2018年初三一诊考试数学试卷及答案
2018年福建省中考数学一模试卷
2018年福建省中考数学一模试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)8的立方根是()A.2 B.±2 C.D.42.(4分)如图所示的工件,其俯视图是()A.B.C.D.3.(4分)下列实数中的无理数是()A.B.πC.0 D.4.(4分)下列各式计算正确的是()A.a2+2a3=3a5B.(a2)3=a5C.a6÷a2=a3D.a•a2=a35.(4分)下列国旗图案是轴对称图形又是中心对称图形的是()A.B.C.D.6.(4分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.7.(4分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<128.(4分)如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A.πB.πC.πD.π9.(4分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<010.(4分)如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A.34.14米 B.34.1米C.35.7米D.35.74米二、填空题:本题共6小题,每小题4分,共24分.11.(4分)当a,b互为相反数,则代数式a2+ab﹣2的值为.12.(4分)在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.13.(4分)当x 时,二次根式有意义.14.(4分)若•|m|=,则m=.15.(4分)如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是.16.(4分)如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:.18.(8分)先化简,再求值:,其中a=﹣4.19.(8分)解不等式组20.(8分)解方程:=1﹣.21.(8分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?22.(10分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.23.(10分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率A a0.2B120.24C8bD200.4(1)参加本次讨论的学生共有人;(2)表中a=,b=;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.24.(12分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.25.(14分)如图,在平面直角坐标系中,抛物线y=x2﹣4x﹣5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1)探究与猜想:①取点M(0,1),直接写出直线l的解析式;取点M(0,2),直接写出直线l的解析式;②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为,请取M的纵坐标为n,验证你的猜想;(2)连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式.2018年福建省中考数学一模试卷答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:8的立方根是2,故选:A.2.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.3.【解答】解:,0,是有理数,π是无理数,故选:B.4.【解答】解:A、a2与2a3不是同类项,不能合并,故本选项错误;B、(a2)3=a2×3=a6,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、a•a2=a1+2=a3,故本选项正确.故选:D.5.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形又是中心对称图形,故本选项符合题意;C、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D、不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:B.6.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.7.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选:D.8.【解答】解:连接OE,如图所示:∵四边形ABCD是平行四边形,∴∠D=∠B=70°,AD=BC=6,∴OA=OD=3,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的长==;故选:B.9.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a+b=(m﹣1)a﹣2a=(m﹣3)a,(m﹣1)a+b与0无法判断.当m<1时,(m+1)a+b=(m+1)a﹣2a=(m﹣1)a>0.故选:C.10.【解答】解:过B作BF⊥CD于F,作B′E⊥BD,∵∠BDB'=∠B'DC=22.5°,∴EB'=B'F,∵∠BEB′=45°,∴EB′=B′F=10√2,∴DF=20+10√2,∴DC=DF+FC=20+10√2+1.6≈35.74=35.7,故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣2=a(a+b)﹣2=0﹣2=﹣2,故答案为:﹣2.12.【解答】解:∵sinA==,∴∠A=60°,∴sin=sin30°=.故答案为:.13.【解答】解:根据二次根式有意义的条件可得:2﹣x≥0,解得:x≤2.故答案为:≤2.14.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.15.【解答】解:由题意得:△A′OB′与△AOB的相似比为2:3,又∵B(3,﹣2)∴B′的坐标是[3×,﹣2×],即B′的坐标是(﹣2,);故答案为:(﹣2,).16.【解答】解:设点P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣3(不合题意舍去),∴点P(1,3),∴3=,解得k=3.故答案为:3.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:原式=﹣1﹣2+=4﹣3+=.18.【解答】解:当a=﹣4时,原式=•﹣=﹣==19.【解答】解:由①得x≤3,由②得x<﹣3,∴原不等式组的解集是x<﹣3.20.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.21.【解答】解:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1﹣x)2=162,解得:x=0.1=10%或x=1.9(舍去).答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.(2)100×=≈90.91(个),在A商城需要的费用为162×91=14742(元),在B商城需要的费用为162×100×=14580(元).14742>14580.答:去B商场购买足球更优惠.22.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=23.【解答】解:(1)总人数=12÷0.24=50(人),故答案为:50;(2)a=50×0.2=10,b==0.16,故答案为:(3)条形统计图补充完整如图所示:(4)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率==.24.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:连接BE、BC、OC,BE交AC于F交OC于H.∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,∵cos∠CAB==,∴AB=a,BC=a,在RT△CHB中,CH==a,∴DE=CH=a,AE==a,∵EF∥CD,∴==.25.【解答】解:(1)①当M(0,1)时,由OM=ON知N(0,﹣1),将点A(﹣1,0)、M(0,1)得:,解得:,则直线AM解析式为y=x+1,由可得或,则P(6,7),设直线AN解析式为y=k2x+b2,将点A(﹣1,0)、N(0,﹣1)得:,解得:,则直线AN解析式为y=﹣x﹣1,由可得或,则Q(4,﹣5),设直线PQ解析式为y=k3x+b3,则,解得:,则直线PQ解析式为y=6x﹣29;当M为(0,2)时,由OM=ON知N(0,﹣2),设直线AM解析式为y=m1x+n1,将点A(﹣1,0)、M(0,2)得:,解得:,则直线AM解析式为y=2x+2,由可得或,则P(7,16),将点A(﹣1,0)、N(0,﹣2)得:,解得:,则直线AN解析式为y=﹣2x﹣2,由可得或,则Q(3,﹣8),设直线PQ解析式为y=m3x+n3,则,解得:,则直线PQ解析式为y=6x﹣26;②设M(0,n),由①知AP的解析式为y=nx+n、AQ解析式为y=﹣nx﹣n,联立,整理,可得:x2﹣(4+n)x﹣(5+n)=0,解得:x1=﹣1、x2=5+n,则x p=5+n,同理可得x Q=5﹣n,设直线PQ解析式为y=kx+b,联立,整理,得:x2﹣(4+k)﹣(5+b)=0,则x p+x q=4+k,5﹣n+5+n=4+k,则k=6;故答案为:6.(2)∵S△ABP =3S△ABQ,∴y P=﹣3y Q,∴kx P+b=﹣3(kx Q+b),∵k=6,所以6x P+18x Q=﹣4b,∴6(5+n)+18(5﹣n)=﹣4b,解得:b=3n﹣30,∵x P•x Q=﹣(5+b)=﹣5﹣3n+30=(5+n)(5﹣n),解得:n=3或n=0(舍去),则b=3×3﹣30=﹣21∴直线PQ的解析式为y=6x﹣21.。
2018年中考数学一模考试卷及答案
2018年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2018年中考数学一模试卷(含答案)
2018年中考数学一模试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的倒数是()A.4 B.﹣4 C.D.﹣2.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8 C.=±3 D.=﹣23.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>14.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm6.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线相等C.有两边及一角对应相等的两个三角形全等D.平行四边形是轴对称图形7.下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差9.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.10.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.方程=1的根是x=.12.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是13.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE 与△ABC的面积之比为.14.一元二次方程x2+x﹣2=0的两根之积是.15.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是度.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题:(本大题共10小题,共84分.)19.计算:(1)|﹣2|﹣(1+)0+;(2)(a﹣)÷.20.(1)解方程: +=4.(2)解不等式组:.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.22.某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?23.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.24.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?25.如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.26.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.参考答案一、选择题:1.C2.B3.A4.B5.D6.C7.D8.B9.A10.A二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.7.5×103.12.假.13.a(a+2)(a﹣2)14.﹣2.15.19°.16 AC=BD(或∠CBA=∠DAB)(只填一个).17..18.1.2.三、解答题:(本大题共10小题,共84分.)19.解:(1)原式=2﹣1+2=3.(2)原式=.20.解:(1)去分母得:x﹣5x=4(2x﹣3),解得:x=1,经检验x=1是分式方程无解;(2),∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2.21.证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴AE=CF.22.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.23.解:(1)360°×(1﹣50%﹣30%﹣5%)=54°;(2)10÷5%=200人;(3)200×15%=30人,200×30%=60人;(4)平均每天参加体育活动的时间在0.5小时以下人数为2000×5%=100(人).24.解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.25.解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.26.解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m1=m2=1,∴OC=CF=1,当x=0时,y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD≌△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x +,代入抛物线的表达式﹣x +=x 2﹣x ﹣. 解得x=2或x=﹣2,当x=﹣2时y=﹣x +=﹣×(﹣2)+=,∴点E 的坐标为(﹣2,),∵tan ∠EDG===, ∴∠EDG=30°∵tan ∠OAC===, ∴∠OAC=30°,∴∠OAC=∠EDG ,∴ED ∥AC .。
2018年初三一模数学答案
昆明市官渡区2018年初中学业水平考试第一次模拟测试数学答案及评分标准一、填空题(每小题3分,共18分) 1.13 2. 30 3. a +1 4. k <945. 66. 1三、解答题:(共9题,满分70分)15. (本小题5分) 解:原式=2-122-1+……………4分=22-……………5分16. (本小题6分)证: ∵ BF=CD ∴ BF+FC=DC+FC ∴BC=DF ……………1分 在△ABC 和△EDF 中AC EFACB EFD BC DF =⎧⎪∠=∠⎨⎪=⎩……………3分∴ △ABC ≌△EDF (SAS )……………5分 ∴ ∠B=∠D ……………6分 17. (本小题7分)(1) 作出图形△A 1B 1C 1……………2分(2) 作出图形△A 2B 2C 2……………4分,写出2A (2,-3) ……………5分 (3) P(0,1) ……………7分第16题图18.(本小题8分)(1)本次接受随机抽样调查的学生人数为 40人,中位数是 36 号,众数是35 号 ;……………3分 (2)补全条形统计图……………5分(3)34号:100%-30%-25%-20%-10%=15%.……………6分800⨯15%=120……………7分答:购买34号运动鞋约为120双.……………8分 (其它解法参照给分) 19.(本小题8分)(1)列表如下: ………………4分共有9种结果,且每种结果发生的可能性相同………………5分∵点M (x ,y )在函数x y 2-=的图象上有两种情况,分别为(0,0),(1,-2)………6分 ∴()()29M x y P =点,在函数的图象上的概率 ………………8分 (其它解法参照给分)20.(本小题7分) 解:(1)过点C 作CD ⊥PQ 于D ,垂足为点D ………………1分∵∠CAB =30°,∠CBD=60° ∴∠ACB=30°∴AB=BC=20米……………3分在Rt △CDB 中,∵∠B DC=90°,sin ∠CBD=BCCD∴sin60°=BCCD,∴2023CD = ∴CD=310米……………5分第20题图A BQPM C N60°30°D∴CD ≈17.3米……………6分答:这条河的宽度约为17.3米.………………7分(其它解法参照给分) 21.(本小题9分)解: (1)设A 种花的单价为x 元,B 种花的单价为y 元…………1分 根据题意得:3015675125265x y x y +=⎧⎨+=⎩,………………3分, 解得:,…………5分∴A 种花的单价为20元,B 种花的单价为5元.(2)设A 种花的数量为m 棵,则B 种花的数量为(31﹣m )棵, ∵B 种花的数量不大于A 种花的数量的2倍, ∴31﹣m ≤2m ,…………6分解得:m ≥,…………7分又∵m ≤31 ∴313≤m 31≤ ∵m 是正整数,∴m 最小值=11,设购买总费用为W=20m +5(31﹣m )=15m +155,……...8分 ∵k >0,∴W 随x 的增大而增大,当m=11时,W 最小值=15×11+155=320(元).答:购进A 种花的数量为11棵、B 种20棵,费用最省;最省费用是320元.….....9分(其它解法参照给分)22.(本小题8分)(1)证明:连接OE 、EC ,………………1分∵AC 是⊙O 的直径,∴∠AEC=∠BEC=90°,………………2分 ∵D 为BC 的中点,∴ED=DC=BD , ∴∠1=∠2, ∵OE=OC , ∴∠3=∠4,∴∠1+∠3=∠2+∠4, 即∠OED=∠ACB ,∵∠ACB=90°,∴∠OED=90°,∴OE ⊥DE ………………3分 又∵OE 是⊙O 的半径,∴DE 是⊙O 的切线;………………4分 (2)解:由(1)知:∠BEC=90°,∵在Rt △BEC 与Rt △BCA 中,∠B=∠B ,∠BEC=∠BCA , ∴△BEC ∽△BCA ,………………5分 ∴BE BC BC BA=,∴BC 2=BE•BA ,………………6分 ∵AE :EB=1:2,设AE=x ,则BE=2x ,BA=3x ,∵BC=6,∴62=2x•3x ,解得:x=,即AE=.………………8分(其它解法参照给分) 23.(本小题12分)(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,………………1分又抛物线过原点,∴0=a (0﹣1)2+1,………………2分解得a=﹣1,………………3分∴抛物线解析式为y=﹣(x ﹣1)2+1,………………4分 即y=﹣x 2+2x(2)联立抛物线和直线解析式可得222y x x y x ⎧=-+⎨=-⎩解得20x y =⎧⎨=⎩ 或 13x y =-⎧⎨=-⎩∴B (2,0), C (﹣1,﹣3)………………6分(3)存在………………7分如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;………………8分设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).………………12分(其它解法参照给分)。
