湖南省衡阳县三中2017_2018学年高二数学上学期期中试题文
湖南省衡阳市数学高二上学期文数期中考试试卷
湖南省衡阳市数学高二上学期文数期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高三上·济南期中) 命题“ ”的否定为()A .B .C .D .2. (2分) (2018高三上·重庆期末) 命题“若,则”,则命题以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A . 1B . 2C . 3D . 43. (2分) (2017高二下·汪清期末) 已知等差数列中,,则前4项的和等于()A . 8B . 10C . 12D . 144. (2分)设x,y满足约束条件,若目标函数的最大值为4,则a+b 的值为()A . 4B . 2C .D .5. (2分) (2016高三上·翔安期中) 设等差数列{an}的前n项和为Sn ,且a3+a5+a7=15,则S9=()A . 18B . 36C . 45D . 606. (2分) (2017高三上·静海开学考) 已知x∈(0,+∞)时,不等式9x﹣m•3x+m+1>0恒成立,则m的取值范围是()A . 2﹣2 <m<2+2B . m<2C . m<2+2D . m7. (2分)设a,b,c都是正数,且a+2b+c=1,则的最小值为()A . 9B . 12C . 6+2D . 6+48. (2分)已知是关于的一元二次方程的两根,若,则的取值范围是()A .B .C .D .9. (2分) (2018高二上·济宁月考) 各项都是实数的等比数列,前项和记为,若,则等于()A . 150B .C . 150或D . 400或10. (2分)已知等差数列中,, 则的值是()A . 15B . 30C . 31D . 6411. (2分)设等比数列{an}的前n项和为Sn ,且4a1,2a2,a3成等差数列.若a1=1,则S4()A . 8B . 16C . 15D . 712. (2分)(2017·湘西模拟) 已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn ,则Sn=()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高一下·枣强期中) 在等比数列{an}中,若a9•a11=4,则数列前19项之和为________.14. (1分)(2017·江西模拟) 设△AnBnCn的三边长分别为an , bn , cn , n=1,2,3…,若b1>c1 ,b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,则∠An的最大值是________.15. (1分)(2018·南充模拟) 在数列中,若( ,,为常数),则称为“等方差数列”.下列对“等方差数列”的判断:①若是等方差数列,则是等差数列;② 是等方差数列;③若是等方差数列,则( ,为常数)也是等方差数列.其中正确命题序号为________(写出所有正确命题的序号).16. (1分) (2019高一下·上海月考) 设数列的通项公式为,若数列是单调递增数列,则实数的取值范围为________.三、解答题 (共6题;共70分)17. (10分) (2017高二下·湖北期中) 已知集合A是函数y=lg(6+5x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集.p:x∈A,q:x∈B.(1)若A∩B=∅,求a的取值范围;(2)若¬p是q的充分不必要条件,求a的取值范围.18. (10分) (2018高二下·重庆期中) 已知函数,其中 .(1)当时,求关于的不等式的解集;(2)若对任意的,都有,使得成立,求实数的取值范围.19. (10分) (2019高三上·承德月考) 在平面四边形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面积为2.(1)求AD的长;(2)求△CBD的面积.20. (15分) (2019高一上·琼海期中) 一年一度的“双十一”网络购物节来了,某工厂网上直营店决定对某商品进行一次评估.该商品原来每件售价为20元,年销售7万件.为了抓住“双十一”的大好商机,扩大该商品的影响力,提高年销售量.工厂决定引进新生产线对该商品进行技术.升级,并提高定价到元.新生产线投入需要固定成本万元,变化成本万元,另外需要万元作为新媒体宣传费用.问:当该商品技术升级后的销售量至少应达到多少万件时,才可能使升级后的年销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.21. (10分) (2016高一下·芦溪期末) 已知数列{an}、{bn}满足:a1= ,an+bn=1,bn+1= .(1)求a2,a3;(2)证数列{ }为等差数列,并求数列{an}和{bn}的通项公式;(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSn<bn恒成立.22. (15分)(2017高一下·鸡西期末) 已知函数的图象上有一点列,点在轴上的射影是,且( 且 ), .(1)求证:是等比数列,并求出数列的通项公式;(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围. (3)设四边形的面积是,求证: .参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共70分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、第11 页共11 页。
2017-2018学年高二(上)期中数学试卷(文科)带答案精讲
2017-2018学年高二(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.24.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.27.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.259.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.13.(5分)=.14.(5分)若正数a,b满足a+b=1,则+的最小值为.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.16.(5分)给出下列命题:以下命题正确的是(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.17.(5分)过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)【分析】分别求出集合A和集合B中不等式的解集,求出两个解集的公共部分即为两个集合的交集.【解答】解:由集合B可知x﹣1>0即x>1;由集合A可知|x|≤2即﹣2≤x≤2.所以B∩A={x|1<x≤2}故选C.【点评】本题是一道以求不等式的解集为平台,求集合交集的基础题,也是高考中的基本题型.2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b【分析】根据平面的基本性质,可判断A;根据面面垂直的性质定理可判断B;根据线面平行的判定定理可判断C;根据异面直线夹角的定义,可判断D【解答】解:三条直线两两相交,则这三条直线确定一个平面或三个平面,故A 错误;若平面α⊥β,且α∩β=l,由面面垂直的性质定理可得:过α内一点P与l垂直的直线垂直于平面β,故B正确;若直线m与平面α内的一条直线平行,则m∥α或m⊂α,故C错误;若直线a与直线b平行,且直线a⊥l,则l⊥b,故D错误;故选:B【点评】本题考查的知识点是命题的真假判断与应用,平面的基本性质,面面垂直的性质定理,线面平行的判定定理,异面直线夹角的定义,难度不大,属于基础题.3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.2【分析】首先根据已知题意分析圆心与半径.通过直线与圆相交构造一个直角三角形.直角边分别为半弦长,弦心距.斜边为半径.按照勾股定理求出半弦长,然后就能求出弦长.【解答】解:根据题意,圆为x2+y2﹣4y=0故其圆心为(0,2),半径为:2圆心到直线的距离为:d==由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形故由勾股定理可得:l=2=2故选:B.【点评】本题考查直线与圆的方程的应用,首先根据圆分析出圆的要素,然后根据直线与圆相交时构造的直角三角形按照勾股定理求出结果.属于基础题4.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件【分析】对两个条件,“cosA+sinA=cosB+sinB”与“C=90°”的关系,结合三角函数的定义,对选项进行判断【解答】解:“C=90°”成立时,有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立又当A=B时cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分条件故选B.【点评】本题考查充要条件,解答本题要熟练理解掌握三角函数的定义,充分条件,必要条件的定义,且能灵活运用列举法的技巧对两个命题的关系进行验证,本题考查了推理论证的能力,解题时灵活选择证明问题的方法是解题成功的保证.5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.2【分析】由三视图想象出空间几何体,代入数据求值.【解答】解:如图所示,四面体为正四面体.是由边长为1的正方体的面对角线围成.其边长为,则其表面积为4×(××)=2.故选D.【点评】本题考查了学生的空间想象力,属于中档题.7.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.【点评】本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.25【分析】根据等差数列的性质,我们可将a k=a1+a2+a3+…+a7,转化为a k=7a4,又由首项a1=0,公差d≠0,我们易得a k=7a4=21d,进而求出k值.【解答】解:∵数列{a n}为等差数列且首项a1=0,公差d≠0,又∵a k=(k﹣1)d=a1+a2+a3+…+a7=7a4=21d故k=22故选A【点评】本题考查的知识点是等差数列的性质,其中根据a4是数列前7项的平均项(中间项)将a k=a1+a2+a3+…+a7,化为a k=7a4,是解答本题的关键.9.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣【分析】条件“||=||”是向量模的等式,通过向量的平方可得向量的数量积|2=||2,•=0,可得出垂直关系,接下来,如由直线与圆的方程组成方程组求出A、B两点的坐标,势必计算很繁,故采用设而不求的方法.【解答】解:由||=||得||2=||2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.【点评】若非零向量,,满足||=||,则.模的处理方法一般进行平方,转化成向量的数量积.向量是既有大小,又有方向的量,它既有代数特征,又有几何特征,通过向量可以实现代数问题与几何问题的互相转化,所以向量是数形结合的桥梁.10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3【分析】利用函数f(x)的单调性以及f(0)=3,f(3)=﹣1,求出集合P,Q 的解集,利用充分条件和必要条件的定义进行求解.【解答】解:∵f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,∴不等式﹣1<f(x+t)<3,等价为f(3)<f(x+t)<f(0),即3>x+t>0,解得﹣t<x<3﹣t,即P={x|﹣t<x<3﹣t}.由f(x)<﹣1得f(x)<f(3),即x>3,∴Q={x|x>3},∵“x∈P”是”x∈Q”的充分不必要条件,∴﹣t≥3,即t≤﹣3.故选:C.【点评】本题主要考查函数单调性的应用,考查充分条件和必要条件的应用,利用函数的单调性先求解集合P,Q的等价条件是解决本题的关键.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为12.【分析】由方差的性质得2(k2+3),2(k2+3)…2(k8+3)的方差为22×3=12.【解答】解:∵数据组k1,k2…k8的平均数为3,方差为3,∴2(k2+3),2(k2+3)…2(k8+3)的方差为:22×3=12.故答案为:12.【点评】本题考查方差的求法,是中档题,解题时要认真审题,注意方差性质的合理运用.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.【分析】甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题,先做出甲和乙都抽到判断题的概率,根据对立事件的概率公式得到结果.【解答】(2)甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题, ∵甲、乙二人依次都抽到判断题的概率为, ∴甲、乙二人中至少有一人抽到选择题的概率为1﹣= 故答案为:. 【点评】本小题主要考查等可能事件的概率计算及分析和解决实际问题的能力,考查对立事件的概率.13.(5分)= .【分析】考查已知条件和要求的表达式,不难得到结果.