝⎭,求数列{}n b 的前n 项和n T . 图②图①某地1~10岁男童年龄ix(岁)与身高的中位数iy()cm()1,2,,10i =如下表:x(岁) 1 2 3 4 5 6 7 8 9 10y()cm76.5 88.5 96.8 104.1 111.3 117.7 124.0 130.0 135.4 140.2 对上表的数据作初步处理,得到下面的散点图及一些统计量的值.x y()1021x xii∑-=()1021y yii∑-=()()101x x y yi ii∑--=5.5 112.45 82.50 3947.71 566.85(1)求y关于x的线性回归方程(回归方程系数精确到0.01);(2)某同学认为,2y px qx r=++更适宜作为y关于x的回归方程类型,他求得的回归方程是20.3010.1768.07y x x=-++.经调查,该地11岁男童身高的中位数为145.3cm.与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程x bayˆˆˆ+=中的斜率和截距的最小二乘估计公式分别为()()()∑∑==---=niiniiixxyyxxb121ˆ,x byaˆˆ-=.19.(本小题满分12分)如图,四棱锥S ABCD-中,△ABD为正三角形,︒=∠120BCD,2CB CD CS===,︒=∠90BSD.(1)求证:AC⊥平面SBD;(2)若BDSC⊥,求二面角CSBA--的余弦值.DCBAS已知圆(2216x y +=的圆心为M ,点P 是圆M 上的动点,点)N,点G在线段MP 上,且满足()()GP GN GP GN -⊥+. (1)求点G 的轨迹C 的方程;(2)过点()4,0T 作斜率不为0的直线l 与(1)中的轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.21.(本小题满分12分)已知函数()ln 1f x ax x =++. (1)讨论函数()x f 零点的个数;(2)对任意的0>x ,()2e xf x x ≤恒成立,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知过点(),0P m 的直线l的参数方程是,21,2x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()f x =23x a x b ++-.(1)当1a =,0b =时,求不等式()31f x x +≥的解集;(2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.数学(理科)参考答案一. 选择题二.填空题 13.2 14.633- 15.21-16.64三. 解答题17.解:(1)因为数列⎭⎬⎫⎩⎨⎧n S n 是首项为1,公差为2的等差数列, 所以.12)1(21-=-+=n n n Sn所以.22n n S n -=当1=n 时,.111==S a当2≥n 时,,34)]1()1(2[)2(221-=-----=-=-n n n n n S S a n n n当1=n 时,11=a 也符合上式.所以数列}{n a 的通项公式).(34*N n n a n ∈-=(2)1=n 时,2111=b a ,所以.2211==a b 当2≥n 时,由nnn n b a b a b a ⎪⎭⎫⎝⎛+-=+++21)54(52211 ,所以.21)14(51112211---⎪⎭⎫ ⎝⎛+-=+++n n n n b a b a b a两式相减,得.21)34(nnn n b a ⎪⎭⎫⎝⎛-=因为34-=n a n ,所以1(221)34()34(==⎪⎭⎫⎝⎛--=n n n b n nn 时也符合公式).又22211==++n n n n b b ,则数列}{n b 是首项为2公比为2的等比数列. 所以.2221)21(21-=--=+n n n T18.解:(1)87.65.8285.566)())((ˆ211≈=---=∑∑==x x y y x x bini iini , 67.745.587.645.112ˆˆ≈⨯-=-=x b y a, 所以y 关于x 的线性回归方程为.67.7487.6+=x y(2)若回归方程为67.7487.6+=x y ,当11=x 时,.24.150=y 若回归方程为07.6817.1030.02++-=x x y ,当11=x 时,.64.143=y94.4|3.14524.150|66.1|3.14564.143|=-<=-,所以回归方程07.6817.1030.02++-=x x y 对该地11岁男童身高中位数的拟合效果更好.19.(1)证明:设O BD AC = ,连SO , 因为CD CB AD AB ==,,所以AC 是BD 的垂直平分线,即O 为BD 中点,且.BD AC ⊥ 在BCD ∆中,因为2==CD CB ,120=∠BCD , 所以.1,32==CO BD在SBD Rt ∆中,因为O BSD ,90=∠为BD 中点, 所以.321==BD SO 在SOC ∆中,因为,2,3,1===CS SO CO 所以.222CS CO SO =+ 所以.AC SO ⊥因为O SO BD = , 所以⊥AC 平面.SBD(2)过点O 作SB OK ⊥于点K ,连CK AK ,, 由(1)知⊥AC 平面.SBD 所以.SB AO ⊥因为O AO OK = ,所以⊥SB 平面.AOK 因为⊂AK 平面AOK , 所以.SB AK ⊥ 同理可证.SB CK ⊥所以AKC ∠是二面角C SB A --的平面角.因为BD SC ⊥,由(1)知BD AC ⊥,且,C SC AC = 所以⊥BD 平面.SAC而⊂SO 平面SAC ,所以.BD SO ⊥ 在SOB Rt ∆中,.26=⋅=SBOB SO OK 在AOK Rt ∆中,24222=+=OK AO AK ,同理可求210=CK . 在AKC ∆中,得.351052cos 222-=⋅-+=∠CK AK AC CK AK AKC所以二面角C SB A --的余弦值为.35105-20.解:(1)因为)()(GP GN GP GN -⊥+,所以0)()(=-⋅+GP GN GP GN ,即.022=-GP GN 所以.||||GN GP =所以.||324||||||||||MN MP GP GM GN GM =>==+=+ 所以点G 在以N M ,为焦点,长轴长为4的椭圆上,.322,42==c a即3,2==c a ,所以.1222=-=c a b所以点G 的轨迹C 的方程为.1422=+y x(2)依题意可设直线.4:+=my x l由⎪⎩⎪⎨⎧=++=,14,422y x my x ,得.0128)4(22=+++my y m设直线l 与椭圆C 的两交点为),,(),,(2211y x B y x A由0)12(16)4(12464222>-=+⨯⨯-=∆m m m ,得.122>m ①且48221+-=+m m y y , 412221+=m y y ② 因为点A 关于x 轴的对称点为D ,则),(11y x D -,可设)0,(0x Q ,所以)(12121212y y m yy x x y y k BD -+=-+= 所以BD 所在直线方程为).4()(212122---+=-my x y y m y y y y令0=y ,得.)(422121210y y y y y my x +++=③将②代入③,即.183224)(422121210=--=+++=mmm y y y y y my x所以点Q 的坐标为(1,0).因为.41264)(23||||21||222122112+-=-+=-=-=∆∆∆m m y y y y y y QT S S S TAQ TBQABQ令42+=m t ,结合①得.16>t所以.64132111662+⎪⎭⎫⎝⎛--=∆t S ABQ当且仅当32=t 时,即72±=m 时,.43][max =∆ABQ S 所以ABQ ∆面积的最大值为43.21.解:(1)函数)(x f 的定义域为),0(∞+,由01ln )(=++=x ax x f ,得.1ln xx a +-= 令)0(1ln )(>+-=x x x x g ,则.ln )('2xxx g =因为当10<<x ,0)('<x g ,当1>x 时,0)('>x g , 所以函数)(x g 在(0,1)上单调递减,在),1(∞+上单调递增. 所以.1)1()]([min -==g x g 因为01=⎪⎭⎫⎝⎛e g ,当e x 10<<时,0)(>x g ;当ex 1>时,.0)(<x g 所以当1-<a 时,函数)(x f 没有零点;当1-=a 或0≥a 时,函数)(x f 有1个零点;当01<<-a 时,函数)(x f 有2个零点.(2)因为1ln )(++=x ax x f ,所以对任意的xxex f x 2)(,0≤>恒成立,等价于xx e a x 1ln 2+-≤在),0(∞+上恒成立. 令)0(1ln )(2>+-=x xx e x m x,则.ln 2)('222x x e x x m x +=再令x e x x n xln 2)(22+=,则.01)(4)('22>++=xe x x x n x 所以x ex x n xln 2)(22+=在),0(∞+上单调递增.因为,0)1(,02ln 2841><-=⎪⎭⎫ ⎝⎛n en 所以x ex x n xln 2)(22+=有唯一零点0x ,且.1410<<x 所以当00x x <<时,0)('<x m ,当0x x >时,.0)('>x m 所以函数)(x m 在),0(0x 上单调递减,在),(0∞+x 上单调递增. 因为0ln 202200=+x ex x ,即2022ln 0x x e x -=,则.100<<x 所以0000ln )2ln()ln ln(2x x x x ---=,即).ln ()ln ln(2)2ln(0000x x x x -+-=+设x x x s +=ln )(,则,011)('>+=xx s 所以函数x x x s +=ln )(在),0(∞+上单调递增,所以).ln ()2(00x s x s -=所以.ln 200x x -= 于是有.1020x e x = 所以21ln )()(00200=+-=≥x x e x m x m x .则有.2≤a 所以a 的取值范围为].2,(-∞22.解:(1)消去参数t ,可得直线l 的普通方程为m y x +=3,即.03=--m y x 因为θρcos 2=,所以.cos 22θρρ=可得C 的直角坐标方程为x y x 222=+,即.0222=+-y x x(2)把03=--m y x 代入0222=+-y x x ,消去y ,得.0)3(2422=++-m x m x由0>∆,得.31<<-m设B A ,两点的坐标分别为),,(),,(2211y x y x 则由韦达定理得.4,2322121m x x m x x =+=+ 因为22222121)()(||||y x m y x m PB PA +-⋅+-=⋅ 2212)1(2)1(2x m m x m m -+⋅-+=.|2|)1(4))(1(222122124m m x x m x x m m m -=-++-+=所以.2|2|2=-m m 解得.31±=m因为31<<-m ,所以.31±=m23.(1)解:当0,1==b a 时,由1||3)(+≥x x f ,得.1|1|2≥+x 所以.21|1|≥+x 解得23-≤x 或.21-≥x 所以不等式的解集为.,2123,⎪⎭⎫⎢⎣⎡+∞-⎥⎦⎤ ⎝⎛-∞- (2)因为⎪⎪⎪⎩⎪⎪⎪⎨⎧>-+≤≤-++--<+--=-++=.3,25,3,2,,25|3|||2)(b x b a x b x a b a x a x b a x b x a x x f 所以函数)(x f 在⎪⎭⎫ ⎝⎛∞-3,b 上为减函数,在⎪⎭⎫ ⎝⎛∞+,3b 上为增函数. 所以当3b x =时,函数)(x f 取得最小值为.2323=+=⎪⎭⎫ ⎝⎛a b b f 因为0,0>>b a ,所以.33=+b a。
广州一模理科数学试题与答案全word版
A数试卷类型:年广州市普通高中毕业班综合测试(一)2018学(理科)2018.3分钟150分.考试用时120本试卷共4页,21小题,满分注意事项:铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在2B1.答卷前,考生务必用铅笔将试2B/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用的市、县)填涂在答题卡相应位置上。
卷类型(A铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,2B2.选择题每小题选出答案后,用用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位3置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,2B4.作答选做题时,请先用答案无效。
.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