初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)
初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。
2018届河北省石家庄市中考数学一模试卷(含解析)
2018年河北省石家庄市中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.计算:A. B. 8 C. D. 15【答案】D【解析】解:,故选:D.根据有理数的乘法法则计算可得.本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.2016年上半年,天津市生产总值亿元,按可比价格计算,同步增长,将“”用科学记数法可表示为A. B. C. D.【答案】A【解析】解:将用科学记数法表示为:.故选:A.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由相同的正方体木块粘在一起的几何体,它的主视图是A.B.C.D.第1页,共18页【答案】B【解析】解:该几何体的主视图为:故选:B.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.使二次根式有意义的x的取值范围是A. B. C. D.【答案】D【解析】解:由题意得,,解得,故选:D.根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.一副三角板按如图所示的位置摆放,则图中与相等的角有A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:,即与相等的角有,共1个,故选:A.先求出的度数,即可得出选项.本题考查了余角与补角,能求出各个角的度数是解此题的关键.6.若,则中的式子是第3页,共18页A. bB.C.D.【答案】D【解析】解:由题意可知:故选:D .根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.7. 已知关于x 的方程 有实数根,则k 的取值范围是A.B. C. D.【答案】B【解析】解: , . 故选:B .根据方程有实根得出 ,求出不等式的解集即可.本题主要考查对根的判别式,解一元一次不等式等知识点的理解和掌握,理解方程 有实数根的含义是解此题的关键.8. 把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是A.B. C. D.【答案】D【解析】解:阴影部分的小正方形 ,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形. 故选:D .直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.9. 如图, 与 是位似图形,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则 与 的面积比是A. 1:6B. 1:5C. 1:4D. 1:2【答案】C【解析】解:与是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,两图形的位似之比为1:2,则与的面积比是1:4.故选:C.根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方即可求出面积之比.此题考查了位似变换,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.在调查收集数据时,下列做法正确的是A. 抽样调查选取样本时,所选样本可按自己的喜好选取B. 在医院里调查老年人的健康状况C. 电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人D. 检测某城市的空气质量,采用抽样调查的方式【答案】D【解析】解:A、抽样调查选取样本时,所选样本可按自己的喜好选取,错误;B、在医院里调查老年人的健康状况,错误;C、电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人,错误;D、检测某城市的空气质量,采用抽样调查的方式,正确.故选:D.直接利用全面调查与抽样调查的意义分别分析得出答案.此题主要考查了全面调查与抽样调查,正确理解抽样调查的意义是解题关键.11.如图,已知直线l及直线外一点P,观察图中的尺规作图痕迹,则下列结论不一定成立的是A. PQ为直线l的垂线B.C.D.【答案】C【解析】解:由作图方法可得出PQ是线段AB的垂直平分线,则PQ为直线l的垂线,故选项A正确,不合题意;垂直平分线上的点到线段两端点距离相等,故选项B正确,不合题意;无法得出,故选项C错误,符合题意;可得,,则,故选项D正确,不合题意;故选:C.直接利用线段垂直平分线的性质以及其基本作图,进而分析得出答案.此题主要考查了基本作图,正确掌握线段垂直平分线的性质是解题关键.12.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了,而从A地到B地的时间缩短了若设原来的平均车速为,则根据题意可列方程为A. B.C. D.【答案】A【解析】解:设原来的平均车速为,则根据题意可列方程为:.故选:A.直接利用在A,B两地间行驶的长途客车平均车速提高了,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.13.我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积,则的值为A. B. C. D.【答案】C单位圆的半径为1,则其内接正六边形ABCDEF中,是边长为1的正三角形,所以正六边形ABCDEF的面积为.故选:C.根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.14.如图,码头A在码头B的正西方向,甲,乙两船分别从A,B两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是第5页,共18页A. 北偏东B. 北偏东C. 北偏东D. 北偏西【答案】B【解析】解:作,如图,由题意,得,,甲的航向应该是北偏东,故选:B.根据直角三角形的性质,可得,根据余角的定义,可得,根据方向角的表示方法,可得答案.本题考查了方向角,利用直角三角形的性质是解题关键,又利用了方向角.15.二次函数的图象如图所示,则直线不经过的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:由图象可知抛物线开口向下,,对称轴在y轴右侧,对称轴,;抛物线与y轴的交点为在y轴的正半轴上,;,,,第7页,共18页一次函数的图象不经过第三象限. 故选:C .先由二次函数的图象确定a 、b 、c 字母系数的正负,再求出一次函数的图象所过的象限即可.本题考查了二次函数的图象与系数的关系,一次函数的性质,根据二次函数的图象确定二次函数的字母系数的取值范围是解题的关键.16. 如图,已知点 , ,且点B 在双曲线上,在AB 的延长线上取一点C ,过点C 的直线交双曲线于点D ,交x 轴正半轴于点E ,且 ,则线段CE 长度的取值范围是A.B. C. D.【答案】D【解析】解:过D 作 于F , 点 , ,轴, , , , ,点B 在双曲线上,,反比例函数的解析式为:,过点C 的直线交双曲线于点D , 点的纵坐标为3,代入得,,解得 , ,当O 与E 重合时,如图2, , , ,, 当 轴时, , ,故选:D.过D作于F,得到DF是梯形的中位线,根据反比例函数图形上点的坐标特征求出D的坐标,当O与E重合时,如图2,由,根据三角形的中位线的性质得到AC,根据勾股定理求得CE,当轴时,,于是求得结果.本题考查了在平面直角坐标系中确定点的坐标,梯形和三角形的中位线的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共3小题,共10.0分)17.计算:______.【答案】【解析】解:原式.故答案为:.直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是______结果保留【答案】【解析】解:由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:.故答案为:.直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.此题主要考查了弧长的计算以及菱形的性质,正确得出圆心角是解题关键.19.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径半径半径”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是______,的坐标是______第9页,共18页【答案】【解析】解:设第n 秒运动到 为自然数 点,观察,发现规律:, ,, ,, ,, ,, ., 为 .故答案为:.设第n 秒运动到 为自然数 点,根据点K 的运动规律找出部分 点的坐标,根据坐标的变化找出变化规律“, ,, ”,依此规律即可得出结论.本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,难度不大,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.三、计算题(本大题共1小题,共8.0分) 20. 已知:求代数式 值;若代数式 的值等于17,求 的值. 【答案】解: 原式 , 当 时,原式 ;, , , 则 或 .【解析】 将原式展开、合并同类项化简得 ,再代入计算可得; 由原式 可得 ,据此进一步计算可得. 本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则、因式分解的能力及整体思想的运用.四、解答题(本大题共6小题,共60.0分)21. 为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:根据图表中的信息,解答下列问题:这次获得“刘徽奖”的人数是______,并将条形统计图补充完整;获得“祖冲之奖”的学生成绩的中位数是______分,众数是______分;在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“”,“”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.【答案】40 90 90【解析】解:获奖的学生人数为人,赵爽奖的人数为人,杨辉奖的人数为人,则刘徽奖的人数为,补全统计图如下:故答案为:40;获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分,故答案为:90、90;列表法:第11页,共18页第二象限的点有 和 点在第二象限.先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得; 根据中位数和众数的定义求解可得;列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力 利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.22. 如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离 小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离 ,点A 到地面的距离 ;当他从A 处摆动到 处时,有.求 到BD 的距离; 求 到地面的距离.【答案】解:如图2,作,垂足为F.,;在中,;图2又,,;在和中,≌;且,,;,,即到BD的距离是.由知:≌,作,垂足为H.,,,即到地面的距离是1m.【解析】作,垂足为F,根据全等三角形的判定和性质解答即可;根据全等三角形的性质解答即可.本题考查全等三角形的应用,解题的关键是正确寻找全等三角形全等的条件,灵活运用所学知识解决问题,属于中考常考题型.23.如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点与动点的直线MP记做l.若1的解析式为,判断此时点A是否在直线l上,并说明理由;当直线1与AD边有公共点时,求t的取值范围.【答案】解:此时点A在直线l上;,点O为BC中点,点,,把点A的横坐标代入解析式,得,等于点A的纵坐标2,此时点A在直线l上.由题意可得,点,及点,当直线l经过点D时,设l的解析式为,,解得当直线l与AD边有公共点时,,所以t的取值范围是.【解析】把点A代入解析式,进而解答即可;把点,及点代入解析式解答即可.本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF.的长为______;求AE的长;在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.【答案】5【解析】解:矩形ABCD,,,在中,,故答案为:5;第13页,共18页设,,,在矩形ABCD中,根据折叠的性质知:≌,,,,在中,根据勾股定理,得,即,解得:,的长为;存在,如图3,延长CB到点G,使,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:,.过点F作,交BC于点H,则有,∽,,即,,,在中,根据勾股定理,得,即的最小值为.根据勾股定理解答即可;设,根据全等三角形的性质和勾股定理解答即可;延长CB到点G,使,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可.本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.25.某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本【答案】解:设b为常数且,当时,,当时,,代入解析式得,,解得:,与x的函数关系式为:;当产量小于或等于市场需求量时,有,,解得:,又,;当产量大于市场需求量时,可得,由题意得,厂家获得的利润是:;第15页,共18页当时,y随x的增加而增加,又产量大于市场需求量时,有,当时,厂家获得的利润y随销售价格x的上涨而增加.【解析】直接利用待定系数法求出一次函数解析式进而得出答案;由题意可得:,进而得出x的取值范围;利用顶点式求出函数最值得出答案;利用二次函数的增减性得出答案即可.此题主要考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题关键.26.已知:如图,在中,,,以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点为圆心,PA长为半径画圆,与x轴的另一交点为N,点M在上,且满足以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题【发现】的长度为______;当时,求扇形阴影部分与重叠部分的面积.【探究】当和的边所在的直线相切时,求点P的坐标.【拓展】当与的边有两个交点时,请你直接写出t的取值范围.【答案】【解析】解:【发现】,,,,的长度为,故答案为;设半径为r,则有,当时,如图1,点N与点A重合,,第17页,共18页设MP 与AB 相交于点Q ,在 中, , , .,重叠部分即重叠部分的面积为;【探究】:如图2,当 与直线AB 相切于点C 时, 连接PC ,则有 , , , ,; 点P 的坐标为 ;如图3,当 与直线OB 相切于点D 时, 连接PD ,则有 , , ,,,, 点P 的坐标为;如图4,当 与直线OB 相切于点E 时,连接PE ,则有 , 同 可得:; 点P 的坐标为, 【拓展】t 的取值范围是 , ,理由:如图5,当点N 运动到与点A 重合时, 与 的边有一个公共点, 此时 ;当,直到运动到与AB相切时,由探究得,,,与的边有两个公共点,.如图6,当运动到PM与OB重合时,与的边有两个公共点,此时;直到运动到点N与点O重合时,与的边有一个公共点,此时;,即:t的取值范围是,,发现:先确定出扇形半径,进而用弧长公式即可得出结论;先求出,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.此题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解本题的关键.。
2018年初三一模数学试题及答案