【解答】解:因为1﹣sin 2x=cos 2x ,所以又=,所以= 故答案为:【点评】本题是基础题,考查同角三角函数的基本关系式的应用,考查计算能力.14.(5分)若正数a ,b 满足a +b=1,则+的最小值为 . 【分析】变形利用基本不等式即可得出.【解答】解:∵正数a ,b 满足a +b=1,∴(3a +2)+(3b +2)=7.∴+===,当且仅当a=b=时取等号. ∴+的最小值为. 故答案为:.【点评】本题考查了基本不等式的性质,属于中档题.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.【分析】等比数列{a n}中,公比q=2,可得a1a10=a2a9=...=a5a6=.由log2a1+log2a2+...+log2a10=35,利用对数的运算性质可得log2(a1a2 (10)==35,化为=27,可得a1.再利用等比数列的前n项和公式即可得出.【解答】解:∵等比数列{a n}中,公比q=2,∴a1a10=a2a9=…=a5a6=.∵log2a1+log2a2+…+log2a10=35,∴log2(a1a2…a10)==35,∴=27,∴a1=.∴a1+a2+…+a10==.故答案为:.【点评】本题考查了对数的运算性质、等比数列的性质通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.16.(5分)给出下列命题:以下命题正确的是①③④(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.【分析】根据向量加减法的平行四边形法则及菱形的性质可判断①,根据向量数量积的定义,及充要条件的定义,可判断②;根据否命题的定义,可判断③;根据向量数量积运算法则及向量模的定义,可判断④【解答】解:①非零向量、满足||=||=||,则以,为邻边的平行四边形为菱形,且,的夹角为60°,根据菱形的对角线平分对角,可得与的夹角为30°,故①正确; ②•>0,、的夹角为锐角或0,故•>0,是、的夹角为锐角的必要不充分条件,故②错误;③命题“若m 2+n 2=0,则m=0且n=0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故③正确;④若()===0,即,即AB=AC ,则△ABC 为等腰三角形,故④正确.故答案为:①③④【点评】本题以命题的真假判断为载体考查了向量加减法的平行四边形法则及菱形的性质,向量数量积的定义,充要条件的定义,否命题的定义,向量数量积运算法则及向量模的定义,是向量与逻辑的综合应用,难度中档.17.(5分)过点(2,3)且与直线l 1:y=0和l 2:都相切的所有圆的半径之和为 42 .【分析】设出圆的圆心坐标与半径,利用条件列出方程组,求出圆的半径即可.【解答】解:因为所求圆与y=0相切,所以设圆的圆心坐标(a ,r ),半径为r ,l 2:化为3x ﹣4y=0. 所以,解②得a=﹣r ,或a=3r ,由a=﹣r 以及①可得:a 2+14a +13=0,解得a=﹣1或a=﹣13,此时r=3或r=39, 所有半径之和为3+39=42.由a=3r以及①可得:9r2﹣18r+13=0,因为△=﹣144,方程无解;综上得,过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为:42.故答案为:42.【点评】本题考查圆的方程的求法,计算准确是解题的关键,考查计算能力.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.【分析】(I)利用sin(C﹣A)=1,求出A,C关系,通过三角形内角和结合sinB=,求出sinA的值;(II)通过正弦定理,利用(I)及AC=,求出BC,求出sinC,然后求△ABC 的面积.【解答】解:(Ⅰ)因为sin(C﹣A)=1,所以,且C+A=π﹣B,∴,∴,∴,又sinA>0,∴(Ⅱ)如图,由正弦定理得∴,又sinC=sin(A+B)=sinAcosB+cosAsinB=∴【点评】本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)先证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC;(3)利用四棱锥P﹣ABCD的体积等于时,求出四棱锥P﹣ABCD的高为PA,利用PA⊥AB,即可求PB的长.【解答】(1)证明:∵在△PBD中,O、M分别是BD、PD的中点,∴OM是△PBD的中位线,∴OM∥PB,…(1分)∵OM⊄平面PAB,PB⊂平面PAB,…(3分)∴OM∥平面PAB.…(4分)(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.…(6分)∵AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)∵BD⊂平面PBD,∴平面PBD⊥平面PAC.…(10分)(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,∴菱形ABCD的面积为,…(11分)∵四棱锥P﹣ABCD的高为PA,∴,得…(12分)∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.…(13分)在Rt△PAB中,.…(14分)【点评】本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【分析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C 的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则﹣3(x1+x2)=y1+y2,即可得出结论.【解答】解:(I)设圆C:(x﹣a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x﹣1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k﹣2)x+6=0,…(9分)∴△=(6k﹣2)2﹣24(1+k2)=3k2﹣6k﹣5>0,解得或.x 1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,假设∥,则﹣3(x1+x2)=y1+y2,∴,解得,假设不成立.∴不存在这样的直线l.…(13分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.【分析】(1)结合韦达定理用m把α,β的和、乘积表示出来,代入所求化简即可;(2)利用定义进行证明,在判断结果的符号时,要适当结合第一问m与α,β间的关系,将m用α,β替换,根据α,β与x1,x2的大小关系进行化简判断符号.(3)先假设存在,根据已知构造出取最值时的等式,只要取等号的条件存在,即存在.【解答】解:(1)由题意得,故.(2)∀x1,x2∈[α,β],x1<x2,可得,因为(x1﹣α)(x2﹣β)≤0,(x1﹣β)(x2﹣α)<0,两式相加得2x1x2﹣(α+β)(x1+x2)+2αβ<0;又因为,∴(x2﹣x1)[4x1x2﹣4﹣m(x1+x2)]<0.所以f(x1)﹣f(x2)<0,所以函数f(x)在[α,β]上为增函数.(3)函数在[α,β]上为增函数,所以.当且仅当时,等号成立,此时f(β)=2,即.结合可得m=0.综上可得,存在实数m=0满足题意.【点评】本题综合考查了函数的零点与方程的根之间的关系,即利用函数的观点解决方程的问题,或利用方程思想来解决函数问题.属于综合题,有一定难度.。
高二数学上学期期中试题 文 8_1(共18页)
三中高二年级第一(d ìy ī)学期期中数学(文科〕试卷一、选择题:本大题一一共12小题,每一小题5分.在每一小题给出的四个选项里面 只有一项是哪一项符合题目要求的.1、以下语句中是命题的为 ①x 2-3=0;②与一条直线相交的两直线平行吗?③3+1=5;④∀x ∈R,5x -3>6. A .①③ B .②③ C .②④ D .③④2、命题“假设△ABC 不是等腰三角形,那么它的任何两个内角不相等〞的逆否命题是A .假设△ABC 是等腰三角形,那么它的任何两个内角相等B .假设△ABC 中任何两个内角不相等,那么它不是等腰三角形 C .假设△ABC 中有两个内角相等,那么它是等腰三角形D .假设△ABC 中任何两个内角相等,那么它是等腰三角形3、命题p :∀x >0,总有(x +1)e x>1,那么﹁p 为A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1 C .∀x >0,总有(x +1)e x≤1 D .∀x ≤0,使得(x +1)e x≤14、{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,那么a 20等于A .-1B .1C .3D .75、“十二平均律〞 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的开展做出了重要奉献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于,假设第一个单音的频率f ,那么第八个单音频率为 A.B.C.D.6.椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),那么m =A .2B .3C .4D .97、实数(sh ìsh ù)成等比数列,那么椭圆的离心率为A .B .2C .63或者2 D .或者8、命题:假设,那么;命题:.以下命题为假命题的是A .B .C .D .9、,且满足,那么的最小值为A .B .C .D .10、假设,且,那么“函数在上是减函数〞是“函数在R 上是增函数 〞的A . 充分而不必要条件B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 11、设集合那么A. 对任意实数a ,B. 对任意实数a ,C. 当且仅当a <0时, ()A ∉1,2D. 当且仅当 时, ()A ∉1,212、椭圆E :(a>b>0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.假设,点M 到直线l 的间隔 不小于45,那么椭圆E的离心率的取值范围是A.B.C.D.二、填空题: 本大题一一共4小题(xi ǎo t í),每一小题5分.13.椭圆的焦距长是________14. 假设命题“∃t ∈R ,〞是假命题,那么实数a 的取值范围是________.15. 为椭圆是椭圆的两个焦点,那么:的最大值为_________; 16、以下四种说法:①命题“∀x ∈R ,都有x 2-2<3x 〞的否认是“∃x ∈R ,使得x 2-2≥3x 〞; ②命题“在数列中,假设数列{}n a 为等比数列,那么〞的逆命题为真命题;③假设“〞为真命题,那么“〞也为真命题④假设a ,b ∈R ,那么2a <2b是log 12a >log 12b 的充要条件;其中正确的说法是________.三、解答题:本大题一一共6小题,一共70分. 17.〔10分〕设命题p :实数x 满足,其中.命题q :实数x 满足(1) 当a =1,且p ∧q 为真,务实数x 的取值范围; (2) 假设p 是q 的必要不充分条件,务实数a 的取值范围.18.〔12分〕设{}n a 是等差数列(děnɡ chā shù liè),且,.(1) 求{}n a 的通项公式; (2) 求.19.〔12分〕某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元。
高二数学上学期期中试题文9
2017—2018学年度高二第一学期期中考试数学(文科)试题(试卷分值:150分 考试时间:120分钟 )注意事项:第Ⅰ卷所有选择题的答案必须用2B 铅笔涂在答题卡中相应的位置,第Ⅱ卷的答案必须用0.5毫米黑色签字笔写在答题卡的相应位置上,否则不予计分。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是A. 一个圆柱B. 一个圆锥C. 两个圆锥D. 一个圆台2. 下列命题正确的是A. 棱柱的侧面都是长方形B. 棱柱的所有面都是四边形C. 棱柱的侧棱不一定相等D. 一个棱柱至少有五个面3. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中1OA OB ==,则原平面图形的面积为A. 1 32D. 2 4. 某几何体的三视图如图所示,则其表面积为A. 2πB. 3πC. 4πD. 5π5. 下列命题正确的是A. 四边形确定一个平面B. 两两相交且不共点的三条直线确定一个平面C. 经过三点确定一个平面D. 经过一条直线和一个点确定一个平面6. 已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列正确的是A. 若//m α,//n α,则//m nB. 若αγ⊥,βγ⊥,则//αβC. 若//m α,//m β,则//αβD. 若m α⊥,n α⊥,则//m n7. 已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为8. 已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为A. B. C. D.9. 直线20x y -+=的倾斜角为A. 30︒B. 45︒C. 60︒D. 135︒10. 已知圆C 的圆心(2,3)-,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程为A. 22460x y x y +-+=B. 224680x y x y +-++=C. 22460x y x y +--=D. 224680x y x y +-+-=11. 