51ShV?hS是锥体的底面积,,其中参考公式:锥体的体积公式是锥体的高.3????1??12nnn??2222*???n?2?13N?n.6一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.2??m4ii??3m?i的值为是虚数单位,若1.已知,则实数2?2?2?2B..A.C.D cca CbB2ABCC?BA为2.在△,若中,角,,,所对的边分别为,则,b C2cosC2cosB2sinB2sin B..A.DC.22????1x?12??y?xy?对称的圆的方程为.圆3关于直线2222????????1?y?12?12x?1??y??x.A.B2222????????1?y?2x?2?y?1?1x?1? D.C.??2?faxx??x1a R的取值范围为4的定义域为实数集,则实数.若函数????????????2,2?2,?????2,2?,22,?????2,.AB.C..D1 / 16.某中学从某次考试成绩中抽取若干名学生的分数,并绘制5组距频率/0.030 ??50,60,成如图1的频率分布直方图.样本数据分组为0.0250.020 ????????90,10080,9060,7070,80,,,.若用分层抽0.0150.010??80,100范围内的数据16样的方法从样本中抽取分数在个,0100 90 60 70 80 50 分数??90,100则其中分数在范围内的样本数据有1图个个D.10A.5个B.6个C.8?3?AZA?xx?Z?且6.已知集合,则集合中的元素个数为??x?2??5..4DA.2B.3C b=aab a b.设成立的一个必要非充分条件是,是两个非零向量,则使7????0?ba b?ab?baa?B.D.A.C.mmaama bbb0m?同余,记为8.设和,和,),若为整数(被对模除得的余数相同,则称????20012220m?abmodmod10ba?2C2?C??C?2????aC b,则.若的值可以是,202020202018 ..2018 DA.2018 B.2018 C分.分,满分30小题,考生作答6小题,每小题5二、填空题:本大题共7 13题)~(一)必做题(9??1x?a?a3x?1x?的解集为,则实数.若不等式的值为.9??*kS?7N k?的值为.,则输入.执行如图2的程序框图,若输出10 11.一个四棱锥的底面为菱形,其三视图如图3所示,则这个四棱锥的体积是.开始k输入50?0,S?n11 22lo正(主)视侧(左)视图输出结束 4图31n?2SS??俯视图2图2 / 16?3????????????cossin.,则12.设为锐角,若????5126????1????a???SS1a?aa n,为数列中,已知.的前13项和,则,记.在数列2014n11?nnn1a?n(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)????????asin??cos?42cossin?BA与曲线中,直线,相交于两点,若在极坐标系C23?AB a的值为.,则实数PD E15.(几何证明选讲选做题)O BOCOPCPA交于是圆的切线,切点为与圆如图4,,直线CACBAPC?DABE的平分线分别交弦,,两点,,于APE PC?3PB?24图,则,两点,已知的值为.PD三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)π??,0?xsinx?cosa(fx)?的图象经过点.已知函数??3??a的值;1()求实数2??2?xf()?g(x))(xg(2)设的最小正周期与单调递增区间.,求函数.(本小题满分12分)172,甲,丙两人同时不能被聘用的概率甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是563,乙,丙两人同时能被聘用的概率是是,且三人各自能否被聘用相互独立.1025(1)求乙,丙两人各自能被聘用的概率;??的分布列)设表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求2(与均值(数学期望).3 / 16.(本小题满分14分)18D C11DDDCABCD?ABa E的正方体中,点5,在棱长为的是棱如图11111A1B E1BBFBBF?2F.中点,点上,且满足在棱11D C C?AEF)求证:;(111FCC GGEAF,,)在棱(2,使,上确定一点四点共面,并求1A GC B此时的长;1ABCDAEF5 图与平面3)求平面所成二面角的余弦值.(1419.(本小题满分分)????*ba N?n,.的首项为2,等比数列1已知等差数列,公比为2的首项为10,公差为nn????ba与)求数列的通项公式;(1nn??b,ac?min Snn.(2)设第个正方形的面积之和个正方形的边长为,求前nnnn??b,amin a b与表示的最小值.)(注:.(本小题满分14分)2022yx?????10aFF OE:,,离心率为,左,右焦点分别为已知双曲线的中心为原点2124a2a53?x0QF?PF Q EP 上,且满足上任意一点,点.,点在双曲线是直线2253a(1)求实数的值;PQOQ与直线2)证明:直线的斜率之积是定值;(M lMNN1P P上,过点,作动直线的纵坐标为与双曲线右支交于不同两点,在线段)若点(3MHPM?M NHH,,满足取异于点的点,????x2e e1??2fxx?x已知函数为证明点恒在一条定直线上.HNPN14分)21.(本小题满分????????????xtsthx,s,tts?hs,的自然对数的底数).(其中)xf(的单调区间;(1)求函数上的取值范围为在区间,则称区间)定义:若函数(2为函数????1,)(xf上是否存在“域同区间”?若存在,求出所有符合条“域同区间”.试问函数在.理说,存若”区域的件“同间;不在请明由4 / 162018年广州市普通高中毕业班综合测试(一)数学(理科)试卷参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试卷主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.1 2 3 4 5 6 7 8 题号A B A D B C D A 答案二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.9 10 11 12 13 14 15 题号201122?5?1? 342答案或3210三、解答题:本大题共6小题,满分80分.16.(本小题满分1)(本小题主要考查三角函数图象的周期性、单调性、同角三角函数的基本关系和三角函数倍角公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)π???????0f,0?x?sinxacosf(x)?.的图象经过点,所以)因为函数解:(1????33????ππ????sin?cos?a??0即.????33????3a??0?.即223a?解得.f(x)?sinx?3cosx.2()方法1 由(1)得:??22?cos?sin?x3x22(f?)xg([?x)]所以1 / 16 22x?2x?3cos?23sinx?sincosx?3sin2x?cos2x??13?2sin2x?cos2x????22???????2sin2xcos?cos2xsin??66??π???2sin2x?.??6??2???)g(x.的最小正周期为所以2??????2k?k???,2xy?sin Z?k的单调递增区间为,因为函数??22??πππ???π?π??2k?2x2kg(x)Zk?单调递增,时,函数所以当262ππ??ππ?x?kk??g(x)Z?k单调递增.时,函数即36ππ????ππ,??kk)(xg Z?k.所以函数的单调递增区间为??36??x3(fx)?sinx?cos)得方法2:由(1?????2sinxcos?cosxsin??33??π???2sinx?.??3??2π????22?2sinx??2x)]?[g(x)?f(所以????3????π??22???4sinx??3??π2???x2cos??2?????k??,2k2?x?ycos Z?k,因为函分??3??2???)xg(分所以函数的最小正周期为2数的单调递减区间为2 / 162???2k??2k???x??2)(xg Z k?所以当单调递增.时,函数3ππππ?kk??x?)(xg Z?k单调递增.(即)时,函数63ππ????ππ,?kk?)(xg Z k?.所以函数的单调递增区间为??63??)17.(本小题满分1(本小题主要考查相互独立事件、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)AAA 1)记甲,乙,丙各自能被聘用的事件分别为,,,解:(312AAA由已知,,相互独立,且满足3122???,?PA?15?6?????,?PA1?PA1??????????3125?3?????.A?PAP??????PA?PA,解得.322531所以乙,丙各自能被聘用的概率分别为.,3210?3152?,3(2).的可能取值为1???????AAAPAA?3??PPA因为332211????????????A1P?A1??PPAPPAAPA??1????????????3232112132136???????.25552552196??????3?P?P?11???1?所以.2525?所以的分布列为19252537196???3??1E?所以.2525253 / 1618.(本小题满分1)(本小题主要考查空间线面关系、四点共面、二面角的平面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)推理论证法:DB BD(1)证明:连结,,11D C11DAC?BDBCA是正方形,所以.因为四边形11111111A E B11DC?ABCDABABCD?DD平面,在正方体中,111111111DC FDDAC??ACDCAB平面,所以.111111111A BDBBDDD?DBDDD?DB,,因为平面,111111111?ACDBBD.平面所以1111C?BBDDEFA?EF,所以平面.因为1111CCAEBH BHH的中点,连结.2()解:取,则1D C11G CCBBAEBHFGFG F在平面,则.中,过点作A11H E B11GEGEAF,,连结,则四点共面.,D1111C aCH?CC?aHG?BFCC??,,因为F 112233A1B GCaHG???CCCH?.所以1161GCa?GEAF时,,四点共面.,故当,16 MEFDB?AMDBEF,,连结)延长,,设(3ABCDAEFAM是平面与平面的交线.则D NFN?BNAMB过点作,,垂足为,连结C11BFB?BNAMFB?,因为,A BNF?AM所以.平面1B E1FNBNFFN??AM因为平面.,所以ABCD?FNBAEF与平面所成所以为平C二面角的平面角.1Aa B2MBBF3???因为,N13MDDEa 2M4 / 16MB2?,即3aMB?2a2MB?2所以.135??ABM aAB?ABM中,,,在△222cos135?MB?2?AB?MBAM?AB?所以??2??222a?13AMa?13?a?a?22a?2?a?22?.即.????2??11sin135?MB?AM?BN?AB因为,222?2aa?2132AB?MB?sin1352??aBN?所以.13AMa1322??1327131??22a??a?aFN?BF?BN所以.??????39133????6BN?cos?FNB?所以.7FN6ABCDAEF所成二面角的余弦值为与平面故平面.7空间向量法:zDD DCDDA,为坐标原点,所在的直线,(1)证明:以点D1C11x y z轴,分别为轴,建立??????1B aC,,0,aA,0,0a0,AaaE,,,则11111D????如图的空间直角坐标系,轴,Ay a,a,aE0,0,Fa,,C????F32????A B1????x a?a,a,?EF,0,aa?AC?,所以.??116??220??aa?0?EFAC?因为,11CAEF?EFAC?.所以所以.1111??h,Ga0,BBCCAADD,因为平面设解:平面,)(21111BAADDBCC AEAEGFAEGF?FG?,平面,平面平面平面1111AEFG.所以5 / 16??AEFG?,使得所以存在实数.11????a?a,0,?a,0,h?FGa??AE因为,,????32????11?????a,0,?a,0,h?a??a所以.????23????5?ah?1?,所以.615GC?aa?aCG??CC?所以.11661GCa?GEAF,四点共面.故当时,,,1611????,0,aAE?0,a,a??aAF)知1解:由((.,3)????32??????zx,?y,n AEF设是平面的法向量,?0,nAE??则?0.nAF???1?0,?ax?az???2即?1?0.??azay?3?2?y?3?6xz?,则.取,??2,6n??3,AEF的一个法向量.所以是平面??aDD?0,0,ABCD 是平面的一个法向量,而1?ABCDAEF所成的二面角为设平面与平面,nDD1??cos (1)则DDn1?06??.72??22a6?2?3??6ABCDAEF所成二面角的余弦值为故平面与平面.7第(1)、(2)问用推理论证法,第(3)问用空间向量法:(1)、(2)给分同推理论证法.DD DCDDA所在的直线解:3()以点为坐标原点,,,16 / 16x y z轴,轴,轴,建立如图的空间直角坐标系,分别为11??????aFa,aE0,0,,a,0,0Aa,,则,????32????zD C111????1a,AF,0,a?0,aAE??a则,.????32????A1B E1??zx,y,n?AEF设是平面的法向量,D y C F1?0,az??ax???0,?nAE??2AB则即??10.AF?n???x 0.??ayaz?3?2??y3?xz?6.,取,则??2,6??3,n AEF是平面的一个法向量.所以??a?0,0,DDABCD是平面的一个法向量,而1?ABCDAEF设平面与平面所成的二面角为,DDn1??cos1…则DDn1??6a?2?0?3?0??6??.72??22a2?3??6?6ABCDAEF所成二面角的余弦值为故平面与平面.7)19.(本小题满分1(本小题主要考查等差数列、等比数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)??a 2,10的首项为(解:1)因为等差数列,公差为n??2?n??a10?1所以,n8??2na即.n??b 2,的首项为1因为等比数列,公比为n1?n21??b所以,n1?n2b?.即n7 / 16a?10a?12a?14a?16a?18a?20,,,)因为,,,(2531246b?1b?16b?328??b?2b4b.,,,,,615423a?b5n?.时,易知当nn b?a6n?成立.时,不等式下面证明当nn6?1?20?2?6?8?a32b?2?6n?,不等式显然成立.时,当方法1:①66??k?16k??2k?28kn?.时,不等式成立,即②假设当 ????????1?kk?8k?k2?2?2?6?2?k?12?8?1?222k?8.则有n?k?1时,不等式也成立.这说明当n?6的所有整数都成立.综合①②可知,不等式对b?a6n?.时,所以当nn n?6时因为当方法2:n?1??????1?n8?22n?8???ba?21?1?nnn????n021?18??C??CC?2?n?C1?n?1n?1nn?1????02n?112n?3n?8n??2?C?C?C??CC?C1n?n?1?11n?1nn?1?n????0128??C2?C?C?2n1nn?1?n?1????2?0n?4???nn?3n?6?6n,b?a6?n.所以当时,nnn?1?,n2?5,???b,ac?min所以?nnn n?8,5.2n??22n??n2,?5,?2?c则?n2??5.?n?4,n4??5n?