2018年初三毕业及统一练习数学试卷2017. 05考生须知 1. 本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.随着“一带一路”的建设推进,北京丰台口岸进口货值业务量加速增长,2016年北京丰台口岸进口货值飙升至189 000 000美元,比上一年翻了三倍,创下历史新高.将189 000 000用科学记数法表示应为 A .610189⨯ B .610891⨯. C .710918⨯. D .810891⨯. 2.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A.b a >B .a b<C .a a <-D .a b <-3.北京教育资源丰富,高校林立,下面四个高校校徽主体图案是中心对称图形的是北京林业大学 北京体育大学 北京大学 中国人民大学A .B .C .D .4.如图,香港特别行政区标志紫荆花图案绕中心旋转n °后能与原来的图案互相重合,则n 的最小值为 A .45 B .60 C .72 D .1445.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是 A .义 B .仁 C .智 D .信 6. 如果0222=-+m m ,那么代数式2442+⋅⎪⎭⎫ ⎝⎛++m mm m m 的值是 A .-2B .-1C .2D .37.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使◇仁 ◇义 ◇礼 ◇智 ◇信 ◇孝D C0a b132-1-2-34螺丝钉固定在刻度3的地方(即同时使OA =3OC ,OB =3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD =1.8cm 时,则AB 的长为 A .7.2 cm B .5.4 cmC .3.6 cmD .0.6 cm8.如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为 A .3万元 B .35万元 C .2.4万元 D .2万元9.如图,在正方形网格中,如果点A (1,1),B (2,0),那么点C 的坐标为 A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)10.近年来由于空气质量的变化,以及人们对自身健康的关注程度不断提高,空气净化器成为很多家庭的新电器.某品牌的空气净化器厂家为进一步了解市场,制定生产计划,根据2016年下半年销售情况绘制了如下统计图,其中同比增长率%1001⨯⎪⎪⎭⎫⎝⎛-=去年同月销售量当月销售量,下面有四个推断:①2016年下半年各月销售量均比2015年同月销售量增多②第四季度销售量占下半年销售量的七成以上③下半年月均销售量约为16万台 ④下半年月销售量的中位数不超过10万台其中合理的是 A .①②B .①④C .②③D .③④二、填空题(本题共18分,每小题3分)11.如果二次根式4+x 有意义,那么x 的取值范围是__________.12.右图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式:_____________________.13.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是__________.班级1班2班3班 4班ABC教育医疗食品交通娱乐其它120°55°100°35°30°anm cb某品牌空气净化器下半年销售情况统计图10203040销售量/万台-10%0%10%20%30%40%同比增长率销售量同比增长率销售量89.39.813.419.736同比增长率-2.3%6.5%5.2%15.1%20.7%35.9%7月8月9月10月11月12月节次 第1节 语文 数学 外语 化学 第2节 数学 政治 物理 语文 第3节 物理 化学 体育 数学 第4节外语语文政治体育14.如下图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在大量角器上对应的度数为40°,那么在小量角器上对应的度数为______________.(只考虑小于90°的角度)15.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为____________________.16.在数学课上,老师提出如下问题:小姗的作法如下:老师说:“小姗的作法正确”.请回答:得到△ABC 是等腰三角形的依据是:____________________________. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:()3360cos 4120--︒+--π.如图, (1)作线段BC =a ;(2)作线段BC 的垂直平分线MN 交线段BC 于点D ; (3)在MN 上截取线段DA =b ,连接AB ,AC . 所以,△ABC 就是所求作的等腰三角形.已知:线段a ,b . 求作:等腰△ABC ,使AB =AC ,BC =a ,BC 边上的高为b . a b M N A B CD P18.解不等式组:()⎪⎩⎪⎨⎧-≤-->-.3951 106 2 x x x x ,19.如图,四边形ABCD 中,AB ∥DC ,∠B = 90º,F 为DC 上一点,且AB =FC ,E 为AD 上一点,EC 交AF 于点G ,EA = EG . 求证:ED = EC .20.已知关于x 的一元二次方程0432=-+-k kx x .(1)判断方程根的情况;(2)若此方程有一个整数根,请选择一个合适的k 值,并求出此时方程的根.21.如图,在平面直角坐标系xOy 中,直线m x y +-=3与双曲线xky =相交于点 A (m ,2).(1)求双曲线xky =的表达式; (2)过动点P (n ,0)且垂直于x 轴的直线与直线m x y +-=3及双曲线xky =的交点分别为B 和C ,当点B 位于点C 下方时,求出n 的取值范围.22.课题学习:设计概率模拟实验.在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是21.”小海、小东、小英分别设计了下列三个模拟实验: 小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.67854321图1 图2 图3 根据以上材料回答问题:小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.yx2AOGFEDCBA23.如图,在四边形ABCD 中,∠ABC =90°,DE ⊥AC 于点E ,且AE = CE ,DE =5,EB =12. (1)求AD 的长;(2)若∠CAB =30°,求四边形ABCD 的周长.24.阅读下列材料:由于发展时间早、发展速度快,经过20多年大规模的高速开发建设,北京四环内,甚至五环内可供开发建设的土地资源越来越稀缺,更多的土地供应将集中在五环外,甚至六环外的远郊区县.据中国经济网2017年2月报道,来自某市场研究院的最新统计,2016年,剔除了保障房后,在北京新建商品住宅交易量整体上涨之时,北京各区域的新建商品住宅交易量则是有涨有跌.其中,昌平、通州、海淀、朝阳、西城、东城六区下跌,跌幅最大的为朝阳区,新建商品住宅成交量比2015年下降了46.82%.而延庆、密云、怀柔、平谷、门头沟、房山、顺义、大兴、石景山、丰台十区的新建商品住宅成交量表现为上涨,涨幅最大的为顺义区,比2015年上涨了118.80%.另外,从环线成交量的占比数据上,同样可以看出成交日趋郊区化的趋势.根据统计,2008年到2016年,北京全市成交的新建商品住宅中,二环以内的占比逐步从3.0%下降到了0.2%;二、三环之间的占比从5.7%下降到了0.8%;三、四环之间的占比从12.3%下降到了2.3%;四、五环之间的占比从21.9%下降到了4.4%.也就是说,整体成交中位于五环之内的新房占比,从2008年的42.8%下降到了2016年的7.7%,下滑趋势非常明显.由此可见,新房市场的远郊化是北京房地产市场发展的大势所趋.(注:占比,指在总数中所占的比重,常用百分比表示)根据以上材料解答下列问题: (1)补全折线统计图;2008年和2016年新建商品住宅环线成交量占比折线统计图0%10%20%30%40%50%60%70%80%90%100%二环以内二、三环之间三、四环之间四、五环之间五环以外环线成交量占比2008年2016年(2)根据材料提供的信息,预估 2017年位于北京市五环之内新建商品住宅成交量占比约_________,你的预估理由是________________________________.AB CD E25.如图,AB 是⊙O 的直径,C ,D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 交AD 的延长线于点E ,且CE =CF .(1)求证:CE 是⊙O 的切线;(2)连接CD ,CB .若AD =CD =a ,写出求四边形ABCD面积的思路.26.【问题情境】已知矩形的面积为a (a 为常数,0>a ),当该矩形的长为多少时,它的周长最小?最小值是多少? 【数学模型】设该矩形的长为x ,周长为y ,则y 与x 的函数表达式为⎪⎭⎫⎝⎛+=x a x y 2()0>x . 【探索研究】小彬借鉴以前研究函数的经验,先探索函数xx y 1+=的图象性质. (1)结合问题情境,函数xx y 1+=的自变量x 的取值范围是0>x , 下表是y 与x 的几组对应值.x … 41 31 21 1 23m… y…414 313 212 2212 313 414 …①写出m 的值;②画出该函数图象,结合图象,得出当x =______时,y 有最小值,y 最小=________; 【解决问题】(2)直接写出“问题情境”中问题的结论.27.在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C ,如果直线AB 与y 轴交点的纵坐标 为-1,且抛物线顶点D 到点C 的OFEDCBAOyx12431243Oyx-1-2-1-2-4-5-31243512435距离大于2,求m 的取值范围.28.在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的两个动点(不与 点B ,C ,D 重合),且AE ⊥EF .(1)如图1,当BE = 2时,求FC 的长;(2)延长EF 交正方形ABCD 外角平分线CP 于点P .①依题意将图2补全;②小京通过观察、实验提出猜想:在点E 运动的过程中,始终有AE =PE .小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB 上截取AG =EC ,连接EG ,要证AE =PE ,需证△AGE ≌△ECP . 想法2:作点A 关于BC 的对称点H ,连接BH ,CH ,EH .要证AE =PE , 需证△EHP 为等腰三角形.想法3:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM , 要证AE =PE ,需证四边形MCPE 为平行四边形. 请你参考上面的想法,帮助小京证明AE =PE .(一种方法即可)29.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形.(1)已知A (-2,3),B (5,0),C (t ,-2).①当2=t 时,点A ,B ,C 的最优覆盖矩形的面积为_____________; ②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数)0(4>=x xy 的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.F A B C D E F A B C D E图1 图2D 3B 3C 3A 2D 2D 1C 2B 1C 1B 2A 1A B C O yx -1-1-2124351243652018年初三毕业及统一练习数 学 参 考 答 案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DABCACBDBC二、填空题(本题共18分,每小题3分)11. 4-≥x ; 12. 答案不唯一,如:()()nc nb na mc mb ma c b a n m +++++=+++; 13.163; 14. 70°; 15.()20132028=+-x x ; 16. 垂直平分线上的点到线段两个端点距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上; 有两条边相等的三角形是等腰三角形. 三、解答题(本题共30分,每小题5分) 17.解:原式=3321132+-+-…………………………………………………………4分 =2733-.……………………………………………………………………5分18.解:解不等式①,得2>x .……………………………………………………………2分解不等式②,得3≥x . ……………………………………………………………4分 ∴原不等式组的解集是3≥x . ……………………………………………………5分19.证明:∵AB ∥DC ,FC=AB ,∴四边形A B C F 是平行四边形.…………………………………………………1分∵∠B =90°,∴四边形A B C F 是矩形.………………………………………………………2分∴∠AFC =90°,∴∠D =90°-∠D A F ,∠E C D =90°-∠C G F .………………………3分 ∵EA=EG ,∴∠EAG =∠EGA .………………………………………………………………4分 ∵∠EGA =∠CGF ,∴∠DAF =∠CGF . ∴∠D =∠ECD .∴E D =E C .……………………………………………………………………5分20.解:(1)∵Δ=()()01264812412222>+-=+-=---k k k k k )(.…………2分∴方程有两个不等的实数根.…………………………………………………3分 (2)当k =4时,Δ=16,方程化为0432=-x x ,∴01=x ,342=x ;……………………………5分 或当k =8时,Δ=16,方程化为04832=+-x x ,∴21=x ,322=x .………………………5分 21.解:(1)∵点A (m ,2)在直线m x y +-=3上,∴m m +-=32,m = -1.……………………………………………………1分 ∴A (-1,2). ∵点A 在双曲线xky =上, ∴12-=k,k =-2. ∴xy 2-=.………………………………………………………………………2分(2)令x x 213-=--,得到11-=x ,322=x .………………………………3分根据图形,点B 位于点C 下方,即反比例函数大于一次函数时, ∴01<<-n 或错误!未找到引用源。
2018九年级一模数学试题及答案
2018年初三模拟考试数学试卷一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,用直尺度量线段AB ,可以读出AB 的长度为 A .6cmB .7cmC .9cmD .10cm2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为A .aB .bC .cD .d3.北京城市副中心生态文明建设在2016年取得突出成果,通过大力推进能源结构调整, 热电替代供热面积为17960000平方米.将17960000用科学计数法表示应为 A .610796.1⨯B .61096.17⨯C .710796.1⨯D .7101796.0⨯4.右图是某个几何体的三视图,该几何体是A .圆锥B .四棱锥C .圆柱D .四棱柱5.下列图形中,是中心对称图形的是6.如果21=+b a ,那么ab b b a a -+-22的值是错误!未找到引用源。
A .21B .41C .2D .47.如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数bx ax y +=2的表达式,则对该二次函数的系数a 和b 判断正确的是y xA O 2O 1A .00a b >>,B .00a b <<,C .00a b ><,D .00a b <>,8.如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着右图中的虚线剪下,则剪下的纸片打开后的形状一定为 A .三角形 B .菱形 C .矩形D .正方形9.如图,在平面直角坐标系y xO 1中,点A 的坐标为(1,1).如果将x 轴向上平移3 个单位长度,将y 轴向左平移2个单位长度,交于点O 2,点A 的位置 不变,那么在平面直角坐标系y xO 2中,点A 的坐标是 A .(3,-2) B .(-3,2) C .(-2,-3)D .(3,4)10.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是①小亮测试成绩的平均数比小明的高 ②小亮测试成绩比小明的稳定 ③小亮测试成绩的中位数比小明的高 ④小亮参加第一轮比赛,小明参加第二轮 比赛,比较合理 A .①③B .①④C .②③D .②④二、填空题(本题共18分,每小题3分)11.函数1-=x y 自变量x 的取值范围是_____________.12.如图,正方形ABCD 由四个矩形构成,根据图形,写出一个含有a 和b 的正确的等式__________________.13.某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验. 实验结果如下表所示 ( 发芽率精确到 0.001 ) : 实验的麦种数 800 800 800 800 800 发芽的麦种数 787 779 786 789 782 发芽率0.9840.9740.9830.9860.978在与实验条件相同的情况下,估计种一粒这样的麦种发芽的概率为_________. 14.如图所示,某地三条互相平行的街道a ,b ,c 与两条公路 相交,有六个路口分别为A ,B ,C ,D ,E ,F .路段EF 正在 封闭施工.若已知路段AB 约为270.1米,路段BC 约为539.8 米,路段DE 约为282.0米,则封闭施工的路段EF 的长约 为_______米.15.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为_________.16.工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下: 如图,∠AOB 是一个任意角,在边OA ,OB 上分别取 OM =ON ,移动角尺,使角尺两边相同..的刻度分别与 点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:______________________.bb aa BCDAEA BCFD a bc三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.18.解不等式组:⎪⎩⎪⎨⎧<++>-.529),2(213x x x x19.如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE .求证:DE =AC .20.在平面直角坐标系xOy 中,过原点O 的直线l 1与双曲线xy 2=的一个交点为A (1,m ). (1)求直线l 1的表达式;(2)过动点P (n ,0)(n >0)且垂直于x 轴的直线与直线l 1和双曲线xy 2=的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个相等的实数根. (1)求m 的值; (2)求此方程的根.EDBA C22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA =90°,∠CBF =∠DCB .(1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠F=45°,BD=2,求AC 的长.DFE ACB24.如图,点C 在以AB 为直径的⊙O 上,BD 与过点C 的切线垂直于点D ,BD 与⊙O 交于点E .(1)求证:BC 平分∠DBA ; (2)连接AE 和AC ,若cos ∠ABD =21,OA=m , 请写出求四边形AEDC 面积的思路.25.阅读下列材料:环视当今世界,科技创新已成为发达国家保持持久竞争力的“法宝”.研究与试验发展(R&D )活动的规模和强度指标反映一个地区的科技实力和核心竞争力.北京市在研究和实验发展(R&D )活动中的经费投入也在逐年增加.2012年北京市全年研究与试验发展(R&D )经费投入1031.1亿元,比上年增长10.1%.2013年全年研究与试验发展(R&D )经费投入1200.7亿元.2014年全年研究与试验发展(R&D )经费投入1286.6亿元.2015年研究与试验发展(R&D )经费投入1367.5亿元.2016年研究与试验发展(R&D )经费投入1479.8亿元,相当于地区生产总值的5.94%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线统计图或者条形统计图将2012-2016年北京市在研究和实验发展(R &D )活动中的经费投入表示出来,并在图中标明相应数据;(2)根据绘制的统计图提供的信息,预估2017年北京市在研究和实验发展(R &D )活动中的经费投入约为_________亿元,你的预估理由是___________________________.EDBOA C26.