已知点(1,3)P 与直线l :10x y ++=,则点P 关于直线l 的对称点坐标为A. (3,1)--B. (2,4)C. (4,2)--D. (5,3)--12. 如图,正方体1111ABCD A BC D -中,有以下结论:①//BD 平面11CB D ; ②1AC BD ⊥; ③1AC ⊥平面11CB D ;④直线11B D 与BC 所成的角为45︒.其中正确的结论个数是A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13. 已知圆C :222220x y x y +++-=和直线l :20x y -+=,则圆心C 到直线l 的距离为 .14. 在正方体1111ABCD A BC D -的各条棱中,与直线1AA 异面的棱有 条.15. 直线210x ay +-=与直线(1)10a x ay ---=平行,则a 的值是 .16. 已知正方体1111ABCD A BC D -的一个面1111A B C D A ,B ,C ,D 都在半球面上,则正方体1111ABCD A BC D -的体积为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤. 第17题10分,第18~22题每题12分)17. (本小题满分10分)已知菱形ABCD 中,(4,7)A -,(6,5)C -,BC 边所在的直线经过点(8,1)P -.(1)求AD 边所在的直线方程;(2)求对角线BD 所在的直线方程.18. (本小题满分12分)已知动圆C 经过点(1,2)A -,(1,4)B -.(1)求周长最小的圆的一般方程;(2)求圆心在直线240x y --=上的圆的标准方程.19. (本小题满分12分)四边形ABCD 是正方形,O 是正方形的中心,PO ⊥平面ABCD ,E 是PC 的中点.(1)求证:PA ∥平面BDE ;(2)求证:BD PC ⊥.20. (本小题满分12分)如图,多面体ABCDE 中,//BE CD ,BE BC ⊥,AB AC =,平面BCDE ⊥平面ABC ,M 为BC 的中点.(1)若N 是线段AE 的中点,求证://MN 平面ACD ;(2)若1BE =,2BC =,3CD =,求证:DE ⊥平面AME .21. (本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,1BC =,E ,F 分别为11AC ,BC 的中点. (1)求证:平面ABE ⊥平面11B BCC ;(2)求证:在棱AC 上存在一点M ,使得平面1//C FM 平面ABE ;(3)求三棱锥E ABC -的体积.22. (本小题满分12分)如图组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面(过圆柱的轴,截圆柱所得的截面),C 是圆柱底面圆周上不与A ,B 重合的一个点.(1)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ;(2)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比.数学(文科)参考答案一、选择题(每小题5分,共60分)1. C2. D3. A4. B5. B6. D7. A8. C9. B 10. A 11.C 12.D二、填空题(每小题5分,共20分)12或0 16.三、解答题(第17题10分,第18~22题每题12分)17. (1)直线AD斜率为5(1)268AD BC PCk k k---====-,由点斜式方程,得72(4)y x-=+,即2150x y-+=;(2)对角线互相垂直,1157(5)646BDACkk=-=-=----,线段AC的中点为(1,1),由点斜式方程,得51(1)6y x-=-,即5610x y-+=18. (1)以线段AB为直径的圆的周长最小,AB中点坐标(0,1),AB=圆的标准方程为22(1)10x y+-=,一般方程为22290x y y+--=;(2)线段AB中垂线的斜率为1112431(1)ABkk=-=-=----,中垂线方程为113y x=+,联立方程113240y xx y⎧=+⎪⎨⎪--=⎩,得圆心坐标(3,2),半径r=标准方程为22(3)(2)20x y-+-=19. (1)连接AC,OE,则AC经过正方形中心点O,由O是AC的中点,E是PC的中点,得//OE PA,又OE⊂平面BDE,PA⊄平面BDE,所以//PA平面BDE;(2)由PO⊥平面ABCD,得PO BD⊥,又正方形对角线互相垂直,即BD AC⊥,PO AC O=点,PO⊂平面PAC,所以BD⊥平面PAC,得BD PC⊥.20. (1)取AB的中点H,连接MH,NH,由N是AE的中点,得//NH BE,又//BE CD ,得//NH CD ,NH ⊄平面ACD ,所以//NH 平面ACD ,同理可证,//MH 平面ACD ,而MHNH H =点,所以平面//MNH 平面ACD , 从而//MN 平面ACD ;(2)连接AM ,DM ,EM ,由AB AC =,M 为BC 的中点,得AM BC ⊥,又平面BCDE ⊥平面ABC ,平面BCDE 平面ABC BC =,AM ⊂平面ABC ,所以AM ⊥平面BCDE ,则AM DE ⊥,由勾股定理,在Rt EBM ∆中,1BE =,112BM BC ==,得EM ,在Rt DCM ∆中,3CD =,112CM BC ==,得DM 在直角梯形BCDE 中,由平面几何知识计算得DE ==,所以222E M D E D M +=,即EM DE ⊥,而AM EM M =点,所以DE ⊥平面AME .21. (1)由侧棱垂直于底面,1BB ⊥平面ABC ,得1BB AB ⊥,又AB BC ⊥,1BC BB B =点,所以AB ⊥平面11B BCC ,从而平面ABE ⊥平面11B BCC ;(2)取AC 中点M ,连接1C M ,FM ,由F 为BC 的中点,知//FM AB ,FM ⊄平面ABE ,得//FM 平面ABE ,因为1//AM C E ,1AM C E =,所以四边形1AMC E 为平行四边形,则1//C M AE ,1C M ⊄平面ABE ,得1//C M 平面ABE ,而1CM F M M =点, 平面1//C FM 平面ABE ,即存在AC 中点M ,使得平面1//C FM 平面ABE ;(3)点E 到底面的距离即为侧棱长12AA =,在Rt ABC ∆中,2AC =,1BC =,AB BC ⊥,所以AB =11122ABC S AB BC ∆=⋅==,所以12323E ABC V -=⨯=. 22. (1)由条件,AB 为底面圆的直径,C 是圆柱底面圆周上不与A 、B 重合的一个点,所以AC BC ⊥,又圆柱母线1AA ⊥平面ABC ,则1AA BC ⊥,1A AAC A =点,所以BC ⊥平面1AAC ,从而平面1A BC ⊥平面1A AC ; (2)设圆柱的母线长为h ,底面半径为r ,则圆柱的体积为2r h π,当点C 是弧AB 的中点时,ABC ∆为等腰直角三角形,面积为2r , 三棱锥1A ABC -的体积为221133r h r h ⨯⨯=, 三棱柱111A B C ABC -的体积为2r h ,则四棱锥111A BCC B -的体积为2221233r h r h r h -=, 四棱锥111A BCC B -与圆柱的体积比为23π.。
湖南省衡阳县2017-2018学年高二上学期期末考试数学(文)试题
2017年下学期期末质量检测参考答案高二数学(文科)一、选择题:(本题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是符合题目要求的。
)二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在答题卷对应题号的横线上)11.2- 12.5 13.30 14.21 15.463三、解答题:(本大题共6小题,满分50分) 16.(本小题10分)解:(1)n n a a 211=+ ,且13=a ,01≠∴a ,∴数列{n a }是公比为31的等比数列,1)31(213=⋅=a a ,91=∴a ,31)31()31(9--=⨯=n n n a …………………………5分(2)由(1)知n b n -=3,11-=-+n n b b ,又21=b ,∴数列}{n b 是首项为2,公差为1-的等差数列,252)32(2nn n n S n +-=-+=…………………………………………………………10分17.(本小题10分)解:(1)当1-=a 时,原不等式化为012>-+x x ,解得251--<x 或251+->x∴不等式的解集为|{x 251--<x 或251+->x }………………………4分 (2)由已知得:对),1(+∞∈∀x ,12-<x x a 恒成立令1)(2-=x x x f ()1>x , 4211111)1(2)1)(2≥+-+-=-+-+-=x x x x x x f ( 当且权当2=x 时取等号, 故4<a (10)分18.(本小题10分)解:(1) bc a c b 3)22-=-(,即bc a c b -=-+222在ABC ∆中,由余弦定理得212cos 222-=-+=bc a c b A 又π<<A 0,32π=∴A ……………………………………………………5分 (2)在A B C ∆中,由正弦定理得A aB b sin sin =,即32si n 3s i n 1π=B,21sin =∴B , 又20π<<B ,6π=∴B ,6π=∴C ,6sin 1321π⨯⨯⨯=∆ABC S 43=…………10分19.(本小题10分)解:(1)22'1)(xax x a x x f -=-=由已知得⎩⎨⎧==⇒⎩⎨⎧-=--=-⇒⎩⎨⎧-=-=3322212)1(2)1('b a b a a b f f ……………………………………5分 (2))(x f 的定义域为),0(+∞,若0≤a ,当∈x ),0(+∞时,0)('>x f ,)(x f 单调递增 若0>a ,当∈x ),0(a 时,0)('<x f ,)(x f 单调递减当∈x )(∞+,a 时,0)('>x f ,)(x f 单调递增综上所述:0≤a 时,)(x f 的单调递增区间是),0(+∞0>a 时,)(x f 的单调递增区间是)(∞+,a ,递减区间是),0(a ……………10分20.(本小题10分)解:(1)由已知42=a 2=∴a ,又点)23,1(P 在椭圆上,1234122=+∴b)(,32=∴b ,故椭圆方程为13422=+y x ………………………4分(2)由(1)知A(-2,0),B(0,3), 所以k PQ =k AB =32,所以PQ 所在直线方程为y =32(x -1), 由⎩⎪⎨⎪⎧y =32(x -1),x 24+y 23=1,得8y 2+43y -9=0,设P(x 1,y 1),Q(x 2,y 2),则y 1+y 2=-32,y 1·y 2=-98, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2=34+4×98=212, 所以S △F1PQ =12|F 1F 2|·|y 1-y 2|=12×2×212=212 (10)分。
湖南省2017—2018学年高二数学上学期期中考试卷题库(共6套)
湖南省2017—2018学年高二数学上学期期中考试卷(一)(文科)(考试时间90分钟满分100分)一、单项选择题(共15小题,每小题3分,共45分)1.已知命题p:若x2+y2=0,则x、y全为0;命题q:若a>b,则.给出下列四个复合命题:①p且q,②p或q,③¬p④¬q,其中真命题的个数为()A.1 B.2 C.3 D.42.若A,B为互斥事件,则()A.P(A)+P(B)<1 B.P(A)+P(B)>1 C.P(A)+P(B)=1 D.P(A)+P(B)≤13.已知椭圆上的一点P到椭圆一个焦点的距离为3,则P到另一个焦点的距离()A.2 B.3 C.5 D.74.同时掷3枚硬币,至少有1枚正面向上的概率是()A.B.C.D.5.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r16.双曲线kx2+5y2=5的一个焦点是(0,2),则k等于()A.B.﹣C. D.﹣7.抛物线y=4x2的准线方程为()A.y=﹣B.y=C.y=D.y=﹣8.命题“若x2<4,则﹣2<x<2”的逆否命题是()A.若x2≥4,则x≥2或x≤﹣2 B.若﹣2<x<2,则x2<4C.若x>2或x<﹣2,则x2>4 D.若x≥2,或x≤﹣2,则x2≥49.“a=+2kπ(k∈Z)”是“cos2a=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.点A,B的坐标分别是(﹣5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是,则点M的轨迹方程是()A.B.C.D.11.若在双曲线的右支上到原点和右焦点距离相等的点有两个,则双曲线的离心率的取值范围是()A.B.C.e>2 D.1<e<212.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.13.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.14.经过双曲线上任一点M作平行于实轴的直线,与渐近线交于P、Q两点,则|MP|•|MQ|为定值,其值为()A.a2B.b2C.c2D.ab15.曲线C1:y2=2px(p>0)的焦点F恰好是曲线C2:(a>0,b>0)的右焦点,且曲线C1与曲线C2交点连线过点F,则曲线C2的离心率是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)16.