当时,2222c??c??S?cc nn3122222b???b?b?bn2130242n?22???2?22???n?1??4.n4?111?438 / 16n?5时,当????222222aba???ab??b???2222c??cS?c??c n3n21??222????????5?n?4?4?7?4?46?14??n761251??3????????2225n???n?n???8166?7?341?4?67????????????2222225?2???n5n?341?4?1?2??641?326?7?n?? ??????????5?n6?n?1n2n?1n??????32?4?55?64n?5?341??62??424223?n???18n679n.331???n n??15,,4??3S?综上可知,?n2424?23nn??5.n?n679,?18?33?20.(本小题满分1)(本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)c E,设双曲线的半焦距为(1)解:?c35,??由题意可得5a??22?4.?ca?a?5.解????x??tP,y3,0xQF,)可知,直线1),点证明:由(2.设点,,(??002得25a5??333??5????0x,?yt3?,??3?0QF?PF,所以因为.??00223??4??3?tyx?.所以????22001??yxQ,5?y?xE上,所以在双曲线,即.因为点00005459 00322yx4/ 162ty?yy?ty0000???k?k所以OQPQ55x2xx?x?0????23??x?x540053??.552xx?0034OQPQ 0003344????,1P yMy,Hxx,lE,的右支交于不同两点(3)所以直线的斜率之积是定值与直线.55??证法1:设点的直线,且过点与双曲线????????2222222220y??54x yN,x5x?xy?y??520y??54x,即,,,则.113??44222112221155??,PNPM?MHPM????,则设.?HNPN?.MH?HN??55??????,1y??,y?1??x,x??????????.yx?x,yyx?x,y????22115?????,1??x?x①?123????,1??y?y②221133????即????2222??,x?xx?1?⑤?213由①×③,整理,得?21?????,x?1x?x?③21?????.1?y?y?y④??215?②×④得????2222??.y1y?y??⑥?2144????22225?x?yxy??5代入⑥,将,212155222?x?x421???4y得⑦.2??1544?y?x.将⑤代入⑦,得30?3y?12?4x H所以点恒在定直线上.lk依题意,直线证法2:存在.的斜率5???k1y??x l,的方程为设直线??3??10 / 16?5??,?x?1?ky???3???由?22yx?1.???54???????2222y0?5k??3kx?255k9?k94?56xk?30消去.得????yN,x,yMxlE与双曲??????22220,?6?900k4?5k?95k5??900k?3k??线,的右支交于不同两点因为直线,2112????2k?30k53?,?x?x②则有???2124?95k????29k?525k?6??x.x ①???21245k?9?5?xMHPMx?x131??,得由.③?5HNPNx?x?x1223????0??103x?5xx?x6xx?1 .整理得???? 2211??????22kx?5?15035k5?6k?930k3010x???将②③代入上式得.??015?5?k?4x3x?224?599kk5?4整理得④.5???x1??ky lH⑤因为点.在直线上,所以??3??0?4x3y?12?k 得联立④⑤消去.04x?3??12y H恒在定直线所以点上.y x0y3?12?4x?H恒在定直线上,无需求出的范围.)3(本题()只要求证明点或)21.(本小题满分1(本小题主要考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)????x2e1??2fxx?x,(解:1)因为??x2e??x1xx2x?1)e??x(?2x?x2)e?(?x1)ex?1)((2)f(x?.所以?????????,???1fx?01,)x(f1x1?x??和或当时,,即函数的单调递增区间为.11 / 16 ?????,1?f?0x1)xf(11?x??.时,当,即函数的单调递减区间为??????,1??,?1?11,??)f(x.和所以函数,单调递减区间为的单调递增区间为????1,)x(f[s,t](1?s?t),上存在“域同区间”2)假设函数在(????1,)xf(上是增函数,)知函数在由(12s f(s)?s,?,?(s?1)s?e?所以即??2t f(t)?t.(t?1)?e?t.??2x xe?(x?1)也就是方程1的相异实根.有两个大于x22x?11)e?(x)?(x?g(gx)?(x?1)e?x(x?1).,则设??????x2x2??1(x)?(x?g1)e??xhe1xx?x?h?2,则.设???????xh???0xh1,)??(1,上单调递增.在因为在,所以上有??2??0?3eh?21?0??11h?因为,,????,21x??0xh.即存在唯一的,使得00????????x?x,1?xxh1,x??g0)xg(上是减函数;当时,,即函数在00??????????xx?,???g?0,xhxx?)g(x上是增函数.时,在当,即函数????1,)(gx上只有一个零点.在区间所以函00??2??1g?10g(x)?g(1)?0g(2)?e?2?0,因为,,0????1,)x(f在上不数2x x??1)ex(有两个大于这与方程1的相异实根相矛盾,所以假设不成立.存在“域同区间”.所以函数12 / 16。
2018届广州市普通高中毕业班综合测试(一)(理数试题) 含答案
槡
出
+ ) " 1!9'
#' ( ( ! ' ' # ' # %&(" $(" :( :#+ )" )" ! ' ' ' & % ' ## # & % #' ## # & % + $ + $ + ! ) # + # $ " ( !
版
! ! & # ) 0 ( # ( " /!-./012345678 + + " ! # " " ! " # "
社
# # ' # " ,#&+& %&! &. ) + ! && & . $ . ) +" ! &. ) ." $ & &# &. ) + " ! " -()*+' ! " ,!'(" ! & -
考
* %& $$%+) " # " # #" # "
试
研
$mCm' :4$ C" ) "
研
! ' # # ' ; 5" " m' 95" !# ' ' . " ' ' + # %" # % ( !# "( '
2018年广东省高考数学一模试卷(理科)
2018年广东省高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|−1<1−x<1},B={x|x2<1},则A∩B=()A.{x|−1<x<1}B.{x|0<x<1}C.{x|x<1}D.{x|0<x<2}2. 设复数z=a+4i(a∈R),且(2−i)z为纯虚数,则a= ( )A.−1B.1C.2D.−23. 如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.3 20B.3π25C.325D.π204. 已知函数f(x)满足f(x2)=x3−3x,则函数f(x)的图象在x=1处的切线斜率为()A.0 B.9 C.18 D.275. 已知F是双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为( )A.2√2B.√3C.√5D.26. (x+1x)(1+2x)5的展开式中,x3的系数为()A.120B.160C.100D.807. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π8. 已知曲线C:y=sin(2x−π3),则下列结论正确的是()A.把C向左平移5π12个单位长度,得到的曲线关于原点对称B.把C向右平移π12个单位长度,得到的曲线关于y轴对称C.把C向左平移π3个单位长度,得到的曲线关于原点对称D.把C向右平移π6个单位长度,得到的曲线关于y轴对称9. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>10010. 在△ABC中,角A,B,C所对的边分别为a,b,c,若A=π3,且2bsinB+2csinC=bc+√3a.则△ABC的面积的最大值为()A.3√32B.√32C.3√34D.√3411. 已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B 分别为切点,则MA→⋅MB→的最小值为()A.−14B.−18C.−116D.−1212. 设函数f(x)={|2x+1−2|,x ≤2x 2−11x +30,x >2,若互不相等的实数a ,b ,c ,d 满足f(a)=f(b)=f(c)=f(d),则2a +2b +2c +2d 的取值范围是( )A.(64√2+2,146)B.(98, 146)C.(64√2+2,266)D.(98, 266) 二、填空题(每题5分,满分20分,将答案填在答题纸上)已知单位向量e 1→,e 2→的夹角为30∘,则|e 1→−√3e 2→|=________.设x ,y 满足约束条件{x −y ≤64x +5y ≤65x +4y ≥3,则z =x +y 的最大值为________.已知sin10∘+mcos10∘=2cos140∘,则m =________.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE ,△BCF ,△CDG ,△ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE ,△BCF ,△CDG ,△ADH ,使得E ,F ,G ,H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.已知公差不为零的等差数列{a n }满足a 1=5,且a 3,a 6,a 11成等比数列. (1)求数列{a n }的通项公式;(2)设b n =a n ∗3n−1,求数列{b n }的前n 项和S n .“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X 表示随机抽取3人中被系统评为“积极性”的人数,求P(X ≤2)和X 的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x ;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y ;求x >y 的概率.如图,在直角梯形ABCD 中,AD // BC ,AB ⊥BC ,且BC =2AD =4,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE ⊥CF ,得到如下的立体图形. (1)证明:平面AEFD ⊥平面EBCF ;(2)若BD ⊥EC ,求二面角F −BD −C 的余弦值.已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为√32,且C 过点(1,√32).(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于P ,Q 两点(点P ,Q 均在第一象限),l 与x 轴,y 轴分别交于M ,N 两点,且满足S △PMO 2+S △QMO 2S△PMO ⋅S △QMO=S △PNO 2+S △QNO2S △PNO ⋅S △QNO(其中O 为坐标原点).证明:直线l 的斜率为定值.已知函数f(x)=(x −2)e x +a(ln x −x +1). (1)讨论f(x)的导函数f ′(x)零点的个数;(2)若函数f(x)的最小值为−e ,求a 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,圆C 1:(x −2)2+(y −4)2=20,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,C 2:θ=π3(ρ∈R). (1)求C 1的极坐标方程和C 2的平面直角坐标系方程;(2)若直线C 3的极坐标方程为θ=π6(ρ∈R),设C 2与C 1的交点为O ,M ,C 3与C 1的交点为O ,N ,求△OMN 的面积. [选修4-5:不等式选讲]已知函数f(x)=3|x −a|+|3x +1|,g(x)=|4x −1|−|x +2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.参考答案与试题解析2018年广东省高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】交集及其运算【解析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】集合A={x|−1<1−x<1}={x|0<x<2},B={x|x2<1}={x|−1<x<1},则A∩B={x|0<x<1}.2.【答案】D【考点】复数的基本概念【解析】把z=a+4i(a∈R)代入(2−i)z,利用复数代数形式的乘法运算化简,由实部为0且虚部不为0求得a值.【解答】解:∵z=a+4i(a∈R),且(2−i)z=(2−i)(a+4i)=(2a+4)+(8−a)i为纯虚数,∴{2a+4=0,8−a≠0,解得a=−2.故选D.3.【答案】A【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】根据几何概型的定义分别求出满足条件的面积,作商即可.【解答】解:根据题意可得,黑色部分的面积为S1=π(42−1)=15π,圆靶的面积为S=102π=100π,由题意此点取自黑色部分的概率是:P=15π100π=320.故选A.4.【答案】C【考点】利用导数研究曲线上某点切线方程【解析】根据题意,分析可得函数的解析式,求出其导数f′(x)=24x2−6,计算可得f′(1)的值,结合导数的几何意义分析可得答案.【解答】根据题意,函数f(x)满足f(x2)=x3−3x,则f(x)=8x3−6x,其导数f′(x)=24x2−6,则有f′(1)=24−6=18,即函数f(x)的图象在x=1处的切线斜率为18;故选:C.5.