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值.x … 1 2 4 5 6 8 9 … y…3.921.950.980.782.442.440.78…小风根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x =7对应的函数值y 约为______________.②该函数的一条性质:______________________________________________________. 27.在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.28.在等边三角形ABC中,E为直线AB上一点,连接EC.ED与直线BC交于点D,ED=EC.(1)如图1,AB=1,点E是AB的中点,求BD的长;(2)点E是AB边上任意一点(不与AB边的中点和端点重合),依题意,将图2补全,判断AE 与BD间的数量关系并证明;(3)点E不在线段AB上,请在图3中画出符合条件的一个图形.29.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+ y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①如果Q的坐标为(6,m),那么m的值为____________;②如果Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.初三数学第一次模拟检测参考答案一、选择题(本题共30分,每小题3分)1. B,2. A,3.D,4.B,5. D ,6.A,7.D,8. B,9.A, 10. D二、填空题(本题共18分,每小题3分)11.1≥x ; 12.答案不唯一; 13.98.0左右;14.564左右; 15.53;16.SSS.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.解:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.=223+………………………………..(5分)18.解:⎪⎩⎪⎨⎧<++>-x x x x 529)2(213.5>x ………………………………..(5分)19.①BD AC =………………………………..(2分)②BD DE =………………………………..(4分) ③AC DE =………………………………..(5分)20.(1)①2=m ………………………………..(1分)②x y 2=………………………………..(3分) (2)1>n ………………………………..(5分) 21. (1)21=m ………………………………..(3分) (2)2121==x x ………………………………..(5分)22.①小李……………………..(1分)②小张抽样调查所抽取的单位职工数量过少……………………..(3分)③小王抽样调查所抽取的10位单位职工的青年中年老年比例明显和该单位整体情况不符.……………………..(5分)23.(1)①BF CD CF BD //,//………………………………..(2分)四边形DBFC 是平行四边形………………………………..(3分)(2)①过点C 作CH ⊥BF 于点H ,2=CH2==CE CH ………………………………..(4分)②22=AC ………………………………..(5分) 24.(1)①连接OC ,OC //BD ………………………………..(1分)②∠OCB =∠BDC ………………………………..(2分) ③∠OBC =∠DBC ………………………………..(3分) (2)思路通顺 ………………………………..(5分) 25. (1)图正确………………………………..(3分)(2)增加,理由充分 ………………………………..(5分) 26.(1)过点;符合函数概念………………………………..(3分) (2)答案需和图形统一 ………………………………..(5分)27. 解:(1)D (m ,-m +2) ……………………..(2分)(2)m =3或m =1 ……………………..(5分) (3)1≤m ≤3 ……………………..(7分)28.解:(1)21=BD ……………………..(2分) (2)AE =BD ……………………..(3分)证明思路1:利用等边三角形的性质, 证明△BDE 与EC 所在的三角形全等; 证明思路2:利用等腰三角形的轴对称性, 作出△BDE 的轴对称图形;证明思路3:将△BDE 绕BE 边的中点旋转180°,构造平行四边形; ……………………..(6分) ……(3)图形正确 ……………………..(7分)1129.(1)①4………………………………..(2分) ②x y 32=………………………………..(4分) (2)∠MON =90°………………………………..(6分)(3)5224+≤<OE ………………………………..(8分)。
2018届中考数学一模试卷(解析版)
中考数学一模试卷(解析版)一.选择题1.下列图形中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个2.如图,点D,E分别为△ABC的边AB,AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A. 1:2B. 1:3C. 1:4D. 1:13.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y= 的图象经过点B,则k的值是()A. 1B. 2C.D.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. =B. ∠APB=∠ABCC. =D. ∠ABP=∠C5.在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形6.已知x=1是方程x2+bx=2的一个根,则方程的另一个根是()A. 1B. 2C. ﹣2D. ﹣17.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是()A. B. C. D. 18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A. a>0B. 3是方程ax2+bx+c=0的一个根C. a+b+c=0D. 当x<1时,y随x的增大而减小9.如图所示,直线l和反比例函数y= (k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A. S1<S2<S3B. S1>S2>S3C. S1=S2>S3D. S1=S2<S310.如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB= ,则⊙O的半径为()A. 4B. 3C. 2D.二.填空题11.如图,若点A的坐标为,则sin∠1=________.12.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.13.如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是________.14.在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是边BC上一点,AP与BD交于点M,DP与AC交于点N.①若点P为BC的中点,则AM:PM=2:1;②若点P为BC的中点,则四边形OMPN的面积是8;③若点P为BC的中点,则图中阴影部分的总面积为28;④若点P在BC的运动,则图中阴影部分的总面积不变.其中正确的是________.(填序号即可)三.解答题16.解方程:x2﹣5x+3=0.四.综合题17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.18.如图,专业救助船“沪救1”轮、“沪救2”轮分别位于A、B两处,同时测得事发地点C在A的南偏东60°且C在B的南偏东30°上.已知B在A的正东方向,且相距100里,请分别求出两艘船到达事发地点C的距离.(注:里是海程单位,相当于一海里.结果保留根号)五.应用题19.如图,在平面直角坐标系xOy中,直线y=﹣x+2分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,OE=2.(1)求反比例函数的解析式;(2)连接OD,求△OBD的面积.(3)x取何值时,反比例函数的值大于一次函数的值.20.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC= ,求⊙O的半径.21.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.(1)先从袋中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:若A为必然事件,则m的值为________,若A为随机事件,则m的取值为________;(2)若从袋中随机摸出2个球,正好红球、黑球各1个,求这个事件的概率.22.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,若四边形ABCD为“可分四边形”,∠DAB为“可分角”,且∠DCB=∠DAB,则∠DAB=________°.(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?23.已知抛物线l1:y=﹣x2+2x+3与x轴交于点A,B(点A在点B左边),与y轴交于点C,抛物线l2经过点A,与x轴的另一个交点为E(4,0),与y轴交于点D(0,﹣2).(1)求抛物线l2的解析式;(2)点P为线段AB上一动点(不与A、B重合),过点P作y轴的平行线交抛物线l1于点M,交抛物线l2于点N.①当四边形AMBN的面积最大时,求点P的坐标;②当CM=DN≠0时,求点P的坐标.答案解析一.<b >选择题</b>1.【答案】C【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:左起第1个图形不是轴对称图形;左起第2个图形和第3个图形,它们旋转180°能与原图形重合,都有4条对称轴,∴这两个图形既是轴对称又是中心对称;左起第4个图形旋转180°不能与原图形重合,但它是轴对称图形,有5条对称轴故答案为:C.【分析】根据轴对称图形的定义和中心对称图形的定义去判定。
2018年初三一模数学试卷及答案
2018年初三毕业考试数学试卷考生须知1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.下列各式计算正确的是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a =2.实数a ,b 在数轴上的位置如图所示,以下说法正确的是12–1–2abA .0a b +=B .b a <C .b a <D .0ab > 3.下列几何体中,俯视...4.下列博物院的标识中不是..轴对称图形的是5.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°, 则∠C 的度数是A .40°B .65°C .70°D .80°ABCDA B C DA B C D D . D . C . D . C . B . A . D . C . B . 6.如图,在平面直角坐标系xOy 中,点C ,B ,E 在y 轴上, Rt △ABC 经过变化得到Rt △EDO ,若点B 的坐标为(01),, OD =2,则这种变化可以是A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度 C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度7.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.则下列说法正确的是 A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响 很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:① 当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822; ② 随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定 性,可以估计该球员“罚球命中”的概率是0.812;③ 由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809. 其中合理的是 A .①B .②C .①③D .②③二、填空题(本题共16分,每小题2分) 9.对于函数6y x=,若2x >,则y 3(填“>”或“<”). 10.若正多边形的一个外角是45°,则该正多边形的边数是_______. 11.如果5x y +=,那么代数式221+y x x yx y ÷--()的值是_______.12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦, 已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马 有x 匹,大马有y 匹,依题意,可列方程组为____________.13.如图,AB 是⊙O 的直径,CD 是弦,CD AB ⊥于点E ,若⊙O 的半径是5,8CD =,则AE = .14. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点, DE ∥BC .若6AD =,2BD =, 3DE =,则BC = .15.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m 的点B 处,用高为0.8m 的测角仪测得筒仓顶点C 的仰角为63°,则筒仓CD 的高约为____________m .(精确到0.1m ,sin 630.89≈°,cos630.45≈°,tan 63 1.96≈°)D 63°C B A 第13题图 第14题图CDEA O BD E BC16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角 板画出了一个角的平分线,他的做法是这样的:如图, (1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =; (2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 .三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程.17.计算:012sin 455(3---++°18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,.19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题. 如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .OH G FE DCB A20.关于x 的一元二次方程2(32)60mx m x +--=. (1)当m 为何值时,方程有两个不相等的实数根; (2)当m 为何整数时,此方程的两个根都为负整数.21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =; (2)若tan 3D =,求AB 的长.22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -. (1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥, 求m 的取值范围.23.如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:12CBE F ∠=∠;(2)若⊙O的半径是D 是OC 中点,15CBE ∠=°,求线段EF 的长.24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤74 75≤x≤79 80≤x≤84 85≤x≤89 90≤x≤94 95≤x≤100 学生甲乙 1 1 4 2 1 1 (2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲83.7 86 13.21乙24 83.7 82 46.21 (3)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙),理由为.25.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的 动点,过点B 作BQ PM ⊥交PM (或PM 的延长线)于点Q .设cm PM x =,cm BQ y =.(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:(1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60︒时,PM 的长度约为 cm .B26.在平面直角坐标系xOy中,将抛物线21G y mx =+:0m ≠个单位长度后得到抛物线2G ,点A 是抛物线2G 的顶点. (1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式;②若60120BAC <∠<°°,直接写出m 的取值范围.28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线3y x =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.图1 备用图数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.<. 10.八. 11.5. 12.100,3100.3x yx y +=+=⎧⎪⎨⎪⎩13. 2. 14.4. 15. 40.0.16.(1)斜边和一条直角边分别相等的两个直角三角形全等; (2)全等三角形的对应角相等.三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每 小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程. 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分19.解:3,2,1; ………………2分EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分①②图120.解:(1)∵24b ac ∆=- 2(32)24m m =-+ 2(32)0m =+≥∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分(2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数, ∴1m =-或2m =-.∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分 21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴CD ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分 22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(2)1642m m -+-⨯=, 解得2m =-,8m =(舍).②当S △ABC =S △BCD -S △ABD =6时,如图2. 可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分 23.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径,∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°,∴3230F CBE ∠=∠=∠=°.∵⊙O的半径是D 是OC 中点,∴OD = 在Rt ODH ∆中,cos 3ODOH∠=,∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==- ………………5分 24.解:(1) 0,1,4,5,0,0 ………………1分(2) 14,84.5,81 ………………4分 (3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定; 两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小. (写出其中一条即可)或:乙,理由:在90≤x ≤100的分数段中,乙的次数大于甲.………………6分 (答案不唯一,理由须支撑推断结论)25.解:(1)4; 0. ………………2分 (2)4分(3)1.1或3.7.………………6分26.解:(1)A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x=+,如图所示,由题意可得AD=-=∵=90BAC∠°,AB AC=,∴=45ABD∠︒.∴BD AD==∴点B的坐标为.∵点B在抛物线2G上,可得3m=-.∴抛物线2G的表达式为23y x=-+,即223y x=++………………… 5分②m<<-. ………………… 7分27.(1)补全图形如图1. ………………… 1分C图1(2)①证明:连接∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分。