抛物线y2=4px(p>0)上一点M到焦点的距离是a(a>p),则点M的横坐标是.17.给出以下命题:①∀x∈R,有x4>x2;②∃α∈R,使得sin3α=3sinα;③∃a∈R,对∀x∈R使x2+2x+a<0.其中真命题的序号是.18.观察新生婴儿的体重,其频率分布直方图如图:则新生婴儿体重在(2700,3000)的频率为.19.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,...,1000,打算从中抽取一个容量为50的样本,按系统抽样的办法分成50个部分.如果第一部分编号为0001,0002, (0020)从中随机抽取一个号码为0015,则第40个号码为.20.椭圆的焦点为F1,F2,点P是椭圆上的动点,当∠F1PF2为钝角时,点P的横坐标的取值范围是.三、解答题(共5小题,每题8分,共40分)21.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.22.已知p:|1﹣|≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.23.已知关于x的一元二次函数f(x)=ax2﹣4bx+1.(1)设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域内的随机点,记A={y=f(x)有两个零点,其中一个大于1,另一个小于1},求事件A发生的概率.24.如图,已知直线与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1).(1)求AB直线方程;(2)求p的值.25.如图,已知中心在原点且焦点在x轴上的椭圆E经过点A(3,1),离心率.(1)求椭圆E的方程;(2)过点A且斜率为1的直线交椭圆E于A、C两点,过原点O与AC垂直的直线交椭圆E于B、D两点,求证A、B、C、D四点在同一个圆上.参考答案一、单项选择题1.B 2.D 3.D.4.A.5.C.6.B.7.D 8.D.9.A.10.C.11.C.12.B.13.D.14.A.15.D.二、填空题16.解:如图,由题意知|MF|=a(a>p),∵抛物线y2=4px的准线方程为x=﹣p,由抛物线定义得x M+p=a,则x M=a﹣p.故答案为:a﹣p.17.解:当x=1时,x4=x2,故①错误;当α=0时,sin3α=3sinα,故②正确;对于③由于抛物线开口向上,一定有函数值大于0,故③错误故答案为②18.解:频率分布直方图:小长方形的面积=组距×,∴新生婴儿体重在(2700,3000)的频率为0.001×300=0.3故答案为:0.319.解:∵系统抽样是先将总体按样本容量分成k=段,再间隔k取一个.又∵现在总体的个体数为1000,样本容量为50,∴k=20∴若第一个号码为0015,则第40个号码为0015+20×39=0795故答案为079520.解:由椭圆的标准方程可得:a2=13,b=2,∴=3.F1(﹣3,0),F2(3,0).设P(x,y),则,∴y2=4.∵∠F1PF2为钝角,∴=(x+3,y)•(x﹣3,y)=x2﹣9+y2<0,∴x2﹣9+4<0.化为x2,解得<x<.∴点P的横坐标的取值范围是,故答案为:.三、解答题21.解:(Ⅰ)由题意可知n=10,===8,===2,故l xx==720﹣10×82=80,l xy==184﹣10×8×2=24,故可得b=═=0.3,a==2﹣0.3×8=﹣0.4,故所求的回归方程为:y=0.3x﹣0.4;(Ⅱ)由(Ⅰ)可知b=0.3>0,即变量y随x的增加而增加,故x与y之间是正相关;(Ⅲ)把x=7代入回归方程可预测该家庭的月储蓄为y=0.3×7﹣0.4=1.7(千元).22.解:解法一:由p:|1﹣|≤2,解得﹣2≤x≤10,∴“非p”:A={x|x>10或x<﹣2}、由q:x2﹣2x+1﹣m2≤0,解得1﹣m≤x≤1+m(m>0)∴“非q”:B={x|x>1+m或x<1﹣m,m>0=由“非p”是“非q”的必要而不充分条件可知:B⊆A.解得m≥9.∴满足条件的m的取值范围为{m|m≥9}.解法二:由“非p”是“非q”的必要而不充分条件.即“非q”⇒“非p”,但“非p”“非q”,可以等价转换为它的逆否命题:“p⇒q,但q p”.即p是q的充分而不必要条件.由|1﹣|≤2,解得﹣2≤x≤10,∴p={x|﹣2≤x≤10}由x2﹣2x+1﹣m2≤0,解得1﹣m≤x≤1+m(m>0)∴q={x|1﹣m≤x≤1+m,m>0}由p是q的充分而不必要条件可知:p⊆q⇔解得m≥9.∴满足条件的m的取值范围为{m|m≥9}.23.解:(1)∵函数f(x)=ax2﹣4bx+1的图象的对称轴为,要使f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且…若a=1则b=﹣1,若a=2则b=﹣1,1若a=3则b=﹣1,1…记B={函数y=f(x)在区间[1,+∞)上是增函数},则事件B包含基本事件的个数是1+2+2=5,∴…(2)依条件可知试验的全部结果所构成的区域为,其面积…事件A构成的区域:由,得交点坐标为,…∴,∴事件A发生的概率为…24.解:(1)∵点D的坐标为(2,1),∴,又AB⊥OD,且AB过D(2,1),∴AB:y﹣1=﹣2(x﹣2),整理得:2x+y﹣5=0;(2)设点A的坐标(x1,y1),点B的坐标(x2,y2),由OA⊥OB得:x1x2+y1y2=0,由(1)知AB的直线方程为y=﹣2x+5∴y1y2﹣(y1+y2)+5=0,①联立y=﹣2x+5与y2=2px,消去x得:y2+py﹣5p=0,y1+y2=﹣p,y1y2=﹣5p,②把②代入解得,经检验满足△>0.∴p=.25.(1)解:设椭圆方程为(a>b>0),因为离心率,所以a2=3b2,…所以椭圆方程为,又因为经过点A(3,1),则,…所以b2=4,所以a2=12,属于椭圆的方程为.…(2)证明:直线AC的方程为y=x﹣2,与椭圆方程联立,可得x2﹣3x=0,∴x=0或x=3,∴C(0,﹣2)直线BD的方程为y=﹣x,与椭圆方程联立,可得x2=3,∴x=,∴B(),D()设经过B,C,D三点的圆的方程为x2+y2+Dx+Ey+F=0,则有∴D=﹣1,E=﹣1,F=﹣6,∴圆的方程为x2+y2﹣x﹣y﹣6=0,∵点A(3,1)也适合,∴A(3,1)在圆上,∴A、B、C、D四点在同一个圆上.湖南省2017—2018学年高二数学上学期期中考试卷(二)(理科)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分)1.设集合M={0,1,3},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}2.命题∀m∈[0,1],则的否定形式是()A.∀m∈[0,1],则B.∃m∈[0,1],则C.∃m∈(﹣∞,0)∪(1,+∞),则D.∃m∈[0,1],则3.已知函数f(x)=﹣log3x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(3,9) C.(1,3) D.(9,+∞)4.△ABC的面积是,∠B是钝角,AB=1,BC=,则AC=()A.5 B.2 C.D.15.已知向量,,其中|=,||=2,且(﹣)⊥,则向量与的夹角是()A.B.C.D.6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.一个几何体的三视图如图所示,则该几何体的体积为()A .24 B.16+ C.40 D.308.双曲线﹣=1的渐近线方程与圆相切,则此双曲线的离心率为()A.B.2 C.D.9.已知等差数列{a n}的前n项和为S n,若m>1,且a m﹣1+a m+1﹣a m2=0,S2m﹣1=38则m等于()A.38 B.20 C.10 D.910.已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.211.已知椭圆: +=1(0<b<2),左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若||+||的最大值为5,则b的值是()A.1 B.C.D.12.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0 B.C.2 D.二、填空题(本大题共4小题,每小题5分,共20分)=2a n,若a5=4,则a4a5a6=.13.在数列{a n}中,a n﹣114.已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为.15.如图程序运行后,输出的值为.16.抛物线y2=8x的准线与x轴相交于点P,过点P作斜率为k(k>0)的直线交抛物线于A、B两点,F为抛物线的焦点,若|FA|=2|FB|,则k=.三、解答题(共70分,解答应写出文字说明、证明过程或求解演算步骤)17.已知两个命题p:∀x∈R,sinx+cosx>m恒成立,q:∀x∈R,y=(2m2﹣m)x为增函数.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.18.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)设PD=AD=1,求直线PC与平面ABCD所成角的正切值.19.在△ABC中,设.(Ⅰ)求B 的值(Ⅱ)求的值.20.设等差数列{a n}的前项和为S n,且a2=2,S5=15,数列{b n}的前项和为T n,且b1=,2nb n=(n+1)b n(n∈N*)+1(Ⅰ)求数列{a n}通项公式a n及前项和S n;(Ⅱ)求数列{b n}通项公式b n及前项和T n.21.某种商品原来每件售价为25元,年销售量8万件.(Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收人不低于原收入,该商品每件定价最多为多少元?(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入(x2﹣600)万元作为技改费用,投入50万元作为固定宣传费用,投入x万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.22.如图,椭圆C1:和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,且圆C2的面积为π.椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A,B,直线EA,EB与椭圆C1的另一个交点分别是点P,M.(I)求椭圆C1的方程;(Ⅱ)求△EPM面积最大时直线l的方程.参考答案一、单项选择题1.A.2.D.3.B.4.C.5.A.6.A.7.D8.B.9.C.10.B.11.D.12.C.二、填空题=2a n,a5=4知,数列{a n}是等比数列,13.解:由a n﹣1故a4a5a6=a53=64.故答案为:64.14.解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6,故答案为:0或6.15.解:由题意,如图,此循环程序S=1;i=2S=1×2=2;i=3S=2×3=6;i=4S=6×4=24;i=5S=24×5=120;i=6>5结束.故输出的值为:120.故答案为:120.16.解:设A(x1,y1),B(x2,y2)由已知|FA|=2|FB|,得:x1+2=2(x2+2),即x1=2x2+2,①∵P(﹣2,0),则AB的方程:y=kx+2k,与y2=8x联立,得:k2x2+(4k2﹣8)x+4k2=0,则x1x2 =4,②由①②得x2=1,则A(1,),∴k==.故答案为:.三、解答题17.解:由题意若p∨q为真命题,p∧q为假命题,可得,命题p和命题q一个为真命题,另一个为假命题.若p是真命题,:∀x∈R,sinx+cosx>m恒成立,可得>m恒成立,即m <﹣,故实数m的取值范围为(﹣∞,﹣).若命题q是真命题,∀x∈R,y=(2m2﹣m)x为增函数,则有2m2﹣m>1,解得m>1,或m<.当p真q假时,实数m的取值范围为:∅;当p假q真时,实数m的取值范围为:[﹣,﹣)∪(1,+∞),综上,所求的实数m的取值范围为:[﹣,﹣)∪(1,+∞),18.(Ⅰ)证明:在△ABD中,∠DAB=60°,AB=2AD,由余弦定理可得:BD2=AB2+AD2﹣2AB•AD•cos∠DAB,∴BD2=5AD2﹣2AD2=3AD2,则AB2=AD2+BD2,即BD⊥AD.又PD⊥平面ABCD,∴PD⊥BD.∵PD∩AD=D,∴BD⊥平面PAD,则PA⊥BD;(Ⅱ)解:∵PD⊥平面ABCD,∴∠PCD为PC与平面ABCD所称的角.在Rt△BAD中,AD=1,∠DAB=60°,∴AB=2,则DC=2,∴tan∠PCD=.19.解:(Ⅰ)∵,∴,,,又sin(A+B)=sinC≠0,∴cosB=,∵0<B<π,∴B=;(Ⅱ)∵,∴由正弦定理得,,则,即a2+c2=2ac,化简得,a=c,由余弦定理得,b2=a2+c2﹣2accosB=2a2﹣a2=(2﹣)a2,∴==2.20.解:(Ⅰ)由等差数列{a n}的公差为d,由等差数列的性质可知:S5=5a3=15,则a3=3,d=a3﹣a2=1,首项a1=1,∴数列{a n}通项公式a n=1+(n﹣1)=n,前n项和S n==;=(n+1)b n(n∈N*),(Ⅱ)2nb n+1则=•,∴=•,=•,=×,…=•,∴当n≥2时,=()n﹣1,即b n=,当n=1时,b1=,符合上式,∴数列{b n}通项公式b n=,∴T n=+++…+,T n=+++…++,两式相减得:T n=+++…+﹣,=﹣,=1﹣﹣,=1﹣,T n=2﹣,数列{b n}前项和T n=2﹣.21.