【答案】C【考点】双曲线的离心率双曲线的特性【解析】根据题意,由双曲线的几何性质,分析可得b=2a,进而可得c=√a2+b2=√5a,由双曲线的离心率公式计算可得答案.【解答】解:根据题意,F是双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c=√a2+b2=√5a,则双曲线C的离心率e=ca=√5.故选C.6.【答案】A【考点】二项式定理的应用【解析】利用多项式乘以多项式展开,然后分别求出两项中含有x3的项得答案.【解答】(x+1x )(1+2x)5=x(1+2x)5+1x(1+2x)5,∵x(1+2x)5的展开式中含x3的项为x∗C52∗(2x)2=40x3,1 x (1+2x)5的展开式中含x3的项为1x∗C54∗(2x)4=80x3.∴(x+1x)(1+2x)5的展开式中,x3的系数为40+80=120.7.【答案】 B【考点】由三视图求体积 【解析】由三视图可得,该几何体是长方体截去两个半圆柱,即可求解表面积. 【解答】由题意,该几何体是长方体截去两个半圆柱,∴ 表面积为:4×6×2+2(4×6−4π)+2×2π×4=96+8π, 8.【答案】 B【考点】函数y=Asin (ωx+φ)的图象变换 【解析】直接利用三角函数的图象平移逐一核对四个选项得答案. 【解答】把C 向左平移5π12个单位长度,可得函数解析式为y =sin[2(x +5π12)−π3]=sin(2x +π2)=cos2x , 得到的曲线关于y 轴对称,故A 错误; 把C 向右平移π12个单位长度,可得函数解析式为y =sin[2(x −π12)−π3]=sin(2x −π2)=−cos2x , 得到的曲线关于y 轴对称,故B 正确; 把C 向左平移π3个单位长度,可得函数解析式为y =sin[2(x +π3)−π3]=sin(2x +π3),取x =0,得y =√32,得到的曲线既不关于原点对称也不关于y 轴对称,故C 错误;把C 向右平移π6个单位长度,可得函数解析式为y =sin[2(x −π6)−π3]=sin(2x −23π), 取x =0,得y =−√32,得到的曲线既不关于原点对称也不关于y 轴对称,故D 错误.∴ 正确的结论是B . 9.【答案】 D【考点】 程序框图 【解析】模拟程序的运行过程,结合退出循环的条件,判断即可. 【解答】n=1,s=0,n=2,s=2,n=3,s=4,…,n=99,s=992−12,n=100,s=10022,n=101>100,结束循环,10.【答案】C【考点】三角形求面积【解析】由正弦定理和余弦定理即可求出a=√3,再由余弦定理可得:b2+c2=3+bc,利用基本不等式可求bc≤3,根据三角形面积公式即可得解.【解答】根据正弦定理可得bsinB =csinC=asinA=√32,∴sinB=√3b2a ,sinC=√3c2a,∵2bsinB+2csinC=bc+√3a,∴√3b2a +√3c2a=bc+√3a,∴b2+c2=√33abc+a2,∴b2+c2−a2=√33abc,∴b2+c2−a22bc =√3a6=cosA=12∴a=√3,∴3=b2+c2−bc,可得:b2+c2=3+bc,∵b2+c2≥2bc(当且仅当b=c时,等号成立),∴2bc≤3+bc,解得bc≤3,∴S△ABC =12bcsinA=√34bc≤3√3411.【答案】C【考点】抛物线的性质【解析】设切线MA的方程为x=ty+m,代入抛物线方程得y2−ty−m=0,由直线与抛物线相切可得△=t2+4m=0,分别求出A,B,M的坐标,根据向量的数量积和二次函数的性质即可求出【解答】设切线MA 的方程为x =ty +m ,代入抛物线方程得y 2−ty −m =0, 由直线与抛物线相切可得△=t 2+4m =0, 则A(t 24, t2),B(t 24, −t2),将点A 的坐标代入x =ty +m ,得m =−t 24,∴ M(−t 24, 0),∴ MA →⋅MB →=(t 22, t 2)⋅(t 22, −t 2)=t 44−t 24=14(t 2−12)2−116,则当t 2=12,即t =±√22时,MA →⋅MB →的最小值为−11612.【答案】 B【考点】分段函数的应用 【解析】 此题暂无解析 【解答】解:作出函数f(x)的图象,由图象可得存在互不相等的实数a ,b ,c ,d 使得f(a)=f(b)=f(c)=f(d),且可设a <b <2<c <d .当x ≤2时,f(x)=|2x+1−2|,可得2−2a+1=2b+1−2,即2a +2b =2.当x >2时,f(x)=x 2−11x +30,可得c +d =11,令x 2−11x +30=2,解得x =4或7,可得4<c <5,即有16<2c <32,则2a +2b +2c +2d =2+2c +2d =2+2c +2112c,设m =2c ,则y =m +211m在(16, 32)递减,则y =m +211m∈(96, 144),所以2+2c +2112c的范围是(98, 146),即2a +2b +2c +2d 的取值范围是(98, 146). 故选B .二、填空题(每题5分,满分20分,将答案填在答题纸上)【答案】 1【考点】平面向量数量积的性质及其运算律 【解析】根据单位向量e 1→,e 2→的夹角为30∘即可求出e 1→∗e 2→的值,从而可求出(e 1→−√3e 2→)2的值,进而得出|e 1→−√3e 2→|的值.【解答】单位向量e 1→,e 2→的夹角为30∘;∴ e 1→∗e 2→=cos30∘=√32,e 1→2=e 2→2=1; ∴ (e 1→−√3e 2→)2=e 1→2−2√3e 1→∗e 2→+3e 2→2=1−2√3×√32+3=1;∴ |e 1→−√3e 2→|=1. 【答案】 2【考点】 简单线性规划 【解析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可. 【解答】x ,y 满足约束条件{x −y ≤64x +5y ≤65x +4y ≥3 的可行域如图,则z =x +y 经过可行域的A 时,目标函数取得最大值, 由{x −y =64x +5y =6 解得A(4, −2), 所以z =x +y 的最大值为:2. 【答案】 −√3【考点】三角函数的恒等变换及化简求值 【解析】 由题意可得m =2cos140−sin10cos10,再利用三角恒等变换求得它的值.【解答】 由题意可得m =2cos140−sin10cos10=−2cos40−sin10cos10=−2cos(30+10)−sin10cos10=−2⋅√32⋅cos10+sin10−sin10cos10=−√3,【答案】 500√3π27 【考点】球的体积和表面积 【解析】根据题意,设正方形ABCD 的边长为x ,E ,F ,G ,H 重合,得到一个正四棱锥,四棱锥的侧面积是底面积的2倍时,即可求解x ,从而求解四棱锥的外接球的体积. 【解答】连接OE 交AB 与I ,E ,F ,G ,H 重合为P ,得到一个正四棱锥,设正方形ABCD 的边长为x .则OI =x2,IE =6−x2.由四棱锥的侧面积是底面积的2倍,可得4∗x2(6−x2)=2x2,解得:x=4.设外接球的球心为Q,半径为R,可得OC=2√2,OP=√42−22=2√3,R2= (2√3−R)2+(2√2)2.∴R=√3该四棱锥的外接球的体积V=43πR3=500√3π27.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.【答案】公差d不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.∴a62=a3⋅a11,即(5+5d)2=(5+2d)(5+10d),化为:d2−2d=0,解得:d= 2.∴a n=5+2(n−1)=2n+3.b n=a n∗3n−1=(2n+3)⋅3n−1.∴数列{b n}的前n项和S n=5+7×3+9×32+……+(2n+3)⋅3n−1.∴3S n=5×3+7×32+……+(2n+1)×3n−1+(2n+3)×3n,∴−2S n=5+2(3+32+……+3n−1)−(2n+3)×3n=5+2×3(3n−1−1)3−1−(2n+3)×3n,解得S n=(n+1)3n−1.【考点】数列的求和数列递推式【解析】(1)公差d不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.可得a62= a3⋅a11,即(5+5d)2=(5+2d)(5+10d),解得:d.(2)b n=a n∗3n−1=(2n+3)⋅3n−1.利用错位相减法即可得出.【解答】公差d不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.∴a62=a3⋅a11,即(5+5d)2=(5+2d)(5+10d),化为:d2−2d=0,解得:d= 2.∴a n=5+2(n−1)=2n+3.b n=a n∗3n−1=(2n+3)⋅3n−1.∴数列{b n}的前n项和S n=5+7×3+9×32+……+(2n+3)⋅3n−1.∴3S n=5×3+7×32+……+(2n+1)×3n−1+(2n+3)×3n,∴−2S n=5+2(3+32+……+3n−1)−(2n+3)×3n=5+2×3(3n−1−1)3−1−(2n+3)×3n,解得S n=(n+1)3n−1.【答案】由题意得被系统评为“积极性”的概率为3050=35,X∼B(3, 35),∴ P(X ≤2)=1−(35)3=98125, X 的数学期望E(X)=3×35=95.“x >y “包含“x =3,y =2“,“x =3,y =1“,“x =3,y =0“,“x =2,y =1“,“x =2,y =0“,“x =1,y =0“, P(x =3, y =2)=C 43C 63×C 22C 42=130,P(x =3, y =1)=C 43C 63×C 21C21C 42=215,P(x =3, y =0)=C 42C 63×C 2C 42=130,P(x =2, y =1)=C 42C21C 63×C 21C21C 42=25,P(x =2, y =0)=C 42C21C 63×C 2C 42=110,P(x =1, y =0)=C 41C22C 63×C 20C 42=130,∴ P(x >y)=130+215+130+25+110+130=1115. 【考点】离散型随机变量的期望与方差 离散型随机变量及其分布列 【解析】(1)由题意得被系统评为“积极性”的概率为3050=35,X ∼B(3, 35),由此能求出P(X ≤2)和X 的数学期望.(2)“x >y “包含“x =3,y =2“,“x =3,y =1“,“x =3,y =0“,“x =2,y =1“,“x =2,y =0“,“x =1,y =0“,分别求出相应的概率,由此能求出P(x >y). 【解答】由题意得被系统评为“积极性”的概率为3050=35,X ∼B(3, 35), ∴ P(X ≤2)=1−(35)3=98125, X 的数学期望E(X)=3×35=95.“x >y “包含“x =3,y =2“,“x =3,y =1“,“x =3,y =0“,“x =2,y =1“,“x =2,y =0“,“x =1,y =0“, P(x =3, y =2)=C 43C 63×C 22C 42=130,P(x =3, y =1)=C 43C 63×C 21C21C 42=215,P(x =3, y =0)=C 42C 63×C 2C 42=130,P(x =2, y =1)=C 42C21C 63×C 21C21C 42=25,P(x =2, y =0)=C 42C21C 63×C 2C 42=110,P(x =1, y =0)=C 41C22C 63×C 2C 42=130,∴ P(x >y)=130+215+130+25+110+130=1115. 【答案】证明:∵ 在直角梯形ABCD 中,AD // BC ,AB ⊥BC , E ,F 分别为线段AB ,DC 的中点, ∴ EF // AD ,∴ AE ⊥EF , 又AE ⊥CF ,且EF ∩CF =F , ∴ AE ⊥平面EBCF , ∵ AE ⊂平面AEFD ,∴ 平面AEFD ⊥平面EBCF .由(1)可得EA ,EB ,EF 两两垂直, 故以E 为原点建立空间直角坐标系,(如图)设AE =m ,则E(0, 0, 0),A(0, 0, m),B(m, 0, 0), F(0, 3, 0),C(m, 4, 0),D(0, 2, m), ∴ BD →=(−m, 2, m),EC →=(m,4,0),∵ DB ⊥EC ,∴ −m 2+8=0,∴ m =2√2.∴ BD →=(−2√2, 2, 2√2),FB →=(2√2,−3,0),CB →=(0,−4,0),设面DBF 的法向量为m →=(x,y,z),则{m →∗BD →=0m →∗FB →=0,即{−2√2x +2y +2√2z =02√2x −3y =0 , 令y =4可得:m →=(3√2, 4, √2),同理可得平面CDB 的法向量为n →=(1,0,1), ∴ cos <m →,n →>=m →∗n→|m →||n →|=√26×√2=23.由图形可知二面角F −BD −C 为锐角, ∴ 二面角F −BD −C 的余弦值为23.【考点】平面与平面垂直二面角的平面角及求法 【解析】(1)根据AE ⊥EF ,AE ⊥CF 可得AE ⊥平面BCFE ,故而平面AEFD ⊥平面EBCF ; (2)建立空间坐标系,根据BD ⊥EC 求出AE ,求出平面BDF 和平面BCD 的法向量即可得出二面角的余弦值.【解答】证明:∵ 在直角梯形ABCD 中,AD // BC ,AB ⊥BC , E ,F 分别为线段AB ,DC 的中点, ∴ EF // AD ,∴ AE ⊥EF , 又AE ⊥CF ,且EF ∩CF =F , ∴ AE ⊥平面EBCF , ∵ AE ⊂平面AEFD ,∴ 平面AEFD ⊥平面EBCF .由(1)可得EA ,EB ,EF 两两垂直, 故以E 为原点建立空间直角坐标系,(如图)设AE =m ,则E(0, 0, 0),A(0, 0, m),B(m, 0, 0), F(0, 3, 0),C(m, 4, 0),D(0, 2, m), ∴ BD →=(−m, 2, m),EC →=(m,4,0),∵ DB ⊥EC ,∴ −m 2+8=0,∴ m =2√2.∴ BD →=(−2√2, 2, 2√2),FB →=(2√2,−3,0),CB →=(0,−4,0),设面DBF 的法向量为m →=(x,y,z),则{m →∗BD →=0m →∗FB →=0,即{−2√2x +2y +2√2z =02√2x −3y =0 , 令y =4可得:m →=(3√2, 4, √2),同理可得平面CDB 的法向量为n →=(1,0,1), ∴ cos <m →,n →>=m →∗n→|m →||n →|=√26×2=23. 