2018年中考第1次模拟考试数学试卷(含答案)
2018年初三第一次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分) 1.如图,数轴上表示-2的相反数的点是( ) A.点P B.点Q C.点M D.点N 2.下列运算正确的是( ) A.9=±3B. 532)(m m =C. 532a a a =⋅D.222)(y x y x +=+3.如图,AD 与BC 相交于点O,AB//CD,如果∠B =20°,∠D =40° ,那么∠BOD 为( ) A. 40° B.50° C.60° D.70°4.估计18-的值在( )A. 0到1之间B. 1到2之间C.2到3之间D. 3至4之间 5.用配方法解一元二次方程0542=-+x x ,此方程可变形( ) A. 9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x6.下列各因式分解正确的是( ) A.22)1(12-=-+x x xB.)2)(2()2(22+-=-+-x x xC.)2)(2(43-+=-x x x x xD.22)1(22++=+x x x7.若a>b,则下列式子一定成立的是( )A.0>+b aB. 0>-b aC.0>abD.0>ba8.△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长是( ) A. 4B. 5C.32D. 29.若关于x 的一元一次不等式组⎩⎨⎧>-<-001a x x 无解,则a 的取值范围是( )A.1≥aB.1>aC. 1≤aD.1-<a 10.已知点A ),(11y x ,B ),(22y x 是反比例函数xy 2=图像上的点,若210x x >>,则一定成立的是( ) A.021>>y yB.210y y >>C.210y y >>D.120y y >>11.如图是王老师去公园锻炼及原路返回家的距离y (千米)与时间t (分钟)之间的函数图像,根据图像信息,下列说法正确的是( ) A. 王老师去时所用时间少于回家的时间 B. B. 王老师在公园锻炼了40分钟C. 王老师去时走上坡路,回家时走下坡路D. D.王老师去时速度比回家时的速度慢12.如图,CD 是Rt △ABC 斜边AB 边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( ) A. 60° B.45° C. 30° D.25° 13.如图,在Rt △ABC 中,∠C =90°,AC=4cm ,BC=6cm ,动点P 从点C 沿CA,以1cm/s 的速度向点A 运动,同时动点O 从点C 沿CB,以2cm/s 的速度向点B 运动,其中一个动点运动到终点时,另一个动点也停止运动。
2018年初三一诊考试数学试卷及答案
2018年初三一诊考试数学试题答案及解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.5B.C.﹣D.﹣52.(3分)已知空气的单位体积质量是0。
001 239g/cm3,则用科学记数法表示该数为()A.1。
239×10﹣3 g/cm3B.1.239×10﹣2 g/cm3C.0.123 9×10﹣2 g/cm3D.12。
39×10﹣4 g/cm33.(3分)如图,立体图形的俯视图是()A.B.C.D.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.47.(3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m 的和是()A.﹣1B.2C.﹣7D.08.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E 从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q 运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:9a3b﹣ab=.10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.11.(3分)已知一组数据:3,3,4,5,5,则它的方差为.12.(3分)今年“五一"节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.13.(3分)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB 于点D,则图中阴影部分的面积是.14.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.(3分)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是.16.(3分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:=13S△DHC,其①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH中结论正确的有.三、解答题(本大题共8个题,共72分)17.(10分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+),其中a=.18.(6分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.求证:BF=CE.19.(8分)“热爱劳动,勤俭节约"是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做"、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20.(8分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分)1-8.BACBBACA二、填空题(本大题共8小题,每小题3分,共24分)9.ab(3a+1)(3a﹣1).10.45°.11..12..13.﹣π.14..15.2.16.①②③④.三、解答题(本大题共8个题,共72分)17.(1)|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;(2)÷(2+)===,当a=时,原式==﹣1.18.证明:根据题意,知CE⊥AF,BF⊥AF,∴∠CED=∠BFD=90°,又∵AD是边BC上的中线,∴BD=DC;在Rt△BDF和Rt△CDE中,∠BDF=∠CDE(对顶角相等),BD=CD,∠CED=∠BFD,∴△BDF≌△CDE(AAS),∴BF=CE(全等三角形的对应边相等).19.解:(1)四个年级被抽出的人数由小到大排列为30,45,55,70,∴中位数为50;(2)根据题意得:3000×(1﹣25%)=2250人,则该校帮助父母做家务的学生大约有2250人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.20、解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+400=1 600+400=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随x的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.21.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC =S△OBC=×BO×x C=×3×4=6.23.解:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,∴AC=6,则BC=6.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,∴OP=PC+OC=13.在Rt△PBC中,由勾股定理,得PB==3,∵AC=BC,OA=OE,即OC为△ABE的中位线.∴OC=BE,OC∥BE,∴BE=2OC=8.∵BE∥OP,∴△DBE∽△DPO,∴=,即=,解得BD=.24.解:(1)将A(0,1),B(﹣9,10)代入函数解析式,得,解得,抛物线的解析式y=+2x+1;(2分)(2)∵AC∥x轴,A(0,1),∴x2+2x+1=1,解得x1=﹣6,x2=0(舍),即C点坐标为(﹣6,1),∵点A(0,1),点B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设P(m, m2+2m+1),∴E(m,﹣m+1),∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥PE,AC=6,(4分)∴S四边形AECP =S△AEC+S△APC=AC•EF+AC•PF,=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0,∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,=,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB时,则,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)。
2018年初中数学中考一模试卷数学试题(解析版)
2018年初中数学中考一模试卷数学试题一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列计算中正确的是()A.﹣1﹣1=0 B.32=6 C.﹣2÷=﹣1 D.﹣33﹣(﹣3)3=02.在下列各数中,最大的数是()A.1.00×10﹣9B.9.99×10﹣8C.1.002×10﹣8D.9.999×10﹣73.下面调查统计中,适合做全面调查的是()A.乘坐飞机的旅客是否携带了违禁物品B.苹果电脑的市场占有率C.“我爱发明”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量4.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取()A.30° B.59° C.60° D.89°5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(本大题共6小题,每小题3分,共18分)7.已知是方程2x﹣ay=3的一个解,则a的值是.8.已知一个正数的平方根是2x和x﹣6,这个数是.9.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.10.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB= m(用计算器计算,结果精确到0.1米)11.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为.12.能使6|k+2|=(k+2)2成立的k值为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:(2)先化简(﹣)÷,然后选取一个你认为符合题意的x的值代入求值.14.若a为方程(x﹣)2=16的一正根,b为方程y2﹣2y+1=13的一负根,求a+b的值.15.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?16.已知点A,点B,请分别在图1,图2的网格中用无刻度直尺画一个不同的菱形,使菱形的顶点A,B,C,D恰好为格点,并计算所画菱形的面积.17.如图所示(背面完全相同)A、B、C三张卡片,正面分别写上整式x2﹣4,x2,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是.A.必然事件 B.不可能事件 C.随机事件 D.确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.四、(本大题共4小题,每小题8分,共32分)18.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?19.某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌和一个B品牌的足球各需多少元.(2)这所中学决定再次购进A,B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么这所中学此次最多可购买多少个B品牌足球?20.如图,点P,D分别是⊙O上的动点、定点、非直径弦CD⊥直径AB,当点P与点C重合时,易证:∠DPB+∠ACD=90°,在不考虑点P于点B或点D重合的情况下,试解答如下问题:(1)当点P与点A重合时(如图1),∠DPB+∠ACD= 度.(2)当点P在上时(如图2),(1)中的结论还成立吗?请给予证明.(3)当点P在上时,先写出∠DPB与∠ACD的数量关系,再说明其理由.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达点B处停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为ts.(1)MN与AC的数量关系是;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)当t为何值时,△DMN是等腰三角形?五、(本大题共10分)22.如图,在平面直角坐标系中,已知点A(﹣2,0),B(1,3)设经过A,O两点且顶点C 在直线AB上的抛物线为m.(1)求直线AB和抛物线m的函数解析式.(2)若将抛物线m沿射线AB方向平移(顶点C始终在AB上),设移动后的抛物线与x轴的右交点为D.①在上述移动过程中,当顶点C在水平方向上移动3个单位长度时,A与D之间的距离是多少?②当顶点在水平方向移动a(a>0)个单位长度时,请用含a的代数式表示AD的长.六、(本大题共12分)23.如图,小东将一张长AD为12、宽AB为4的矩形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P,Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置变化而发生改变.(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.求证:①ME=NF;②MN∥BC.(2)如图1,若BP=3,求线段MN的长;(3)如图2,当点P与点Q重合时,求MN的长.2018年初中数学中考一模试卷数学试题(解析版)一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列计算中正确的是()A.﹣1﹣1=0 B.32=6 C.﹣2÷=﹣1 D.﹣33﹣(﹣3)3=0【考点】有理数的混合运算.【分析】A、原式利用减法法则计算得到结果,即可作出判断;B、原式利用乘方的意义计算得到结果,即可作出判断;C、原式利用除法法则计算得到结果,即可作出判断;D、原式利用乘方的意义计算得到结果,即可作出判断.【解答】解:A、原式=﹣2,错误;B、原式=9,错误;C、原式=﹣2×2=﹣4,错误;D、原式=﹣27+27=0,正确,故选D2.在下列各数中,最大的数是()A.1.00×10﹣9B.9.99×10﹣8C.1.002×10﹣8D.9.999×10﹣7【考点】有理数大小比较;科学记数法—表示较小的数.【分析】由于四个选项中的数都是用科学记数法表示,故应先比较10的指数的大小,若指数相同再比较10前面数的大小.【解答】解:∵四个选项中10的指数分别是﹣9,﹣8,﹣8,﹣7,∵|﹣9|>|﹣8|>|﹣7|,∴﹣9<﹣8<﹣7,∵四个数均为正数,∴9.999×10﹣7最大.故选D.3.下面调查统计中,适合做全面调查的是()A.乘坐飞机的旅客是否携带了违禁物品B.苹果电脑的市场占有率C.“我爱发明”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、乘坐飞机的旅客是否携带了违禁物品,是事关重大的调查,适合普查,故A正确;B、苹果电脑的市场占有率,调查范围广适合抽样调查,故B错误;C、“我爱发明”专栏电视节目的收视率,调查范围广适合抽样调查,适合抽样调查,故C 错误;D、“现代”汽车每百公里的耗油量,调查范围广适合抽样调查,故D错误;故选:A.4.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取()A.30° B.59° C.60° D.89°【考点】三角形内角和定理.【分析】根据三角形的三角形的内角和等于180°求出最小的角的度数的取值范围,然后选择即可.【解答】解:180°÷3=60°,∵不等边三角形的最小内角为∠A,∴∠A<60°,∴0°<∠A<60°,则∠A最大可取59°.故选:B.5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分【考点】菱形的性质.