解:(Ⅰ)设每件定价为x元,则提高价格后的销售量为,根据销售的总收人不低于原收入,有,整理得x2﹣65x+1000≤0,解得25≤x≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元.(Ⅱ)依题意,x>25时,不等式有解,等价于x>25时,有解,∵(当且仅当x=30时,等号成立),∴a≥10.2.此时该商品的每件定价为30元∴当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.22.解:(Ⅰ)由圆C2的面积为π,得:b=1,圆C2将椭圆C1的长轴三等分,可得a=3b=3,所以椭圆方程为: +y2=1;(Ⅱ)由题意得:直线PE,ME的斜率存在且不为0,PE⊥EM,不妨设直线PE的斜率为k(k>0),则PE:y=kx﹣1,由,得:或,所以P(,),同理得M(,),k PM=,由,得A(,),所以:k AB=,所以,设,则,当且仅当时取等号,所以k﹣=±,则直线AB:y=x=(k﹣)x,所以所求直线l方程为:.湖南省2017—2018学年高二数学上学期期中考试卷(三)(文科)(考试时间120分钟满分150分)一、单项选择题(共12题,每题5分,满分60分)1.命题“若x=2,则x2﹣3x+2=0”的逆否命题是()A.若x≠2,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=2C.若x2﹣3x+2≠0,则x≠2 D.若x≠2,则x2﹣3x+2=02.已知a∈R,则“a>2”是“a2>2a”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.抛物线y2=8x的准线方程是()A.x=﹣2 B.x=﹣4 C.y=﹣2 D.y=﹣44.等差数列{a n}中,a7+a9=16,a4=1,则a12=()A.15 B.30 C.31 D.645.与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是()A.﹣y2=1 B.﹣y2=1 C.﹣=1 D.x2﹣3y2=16.已知,则z=2x+y的最大值为()A.7 B.C.1 D.87.对于实数a,b,c,下列结论中正确的是()A.若a>b,则ac2>bc2B.若a>b>0,则C.若a<b<0,则D.若a>b,,则a>0,b<08.等比数列x,3x+3,6x+6,…的第四项等于()A.﹣24 B.0 C.12 D.249.已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=010.设M为椭圆+=1上的一个点,F1,F2为焦点,∠F1MF2=60°,则△MF1F2的周长和面积分别为()A.16,B.18,C.16,D.18,11.已知单调递增的等比数列{a n}中,a2•a6=16,a3+a5=10,则数列{a n}的前n项和S n=()A.B.C.2n﹣1 D.2n+1﹣212.如图,在中△ABC,∠CBA=∠CAB=30°,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率的倒数和为()A.B.1 C.2 D.2二、填空题(共4题,每题5分,满分20分)13.在△ABC中,已知b=1,c=,∠C=120°,则a=.14.已知关于x的不等式x2+ax+b<0的解集为(1,2),则关于x的不等式bx2+ax+1>0的解集为.15.过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若|AB|=8,则线段AB中点的横坐标为.16.设x>0,y>0.且2x﹣3=()y,则+的最小值为.三、解答题(共70分)17.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.18.已知命题p:k2﹣8k﹣20≤0,命题q:方程=1表示焦点在x轴上的双曲线.(Ⅰ)命题q为真命题,求实数k的取值范围;(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.19.已知数列{a n}(n∈N*)的前n项的S n=n2.(Ⅰ)求数列{a n},的通项公式;(Ⅱ)若,记数列{b n},的前n项和为T n,求使成立的最小正整数n的值.20.某厂用甲、乙两种原料生产A、B两种产品,已知生产1t A产品,1t B产品分别需要的甲、乙原料数,可获得的利润数及该厂现有原料数如下表所示.问:在现有原料下,A、B产品应各生产多少才能使利润总额最大?列产品和原料关系表如下:21.已知点A(0,﹣2),B(0,4),动点P(x,y)满足;(1)求动点P的轨迹方程;(2)设(1)中所求轨迹方程与直线y=x+2交于C、D两点;求证OC⊥OD(O为坐标原点).22.已知椭圆+=1(a>b>0)经过点(0,),离心率为,左右焦点分别为F1(﹣c,0),F2(c,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l:y=﹣x+m与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足=,求直线l的方程.参考答案一、单项选择题1.C.2.A3.A4.A.5.B.6.A.7.D.8.A.9.A.10.D.11.B.12.A二、填空题13.解:根据题意,在△ABC中,b=1,c=,∠C=120°,由余弦定理cosC=可得,﹣=,即a2+a﹣2=0,解可得:a=1或a=﹣2(舍),即a=1,故答案为:1.14.解:∵关于x的不等式x2+ax+b<0的解集为(1,2),∴函数f(x)=x2+ax+b的图象开口朝上,且有两个零点2和1,∴a=﹣3,b=2,故bx2+ax+1>0可化为:2x2﹣3x+1>0,解得:x∈,故答案为:15.解:由抛物线y2=4x,可得焦点F(1,0),若AB⊥x轴,则|AB|=2p=4,不符合条件,舍去.设直线l的方程为:my=(x﹣1),A(x1,y1),B(x2,y2).联立,化为y2﹣4my﹣4=0,∴y1+y2=4m,y1y2=﹣4.∴|AB|===8,化为m2=1,解得m=±1,当m=1时,联立,化为x2﹣6x+1=0,∴x1+x2=6,因此=3.同理可得:m=﹣1时,=3.∴线段AB中点的横坐标为3.故答案为:3.16.解:∵2x﹣3=()y,∴x﹣3=﹣y,即x+y=3.又x>0,y>0.则+===3,当且仅当y=2x=2时取等号.∴+的最小值为3.故答案为:3.三、解答题17.解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.18.解:(Ⅰ)当命题q为真时,由已知得,解得1<k<4∴当命题q为真命题时,实数k的取值范围是1<k<4…(Ⅱ)当命题p为真时,由k2﹣8k﹣20≤0解得﹣2≤k≤10…由题意得命题p、q中有一真命题、有一假命题…当命题p为真、命题q为假时,则,解得﹣2≤k≤1或4≤k≤10.…当命题p为假、命题q为真时,则,k无解.…∴实数k的取值范围是﹣2≤k≤1或4≤k≤10.…19.解:(Ⅰ)∵S n=n2=(n﹣1)2当n≥2时,S n﹣1∴相减得:a n=S n﹣S n﹣1=2n﹣1又a1=S1=1符合上式∴数列{a n},的通项公式a n=2n﹣1(II)由(I)知∴T n=b1+b2+b3++b n==又∵∴∴成立的最小正整数n的值为520.解析:设生产A、B两种产品分别为xt,yt,其利润总额为z万元,根据题意,可得约束条件为…作出可行域如图:….目标函数z=4x+3y,作直线l0:4x+3y=0,再作一组平行于l0的直线l:4x+3y=z,当直线l经过P点时z=4x+3y 取得最大值,….由,解得交点P….所以有…所以生产A产品2.5t,B产品1t时,总利润最大,为13万元.…21.解:(1)∵A(0,﹣2),B(0,4),P(x,y)∴,∵∴﹣x(﹣x)+(4﹣y)(﹣2﹣y)=y2﹣8整理可得,x2=2y(2)联立可得x2﹣2x﹣4=0设C(x1,y1),D(x2,y2),则x1+x2=2,x1x2=﹣4,∴y1y2=(x1+2)(x2+2)=x1x2+2(x1+x2)+4=4∵=x1x2+y1y2=0∴OC⊥OD22.解:(Ⅰ)由题意可得,解得,c=1,a=2.∴椭圆的方程为.(Ⅱ)由题意可得以F1F2为直径的圆的方程为x2+y2=1.∴圆心到直线l的距离d=,由d<1,可得.(*)∴|CD|=2==.设A(x1,y1),B(x2,y2).联立,化为x2﹣mx+m2﹣3=0,可得x1+x2=m,.∴|AB|==.由=,得,解得满足(*).因此直线l的方程为.湖南省2017—2018学年高二数学上学期期中考试卷(四)(理科)(考试时间100分钟满分120分)一、单项选择题(共8小题,每小题5分,共40分)1.设,是向量,命题“若=﹣,则||=||”的逆命题是()A.若≠,则||≠|| B.若=﹣,则||≠|| C.若||≠||,则≠﹣D.若||=||,则=﹣2.已知a>b,c>d,且a,b,c,d均不为0,那么下列不等式成立的是()A.ac>bd B.ad>bc C.a﹣c>b﹣d D.a+c>b+d3.若p:∀x∈R,sin x≤1,则()A.¬p:∃x0∈R,sin x0>1 B.¬p:∀x∈R,sin x>1C.¬p:∃x0∈R,sin x0≥1 D.¬p:∀x∈R,sin x≥14.若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0} B.{x|0<x≤1} C.{x|0≤x≤2} D.{x|0≤x≤1}5.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=16.已知条件p:1≤x≤3,条件q:x2﹣5x+6<0,则p是q的()条件.A.充分必要条件 B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件7.若不等式ax2+bx﹣2>0的解集为{x|﹣2<x<﹣}则a,b的值分别是()A.a=﹣8,b=﹣10 B.a=﹣1,b=9 C.a=﹣4,b=﹣9 D.a=﹣1,b=28.设变量x,y满足约束条件,则2x+3y的最大值是()A.10 B.9 C.8 D.7.5二、填空题(共6小题,每小题5分,共30分)9.在△ABC中,角A,B,C 的对边分别是a,b,c,若a=3,A=30°,B=45°,则b=.10.已知{a n}是等比数列,,则公比q=.11.双曲线的虚轴长是实轴长的2倍,则m的值=.12.函数的最小值为.13.若数列{a n}满足,则数列{a n}的前n项和S n=.14.已知实数x、y满足,若不等式a(x2+y2)≥(x+y)2恒成立,则实数a的最小值是.三、解答题(共5小题,共50分)15.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2﹣a2=bc.(1)求角A的大小;(2)若a=,b+c=4,求△ABC的面积.16.等差数列{a n}足:a2+a4=6,a6=S3,其中S n为数列{a n}前n项和.(Ⅰ)求数列{a n}通项公式;(Ⅱ)若k∈N*,且a k,a3k,S2k成等比数列,求k值.17.已知c>0,且c≠1,设p:函数y=c x在R上单调递减;q:函数f(x)=x2﹣2cx+1在(,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.18.某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米.已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?19.如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.参考答案一、单项选择题1.D.2.D.3.A 4.B 5.B.6.C 7.C.8.B 二、填空题9.解:由正弦定理,,可得,b===3.故答案为:.10.解由题意:∴q=故答案是11.解:∵双曲线的虚轴长是实轴长的2倍,∴2=,解得m=16.故答案为:16.12.解:∵x>2,∴x﹣2>0,∴f(x)=x+=(x﹣2)++2≥2+2=4,当且仅当x﹣2=1,即x=3时取等号∴函数f(x)的最小值为f(3)=4.故答案为:4.13.解:当x=0时,a n=﹣2n,∴数列{a n}的前n项和S n==﹣n2﹣n;当x=1时,a n=1﹣2n,∴数列{a n}的前n项和S n=﹣=﹣n2;当x≠0,1时,S n=﹣n2﹣n.∴数列{a n}的前n项和S n=.故答案为:.14.解:实数x、y满足的可行域是一个三角形,三角形的三个顶点分别为(1,4),(2,4),与原点连线的斜率分别为4,2,∴a(x2+y2)≥(x+y)2等价于a≥1+∵∈[2,4]∴≤+≤4+=∴a≥1+=∴实数a的最小值是故答案为:三、解答题15.解:(1)依题意:,∴(2)由余弦定理得:a2=b2+c2﹣2bc•cosA,即:a2=(b+c)2﹣2bc﹣bc,∴3bc=(b+c)2﹣a2=9,bc=3.∴.(另解:算出b=1,c=3或c=1,b=3,没有分情况说明扣.)16.解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由a2+a4=6,a6=S3,得,解得.∴a n=1+1×(n﹣1)=n;(Ⅱ),由a k,a3k,S2k成等比数列,得9k2=k(2k2+k),解得k=4.17.解∵函数y=c x在R上单调递减,∴0<c<1.即p:0<c<1,∵c>0且c≠1,∴¬p:c>1.又∵f(x)=x2﹣2cx+1在(,+∞)上为增函数,∴c≤.即q:0<c≤,∵c>0且c≠1,∴¬q:c>且c≠1.又∵“p或q”为真,“p且q”为假,∴p真q假,或p假q真.①当p真,q假时,{c|0<c<1}∩{c|c>,且c≠1}={c|}.②当p假,q真时,{c|c>1}∩{c|0<c}=∅.