由图形可知二面角F −BD −C 为锐角, ∴ 二面角F −BD −C 的余弦值为23.【答案】由题意可得ca =√32,1a 2+34b 2=1,a 2−b 2=c 2,解得a =2,b =1,c =√3, 故椭圆C 的方程为x 24+y 2=1;证明:由题意可得直线l 的斜率存在且不为0,设直线l 的方程为y =kx +m ,(m ≠0), P ,Q 的坐标为(x 1, y 1),(x 2, y 2),令x =0,可得y =m ,即|MO|=|m|, 令y =0,可得x =−mk ,即|NO|=|mk |,则S △PMO =12|MO|⋅|y 1|,S △QMO =12|MO|⋅|y 2|, S △PNO =12|MO|⋅|x 1|,S △QNO =12|NO|⋅|x 2|, 由S △PMO 2+S △QMO 2S△PMO ⋅S △QMO=S △PNO 2+S △QNO2S △PNO ⋅S △QNO,可得y 12+y 22y 1y 2=x 12+x 22x 1x 2,即有y 12+y 22y 1y 2−2=x 12+x 22x 1x 2−2,可得(y 1−y 2)2y 1y 2=(x 1−x 2)2x 1x 2,即y 1y 2x1x 2=(y 1−y 2x 1−x 2)2=k 2,由y =kx +m 代入椭圆x 24+y 2=1,可得(1+4k 2)x 2+8kmx +4(m 2−1)=0, 则△=64k 2m 2−16(1+4k 2)(m 2−1)>0, 即为1+4k 2−m 2>0, x 1+x 2=−8km1+4k 2,x 1x 2=4(m 2−1)1+4k ,y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+km(x 1+x 2)+m 2 =k 2⋅4(m 2−1)1+4k 2+km(−8km 1+4k2)+m 2 =m 2−4k 21+4k , 可得m 2−4k 21+4k 2=k 2⋅4(m 2−1)1+4k 2,即有4k 2=1(m ≠0), 可得k =−12(12舍去),则直线l 的斜率为定值. 【考点】 椭圆的离心率 【解析】(1)由椭圆的离心率公式和点满足椭圆方程、a ,b ,c 的关系,解方程可得a ,b ,即可得到所求椭圆方程;(2)由题意可设直线l 的方程为y =kx +m ,(m ≠0),P ,Q 的坐标为(x 1, y 1),(x 2, y 2),联立椭圆方程,消去y ,可得x 的方程,运用判别式大于0和韦达定理,以及三角形的面积公式,化简整理,解方程可得直线的斜率,即可得证. 【解答】由题意可得ca =√32,1a 2+34b 2=1,a 2−b 2=c 2,解得a =2,b =1,c =√3, 故椭圆C 的方程为x 24+y 2=1;证明:由题意可得直线l 的斜率存在且不为0,设直线l 的方程为y =kx +m ,(m ≠0), P ,Q 的坐标为(x 1, y 1),(x 2, y 2),令x =0,可得y =m ,即|MO|=|m|, 令y =0,可得x =−m k ,即|NO|=|mk |, 则S △PMO =12|MO|⋅|y 1|,S △QMO =12|MO|⋅|y 2|, S △PNO =12|MO|⋅|x 1|,S △QNO =12|NO|⋅|x 2|, 由S △PMO 2+S △QMO 2S△PMO ⋅S △QMO=S △PNO 2+S △QNO2S △PNO ⋅S △QNO,可得y 12+y 22y 1y 2=x 12+x 22x 1x 2,即有y 12+y 22y 1y 2−2=x 12+x 22x 1x 2−2,可得(y 1−y 2)2y 1y 2=(x 1−x 2)2x 1x 2,即y 1y 2x 1x 2=(y 1−y2x 1−x 2)2=k 2,由y =kx +m 代入椭圆x 24+y 2=1,可得(1+4k 2)x 2+8kmx +4(m 2−1)=0, 则△=64k 2m 2−16(1+4k 2)(m 2−1)>0, 即为1+4k 2−m 2>0, x 1+x 2=−8km1+4k 2,x 1x 2=4(m 2−1)1+4k ,y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+km(x 1+x 2)+m 2 =k 2⋅4(m 2−1)1+4k 2+km(−8km1+4k2)+m 2 =m 2−4k 21+4k 2, 可得m 2−4k 21+4k 2=k 2⋅4(m 2−1)1+4k 2,即有4k 2=1(m ≠0), 可得k =−12(12舍去), 则直线l 的斜率为定值. 【答案】解:(1)f ′(x)=(x −1)e x +a (1x −1)=(x−1)(xe x −a)x(x >0),令g(x)=xe x −a(x >0),g ′(x)=(x +1)e x >0, 故g(x)在(0, +∞)上单调递增, 则g(x)>−a,因此当a ≤0或a =e 时,f ′(x)=0只有一个零点; 当0<a <e 或a >e 时,f ′(x)有两个零点. (2)①当a ≤0时,xe x −a >0,则函数f(x)在x =1处取得最小值f(1)=−e ,符合题意.②当a>0时,易知函数y=xe x−a在(0,+∞)上单调递增,所以必存在正数x0,使得x0e x e−a=0.(ⅰ)若a>e,则x0>1,函数f(x)在(0,1)与(x0,+∞)上单调递增,在(1,x0)上单调递减,又f(1)=−e,故不符合题意.(ⅱ)若a=e,则x0=1,f′(x)≥0,函数在(0,+∞)上单调递增,又f(1)=−e,故不符合题意.(ⅲ)若0<a<e,则0<x0<1,设正数b=e−e a−1∈(0,1),则f(b)=(b−2)e b+a(ln b−b+1)<a(ln e−e a−1−b+1)=a(−ea−b)=−e−ab<−e,与函数f(x)的最小值为−e矛盾.综上所述,a≤0,即a∈(−∞,0].【考点】导数求函数的最值【解析】此题暂无解析【解答】解:(1)f′(x)=(x−1)e x+a(1x −1)=(x−1)(xe x−a)x(x>0),令g(x)=xe x−a(x>0),g′(x)=(x+1)e x>0,故g(x)在(0, +∞)上单调递增,则g(x)>−a,因此当a≤0或a=e时,f′(x)=0只有一个零点;当0<a<e或a>e时,f′(x)有两个零点.(2)①当a≤0时,xe x−a>0,则函数f(x)在x=1处取得最小值f(1)=−e,符合题意.②当a>0时,易知函数y=xe x−a在(0,+∞)上单调递增,所以必存在正数x0,使得x0e x e−a=0.(ⅰ)若a>e,则x0>1,函数f(x)在(0,1)与(x0,+∞)上单调递增,在(1,x0)上单调递减,又f(1)=−e,故不符合题意.(ⅱ)若a=e,则x0=1,f′(x)≥0,函数在(0,+∞)上单调递增,又f(1)=−e,故不符合题意.(ⅲ)若0<a<e,则0<x0<1,设正数b=e−e a−1∈(0,1),则f(b)=(b−2)e b+a(ln b−b+1)<a(ln e−e a−1−b+1)=a(−ea−b)=−e−ab<−e,与函数f(x)的最小值为−e矛盾.综上所述,a≤0,即a∈(−∞,0].(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]【答案】解:(1)∵ 圆C 1的普通方程为x 2+y 2−4x −8y =0,把x =ρcosθ,y =ρsinθ代入方程得ρ2−4ρcosθ−8ρsinθ=0, 故C 1的极坐标方程是ρ=4cosθ+8sinθ, C 2的平面直角坐标系方程是y =√3x ;(2)分别将θ=π3,θ=π6代入ρ=4cosθ+8sinθ,得ρ1=2+4√3,ρ2=4+2√3,S △OMN =12×(2+4√3)×(4+2√3)×sin(π3−π6)=8+5√3. 【考点】直线的极坐标方程 圆的极坐标方程 极坐标刻画点的位置 【解析】 此题暂无解析 【解答】解:(1)∵ 圆C 1的普通方程为x 2+y 2−4x −8y =0,把x =ρcosθ,y =ρsinθ代入方程得ρ2−4ρcosθ−8ρsinθ=0, 故C 1的极坐标方程是ρ=4cosθ+8sinθ, C 2的平面直角坐标系方程是y =√3x ;(2)分别将θ=π3,θ=π6代入ρ=4cosθ+8sinθ, 得ρ1=2+4√3,ρ2=4+2√3,S △OMN =12×(2+4√3)×(4+2√3)×sin(π3−π6)=8+5√3.[选修4-5:不等式选讲] 【答案】g(x)=|4x −1|−|x +2|.g(x)={−3x +3,x ≤2−5x −1,2<x <14−3x −3,x ≥14,不等式g(x)<6,x ≤−2时,4x −1−x −2<6,解得:x >−1,不等式无解; −2<x <14时,1−4x −x −2<6,解得:−75<x <14, x ≥14时,4x −1−x −2<6,解得:3>x ≥14, 综上,不等式的解集是(−75, 3);因为存在x 1∈R ,存在x 2∈R ,使得f(x 1)=−g(x 2)成立,所以{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,又f(x)=3|x −a|+|3x +1|≥|(3x −3a)−(3x +1)|=|3a +1|, 故g(x)的最小值是−94,可知−g(x)max =94,所以|3a +1|≤94,解得−1312≤a ≤512, 所以实数a 的取值范围为[−1312, 512].【考点】函数与方程的综合运用绝对值不等式的解法与证明 绝对值三角不等式 【解析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题转化为{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,求出f(x)的最小值和g(x)的最小值,得到关于a 的不等式,解出即可. 【解答】g(x)=|4x −1|−|x +2|.g(x)={−3x +3,x ≤2−5x −1,2<x <14−3x −3,x ≥14 ,不等式g(x)<6,x ≤−2时,4x −1−x −2<6,解得:x >−1,不等式无解; −2<x <14时,1−4x −x −2<6,解得:−75<x <14,x ≥14时,4x −1−x −2<6,解得:3>x ≥14, 综上,不等式的解集是(−75, 3);因为存在x 1∈R ,存在x 2∈R ,使得f(x 1)=−g(x 2)成立,所以{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,又f(x)=3|x −a|+|3x +1|≥|(3x −3a)−(3x +1)|=|3a +1|, 故g(x)的最小值是−94,可知−g(x)max =94,所以|3a +1|≤94,解得−1312≤a ≤512, 所以实数a 的取值范围为[−1312, 512].。
2018届广州市普通高中毕业班综合测试(一)(理数试题)
2018届广州市普通高中毕业班综合测试(一)数学(理科)本试卷共5页,23小题’满分150分。
考试用时120分钟" 注意事项:1. 答卷前,考生务必将自己的姓名和署生昔、试室号、座位号填写在礬懸卡上,用2B 梧笔 在答题卡的相应位置填涂考生号、并特试卷类型(A )填涂在答题卡相应住置上。
2. 作答选择题时,选出毎小题答案后,用2B 铅笔在答题卡上对应题目选项的答案蓿息点 涂黑;如需改动.用橡皮擦干净后*再选涂其他答案』答案不能答在试卷上。
3-非选择题血须用黒色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内 的相应位置上;如需改动,先划掉原来的答案’然后再写上新筌案;不准使用勢笔和涂改漩° 不按以上要求作筌无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分*在每小题给出的四个选项中,只有一项是符合题目要求的.L 设复数盘满足z (l-i )2=4L 则复数h 的共规复数牙二G -2irx + 32+设集合 x\<0x —1B* 25 = {x 点一3}・则集舍=A* AC\BB.G (A)U(J*) D.(c R /)n(cR 5)4 3 21 A.- C. D.5 5 5 5 4.执行如图所不的程序框图,则输出的3 = 9 4 29A- 一— B. —C D. 209 940 5.己知或n x ----- 3二一 F 则 * n ”丫十—1451丿43斗3A. 一- UD.5555E 五位同学站成一排照相,则畀,舟两位 同学不相邻的概率為/ 1 丫 16.己知二项式2十-一 的所有二项式系数之和等于12&那么其展开式中含一项的系数是 X) x10. 己知函数f (x) = x 3 +ax 2 +bx + a 2在x = 1处的极值为10,A. (-3,3)B. (-11,4)C. (4,-11)11. 如图,在梯形ABCD 中,己知\AB\ = 2\CD\, AE = ^AC,双曲线 过C,D, E 三点,且以B 为焦点,则双曲线的离心率为A. 41B. 2^2C. 312. 设函数/(兀)在R 上存在导函数/'(X ),对于任意的实数兀,都有/(x) + /(-x) = 2x 2,当xvO 时,/'(x) + lv2x,若/(a + l)9(-a) + 2a + l,则实数Q 的最小值为 A ・B ・—1C.D ・—22 2A. 一84B. -14C. 14D. 847. 如图,网格纸上小正方形的边长为1,粗线画岀的是某个儿何体的三视图,则该几何体的表面积为A. 4 + 4迈+ 2巧 C ・10 + 4血+ 2拆B. 14 + 4\/2 D. 48. 若兀,尹满足约束条件<兀一尹+ 2三0, 2尹-1N0, x — 1W0,则z = x 2 + 2x + y 2的最小值为 9. 1A.- 2A.(血>0)在区间-睿,卑 上单调递增,则血的取值范围为C.1 8 2'3D. 则数对@,b)为D. (-3,3)或(4,-11)3.1已知函数f (x) = sinBA二、填空题:本题共4小题,每小题5分,共20分.13. 己知向量“=(〃?,2),方= (1,1),若0 +方=问+同,则实数〃?= ____________ ."14. 已知三棱锥P-ABC的底面ABC是等腰三角形,ABLAC ,刃丄底面ABC ,PA = AB = \,则这个三棱锥内切球的半径为_______ .15. &ABC的内角4 , B , C的对边分别为a, b, c,若2acos(O-B)+ 2bcos(0 + M)+ c = O,则cos 0的值为 _____ •, 16. 