【分析】由菱形的对角线互相平分且垂直,可得菱形对角线所在直线是对称轴,继而求得答案.【解答】解:∵菱形对角线具有的性质有:对角线互相垂直,对角线互相平分,∴对角线所在直线是对称轴.故A,B,D正确,C错误.故选C.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.已知是方程2x﹣ay=3的一个解,则a的值是.【考点】二元一次方程的解.【分析】把方程的解代入方程可得到关于a的方程,解方程即可求得a的值.【解答】解:∵是方程2x﹣ay=3的一个解,∴2×1﹣(﹣2)×a=3,解得a=,故答案为:.8.已知一个正数的平方根是2x和x﹣6,这个数是16 .【考点】平方根.【分析】由于一个正数的平方根有两个,它们互为相反数,由此即可得到关于x的方程,解方程即可解决问题.【解答】解:∵一个正数的平方根是2x和x﹣6,∴2x+x﹣6=0,解得x=2,∴这个数的正平方根为2x=4,∴这个数是16.故答案为:16.9.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【考点】算术平方根.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.10.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB= 11.9 m(用计算器计算,结果精确到0.1米)【考点】解直角三角形的应用.【分析】在Rt△ABC中,tan∠BCA=,由此可以求出AB之长.【解答】解:在△ABC中,∵BC⊥BA,∴tan∠BCA=.又∵BC=10m,∠BCA=50°,∴AB=BC•tan50°=10×tan50°≈11.9m.故答案为11.9.11.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【考点】中心对称;坐标与图形性质.【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).12.能使6|k+2|=(k+2)2成立的k值为﹣2,4或﹣8 .【考点】换元法解一元二次方程.【分析】根据解方程的方法可以求得6|k+2|=(k+2)2成立的k的值,本题得以解决.【解答】解:6|k+2|=(k+2)26|k+2|﹣|k+2|2=0,∴|k+2|(6﹣|k+2|)=0,∴|k+2|=0或6﹣|k+2|=0,解得,k=﹣2,k=4或k=﹣8,故答案为:﹣2,4或﹣8.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:(2)先化简(﹣)÷,然后选取一个你认为符合题意的x的值代入求值.【考点】分式的化简求值;解一元一次不等式组.【分析】(1)分别解两个不等式得到x≤1和x≥﹣3,然后根据大于小的小于大的取中间确定不等式组的解集;(2)先进行括号的加法运算和除法运算化为乘法运算,然后约分得到原式=x+3,再根据分式有意义的条件取x=10代入计算即可.【解答】解:(1)解①得x≤1,解②得x≥﹣3,所以不等式组的解集为﹣3≤x≤1;(2)原式=•=x+3,当x=10时,原式=10+3=13.14.若a为方程(x﹣)2=16的一正根,b为方程y2﹣2y+1=13的一负根,求a+b的值.【考点】解一元二次方程﹣配方法;解一元二次方程﹣直接开平方法.【分析】利用直接开平方法求得a的值,利用配方法求得b的值,代入计算即可.【解答】解:∵方程(x﹣)2=16的解为x=±4,∵+4>0,﹣4<0,∴a=+4,∵方程y2﹣2y+1=13,即(y﹣1)2=13的解为y=1±,∵1+>0,1﹣<0,∴b=1﹣,则a+b=+4+1﹣=5.15.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?【考点】折线统计图;用样本估计总体;条形统计图.【分析】(1)由折线统计图,即可解答;(2)根据第3小组做了25件,即可补全条形统计图;(3)根据样本估计总体,即可解答.【解答】解:(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件;(2)如图所示:(3)300×=5700(件).估计该市300个学雷锋小组在2015年3月份共做好事5700件.16.已知点A,点B,请分别在图1,图2的网格中用无刻度直尺画一个不同的菱形,使菱形的顶点A,B,C,D恰好为格点,并计算所画菱形的面积.【考点】作图—复杂作图;菱形的性质.【分析】利用菱形的四边相等,以A点为圆心,AB为半径画弧可找到格点D,同样方法可得到点C,从而得到菱形ABCD,然后根据菱形的面积公式计算对应的菱形面积.【解答】解:如图1,四边形ABCD为所作,AC==2,BD==4,菱形ABCD的面积=×2×4=8;如图2,菱形ABCD的面积=×2×6=6.17.如图所示(背面完全相同)A、B、C三张卡片,正面分别写上整式x2﹣4,x2,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是 C .A.必然事件 B.不可能事件 C.随机事件 D.确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.【考点】列表法与树状图法;随机事件.【分析】(1)根据随机事件的定义进行判断即可;(2)将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是随机事件.故选C;(2)共有x2﹣4=x2、x2﹣4=4、4=x2三种等可能的结果,为一元二次方程的有x2﹣4=4、4=x2两种是一元二次方程,故P(抽取的卡片组成的等式不是一元二次方程)=.四、(本大题共4小题,每小题8分,共32分)18.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?【考点】反比例函数与一次函数的交点问题.【分析】(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A 坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)直接求出BN,CN的长,进而求出BC的长,即可求出△ABC的面积.【解答】解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)∵N(3,0),∴点B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,即CN=,BC=4﹣=,A到BC的距离为:2,则S△ABC=××2=.19.某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌和一个B品牌的足球各需多少元.(2)这所中学决定再次购进A,B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么这所中学此次最多可购买多少个B品牌足球?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设购买一个A品牌足球需x元,购买一个B品牌足球需(x+30)元.接下来,依据购买A品牌足球数量是购买B品牌足球数量的2倍列方程求解即可;(2)设此次可购买a个B品牌的足球,则购进A品牌足球(50﹣a)个,接下来依据总费用不超过3260元列不等式求解即可.【解答】解:(1)设购买一个A品牌足球需x元,购买一个B品牌足球需(x+30)元.根据题意得: =×2.解得:x=50.经检验x=50是原方程的解.则x+30=80.答:购买一个A品牌的足球需要50元,购买一个B品牌的足球需80元.(2)设此次可购买a个B品牌的足球,则购进A品牌足球(50﹣a)个.由题意得:50(1+8%)(50﹣a)+80×0.9a≤3260.解得;a≤31.∵a是整数,∴a最大可取31.答:这所中学此次最多可购买31个B品牌的足球.20.如图,点P,D分别是⊙O上的动点、定点、非直径弦CD⊥直径AB,当点P与点C重合时,易证:∠DPB+∠ACD=90°,在不考虑点P于点B或点D重合的情况下,试解答如下问题:(1)当点P与点A重合时(如图1),∠DPB+∠ACD= 90 度.(2)当点P在上时(如图2),(1)中的结论还成立吗?请给予证明.(3)当点P在上时,先写出∠DPB与∠ACD的数量关系,再说明其理由.【考点】圆的综合题.【分析】(1)先根据垂径定理得出AC=AD,故可得出∠ACD=∠ADC,∠AED=90°,再由∠DPB+∠ADC=90°即可得出结论;(2)先根据垂径定理得出=,再由∠A+∠ACD=90°即可得出结论;(3)连接AP,则∠BPD=∠BPA+∠APD,由圆周角定理得出∠BPA=90°,∠ACD=∠APD,进而可得出结论.【解答】解:(1)∵弦CD⊥直径AB,∴CE=DE,∠AED=90°,∴∠ACD=∠ADC,∠AED=90°.∵∠DPB+∠ADC=90°,∴∠DPB+∠ACD=90°.故答案为:90;(2)成立.理由:如图2,∵AB⊥CD,AB是⊙O的直径,∴=,∴∠DPB=∠A.∵∠A+∠ACD=90°,∴∠DPB+∠ACD=90°.(3)∠DPB﹣∠ACD=90°.理由:如图3,连接AP,则∠BPD=∠BPA+∠APD.∵AB是⊙O的直径,∴∠BPA=90°,∠ACD=∠APD,∴∠BPD=90°+∠ACD,即∠BPD﹣∠ACD=90°.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达点B处停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为ts.(1)MN与AC的数量关系是MN=AC ;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)当t为何值时,△DMN是等腰三角形?【考点】三角形综合题.【分析】(1)直接利用三角形中位线证明即可;(2)分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN 扫过区域的面积就是▱AFGE的面积求解即可;(3)分三种情况:①当MD=MN=3时,②当MD=DN,③当DN=MN时,分别求解△DMN为等腰三角形即可.【解答】解:(1)∵在△ADC中,M是AD的中点,N是DC的中点,∴MN=AC;故答案为:MN=AC;(2)如图1,分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积,∵AC=6,BC=8,∴AE=3,GC=4,∵∠ACB=90°,∴S四边形AFGE=AE•GC=3×4=12,∴线段MN所扫过区域的面积为12.(3)据题意可知:MD=AD,DN=DC,MN=AC=3,①当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,∴t=6,②当MD=DN时,AD=DC,如图2,过点D作DH⊥AC交AC于H,则AH=AC=3,∵cosA==,∴=,解得AD=5,∴AD=t=5.③如图3,当DN=MN=3时,AC=DC,连接MC,则CM⊥AD,∵cosA==,即=,∴AM=,∴AD=t=2AM=,综上所述,当t=5或6或时,△DMN为等腰三角形.五、(本大题共10分)22.如图,在平面直角坐标系中,已知点A(﹣2,0),B(1,3)设经过A,O两点且顶点C 在直线AB上的抛物线为m.(1)求直线AB和抛物线m的函数解析式.(2)若将抛物线m沿射线AB方向平移(顶点C始终在AB上),设移动后的抛物线与x轴的右交点为D.①在上述移动过程中,当顶点C在水平方向上移动3个单位长度时,A与D之间的距离是多少?②当顶点在水平方向移动a(a>0)个单位长度时,请用含a的代数式表示AD的长.【考点】二次函数综合题.【分析】(1)设直线AB的解析式为y=kx+b,根据点A、B的坐标利用待定系数法即可求出直线AB的解析式,根据抛物线过点A、O即可得出抛物线的对称轴,由顶点在直线AB上即可找出顶点C的坐标,设抛物线的解析式为y=a(x+1)2+1,根据点O的坐标利用待定系数法即可求出抛物线的解析式;(2)①根据点C的坐标以及平移的性质可找出平移后的顶点坐标(2,4),由此即可得出平移后的抛物线的解析式,令y=0,求出x值,点D横坐标取x中的较大值,再结合点A的坐标即可得出线段AD的长度;②根据点C的坐标以及平移的性质可找出平移后的顶点坐标(a﹣1,a+1),由此即可得出平移后的抛物线的解析式,令y=0,求出x值,点D横坐标取x中的较大值,再结合点A的坐标即可得出线段AD的长度.【解答】解:(1)设直线AB的解析式为y=kx+b,则,解得:,∴直线AB的解析式为y=x+2.∵抛物线m经过A、O两点,∴抛物线的对称轴为x=﹣1,∵抛物线顶点在直线AB上,∴y=﹣1+2=1,∴抛物线的顶点C(﹣1,1).设抛物线的解析式为y=a(x+1)2+1,将(0,0)代入y=a(x+1)2+1中,有0=a(0+1)2+1,解得:a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+1=﹣x2﹣2x.(2)①根据题意,顶点在水平方向上向右平移了3个单位长度,顶点的横坐标为﹣1+3=2,纵坐标为x+2=2+2=4,∴平移后的抛物线为y=﹣(x﹣2)2+4,当y=0时,有﹣(x﹣2)2+4=0,解得:x1=0,x2=4,∴D(4,0),∴AD=4﹣(﹣2)=6.②当顶点在水平方向上向右平移了a个单位长度时,顶点为(a﹣1,a+1),∴平移后的抛物线为y=﹣(x﹣a+1)2+a+1,当y=0时,(x﹣a+1)2=a+1,解得:x=a﹣1±,∴D(a﹣1+,0),∴AD=a﹣1+﹣(﹣2)=a+1+.六、(本大题共12分)23.如图,小东将一张长AD为12、宽AB为4的矩形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P,Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置变化而发生改变.(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.求证:①ME=NF;②MN∥BC.(2)如图1,若BP=3,求线段MN的长;(3)如图2,当点P与点Q重合时,求MN的长.【考点】三角形综合题.【分析】(1)①根据矩形的性质得到∠B=∠C=90°,AB=CD.根据全等三角形的性质得到∠APB=∠DQG.推出△MEP≌△NPQ,由全等三角形的性质即可得到ME=NF;②根据矩形的判定定理得到四边形EFMN是矩形,由矩形的性质得到结论;(2)证明△EMP∽△MAG,根据相似三角形的对应边的比相等,以及矩形的性质即可求解;(3)设PM、PN分别交AD于点E、F,证明△PEF∽△PMN,根据相似三角形的对应边的比相等即可求解.【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD.∵在△ABP和△DCQ中,,∴△ABP≌△DCQ,∴∠APB=∠DQG.∴∠MPE=180°﹣2∠APB=180°﹣2∠DQC=∠NQF.∴在△MEP和△NPQ中,,∴△MEP≌△NPQ,∴ME=NF;②∵ME∥NF,ME=NF,∴四边形EFMN是矩形,∴MN∥BC;(2)延长EM、FN交AD于点G、H,∵AB=4,BP=3,∴AM=4,PM=3.∵AD∥BC,∴EM⊥AD.∵∠AMP=∠MEP=∠MGA,∴∠EMP=∠MAG.∴△EMP∽△MAG.∴===,设AG=4a,MG=3b.∵四边形ABEG是矩形,∴,解得:,∴AG=,同理DH=.∴MN=;(3)设PM、PN分别交AD于点E、F.∵∠EPA=∠APB=∠PAE,∴EA=EP.设EA=EP=x,在直角△AME中,42+(6﹣x)2=x2,解得:x=,∴EF=12﹣2×=,∵EF∥MN,∴△PEF∽△PMN,∴=,即,解得:MN=.。
初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)
初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。
2018年北京市燕山区初三一模数学试卷及答案
北京市燕山地区2018年初中毕业暨一模考试数学试卷2018. 5考生须知1. 本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1. 2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌。
综合实力稳步提升。
全市地区生产总值达到280000亿元,将280000用科学记数法表示为A. 280xl03B. 28x104C. 2.8xl05D. 0.28xl062. 下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是BA.晴B.浮尘C.大雨D.大雪3.实数a,力在数轴上对应的点的位置如图所示,则正确的结论是ab二 二 M -211 2~ 3 4 bA. a + b<0B.ci >| — 2|C.b> nD.a 八—<01 1b4.下列四个几何体中,左视图为圆的是5.如图,AB//CD, DB_LBC, Z 2=50° ,则的度数是A. 40°B. 50°C. 60°D. 140°6. 如图,在RtAABC 中,ZACB=90° , CD 是 AB 边上的中线,AC=8, BC=6 ,则ZACD 的正切值是7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界。
某地近年|用水量x (吨)|3—14 |5—\6—F来持续干旱,为倡导节约用水,该地采用了 “阶梯水 价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6口屯的,超出6吨的 部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是A.平均数、中位数 B .众数、中位数C .平均数、方差 D .众数、方差[8. 小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶300 -------,先分带车过程中,小带和小路两人的车离开A 城的距离y (千米)与行驶的\时间《小时)之间的函数关系如图所示。
江苏省徐州市2018届九年级第一次质检数学试题
2018年九年级第一次质量检测数学试题D.lfflD.—-、选择题(本大履共8小题,每"'分,共) |.下列图形中枝轴明图形但不是中心对称图形,「代A.时三角形B.正六边形 °正方形2. 下列计算正确的是< ▲)A.3F B.-I-3I —-3C.3 =-33. 如图是硕个丽的小正方体组成的立体图形,它的俯祝图加▲)亩.Bz 5S c .ff 一,}.某同学一周中每£体育运动时间(单&:分钟)分别为:35,1035,40,5a,40,48.这坦敷思的众数、中位数是< ▲)A. 5530B. 40 32.5C. 40,40 0.40.455. 人体血液中.红M 的直径豹为0.000 007 7m.用科学记数法表示0.000 007 7m 5< ▲A.Q.77X1O 'B. 7.7X1O _,C. 7.7X10 *D. 77X10'6. 袋子里有4个黑球,m 个白球.它们除颜色外都相同.经过大/实验,从中任取-个球恰好是白球的判率是O.ZO.JMm 的值是(▲)A.1B.2C.4D.167-如图,平行四边形AW.-1)中.E 、F 分科为AD 、BC 边上的一点.增加下同条件,不佬仲出上叱〃DF 的▲)A.AE=CFC. NEBF = ZFOED.Z 日的'血B.BE-DFAB 啥&岫点A 、8的坐松)和⑷》点糜的横坐标呆小值为―.娜• ♦ B.]二、填空H (本大题心:小题再59.g 因式仙1>-火=▲鬼’分,共3。