[]综上所述,实数c的取值范围是{c|}.18.解:(1)由已知,写字楼最下面一层的总建筑费用为:4000×2000=8000000(元)=800(万元),从第二层开始,每层的建筑总费用比其下面一层多:100×2000=200000(元)=20(万元),写字楼从下到上各层的总建筑费用构成以800为首项,20 为公差的等差数列所以函数表达式为:;…(2)由(1)知写字楼每平方米平均开发费用为:…=(元)…当且仅当,即x=30时等号成立.答:该写字楼建为30层时,每平方米平均开发费用最低.…19.解:(1)椭圆C:经过点P (1,),可得①由离心率e=得=,即a=2c,则b2=3c2②,代入①解得c=1,a=2,b=故椭圆的方程为(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为y=k(x﹣1)③代入椭圆方程并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0设A(x1,y1),B(x2,y2),x1+x2=,④在方程③中,令x=4得,M的坐标为(4,3k),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k所以k1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k1+k2=2k﹣×=2k﹣1又k3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA的斜率k1=,直线PB的斜率为k2=所以k1+k2=+=2×=2k3,故存在常数λ=2符合题意湖南省2017—2018学年高二数学上学期期中考试卷(五)(理科)(考试时间120分钟满分150分)一、单项选择题:本大题共12个小题,每小题5分,共60分.1.已知集合A={x|x=3n+1,n∈N},B={4,6,8,10,12},则集合A∩B中的元素个数()A.1 B.2 C.3 D.42.已知双曲线=1(a>0,b>0)的一条渐近线方程为y=x,则该双曲线的离心率为()A.B.C.D.23.已知α为钝角,sinα=,则tan(+α)=()A.3 B.C.﹣3 D.﹣4.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()A.=﹣10x+200 B.=10x+200 C.=﹣10x﹣200 D.=10x﹣2005.执行如图所示的程序框图,若输入n的值为10,则输出S的值是()A.45 B.46 C.55 D.566.函数y=|sinx|的一个单调增区间是()A.B.C.D.7.如图,在正方体ABCD﹣A1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH所成的角等于()A.45°B.60°C.90°D.120°8.给出如下四个命题:①若“p∨q”为真命题,则p,q均为真命题;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x+x0≤1”;④“x>1”是“x>0”的充分不必要条件.其中不正确的命题是()A.①② B.②③ C.①③ D.③④9.已知(a>2),(x∈R),则p,q的大小关系为()A.p≥q B.p>q C.p<q D.p≤q10.一个多面体的三视图如图所示,则该多面体的表面积为()A.B.21 C.21+D.21+11.设函数f(x)的定义域为D,若f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则成f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则t的范围是()A.(0,)B.(0,1)C.(0,]D.(,+∞)12.从双曲线=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若M为线段FP的中点,O为坐标原点,则|MO|﹣|MT|与b﹣a的大小关系为()A.|MO|﹣|MT|>b﹣a B.|MO|﹣|MT|=b﹣a C.|MP|﹣|MT|<b﹣a D.不确定二、填空题:本大题共4个小题,共20分。
2018年湖南省衡阳市衡阳县三中高二上学期数学期中试卷和解析(文科)
2017-2018学年湖南省衡阳市衡阳县三中高二(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5} 2.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.3.(5分)与﹣角终边相同的角是()A.B.C.D.4.(5分)已知向量=(1,),=(cosθ,sinθ),若∥,则tanθ=()A.B.C.D.5.(5分)设函数f(x)=sinxcosx,x∈R,则函数f(x)的最小值是()A.﹣ B.﹣ C.﹣D.﹣16.(5分)若a<0<b,则下列不等式恒成立的是()A.B.﹣a>b C.a2>b2D.a3<b37.(5分)在△ABC中,若a=2,b=2,A=30°,则B为()A.60°B.60°或120°C.30°D.30°或150°8.(5分)在等差数列{a n}中,S10=120,那么a1+a10的值是()A.12 B.24 C.36 D.489.(5分)在区间[0,2]上随机地取一个数x,则事件:“2x2﹣3x≤0”发生的概率为()A.B.C.D.10.(5分)在△ABC中,已知a=2bcosC,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形11.(5分)在R上定义运算⊗:a⊗b=ab+2a+b,则满足x⊗(x﹣2)<0的实数x 的取值范围为()A.(0,2) B.(﹣2,1)C.(﹣∞,﹣2)∪(1,+∞)D.(﹣1,2)12.(5分)在由正数组成的等比数列{a n}中,若a3a4a5=3π,则sin (log3a1+log3a2+…+log3a7)的值为()A.B.C.1 D.﹣二.填空题(本大题共4小题,每小题5分,合计20分)13.(5分)函数y=的最小正周期为.14.(5分)已知f(x)为奇函数,当x<0时,f(x)=log2(1﹣x),则f(3)=.15.(5分)若对任意的实数k,直线y﹣2=k(x+1)恒经过定点M,则M的坐标是.16.(5分)数列{a n}的前n项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n=.三、说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣2x﹣3<0},B={x|(x﹣m+1)(x﹣m﹣1)≥0}.(1)当m=0时,求A∩B;(2)若A⊆B,求实数m的取值范围.18.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.19.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.20.(12分)已知函数f(x)=2sin(x+)cos(x+)+sin2x.(1)求函数f(x)的最大值;(2)求函数f(x)的单调递增区间.21.(12分)已知在△ABC中,内角A,B,C所对边的边长分别是a,b,c,若a,b,c满足a2+c2﹣b2=.(1)求角B;(2)若b=2,c=2,求△ABC的面积.22.(12分)已知等比数列{a n}是递增数列,其前n项和为S n,且S3=13,a2=3.(I)求数列{a n}的通项公式;(II)设b n=1+log3a n,求数列{a n b n}的前n项和T n.2017-2018学年湖南省衡阳市衡阳县三中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}【解答】解:∵集合A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选:C.2.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.【解答】解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选:D.3.(5分)与﹣角终边相同的角是()A.B.C.D.【解答】解:∵与﹣角终边相同的角的集合为A={α|α=},取k=1,得.∴与﹣角终边相同的角是.故选:C.4.(5分)已知向量=(1,),=(cosθ,sinθ),若∥,则tanθ=()A.B.C.D.【解答】解:根据题意,向量=(1,),=(cosθ,sinθ),若∥,则有1×sinθ=cosθ,变形可得,则tanθ=;故选:B.5.(5分)设函数f(x)=sinxcosx,x∈R,则函数f(x)的最小值是()A.﹣ B.﹣ C.﹣D.﹣1【解答】解:∵函数f(x)=sinxcosx=sin2x,﹣1≤sin2x≤1,∴函数f(x)的最小值是﹣,故选:B.6.(5分)若a<0<b,则下列不等式恒成立的是()A.B.﹣a>b C.a2>b2D.a3<b3【解答】解:∵a<0<b,若a=﹣1,b=1,则A,B,C不正确,对于D,根据幂函数的性质即可判断正确,故选:D.7.(5分)在△ABC中,若a=2,b=2,A=30°,则B为()A.60°B.60°或120°C.30°D.30°或150°【解答】解:由正弦定理可知=,∴sinB==∵B∈(0,180°)∴∠B=60°或120°故选:B.8.(5分)在等差数列{a n}中,S10=120,那么a1+a10的值是()A.12 B.24 C.36 D.48【解答】解:S10=×10(a1+a10)=120,所以a1+a10=24故选:B.9.(5分)在区间[0,2]上随机地取一个数x,则事件:“2x2﹣3x≤0”发生的概率为()A.B.C.D.【解答】解:解不等式2x2﹣3x≤0,得0≤x≤;∴区间[0,2]上随机地取一个数x,则事件:“2x2﹣3x≤0”发生的概率为P==.故选:B.10.(5分)在△ABC中,已知a=2bcosC,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【解答】解:∵a=2bcosC=2b×=∴a2=a2+b2﹣c2∴b2=c2因为b,c为三角形的边长∴b=c∴△ABC是等腰三角形.故选:C.11.(5分)在R上定义运算⊗:a⊗b=ab+2a+b,则满足x⊗(x﹣2)<0的实数x 的取值范围为()A.(0,2) B.(﹣2,1)C.(﹣∞,﹣2)∪(1,+∞)D.(﹣1,2)【解答】解:∵x⊙(x﹣2)=x(x﹣2)+2x+x﹣2<0,∴化简得x2+x﹣2<0即(x﹣1)(x+2)<0,得到x﹣1<0且x+2>0①或x﹣1>0且x+2<0②,解出①得﹣2<x<1;解出②得x>1且x<﹣2无解.∴﹣2<x<1.故选:B.12.(5分)在由正数组成的等比数列{a n}中,若a3a4a5=3π,则sin (log3a1+log3a2+…+log3a7)的值为()A.B.C.1 D.﹣【解答】解:因为由正数组成的等比数列{a n}中,a3a4a5=3π,所以a43=3π,a4=,∴log3a1+log3a2+…+log3a7=====.∴sin(log3a1+log3a2+…+log3a7)=sin=sin(2π)=sin=.故选:B.二.填空题(本大题共4小题,每小题5分,合计20分)13.(5分)函数y=的最小正周期为π.【解答】解:函数的最小正周期为.故答案为:π.14.(5分)已知f(x)为奇函数,当x<0时,f(x)=log2(1﹣x),则f(3)=﹣2.【解答】解:f(x)为奇函数,当x<0时,f(x)=log2(1﹣x),则f(3)=﹣f(﹣3)=﹣log2(1+3)=﹣2,故答案为:﹣2.15.(5分)若对任意的实数k,直线y﹣2=k(x+1)恒经过定点M,则M的坐标是(﹣1,2).【解答】解:直线y﹣2=k(x+1),可得k(x+1)+(2﹣y)=0,由x+1=0且2﹣y=0,解得x=﹣1且y=2,则直线恒过定点(﹣1,2).故答案为:(﹣1,2).16.(5分)数列{a n}的前n项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n=2n ﹣2.【解答】解:∵S n=n2﹣n(n∈N*),∴a1=S1=1﹣1=0,n≥2时,=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.当n=1时,2n﹣2=0=a1,∴a n=2n﹣2.故答案为:2n﹣2.三、说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣2x﹣3<0},B={x|(x﹣m+1)(x﹣m﹣1)≥0}.(1)当m=0时,求A∩B;(2)若A⊆B,求实数m的取值范围.【解答】解:(1)当m=0时,B={x|(x+1)(x﹣1)≥0}={x|x≥1或x≤﹣1},A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴A∩B={x|1≤x<3}.(2)B={x|[(x﹣(m﹣1)][(x﹣(m+1)]≥0}={x|x≥m+1或x≤m﹣1}.又∵A⊆B,∴m+1≤﹣1或m﹣1≥3,即m≤﹣2或m≥4.18.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.【解答】(本小题满分12分)解:(Ⅰ)证明:连结BD.在正方体AC1中,对角线BD∥B1D1.又因为E、F为棱AD、AB的中点,所以EF∥BD.