我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图② 所示的由数字0和1组成的三角形数表,由上往下数,记第〃行各数字的和为S”,如5=1, S? = 2, S y = 2 f S4 = 4, ,则S门§ =____________ •iI 1I o Ii i i i10 0 0 1i I 0 0 111 0 I 0 I 0 I图①^ 图②三、解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17〜21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17. (本小题满分12分)己知数列{%}的前川项和为S”,数列是首项为!,公差为2的等差数列.(1)求数列{a」的通项公式;(2)设数列{$}满足—^ + b\ *…+ 舒5-(4〃 + 5)(£| 求数列{$}的前"项和7;.18. (本小题满分12分)某地1~10岁男童年龄兀(岁)与身高的中位数X (cm)(21,2,…,10)如下表:.X (岁)12345678910 y伽)76.588.596.8104.1111.3117.7124.0130.0135.4140.2对上表的数据作初步处理,得到下面的散点图及一些统计量的值.丿、y(cm)140130120110100908070$ . ■OX y 10 , \2 L(X- -x)甞(专~刃(乃T)5.5112.4582.503947.7156685(1)求y关于工的线性回归方程(回归方程系数精确到0.01):(2)某同学认为,y = px2+qx + r更适宜作为尹关于X的回归方程类型,他求得的回归方程是y --0.30%2 +10.17x +68.07.经调查,该地11岁男童身高的中位数为145.3cm.与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程,=2+从中的斜率和截距的最小二乘估计公式分别为:i =a 八a »_b元.19.(本小题满分12分)如图,四棱锥S — ABCD中,IBD为正三角形,z^CD = 120°,CB = CD二CS = 2, ABSD = 90°.(2)若SCI BD,求二面角A-SB-C的余弦值.A 奮(勺-元)3厂歹)(1)求证:/C丄平面SBD;/長fB20・(本小题满分12分)已知圆(J + X /3)24-/ = 16的圆心为M,点P 是圆M 上的动点,点N (J5,0),点G 在 线段 MP 上,且满足(GN^GP) 1(GN-GP].(I)求点G 的轨迹C 的方程;(2)过点7(4,0)作斜率不为0的直线/与(1)中的轨迹C 交于加,B 两点,点A 关于 x 轴的对称点为D,连接8D 交x 轴于点0,求HABQ 面积的最大值.21. (本小题满分12分〉已知函数/(x) = ax + lnx + l.(1) 讨论函数/(x)零点的个数;(2) 对任意的x>0, /(x)^xe 2x 恒成立,求实数a 的取值范围.(二)选考题:共10分.请考生在第22. 23题中任选一题作答.如果多做,则按所做的第一题计分.22. (本小题满分10分)选修4-4:坐标系与参数方程的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为Q = 2COS &.(1) 求直线/的普通方程和曲线C 的直角坐标方程;(2) 若直线/和曲线C 交于8两点,且|PJ|-|P^| = 2,求实数加的值.23. (本小题满分10分)选修4一5:不等式选讲己知函数/(x) = 2卜+ a| + |3x-b| •⑴当a = l, 6 = 0时,求不筹式/(工)$3卜|+1的解集: (2)若a>0, 5>0,且函数/(x)的最小值为2,求3a + b 的值.己知过点P (〃,0)的直线/的参数方程是• x/3x = m +—-1 r (/为参数),以平面直角坐标系。
2018年广州一模理科数学试题与答案(全word版)
试卷类型:A 2018年广州市普通高中毕业班综合测试<一)数学<理科)2018.3本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型<A)填涂在答题卡相应位置上。
RUW9RT2d7t2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
RUW9RT2d7t3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
RUW9RT2d7t4.作答选做题时,请先用2B铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
1 / 202 / 20参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.RUW9RT2d7t 1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为A .2- B .2± C . D .2 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则cb为 A .2sin C B .2cos B C .2sin B D .2cos C3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++= 4.若函数()f x =R ,则实数a 的取值范围为 A .()2,2- B .()(),22,-∞-+∞ C .(][),22,-∞-+∞D .[]2,2-5成如图1的频率分布直方图.样本数据分组为[[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽 样的方法从样本中抽取分数在[]80,100则其中分数在[]90,100范围内的样本数据有图1分数3 / 20A .5个B .6个C .8个D .10个RUW9RT2d7t 6.已知集合32A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z 且,则集合A 中的元素个数为 A .2 B .3 C .4 D .5RUW9RT2d7t 7.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是 A .=a b B .⊥a b C .λ=a b ()0λ> D .a b8.设a ,b ,m 为整数<0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是A .2018B .2018C .2018D .2018RUW9RT2d7t 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. <一)必做题<9~13题)9.若不等式1x a -<的解集为{}13x x <<,则实数a 的值为 . 10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为 . 113所示,则这个四棱锥的体积是12.设αsin α⎛ ⎝侧<左)视图4 / 2013.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2014S = .<二)选做题<14~15题,考生只能从中选做一题) 14.<坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若AB=a 的值为 . 15.<几何证明选讲选做题)如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.<本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,.<1)求实数a 的值;<2)设[]2()()2g x f x =-,求函数()g x 的最小正周期与单调递增区间. 17.<本小题满分12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲,丙两人同时不能被聘用的概率是625,乙,丙两人同时能被聘用的概率是310,且三人各自能否被聘用相互独立.RUW9RT2d7t <1)求乙,丙两人各自能被聘用的概率;P图45 / 20<2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值<数学期望).RUW9RT2d7t 18.<本小题满分14分)如图5,在棱长为a 的正方体1111ABCD A B C D -中,点E是棱1D D 的 中点,点F 在棱1B B 上,且满足12B F FB =.<1)求证:11EF A C ⊥;<2)在棱1C C 上确定一点G , 使A ,E ,G ,F 四点共面,并求此时1C G 的长;<3)求平面AEF 与平面ABCD 所成二面角的余弦值. 19.<本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*n ∈N .<1)求数列{}n a 与{}n b 的通项公式;<2)设第n 个正方形的边长为{}min ,n n n c a b =,求前n 个正方形的面积之和n S .<注:{}min ,a b 表示a 与b 的最小值.) 20.<本小题满分14分)已知双曲线E :()222104x y a a -=>的中心为原点O ,左,右焦点分别为1F ,2F ,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF =. <1)求实数a 的值;<2)证明:直线PQ 与直线OQ 的斜率之积是定值;C1C1DA B DEF1A 1B图56 / 20<3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MHPN HN=,证明点H 恒在一条定直线上.RUW9RT2d7t 21.<本小题满分14分)已知函数()()221e x f x x x =-+<其中e 为自然对数的底数). <1)求函数()f x 的单调区间;<2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()1,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.RUW9RT2d7t2018年广州市普通高中毕业班综合测试<一)数学<理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.RUW9RT2d7t2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.RUW9RT2d7t3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.RUW9RT2d7t三、解答题:本大题共6小题,满分80分.16.<本小题满分1)<本小题主要考查三角函数图象的周期性、单调性、同角三角函数的基本关系和三角函数倍角公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)RUW9RT2d7t 解:<1)因为函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,,所以03f π⎛⎫-= ⎪⎝⎭. 即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.即02a+=. 解得a =<2)方法1:由<1)得()sin f x x x =+.所以2()[()]2g x f x =-()2sin 2x x =+-22sin cos 3cos 2x x x x =++-2cos 2x x =+122cos 22x x ⎫=+⎪⎪⎝⎭ 2sin 2cos cos 2sin 66x x ππ⎛⎫=+ ⎪⎝⎭π2sin 26x ⎛⎫=+ ⎪⎝⎭.所以()g x 的最小正周期为22π=π. 因为函数sin y x =的单调递增区间为2,222k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z ,所以当πππ2π22π262k x k -≤+≤+()k ∈Z 时,函数()g x 单调递增, 即ππππ36k x k -≤≤+()k ∈Z 时,函数()g x 单调递增. 所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .方法2:由<1)得()sin f x x x =+2sin cos cos sin 33x x ππ⎛⎫=+ ⎪⎝⎭π2sin 3x ⎛⎫=+ ⎪⎝⎭.所以2()[()]2g x f x =-2π2sin 23x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ 2π4sin 23x ⎛⎫=+- ⎪⎝⎭2π2cos 23x ⎛⎫=-+ ⎪⎝⎭分所以函数()g x 的最小正周期为22π=π分 因为函数cos y x =的单调递减区间为[]2,2k k ππ+π()k ∈Z ,所以当22223k x k ππ≤+≤π+π()k ∈Z 时,函数()g x 单调递增. 即ππππ36k x k -≤≤+<k ∈Z )时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .17.<本小题满分1)<本小题主要考查相互独立事件、解方程、随机变量的分布列与均值<数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)RUW9RT2d7t 解:<1)记甲,乙,丙各自能被聘用的事件分别为1A ,2A ,3A ,由已知1A ,2A ,3A 相互独立,且满足()()()()()113232,5611,253.10P A P A P A P A P A ⎧=⎪⎪⎪--=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎪=⎪⎩解得()212P A =,()335P A =.所以乙,丙各自能被聘用的概率分别为12,35. <2)ξ的可能取值为1,3.因为()()()1231233P P A A A P A A A ξ==+()()()()()()123123111P A P A P A P A P A P A =+---⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦213312525525=⨯⨯+⨯⨯625=. 