分)旧若— -2L4F.则两二2*』山D.8段抽上的时数-3与提且它们之间的毗可以表示为—此通过平移把点A(2,-3)移到点恐4.-2).按同样的平移方式可将点B(-3.1)移到点则点B'的坐标M_A__13设X1、&是方程2x'+nx+m=0的两个根,旦xl x,=4土&=3.«m+n-_4_试如BhDE tjAABC的中位我,点F在DE上,且NAFB=9。
2018届九年级第一次模拟考试数学试题(附答案)
2018年江苏省徐州中考数学模拟试卷(满分:140分时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2的倒数是()A.-12B.12C.-2 D.22. 下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3. 某桑蚕丝的直径约为0.000016米,将0.000016用科学计数法表示是()A.41.610-⨯B.51.610-⨯C.71.610-⨯D.41610-⨯4. 在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+15. 关于2、6、1、10、6的这组数据,下列说法正确的是( )A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是106. 如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°-2α B.2α C.90°+α D.90°-α7. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位8. 如图在矩形ABCD中,AB=5,AD=3,动点P满足13PAB ABCDS S∆=四边形,则点P 到A、B两点距离之和P A+PB的最小值为()(第6题)(第8题)ABC.D二、填空题(本大题有10小题,每题3分,满分30分,将答案填在答题纸上) 9.a 的取值范围是.10. 如图,转盘中6个扇形的面积都相等.任意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是 .11. 如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O ,若∠A =50°,则∠BOC = .12. 已知反比例函数y =2x ,当x <-1时,y 的取值范围为___________.13. 如图,直线a ∥b ∥c ,直线l 1,l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若AB ︰BC =1︰2,DE =3,则EF 的长为 . 14. 已知a 2+a =1,则代数式3-a 2-a 的值为15. 如图所示的正六边形 ABCDEF ,连结 FD ,则∠FDC 的大小为 .(第10题)(第11题) (第13题)cb a (第15题)(第16题)A(第17题)E16. 如图,AC 是⊙O 的切线,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD ,若∠A =50°,则∠COD 的度数为 .17. 在矩形ABCD 中,AB =2,BC =3,若点E 为边CD 的中点,连接AE ,过点B 作BF ⊥AE于点F ,则BF 长为 .18. 某广场用同一种如图所示的地砖拼图案,第一次拼成的图形如图1所示的图案,第二次拼成图形如图2所示的图案,第三次拼成的图形如图3所示的图案,第四次拼成的图形如图4所示的图案......按照这样的规律进行下去,第n 次拼成的图形共用地砖 块.三、解答题 (本大题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题10分)(1) (-2018)°-(31)-1+9; (2)44422-+-a a a ÷a a a 222+--3.20. (本题10分)(1)解方程:1x -2+2=1-x 2-x ; (2)解不等式组:21571023()x x x x ⎧+>-⎪⎨+>⎪⎩.21. (本题7分)中华文明,源远流长,中华汉字,寓意深广。
2018年四川省绵阳市游仙区中考数学一诊试卷(解析版)
2018年绵阳市游仙区中考数学一诊试卷一、选择题:本大题共12个小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一个符合题目要求.1.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】利用因式分解法把方程转化为x﹣3=0或x+4=0,然后解两个一次方程即可.【解答】解:x﹣3=0或x+4=0,所以x1=3,x2=﹣4.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.5.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.6.【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.7.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=AB tan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.8.【分析】根据90°的圆周角所对的弦是直径进行判断.【解答】解:A、不是圆周角,故本选项不能判断;B、根据90°的圆周角所对的弦是直径,本选项符合;C、不是圆周角,故本选项不能判断;D、不是圆周角,故本选项不能判断.故选:B.【点评】此题考查了圆周角定理的推论,即检验半圆的方法,90°的圆周角所对的弦是直径,所对的弧是半圆.9.【分析】先由a>0,得出函数有最小值,再根据点A、B、C到对称轴的距离的大小与抛物线的增减性解答.【解答】解:∵抛物线y=ax2﹣2ax+1=a(x﹣1)2﹣a+1(a>0),∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵a>0,∴抛物线开口向上,∵点A、B、C到对称轴的距离分别为3、1、2,∴y1>y3>y2.故选:B.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.【分析】连接OB,OA,得出△AOB是等边三角形,求出S△AOB 和S扇形AOB,那么阴影面积=(S扇形AOB﹣S△AOB)×6,代入计算即可.【解答】解:如图,连接OB,OA,作OM⊥AB于点M,则OM=.∵∠AOB==60°,AO=OB,∴BO=AB=AO,AM=AB=AO,OM=,∴,∴AO=1,∴BO=AB=AO=1,∴S△AOB=AB×OM=×1×=,∵S扇形AOB==,∴阴影部分面积是:(﹣)×6=π﹣.故选:A.【点评】此题主要考查了正六边形和圆以及扇形面积求法,注意圆与多边形的结合得出阴影面积=(S扇形AOB ﹣S△AOB)×6是解题关键.11.【分析】利用弧长公式,分别计算出L1,L2,L3,…的长,寻找其中的规律,确定L2011的长.【解答】解:L1==L2==L3==L4==按照这种规律可以得到:L n=∴L2011=.故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出L2011的长.12.【分析】根据图象的位置即可判断①,根据图象得出当x<﹣1时,M=﹣x2+1,当﹣1<x<0时,M =x+1,即可判断②,求出M=﹣2时,对应的x的值,即可判断③,根据二次函数的最值即可判断④.【解答】解:∵从图象可知:当x>0时,y1<y2,∴①错误;∵当x<0时,x值越大,M值越大;,∴②正确;∵抛物线与x轴的交点为(﹣1,0)(1,0),由图可知,x<﹣1或x>1时,M=y1=﹣x2+1,当M=﹣2时,﹣x2+1=﹣2,解得x=,故③正确;∵由图可知,x=0时,M有最大值为1,故④正确,故选:C.【点评】本题考查了二次函数的图象和性质的应用,主要考查学生的理解能力和观察图形的能力.二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接写在横线上.13.【分析】根据一元二次方程的解的定义,将x=0代入原方程,列出关于m的方程,通过解关于m的方程即可求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,∴x=0满足关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0,且m﹣1≠0,∴m2﹣1=0,即(m﹣1)(m+1)=0且m﹣1≠0,∴m+1=0,解得,m=﹣1;故答案是:﹣1.【点评】本题考查了一元二次方程的解.注意一元二次方程的二次项系数不为零.14.【分析】证明∠DCE=∠A即可解决问题.【解答】解:∵∠A+∠BCD=80°,∠BCD+∠DCE=180°,∴∠DCE=∠A,∵∠A=70°,∴∠DCE=70°,故答案为70°.【点评】本题考查圆内接四边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【分析】根据菱形的性质和含30°的直角三角形的性质解答即可.【解答】解:∵菱形ABCD的对角线交于坐标原点O,边AD∥x轴,OA=4,∠ABC=120°,∴∠AOD=90°,∠ADO=60°,∴∠OAD=30°,∴点A的坐标为(﹣2,2),∴点C的坐标是(2,﹣2),故答案为:(2,﹣2),【点评】本题考查了菱形的性质.含30°的直角三角形的性质,熟记各种特殊几何图形的判断方法和性质是解题的关键.16.【分析】成绩就是当高度y=0时x的值,所以解方程可求解.【解答】解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.【点评】此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法.17.【分析】连接OC,作直角△ABO斜边中线OE,连接ED,当DE、AE共线时AD取最大值.【解答】解:由题意知OB=10连接OC,作直角△ABO斜边中线OE,连接ED,则DE=OC=2,AE=OB=5.因为AD<DE+AE,所以当DE、AE共线时AD=AE+DE最大为7cm.故答案为:7.【点评】本题考查最值问题.将AD转化为AE和DE的数量关系是解答关键.18.【分析】把已知条件转化为抛物线y=2x2﹣(k+1)x﹣k+2=0与x轴的两交点的横坐标为x1,x2,如图,利用函数图象得到当x=0时,y>0,即﹣k+2>0;当x=1时,y<0,即2﹣k﹣1﹣k+2<0;当x=2时,y>0,即8﹣2k﹣2﹣k+2>0;然后分别解不等式,最后确定它们的公共部分即可.【解答】解:∵关于x的一元二次方程2x2﹣(k+1)x﹣k+2=0有两个实数根x1,x2,∴抛物线y=2x2﹣(k+1)x﹣k+2=0与x轴的两交点的横坐标为x1,x2,如图,当x=0时,y>0,即﹣k+2>0,解得k<2;当x=1时,y<0,即2﹣k﹣1﹣k+2<0,解得k>;当x=2时,y>0,即8﹣2k﹣2﹣k+2>0,解得k<;∴k的范围为<k<2.故答案为<k<2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.三、解答题:本大题共7个小题,共86分.解答应写出文字说明,证明过程或演算步骤.19.【分析】(1)根据绝对值的性质、二次根式的性质、零指数幂、二次根式的混合运算法则计算;(2)利用配方法求解即可.【解答】解:(1)原式=1﹣(2﹣)+2﹣=1﹣2++2﹣=3﹣;(2)整理得:x2﹣4x=7,则x2﹣4x+4=7+4,即(x﹣2)2=11,∴x﹣2=±,∴x1=2+、x2=2﹣.【点评】本题考查了配方法解方程和实数的混合运算.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=﹣,由此计算即可;【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.【点评】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可;(2)根据根与系数的关系得到x1+x2=5,x1x2=6﹣p2,再利用x1=4x2,可先求出x2=1,则可得到x1=4,然后根据x1x2=6﹣p2求p的值.【解答】(1)证明:原方程可化为x2﹣5x+6﹣p2=0,∵△=(﹣5)2﹣4×(6﹣p2)=4p2+1>0,∴不论p为任何实数,方程总有两个不相等的实数根;(2)解:根据题意得x1+x2=5,x1x2=6﹣p2,∵x1=4x2,∴4x2+x2=5,解得x2=1,∴x1=4,∴6﹣p2=4×1,∴p=±.【点评】此题考查根与系数的关系和一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.【分析】(1)解析式中令y=0求出x的值,确定出A与B坐标,化为顶点形式确定出顶点坐标即可;(2)连接AD,CD,与x轴交于点E,分别作DG⊥x轴,CF⊥x轴,如图所示,把x=4代入抛物线解析式确定出C 纵坐标,三角形ACD 面积等于三角形AED 面积加上三角形AEC 面积,求出即可.【解答】解:(1)令y =0,得到x 2﹣4x +3=0,解得:x =1或x =3,即A (1,0),B (3,0),抛物线y =x 2﹣4x +3=(x ﹣2)2﹣1,顶点D (2,﹣1);(2)连接AD ,CD ,与x 轴交于点E ,分别作DG ⊥x 轴,CF ⊥x 轴,如图所示,将x =4代入抛物线解析式得:y =3,即C (4,3),∴CF =3,设直线CD 解析式为y =kx +b ,把C (4,3),D (2,﹣1)代入得:,解得:,即直线CD 解析式为y =2x ﹣5, 令y =0,得到x =2.5,即E (2.5,0),AE =1.5,则S △ACD =S △AED +S △AEC =AE •DG +AE •CF =×1.5×1+×1.5×3=3.【点评】此题考查了抛物线与x 轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数性质是解本题的关键.23.【分析】(1)分别根据当0<x ≤20时,y =800,当20<x ≤40时,设BC 满足的函数关系式为y =kx +b ,分别求出即可;(2)利用当0<x ≤20时,老王获得的利润为:w =(800﹣280)x ,当20<x ≤40时,老王获得的利润为w =(﹣20x +12 00﹣280)x 分别求出即可.【解答】解:(1)当0<x ≤20时,y =800;当20<x ≤40时,设BC 满足的函数关系式为y =kx +b ,解得:,∴y 与x 之间的函数关系式为:y =﹣20x +1200;(2)当0<x≤20时,老王获得的利润为:w=(800﹣280)x=520x≤10400,此时老王获得的最大利润为10400元.当20<x≤40时,老王获得的利润为w=(﹣20x+12 00﹣280)x=﹣20(x2﹣46x)=﹣20(x﹣23)2+10580.∴当x=23时,利润w取得最大值,最大值为10580元.∵10580>10400,∴当小王租赁的商铺数量为23时,开发商在这次租赁中每个月所获的利润W最大,最大利润是10580元.【点评】此题主要考查了二次函数的应用以及分段函数的应用,根据数形结合以及分类讨论得出是解题关键.24.【分析】(1)结论:△ADC是等边三角形.想办法证明DA=DC,∠ADC=60°即可解决问题.(2)如图1﹣1中,在BA上截取BE,使得BE=BA.证明△ABE是等边三角形,△BAC≌△DAE(SAS)即可解决问题.(3)结论:BC﹣AB=BE.如图2中,连接EA,EC,作EF⊥BE交BC于点F.想办法证明△BEF,△AEC都是等腰直角三角形,△BEA≌△FEC(SAS)即可解决问题.【解答】(1)解:结论:△ADC是等边三角形.理由:如图1中,连接OA,OC,作OH⊥AC于H.∵OH⊥AC,∴AH=CH=AC=,在Rt△AOH中,∵OA=2,AH=,∴sin∠AOH=,∴∠AOH=60°,∵OA=OC,OH⊥AC,∴∠AOC=2∠AOH=120°,∴∠ADC=∠AOC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD,∴△ADC是等边三角形.(2)证明:如图1﹣1中,在BA上截取BE,使得BE=BA.∵△ADC是等边三角形,∴∠ACD=∠DAC=60°,AC=AD,∴∠ABE=∠ACD=60°,∵BA=BE,∴△ABE是等边三角形,∴AB=AE,∠BAE=60°,∴∠BAE=∠CAD,∴∠BAC=∠DAE,∴△BAC≌△DAE(SAS),∴BC=DE,∴BD=BE+DE=BA+BC.(3)解:结论:BC﹣AB=BE.理由:如图2中,连接EA,EC,作EF⊥BE交BC于点F.∵AC是直径,∴∠ABC=∠CBN=∠AEC=90°,∵BE平分∠CBN,∴∠EBC=∠CBN=45°,∴∠EAC=∠EBC=45°,△BEF,△AEC都是等腰直角三角形,∴EB=EF,EA=EC,∠BEF=∠AEC,∴∠BEA=∠FEC,∴△BEA≌△FEC(SAS),∴AB=CF,∴BC=BF+CF=BE+AB,∴BC﹣AB=BE.【点评】本题属于圆综合题,考查了等边三角形的判定和性质,等腰直角三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.【分析】(1)由点A,B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)分∠PAC=90°或∠PCA=90°两种情况考虑:①当∠PAC=90°时,设PA交y轴于点D,由点A,C的坐标可得出∠CAO=45°,结合∠PAC=90°可得出∠DAO=45°,进而可得出点D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,联立直线AD与抛物线的解析式成方程组,通过解方程组可求出点P的坐标;②当∠PCA=90°时,同理,直线PC的解析式,联立直线PC与抛物线的解析式成方程组,通过解方程组可求出点P的坐标.此问得解;(3)由⊙P与x轴相切且与抛物线的对称轴相交,可得出点P的纵坐标为﹣2,利用二次函数图象上点的坐标特征即可求出点P的坐标,过点P作PE⊥MN,垂足为点E,通过解直角三角形可求出ME的长度,再利用等腰三角形的三线合一可得出MN的长度.【解答】解:(1)设抛物线解析式为y=ax2+bx+c(a≠0),将A(3,0),B(﹣1,0),C(0,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3.(2)分∠PAC=90°或∠PCA=90°两种情况考虑,如图1所示.①当∠PAC=90°时,设PA交y轴于点D.∵OA=OC,∴∠CAO=45°,又∵∠PAC=90°,∴∠DAO=45°,∴OD=OA=3,∴点D的坐标为(0,3).设直线AD的解析式为y=kx+d(k≠0),将A(3,0),D(0,3)代入y=kx+d,得:,解得:,∴直线AD的解析式为y=﹣x+3.联立直线AD与抛物线的解析式成方程组,得:,解得:,(舍去),∴点P的坐标为(﹣2,5);②当∠PCA=90°时,同理,直线PC的解析式为y=﹣x﹣3.联立直线PC与抛物线的解析式成方程组,得:,解得:,(舍去),∴点P的坐标为(1,﹣4).综上所述:点P的坐标为(﹣2,5)或(1,﹣4).(3)存在,由题意可知:点P的纵坐标为﹣2.当y=﹣2时,x2﹣2x﹣3=﹣2,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,﹣2)或(1+,﹣2).过点P作PE⊥MN,垂足为点E,如图2所示.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∴PE=1+﹣1=或PE=1﹣(1﹣)=.在Rt△PEM中,PE=,PM=2,∴ME==.∵PM=PN,∴ME=NE,∴MN=2ME=2.∴点P的坐标为(1﹣,﹣2)或(1+,﹣2),抛物线的对称轴所截的弦MN的长度为2.。