所以EF∥B1D1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)又B1D1⊂平面CB1D1,EF⊄平面CB1D1,所以EF∥平面CB1D1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)因为在长方体AC1中,AA1⊥平面A1B1C1D1,而B1D1⊂平面A1B1C1D1,所以AA1⊥B1D1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)又因为在正方形A1B1C1D1中,A1C1⊥B1D1,所以B 1D1⊥平面CAA1C1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)又因为B1D1⊂平面CB1D1,所以平面CAA1C1⊥平面CB1D1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)19.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.20.(12分)已知函数f(x)=2sin(x+)cos(x+)+sin2x.(1)求函数f(x)的最大值;(2)求函数f(x)的单调递增区间.【解答】解:(1)因为函数f(x)=2sin(x+)cos(x+)+sin2x=sin(2x+)+sin2x=cos2x+sin2x=2(sin2x+cos2x)=2sin(2x+)所以f(x)的最大值为2;(2)为了求函数f(x)的单调递增区间,可以令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,所以函数f(x)的单调递增区间为[﹣+kπ,+kπ],k∈Z.21.(12分)已知在△ABC中,内角A,B,C所对边的边长分别是a,b,c,若a,b,c满足a2+c2﹣b2=.(1)求角B;(2)若b=2,c=2,求△ABC的面积.【解答】解:(1)在△ABC中,内角A,B,C所对边的边长分别是a,b,c,若a,b,c满足a2+c2﹣b2=.则:,解得:(2)根据(1),由于b=2,c=2所以利用余弦定理得:,解得:a=2或4.所以:①当a=2时,②当a=4时,22.(12分)已知等比数列{a n}是递增数列,其前n项和为S n,且S3=13,a2=3.(I)求数列{a n}的通项公式;(II)设b n=1+log3a n,求数列{a n b n}的前n项和T n.【解答】解:(I)设{a n}的公比为q,由已知得解得或,又因为数列{a n}为递增数列所以a1=1,q=3,∴a n=3n﹣1(n∈N+).(II)由题意知,b n=n,则a n b n=3n﹣1,∴T n=1+2•3+3•32+…+n•3n﹣1,①3T n=3+2•32+3•33+…+n•3n,②由①﹣②,得﹣2T n=1+3+32+…+3n﹣1+n•3n﹣,∴T n=+.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
湖南省衡阳县第三中学2017-2018学年高二上学期期中考
湖南省衡阳县第三中学2017-2018学年高二上学期期中考试历史试题注意:1、答案写在答题卡上;2.时量:90分钟;3.分值:100分;一、单选题(每小题2分,共25小题,共50分)1. 唐代,陈藏器的《本草拾遗》中说“人肉治羸疾”,中唐以后割股疗亲成为普遍现象。
孝子们割股千年,清代的《江南通志》记载了2000多个受到朝廷旌表的孝子,其中有过割肉(含割肝,剜眼等)疗亲行为的多达500个以上。
导致材料所述孝子行孝现象的主要原因是A. 政府、社会鼓励B. 儒家思想尊崇孝道C. 陈藏器的《本草拾遗》影响D. “存天理,灭人欲”的理学推动【答案】A【解析】在古代,朝廷推行孝道,往往还有配套的物质刺激,被公开旌表的孝子不仅直接受赏,还能终身免税,例如材料中清代《江南通志》记载了2000多个受到朝廷旌表的孝子,故A项正确;儒家思想尊崇孝道并不是导致材料的主要原因,故B项错误;材料未说中唐以后、清代的孝子行孝现象受《本草拾遗》影响,故C项错误;“存天理,灭人欲”的理学推动是宋代,与材料中唐代不符,故D项错误。
2. 朱熹主张“天地之间,理一而已”,并强调“物格知至”,可与圣人比肩。
王守仁认为:“夫学贵得之心,求之于心而非也,虽其言之出于孔子,不敢以为是也”。
下列对上述两位思想家主张的解读中,正确的是A. 朱熹和王守仁对古代圣人的态度相左B. 王守仁的心学是对朱熹理学体系的补充C. 朱熹和王守仁都把儒家学说提升到“天理”高度D. 朱熹重“物格”王守仁重“求心”都忽视“知行合一”【答案】C【解析】朱熹和王守仁的思想都是对儒家思想的发展,故A项错误;朱熹认为理是世界的根本,王守仁认为心是世界的根本,故B项错误;王守仁认为天理就是本心,朱熹认为理是世界的根本,提出“存天理,灭人欲”,故C项正确;王守仁重“求心”特别强调“知行合一”,故D项错误。
点睛:材料“天地之间,理一而已”和“夫学贵得之心,求之于心而非也”都强调“天理”的存在;从而得出正确答案。
2017-2018学年高二(上)期中数学试题及参考答案
2017-2018学年度 高二(上)期中考试数 学 试 题考试时间:100分钟 满分100分一、选择题(每题4分,共40分)1.有一个几何体的三视图如下图所示,这个几何体应是一个 ( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为 ( )A.B.C.D.3.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为 ( ) A .0 B .1 C .2 D .34.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对5.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的底面对角线的长分别是9和15,则这个棱柱的侧面积是 ( )A .130B .140C .150D .1606.用半径为R 的半圆卷成一个无底圆锥,则这个无底圆锥的体积为 ( )A3R B3R C3R D3R 7.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为 ( ) A .7 B.6 C.5 D.38.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角( )A .45︒B .60︒C .90︒D .30︒主视图 左视图 俯视图9.已知二面角α-AB -β的平面角为θ,α内一点C 到β的距离为3,到棱AB 的距离为4, 则tanθ等于 ( )A .34B .35CD10.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点, 连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为 ( )A .361a B .3123a C .363a D .3121a 二、填空题(每题4分,共20分)11.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点;顶点最少的一个棱台有 ________条侧棱。
湖南省衡阳市高二上学期期中数学试卷
湖南省衡阳市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)△ABC中,AB=, BC=2,sinA=,则sinC=()A .B .C .D .2. (2分) (2016高二上·西湖期中) 若a,b,c∈R,且a>b,则下列不等式一定成立的是()A . a+c≥b﹣cB . ac>bcC . >0D . (a﹣b)c2≥03. (2分)数列{an}是正数组成的等比数列,公比q=2,a1a2a3……a20=250,,则a2a4a6……a20的值为()A .B .C .D .4. (2分)(2018·广东模拟) 已知数列的前项和为,,且满足,已知,,则的最小值为()A .B .C .D .5. (2分) (2018高一上·长春月考) 函数的定义域为()A .B .C .D . X6. (2分)(2017·青岛模拟) 已知 x>1,y>1,且 lg x,,lg y 成等比数列,则 xy 有()A . 最小值10B . 最小值C . 最大值10D . 最大值7. (2分) (2016高一下·天水期末) 已知点G是△ABC的重心,且AG⊥BG, + = ,则实数λ的值为()A .B .C . 38. (2分)等差数列{an}的前n项和为Sn ,若a4=18﹣a5 ,则S8等于()A . 72B . 36C . 18D . 1449. (2分)已知a>1,0<x<y<1,则下列关系式中正确的是()A . ax>ayB . xa>yaC . logax>logayD . logxa>logya10. (2分)(2017·邯郸模拟) 若x,y满足不等式组,则的最大值是()A .B . 1C . 2D . 311. (2分)已知等比数列的首项,公比,等差数列的首项,公差,在中插入中的项后从小到大构成新数列,则的第100项为()A . 270B . 273C . 27612. (2分)(2019高二上·上海月考) 在等比数列中,,则使不等式成立的的最大值是()A . 5B . 6C . 7D . 8二、填空题 (共4题;共4分)13. (1分)(2017·孝义模拟) 如图所示,在南海上有两座灯塔A,B,这两座灯座之间的距离为60千米,有个货船从岛P处出发前往距离120千米岛Q处,行驶至一半路程时刚好到达M处,恰好M处在灯塔A的正南方,也正好在灯塔B的正西方,向量,则 =________.14. (1分) (2019高一下·上海月考) 已知数列的通项公式是,数列的通项公式是,令集合,,.将集合中的元素按从小到大的顺序排列构成的数列记为.则数列的前28项的和 ________.15. (1分)已知dx,数列的前n项和为Sn ,数列{bn}的通项公式为bn=n﹣8,则bnSn 的最小值为________16. (1分)已知1+2x+4x•a>0对一切x∈(﹣∞,1]上恒成立,则实数a的取值范围是________.三、计算题 (共6题;共55分)17. (5分) (2016高二上·嘉兴期中) 已知a,b是正数,且a≠b,比较a3+b3与a2b+ab2的大小.18. (10分) (2018高二上·湖南月考) 已知数列{an}中,,.(1)求;(2)若,求数列{bn}的前5项的和.19. (15分) (2019高一上·水富期中) 已知定义域为的函数是奇函数.(1)求的值;(2)证明在上为减函数;(3)若对于任意,不等式恒成立,求的取值范围.20. (10分) (2018高一下·雅安期中) 向量 , ,已知,且有函数 .(1)求函数的解析式及周期;(2)已知锐角的三个内角分别为,若有,边 , ,求的长及的面积.21. (10分) (2016高一下·海珠期末) 已知{an}是各项都为正数的等比数列,其前n项和为Sn ,且S2=3,S4=15.(1)求数列{an}的通项公式;(2)若数列{bn}是等差数列,且b3=a3,b5=a5,试求数列{bn}的前n项和Mn.22. (5分) (2016高三上·日照期中) 设等差数列{an}的前n项和为Sn ,且Sn= nan+an﹣c(c是常数,n∈N*),a2=6.(Ⅰ)求c的值及数列{an}的通项公式;(Ⅱ)设bn= ,数列{bn}的前n项和为Tn ,若2Tn>m﹣2对n∈N*恒成立,求最大正整数m的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、计算题 (共6题;共55分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、。
湖南省衡阳县第三中学高二数学上学期期中试题文(扫描版)
湖南省衡阳县第三中学2016-2017学年高二数学上学期期中试题文(扫描版)参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案DACBDBBACA二、填空题 11. 16 12.2n n + 13. 1322a -<< 14. 202 15. 22 三、解答题16.解:(1)设A. B. C 对应的三边分别为a 、b 、c , ∵sin cos sin B A C =,∴sin cos sin B bA C c==, ∴2222b c a bbc c +-=,即222a b c +=,∴90C ︒= (2)cos 91sin 62ABC AB AC AB AC A S AB AC A ∆⎧⋅=⋅=⎪⎨=⋅=⎪⎩u u u r u u u r u u u r u u u ru u u r u u u r (1)÷(2)得4tan 3A =,∴3a =4b , 又162ABC S ab ∆==,∴ab =12,∴a =4,b =3,c =5,∴a +b +c =1217. 解答:(1)∵不等式2320ax x -+>的解集为{}1x x x b <>或.∴1、b 为方程2320ax x -+>的两根,且b >1,a >0. ∴2213120320a a b b ⎧⨯-⨯+=⎨⨯-+=⎩, 解得a =1,b =2(b =1舍去)(2)∵a =1,b =2∴原不等式即为2320x x -+<即(x −1)(x −2)<0 ∴12x <<不等式2()0ax a b x b -++<的解集为{}12x x <<18. 解答:(1)由11A B x =米,知114000B C x=米 ∴400080000(20)(8)41608,(0)s x x x x x=++=++> (2) 8000080000416084160285760s x x x x=++≥+⨯=当且仅当800008x x=,即100x =时取等号 ∴要使公园所占面积最小,休闲区1111A B C D 的长为100米、宽为40米。
湖南省衡阳市2017_2018学年高二数学上学期期中试题文Word版含答案
1 因为 bn= an,
1 1 an+ 1 1
所以
bn+
1
-
bn=
an+
-
1
an=
an
-an= 1.