所以()()113P P ξξ==-=61912525=-=.所以ξ的分布列为所以1963713252525E ξ=⨯+⨯=. 18.<本小题满分1)<本小题主要考查空间线面关系、四点共面、二面角的平面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)RUW9RT2d7t 推理论证法:<1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111A C B D ⊥. 在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11A C ⊂平面1111A B C D ,所以111A C DD ⊥.因为1111B D DD D =,11B D ,1DD ⊂平面11BB D D , 所以11A C ⊥平面11BB D D .因为EF ⊂平面11BB D D ,所以11EF A C ⊥. <2)解:取1C C 的中点H ,连结BH ,则BHAE .在平面11BB C C 中,过点F 作FG BH ,则FGAE .1DABCD EF 1A1B1C1DE1A1B 1CGH连结EG ,则A ,E ,G ,F 四点共面. 因为11122CH C C a ==,11133HG BF C C a ===, 所以1C G 116C C CH HG a =--=.故当1C G 16a =时,A ,E ,G ,F 四点共面. <3)延长EF ,DB ,设EF DB M =,连结AM , 则AM 是平面AEF 与平面ABCD 的交线.过点B 作BN AM ⊥,垂足为N ,连结FN , 因为FB AM ⊥,FB BN B =, 所以AM ⊥平面BNF .因为FN ⊂平面BNF ,所以AM ⊥FN . 所以FNB ∠为平面AEF 与平面ABCD 所成 二面角的平面角.因为123132aMB BF MD DE a ===,即23=,所以MB =.在△ABM 中,AB a =,135ABM ∠=, 所以2222cos135AM AB MB AB MB =+-⨯⨯⨯()222a a ⎛=+-⨯⨯⨯ ⎝⎭213a =.即AM =. 因为11sin13522AM BN AB MB ⨯=⨯⨯,所以sin135a AB MB BN AM⨯⨯⨯⨯===.1DAB CDE F 1A1B1CMN所以39FN a===.所以6cos7BNFNBFN∠==.故平面AEF与平面ABCD所成二面角的余弦值为67.空间向量法:<1)证明:以点D为坐标原点,DA,DC,1DD所在的直线分别为x轴,y轴,z轴,建立如图的空间直角坐标系,则(),0,0A a,()1,0,A a a,()10,,C a a,10,0,2E a⎛⎫⎪⎝⎭,1,,3F a a a⎛⎫⎪⎝⎭,所以()11,,0AC a a=-,1,,6EF a a a⎛⎫=-⎪⎝⎭.因为221100AC EF a a=-++=,所以11AC EF⊥.所以11EF A C⊥.<2)解:设()0,,G a h,因为平面11ADD A平面11BCC B,平面11ADD A平面AEGF AE=,平面11BCC B平面AEGF FG=,所以FG AE.<苏元高考吧: 广东省数学教师QQ群:179818939)所以存在实数λ,使得FG AEλ=.因为1,0,2AE a a⎛⎫=-⎪⎝⎭,1,0,3FG a h a⎛⎫=--⎪⎝⎭,所以11,0,,0,32a h a a aλ⎛⎫⎛⎫--=-⎪ ⎪⎝⎭⎝⎭.所以1λ=,56h a =.所以1C G 15166CC CG a a a =-=-=.故当1C G 16a =时,A ,E ,G ,F 四点共面.<3)解:由<1)知1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩n n 即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)67==. 故平面AEF 与平面ABCD 所成二面角的余弦值为67. 第<1)、<2)问用推理论证法,第<3)问用空间向量法: <1)、<2)给分同推理论证法.<3)解:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则(),0,0A a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫⎪⎝⎭, 则1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫=⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩nn即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)67==. 故平面AEF 与平面ABCD 所成二面角的余弦值为67. 19.<本小题满分1)<本小题主要考查等差数列、等比数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)RUW9RT2d7t 解:<1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯, 即28n a n =+.因为等比数列{}n b 的首项为1,公比为2, 所以112n n b -=⨯, 即12n n b -=.<2)因为110a =,212a =,314a =,416a =,518a =,620a =,11b =,22b =,34b =,48b =,516b =,632b =.易知当5n ≤时,n n a b >.下面证明当6n ≥时,不等式n n b a >成立.方法1:①当6n =时,616232b -==620268a >=⨯+=,不等式显然成立. ②假设当n k =()6k ≥时,不等式成立,即1228k k ->+. 则有()()()()122222821826218k k k k k k -=⨯>+=++++>++. 这说明当1n k =+时,不等式也成立.综合①②可知,不等式对6n ≥的所有整数都成立. 所以当6n ≥时,n n b a >. 方法2:因为当6n ≥时()()()112281128n n n n b a n n ---=-+=+-+()()01211111C C C C 28n n n n n n -----=++++-+()()012321111111C C C C C C 28n n n n n n n n n n ---------≥+++++-+ ()()0121112C C C 28n n n n ---=++-+()()236460n n n n n =--=-+->,所以当6n ≥时,n n b a >.所以{}min ,n n n c a b =12,5,28,5.n n n n -⎧≤=⎨+>⎩ 则()22222,5,44, 5.n n n c n n -⎧≤⎪=⎨+>⎪⎩当5n ≤时,2222123n n S c c c c =++++ 2222123n b b b b =++++024222222n -=++++1414n -=-()1413n=-.当5n >时,2222123n n S c c c c =++++()()22222212567n b b b a a a =+++++++()51413=-()()()222464744n ⎡⎤+++++++⎣⎦()()()222341467867165n n n ⎡⎤=+++++++++-⎣⎦()()()()2222223414121253267645n n n ⎡⎤=++++-++++++++-⎣⎦()()()()()121653414553264562n n n n n n +++-⎡⎤=+-+⨯+-⎢⎥⎣⎦3242421867933n n n =++-. 综上可知,n S ()32141,5,3424218679, 5.33nn n n n n ⎧-≤⎪⎪=⎨⎪++->⎪⎩20.<本小题满分1)<本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)RUW9RT2d7t <1)解:设双曲线E 的半焦距为c ,由题意可得2254.c a c a ⎧=⎪⎨⎪=+⎩解得a =.<2)证明:由<1)可知,直线2533a x ==,点()23,0F .设点5,3P t ⎛⎫⎪⎝⎭,()00,Q x y ,因为220PF QF =,所以()0053,3,03t x y ⎛⎫----= ⎪⎝⎭. 所以()00433ty x =-.因为点()00,Q x y 在双曲线E 上,所以2200154x y -=,即()2200455y x =-. 所以20000200005533PQ OQy t y y ty k k x x x x --⋅=⋅=--()()2002004453453553x x x x ---==-.所以直线PQ 与直线OQ 的斜率之积是定值45.<3)证法1:设点(),H x y ,且过点5,13P ⎛⎫ ⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则22114520x y -=,22224520x y -=,即()2211455y x =-,()2222455y x =-. 设PM MH PN HN λ==,则,.PM PN MH HN λλ⎧=⎪⎨=⎪⎩. 即()()1122112255,1,1,33,,.x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩整理,得()()()1212121251,31,1,1.x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④由①×③,②×④得()()22221222221251,31.x x x y y y λλλλ⎧-=-⎪⎨⎪-=-⎩⑤⑥将()2211455y x =-,()2222455y x =-代入⑥, 得2221224451x x y λλ-=⨯--. ⑦将⑤代入⑦,得443y x =-.所以点H 恒在定直线43120x y --=上. 证法2:依题意,直线l 的斜率k 存在.设直线l 的方程为513y k x ⎛⎫-=- ⎪⎝⎭,由2251,31.54y k x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩ 消去y 得()()()22229453053255690k x k k x k k -+---+=.因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则有()()()()()()()22222122212290053900455690,3053,95425569.954k k k k k k k x x k k k x x k ⎧⎪∆=-+--+>⎪⎪-⎪+=⎨-⎪⎪-+⎪=⎪-⎩由PM MH PN HN =,得112125353x x x x x x --=--. 整理得()()1212635100x x x x x x -+++=.1 将②③代入上式得()()()()()2222150569303553100954954k k x k k x k k -++--+=--.整理得()354150x k x --+=. ④因为点H 在直线l 上,所以513y k x ⎛⎫-=- ⎪⎝⎭. ⑤联立④⑤消去k 得43120x y --=. 所以点H 恒在定直线43120x y --=上.①②③<本题<3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.)21.<本小题满分1)<本小题主要考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)RUW9RT2d7t 解:<1)因为()()221e x f x x x =-+,<苏元高考吧: )所以2()(22)e (21)e x x f x x x x '=-+-+()21e xx =-(1)(1)e x x x =+-.当1x <-或1x >时,()0f x '>,即函数()f x 的单调递增区间为(),1-∞-和()1,+∞.当11x -<<时,()0f x '<,即函数()f x 的单调递减区间为()1,1-.所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-. <2)假设函数()f x 在()1,+∞上存在“域同区间”[,](1)s t s t <<,由<1)知函数()f x 在()1,+∞上是增函数,所以(),().f s s f t t =⎧⎨=⎩ 即22(1)e ,(1)e .s ts s t t ⎧-⋅=⎨-⋅=⎩ 也就是方程2(1)e x x x -=有两个大于1的相异实根. 设2()(1)e (1)x g x x x x =-->,则2()(1)e 1x g x x '=--. 设()h x =2()(1)e 1x g x x '=--,则()()221e x h x x x '=+-.因为在(1,)+∞上有()0h x '>,所以()h x 在()1,+∞上单调递增.因为()110h =-<,()223e 10h =->,即存在唯一的()01,2x ∈,使得()00h x =.当()01,x x ∈时,()()0h x g x '=<,即函数()g x 在()01,x 上是减函数; 当()0,x x ∈+∞时,()()0h x g x '=>,即函数()g x 在()0,x +∞上是增函数.因为()110g =-<,0()(1)0g x g <<,2(2)e 20g =->, 所以函数()g x 在区间()1,+∞上只有一个零点.这与方程2(1)e x x x -=有两个大于1的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()1,+∞上不存在“域同区间”. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018广州一模理科数学
2 当x , 时, x , , 所以 6 4 6 3 6 4 3 2 4 6 , 3 6 2k 2 , 2k 2 , k Z
3 不相邻问题用插空法 , 先安排C , D, E 三位同学, 共有A3 种 2 排列方法 , 产生4个空隙, 再安排A, B两位同学, 有A4 种排 3 2 列方法 , 所以共有A3 A4 72种不同的排列方法 .