2018年河南省中考数学一模试卷及答案
2018年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,最小的数是()A. -3B. -(-2)C. 0D. -2.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A. 9.29×109B. 9.29×1010C. 92.9×1010D. 9.29×10113.如图所示的几何体的主视图是()A.B.C.D.4.小明解方程-=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1-(x-2)=1①去括号,得1-x+2=1②合并同类项,得-x+3=1③移项,得-x=-2④系数化为1,得x=2⑤A. ①B. ②C. ③D. ④5.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A. 180个,160个B. 170个,160个C. 170个,180个 D. 160个,200个6.关于x的一元二次方程x2-2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B. C. D.7.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A. ∠ABC=∠ADC,∠BAD=∠BCDB. AB=BCC. AB=CD,AD=BCD. ∠DAB+∠BCD=180°8.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A. (1,4)B. (5,0)C. (7,4)D. (8,3)二、填空题(本大题共5小题,共15.0分)11.=______.12.方程3x2-5x+2=0的一个根是a,则6a2-10a+2=______.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2-4x-1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1______y2.(用“>”、“<”、“=”填空)14.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC-CB运动,到点B停止.过点P 作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为______.15.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值:(x+2y)2-(2y+x)(2y-x)-2x2,其中x=+2,y=-2.四、解答题(本大题共7小题,共67.0分)17.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数为______;(3)根据调查结果,我市市民最喜爱的运动方式是______,不运动的市民所占的百分比是______;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B 处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.如图,反比例y=的图象与一次函数y=kx-3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P 为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是____,位置关系是____.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN 面积的最大值.23.如图,抛物线y=-x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x 轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ 恰好为正方形,直接写出m的值.答案和解析1.【答案】A【解析】解:因为在数轴上-3在其他数的左边,所以-3最小;故选:A.应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.此题考负数的大小比较,应理解数字大的负数反而小.2.【答案】B【解析】【分析】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=10.【解答】解:929亿=92 900 000000=9.29×1010.故选B.3.【答案】D【解析】解:由图可知,主视图由一个矩形和三角形组成.故选:D.先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【答案】A【解析】解:-=1去分母,得1-(x-2)=x,故①错误,故选:A.根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【答案】B【解析】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【答案】C【解析】解:∵关于x的一元二次方程x2-2x+k+2=0有实数根,∴△=(-2)2-4(k+2)≥0,解得:k≤-1.故选C.根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【答案】D【解析】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【答案】C【解析】5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【答案】C【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.11.【答案】2【解析】解:∵22=4,∴=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.12.【答案】-2【解析】解:∵方程3x2-5x+2=0的一个根是a,∴3a2-5a+2=0,∴3a2-5a=-2,∴6a2-10a+2=2(3a2-5a)+2=-2×2+2=-2.故答案是:-2.根据一元二次方程的解的定义,将x=a代入方程3x2-5x+2=0,列出关于a的一元二次方程,通过变形求得3a2-5a的值后,将其整体代入所求的代数式并求值即可.此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【答案】<【解析】解:由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【答案】2.4cm【解析】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7-3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7-2×5=4cm,∴PD=4×si n∠B=4×=2.4cm,故答案为2.4cm.由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【答案】1或【解析】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.16.【答案】解:原式=x2+4xy+4y2-(4y2-x2)-2x2=x2+4xy+4y2-4y2+x2-2x2=4xy,当x=+2,y=-2时,原式=4×(+2)×(-2)=4×(3-4)=-4.【解析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【答案】150;45;36;28.8°;散步;6%【解析】(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)解:=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【答案】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【解析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出AE与OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD中,利用勾股定理求出AC的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【答案】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH-EH=tan55°•x-4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x-4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【解析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE 可得关于x的方程,解之可得.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【答案】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx-3,得4k-3=1,∴k=1,∴一次函数的解析式为y=x-3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,如图.当x=0时,y=-3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴-1=1-(n-3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【解析】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC 于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.21.【答案】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【解析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【答案】解:(1)PM=PN;PM⊥PN(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.可知△PMN是等腰直角三角形.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【解析】【分析】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD 的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D 共线时,BD的最大值=BC+CD=6,由此即可解决问题.【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∠AEC=∠BDC,∵∠EAC+∠AEC=90°,∴∠EAC+∠BDC=90°,∴∠AOD=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PN,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案为PM=PN,PM⊥PN;(2)见答案;(3)见答案.23.【答案】解:(1)把点B(3,0),C(0,3)代入y=-x2+bx+c,得到,解得,∴抛物线的解析式为y=-x2+2x+3.∵y=-x2+2x-1+1+3=-(x-1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,-m2+2m+3),∴MG=|-m2+2m+3|,BG=3-m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=-或3(舍弃),∴M(-,),当点M在x轴下方时,=,解得m=-或m=3(舍弃),∴点M(-,-),综上所述,满足条件的点M坐标(-,)或(-,-);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,当-m2+2m+3=1-m时,解得m=,当-m2+2m+3=m-1时,解得m=,∴满足条件的m的值为或;【解析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题;本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年初三一诊考试数学试题答案及解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.5 B.C.﹣ D.﹣52.(3分)已知空气的单位体积质量是0.001 239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3 g/cm3B.1.239×10﹣2 g/cm3C.0.123 9×10﹣2 g/cm3D.12.39×10﹣4 g/cm33.(3分)如图,立体图形的俯视图是()A.B.C.D.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.47.(3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1 B.2 C.﹣7 D.08.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q 运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:9a3b﹣ab=.10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.11.(3分)已知一组数据:3,3,4,5,5,则它的方差为.12.(3分)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.13.(3分)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是.14.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.(3分)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是.16.(3分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:=13S ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH,其中结论正确的有.△DHC三、解答题(本大题共8个题,共72分)17.(10分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+),其中a=.18.(6分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.求证:BF=CE.19.(8分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20.(8分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分)1-8.B A C B B A CA二、填空题(本大题共8小题,每小题3分,共24分)9.ab(3a+1)(3a﹣1).10.45°.11..12..13.﹣π.14..15.2.16.①②③④.三、解答题(本大题共8个题,共72分)17.(1)|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;(2)÷(2+)===,当a=时,原式==﹣1.18.证明:根据题意,知CE⊥AF,BF⊥AF,∴∠CED=∠BFD=90°,又∵AD是边BC上的中线,∴BD=DC;在Rt△BDF和Rt△CDE中,∠BDF=∠CDE(对顶角相等),BD=CD,∠CED=∠BFD,∴△BDF≌△CDE(AAS),∴BF=CE(全等三角形的对应边相等).19.解:(1)四个年级被抽出的人数由小到大排列为30,45,55,70,∴中位数为50;(2)根据题意得:3000×(1﹣25%)=2250人,则该校帮助父母做家务的学生大约有2250人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.20、解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+400=1 600+400=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随x的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.21.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC =S△OBC=×BO×x C=×3×4=6.23.解:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,∴AC=6,则BC=6.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,∴OP=PC+OC=13.在Rt△PBC中,由勾股定理,得PB==3,∵AC=BC,OA=OE,即OC为△ABE的中位线.∴OC=BE,OC∥BE,∴BE=2OC=8.∵BE∥OP,∴△DBE∽△DPO,∴=,即=,解得BD=.24.解:(1)将A(0,1),B(﹣9,10)代入函数解析式,得,解得,抛物线的解析式y=+2x+1;(2分)(2)∵AC∥x轴,A(0,1),∴x2+2x+1=1,解得x1=﹣6,x2=0(舍),即C点坐标为(﹣6,1),∵点A(0,1),点B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设P(m,m2+2m+1),∴E(m,﹣m+1),∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥PE,AC=6,(4分)∴S四边形AECP =S△AEC+S△APC=AC•EF +AC•PF,=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m +)2+,∵﹣6<m<0,∴当m=﹣时,四边形AECP 的面积最大值是,此时P (﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC 时,=,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB 时,则,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)11 / 11。