72 3 事件总数为A 120, 所以所求事件的概率为 = 120 5
5 5
n 2 1 1 1 5 2 中含 的项为C 7 2 x 84 x x x 5
7
7.如图,网格纸上小正方形的边长为1,粗线画出的是某 个几何体的三视图,则该几何体的表面积为( C )
A. 4 4 2 2 3 C . 10 4 2 2 3
B. 14 4 2 D. 4
2 2
z x 2x y
2 2 2 2
3 D. 4
y
C
x y20
( x 2 x 1) y 1 ( x 1) y 1
2 2
A P
B
2 y 1 0
( x 1) y 表示动点( x , y ) 与P (0,1)之间的距离
O
x
x 1 0
x y 2 ≥ 0, 8. 若x , y满足约束条件 2 y 1 ≥ 0, 则z x 2 2 x y 2 x 1 ≤ 0, 的最小值为( D ) 1 A. 2 1 B. 4 1 C. 2 3 D. 4
y
C
x, 所以z x 2 x y 2 3 1 的最小值为 1 4 2
2018广州一模理科数学试题及答案 (1)
试卷类型:A2018年广州市普通高中毕业班综合测试<一)数 学 <理 科) 2018.3 本试卷共4页,21小题, 满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型<A )填涂在答题卡相应位置上.Qh8WZp2VLy 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.Qh8WZp2VLy 3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.Qh8WZp2VLy 4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高.球的表面积公式24S R π=, 其中R 为球的半径. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤<B .}{10x x -<≤C .}{11x x -<<D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a的值为 A .2-B .1-D .2Qh8WZp2VLy 3. 已知向量p ()2,3=-,q (),6x =,且//p q ,则+p q A D .134. 函数ln xy x=在区间()1,+∞上C 1A C A(度)图2A .是减函数B .是增函数C .有极小值D .有极大值 5. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的 A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 7. 将18个参加青少年科技创新大赛的名额分配给3 至少有一个名额且各校分配的名额互不相等, 为A .96B .C .128D .8. 如图2所示,已知正方体1111ABCD A B C D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2π C .π D .2π二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.<一)必做题<9~13题)9. 取出该地区若干户居民的用电数据, 率分布直方图如图3所示,D图4 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户. 10. 以抛物线2:8C y x =上的一点A 为圆心作圆,若该圆经过抛物线C 的顶点和焦点,那么该圆的方程为 .11. 已知数列{}n a 是等差数列, 若468212a a a ++=, 则该数列前11项的和为 .12. △ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知3,,3c C π==2a b =,则b 的值为 .13. 某所学校计划招聘男教师x 名,女教师y 名, x 和y 条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是<二)选做题<14~15题,考生只能从中选做一题)14. (几何证明选讲选做题> 如图4, CD 是圆O 的切线, 切点为C ,点A 、B 在圆O 上,1,30BC BCD ︒=∠=,则圆O 的面积为 .15. (坐标系与参数方程选讲选做题> 在极坐标系中,若过点()1,0且与极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB = . Qh8WZp2VLy 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.<本小题满分12分)已知函数()2sin cos cos2f x x x x =+(x ∈R>.(1) 当x 取什么值时,函数()f x 取得最大值,并求其最大值;DA 1A(2) 若θ为锐角,且8f πθ⎛⎫+= ⎪⎝⎭,求tan θ的值. 17.<本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润<单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.若从这批产品中随机抽取出的1件产品的平均利润(即数学期望>为4.9元.,a b (2> 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.<本小题满分14分)如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点,12A A AB ==.(1> 求证:1//AB 平面1BC D ;(2> 若四棱锥11-B AA C D 的体积为3, 求二面角1--C BC D 的正切值.图519.<本小题满分14分)已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足OP OQ ⊥(O 为坐标原点>,记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程. 20.<本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数. 21.<本小题满分14分)已知函数y =()f x 的定义域为R, 且对于任意12,x x ∈R,存在正实数L ,使得()()1212f x f x L x x -≤-都成立. (1) 若()f x =,求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n =. ① 证明:112111nk k k a a a a L+=-≤--∑;② 令()121,2,3,kk a a a A k k++==,证明:112111nk k k A A a a L+=-≤--∑. 2018年广州市普通高中毕业班综合测试<一)数学<理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.Qh8WZp2VLy 2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.Qh8WZp2VLy 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分. 二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分.9. 325 10. ()(2219x y -+±=13. 1014. π 15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.<本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力>Qh8WZp2VLy (1> 解: ()2sin cos cos2f x x x x =+sin 2cos2x x =+ …… 1分22x x ⎫=+⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值,其.…… 5分(2>解法1:∵8f πθ⎛⎫+= ⎪⎝⎭,223πθ⎛⎫+= ⎪⎝⎭. …… 6分∴1cos 23θ=. …… 7分Qh8WZp2VLy ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 23θ==…… 8分 ∴sin 2tan 2cos 2θθθ==. …… 9分∴22tan 1tan θθ=-…… 10分Qh8WZp2VLy2tan 0θθ+-=. ∴)(1tan 0θθ-=.∴tan 2θ=或tan θ=不合题意,舍去> …… 11分∴tan 2θ=. …… 12分Qh8WZp2VLy解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭.∴1cos 23θ=. …… 7分Qh8WZp2VLy∴212cos 13θ-=. …… 8分Qh8WZp2VLy ∵θ为锐角,即02πθ<<,∴cos 3θ=. …… 9分Qh8WZp2VLy∴sin θ==. …… 10分∴sin tan cos θθθ==…… 12分Qh8WZp2VLy解法3:∵8f πθ⎛⎫+= ⎪⎝⎭22πθ⎛⎫+= ⎪⎝⎭.∴1cos 23θ=. …… 7分Qh8WZp2VLy ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==…… 8分 ∴sin tan cos θθθ=…… 9分Qh8WZp2VLy22sin cos 2cos θθθ=…… 10分sin 21cos 2θθ=+2=…… 12分Qh8WZp2VLy 17.<本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识>Qh8WZp2VLy<1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分 ∴ 60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分解得0.2,0.1a b ==.∴0.2,0.1a b == . …… 6分Qh8WZp2VLy (2>解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都是一等品或2件一等品,1件二等品. …… 8分Qh8WZp2VLy 故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. …… 12分 18. <本小题满分14分)GFEODC 1A 1B 1CBA(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力>Qh8WZp2VLy <1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点. ∵D 为AC 的中点, ∴OD 为△1AB C 的中位线,∴ 1//OD AB . …… 2分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D ,∴1//AB 平面1BC D . …… 4分 (2>解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AA C C , ∴ 平面ABC ⊥平面11AA C C ,且平面ABC 平面11AA C C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AA C C , ……6分设BC a =,在Rt △ABC 中,AC ==AB BCBE AC==∴四棱锥11-B AA C D 的体积()1111132V AC AD AA BE =⨯+ 126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分(以下求二面角1--C BC D 的正切值提供两种解法>解法1:∵11,,AB BC AB BB BC BB B ⊥⊥=,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F =, ∴1BC ⊥平面DFG . ∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得11322BF CC GF BC ⨯=== 在Rt△DFG 中, tan DFDGF GF∠== ∴二面角1--C BC D 的正切值为. …… 14分解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥=,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,1B y 轴和z 轴,建立空间直角坐标系1B xyz - 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭∴()13,2,0BC =-,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC =及n 0BD =,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-. 故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分又平面1BC C 的一个法向量为()0,0,2AB =-, ∴cos 〈n ,AB 〉=⋅n AB n AB200323⨯+⨯+-⨯-== (12)分∴sin 〈n ,AB 〉==. …… 13分∴tan 〈n,AB 〉=.∴二面角1--C BC D 的正切值为. …… 14分 19.<本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识>Qh8WZp2VLy (1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1OP OQ k k =-. 当0x ≠时,得21y x x-=-,化简得22x y =. …… 2分当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠. ∴曲线C 的方程为22x y =()0x ≠. …… 4分(2> 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在. 设直线2l 的方程为y kx b =+, …… 5分由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=. ∵ 直线2l 与曲线C 相切, ∴2480k b ∆=+=,即22k b =-. …… 6分点()0,2到直线2l的距离d =22121k =+ …… 7分12⎫=+ …… 8分213121k ≥⨯+ …… 9分= (10)分=k =.此时1b =-. ……12分∴直线2l10y --=或10y ++=. …… 14分解法2:由22x y =,得'y x =, …… 5分Qh8WZp2VLy ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =, 则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分 点()0,2到直线2l 的距离d =212121x =+ …… 7分12⎫= …… 8分213121x ≥⨯+ …… 9分=……10分=1x =立. ……12分 ∴直线2l10y --=或10y ++=. …… 14分解法3:由22x y =,得'y x =, …… 5分Qh8WZp2VLy ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>, 则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分点()0,2到直线2l 的距离d ==…… 7分12⎫= …… 8分1131221y ≥⨯+ …… 9分= (10)分=,即11y =时,等号成立,此时1x =……12分∴直线2l10y --=或10y ++=. …… 14分20.<本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识>Qh8WZp2VLy (1> 解:∵()00f =,∴0c =. …… 1分 Qh8WZp2VLy ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立,∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分Qh8WZp2VLy (2> 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩……5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞ ⎪⎝⎭上单调递增; …… 6分 若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分 ② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫- ⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分Qh8WZp2VLy 当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫- ⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. …… 10分 (3>解:① 当02λ<≤时,由(2>知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->, 故函数()g x 在区间()0,1上只有一个零点. …… 11分② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭,()121g λ=--,<ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥, 此时,函数()g x 在区间()0,1上只有一个零点; …… 12分 <ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分Qh8WZp2VLy 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分 21.<本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识>Qh8WZp2VLy (1) 证明:对任意12,x x ∈R ,有()()12f x f x -==12x x +=. …… 2分由()()1212f x f x L x x -≤-,12x x +12L x x ≤-.当12x x ≠时,得L≥.21121,x x x +>>且1212x x x x +≥+,12121x x x x +<≤+. ……4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立. ∴L 的取值范围是[)1,+∞. …… 5分Qh8WZp2VLy (2> 证明:①∵()1n n a f a +=,1,2,n =,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤-. …… 6分∴112233411nk k n n k a a a a a a a a a a ++=-=-+-+-++-∑()21121n L L L a a -≤++++- …… 7分1211n L a a L-=--. …… 8分 ∵01L <<, ∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). …… 9分②∵12kk a a a A k++=,∴1212111kk k k a a a a a a A A kk ++++++++-=-+()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+ ()()12233411231k k a a a a a a k a a k k +≤-+-+-++-+.…… 11分∴1122311nk k n n k A A A A A A A A ++=-=-+-++-∑()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯⎪ ⎪⨯⨯++⎝⎭1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++-1211a a L≤--. ……14分 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
【省会检测】2018年广东省广州市高考数学一模试卷(理科)
2018年广东省广州市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z(1﹣i)2=4i,则复数z的共扼复数=()A.﹣2 B.2 C.﹣2i D.2i2.设集合A={x|<0},B={x|x≤﹣3},则集合{x/x≥1}=()A.A∩B B.A∪B C.(∁R A)∪(∁R B}D.(∁R A)∩(∁R B}3.若A,B,C,D,E五位同学站成一排照相,则A,B两位同学不相邻的概率为()A.B.C.D.4.执行如图所示的程序框图,则输出的S=()A.B.C.D.5.已知,则=()A.B.C.D.6.已知二项式(2x2﹣)n的所有二项式系数之和等于128,那么其展开式中含项的系数是()A.﹣84 B.﹣14 C.14 D.847.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为()A.B. C. D.48.若x,y满足约束条件,则z=x2+2x+y2的最小值为()A.B.C.﹣ D.﹣9.已知函数f(x)=sin(ωx+)(ω>0)在区间[﹣,]上单调递增,则ω的取值范围为()A.(0,]B.(0,]C.[,]D.[,2]10.已知函数f(x)=x3+ax2+bx+a2在x=1处的极值为10,则数对(a,b)为()A.(﹣3,3)B.(﹣11,4) C.(4,﹣11)D.(﹣3,3)或(4,﹣11) 11.如图,在梯形ABCD中已知|AB|=2|CD|。
=,双曲线过C,D,E三点,且以A,B为焦点,则双曲线的离心率为()A.B.2 C.3 D.12.设函数f(x)在R上存在导函数f'(x),对于任意的实数x,都有f(x)+f (﹣x)=2x2,当x<0时,f'(x)+1<2x,若f(a+1)≤f(﹣a)+2a+1,则实数a的最小值为()A.B.﹣1 C.D.﹣2二、填空题:本题共4小题,每小题5分,共20分.13.已知向量=(m,2),=(1,1),若||=||+||,则实数m=.14.已知三棱锥P﹣ABC的底面ABC是等腰三角形,AB⊥AC,PA⊥底面ABC,PA=AB=1,则这个三棱锥内切球的半径为.15.△ABC的内角A,B,C的对边分别为a,b,c,若2acos(θ﹣B)+2bcos(θ+A)+c=0,则cosθ的值为.16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为S n,如S1=1,S2=2,S3=2,S4=4,……,则S126=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12.00分)已知数列{a n}的前n项和为S n,数列{}是首项为1,公差为2的等差数列.(1)求数列{a n}的通项公式;(2)设数列{b n }满足++…+=5﹣(4n+5)()n,求数列{b n}的前n项和T n.18.(12。