1
又
b1
=
= a1
1,
所以数列 { bn} 是以 1 为首项、 1 (1)
知, bn= n,所以
= an
n,即
an= n,
an
1
11
所以 n+ 1= n n+ 1 = n- n+ 1,
1
2
A.
B.
C.4
D.6
2
5
9. 若不等式 ax 2+ bx+1 0 的解集为 x| 1 x 1 ,则 a b 的值为 (
)
3
A. 5 B.
5 C. 6 D.
6
10. 若不等式 x2
2x
a
16b
对任意
a ,b ? (0,
) 恒成立,则实数 x 的取值范围是 (
)
ba
A. ( 2,0) B. ( 4,2) C. ( , 2) (0, ) D. ( , 4) (2, )
ab sin C ,……………………………………………………… 2
6分 7分
所以
3 ab
3
3
,解得
ab
6 ,……………………………………………………
9分
4
2
由余弦定理,得 c2 a 2 b 2 2ab cos C ,………………………………………………
10 分
即 7 ( a b) 2 2ab(1 cosC) ,………………………………………………………
16. 设 数 列 an 是 正 项 数 列 , 若
2017-2018学年高二上学期期中数学试卷 Word版含解析
2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。
『精选』2020年湖南省衡阳市衡阳县三中高二上学期期中数学试卷和解析(文科)
2018学年湖南省衡阳市衡阳县三中高二(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}2.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.3.(5分)与﹣角终边相同的角是()A.B.C.D.4.(5分)已知向量=(1,),=(cosθ,sinθ),若∥,则tanθ=()A.B.C.D.5.(5分)设函数f(x)=sinxcosx,x∈R,则函数f(x)的最小值是()A.﹣ B.﹣ C.﹣D.﹣16.(5分)若a<0<b,则下列不等式恒成立的是()A.B.﹣a>b C.a2>b2D.a3<b37.(5分)在△ABC中,若a=2,b=2,A=30°,则B为()A.60°B.60°或120°C.30°D.30°或150°8.(5分)在等差数列{a n}中,S10=120,那么a1+a10的值是()A.12 B.24 C.36 D.489.(5分)在区间[0,2]上随机地取一个数x,则事件:“2x2﹣3x≤0”发生的概率为()A.B.C.D.10.(5分)在△ABC中,已知a=2bcosC,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形11.(5分)在R上定义运算⊗:a⊗b=ab+2a+b,则满足x⊗(x﹣2)<0的实数x的取值范围为()A.(0,2) B.(﹣2,1)C.(﹣∞,﹣2)∪(1,+∞)D.(﹣1,2)12.(5分)在由正数组成的等比数列{a n}中,若a3a4a5=3π,则sin(log3a1+log3a2+…+log3a7)的值为()A.B.C.1 D.﹣二.填空题(本大题共4小题,每小题5分,合计20分)13.(5分)函数y=的最小正周期为.14.(5分)已知f(x)为奇函数,当x<0时,f(x)=log2(1﹣x),则f(3)=.15.(5分)若对任意的实数k,直线y﹣2=k(x+1)恒经过定点M,则M的坐标是.16.(5分)数列{a n}的前n项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n=.三、说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣2x﹣3<0},B={x|(x﹣m+1)(x﹣m﹣1)≥0}.(1)当m=0时,求A∩B;(2)若A⊆B,求实数m的取值范围.18.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.19.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.20.(12分)已知函数f(x)=2sin(x+)cos(x+)+sin2x.(1)求函数f(x)的最大值;(2)求函数f(x)的单调递增区间.21.(12分)已知在△ABC中,内角A,B,C所对边的边长分别是a,b,c,若a,b,c满足a2+c2﹣b2=.(1)求角B;(2)若b=2,c=2,求△ABC的面积.22.(12分)已知等比数列{a n}是递增数列,其前n项和为S n,且S3=13,a2=3.(I)求数列{a n}的通项公式;(II)设b n=1+log3a n,求数列{a n b n}的前n项和T n.2018学年湖南省衡阳市衡阳县三中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}【解答】解:∵集合A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选:C.2.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.【解答】解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选:D.3.(5分)与﹣角终边相同的角是()A.B.C.D.【解答】解:∵与﹣角终边相同的角的集合为A={α|α=},取k=1,得.∴与﹣角终边相同的角是.故选:C.4.(5分)已知向量=(1,),=(cosθ,sinθ),若∥,则tanθ=()A.B.C.D.【解答】解:根据题意,向量=(1,),=(cosθ,sinθ),若∥,则有1×sinθ=cosθ,变形可得,则tanθ=;故选:B.5.(5分)设函数f(x)=sinxcosx,x∈R,则函数f(x)的最小值是()A.﹣ B.﹣ C.﹣D.﹣1【解答】解:∵函数f(x)=sinxcosx=sin2x,﹣1≤sin2x≤1,∴函数f(x)的最小值是﹣,故选:B.6.(5分)若a<0<b,则下列不等式恒成立的是()A.B.﹣a>b C.a2>b2D.a3<b3【解答】解:∵a<0<b,若a=﹣1,b=1,则A,B,C不正确,对于D,根据幂函数的性质即可判断正确,故选:D.7.(5分)在△ABC中,若a=2,b=2,A=30°,则B为()A.60°B.60°或120°C.30°D.30°或150°【解答】解:由正弦定理可知=,∴sinB==∵B∈(0,180°)∴∠B=60°或120°故选:B.8.(5分)在等差数列{a n}中,S10=120,那么a1+a10的值是()A.12 B.24 C.36 D.48【解答】解:S10=×10(a1+a10)=120,所以a1+a10=24故选:B.9.(5分)在区间[0,2]上随机地取一个数x,则事件:“2x2﹣3x≤0”发生的概率为()A.B.C.D.【解答】解:解不等式2x2﹣3x≤0,得0≤x≤;∴区间[0,2]上随机地取一个数x,则事件:“2x2﹣3x≤0”发生的概率为P==.故选:B.10.(5分)在△ABC中,已知a=2bcosC,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【解答】解:∵a=2bcosC=2b×=∴a2=a2+b2﹣c2∴b2=c2因为b,c为三角形的边长∴b=c∴△ABC是等腰三角形.故选:C.11.(5分)在R上定义运算⊗:a⊗b=ab+2a+b,则满足x⊗(x﹣2)<0的实数x的取值范围为()A.(0,2) B.(﹣2,1)C.(﹣∞,﹣2)∪(1,+∞)D.(﹣1,2)【解答】解:∵x⊙(x﹣2)=x(x﹣2)+2x+x﹣2<0,∴化简得x2+x﹣2<0即(x﹣1)(x+2)<0,得到x﹣1<0且x+2>0①或x﹣1>0且x+2<0②,解出①得﹣2<x<1;解出②得x>1且x <﹣2无解.∴﹣2<x<1.故选:B.12.(5分)在由正数组成的等比数列{a n}中,若a3a4a5=3π,则sin(log3a1+log3a2+…+log3a7)的值为()A.B.C.1 D.﹣【解答】解:因为由正数组成的等比数列{a n}中,a3a4a5=3π,所以a43=3π,a4=,∴log3a1+log3a2+…+log3a7=====.∴sin(log3a1+log3a2+…+log3a7)=sin=sin(2π)=sin=.故选:B.二.填空题(本大题共4小题,每小题5分,合计20分)13.(5分)函数y=的最小正周期为π.【解答】解:函数的最小正周期为.故答案为:π.14.(5分)已知f(x)为奇函数,当x<0时,f(x)=log2(1﹣x),则f(3)=﹣2.【解答】解:f(x)为奇函数,当x<0时,f(x)=log2(1﹣x),则f(3)=﹣f(﹣3)=﹣log2(1+3)=﹣2,故答案为:﹣2.分)若对任意的实数k,直线y﹣2=k(x+1)恒经过定点M,则M的坐标是(﹣1,解:直线y﹣2=k(x+1),2﹣y)=0,y=0,解得x=﹣1且y=2,则直线恒过定点(﹣1,2).故答案为:(﹣1,2).16.(5分)数列{a n}的前n项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n=2n﹣2.【解答】解:∵S n=n2﹣n(n∈N*),∴a1=S1=1﹣1=0,n≥2时,=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.当n=1时,2n﹣2=0=a1,∴a n=2n﹣2.故答案为:2n﹣2.三、说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣2x﹣3<0},B={x|(x﹣m+1)(x﹣m﹣1)≥0}.(1)当m=0时,求A∩B;(2)若A⊆B,求实数m的取值范围.【解答】解:(1)当m=0时,B={x|(x+1)(x﹣1)≥0}={x|x≥1或x≤﹣1},A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴A∩B={x|1≤x<3}.(2)B={x|[(x﹣(m﹣1)][(x﹣(m+1)]≥0}={x|x≥m+1或x≤m﹣1}.又∵A⊆B,∴m+1≤﹣1或m﹣1≥3,即m≤﹣2或m≥4.18.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.【解答】(本小题满分12分)解:(Ⅰ)证明:连结BD.在正方体AC1中,对角线BD∥B1D1.又因为E、F为棱AD、AB的中点,所以EF∥BD.所以EF∥B1D1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)又B1D1⊂平面CB1D1,EF⊄平面CB1D1,所以EF∥平面CB1D1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)因为在长方体AC1中,AA1⊥平面A1B1C1D1,而B1D1⊂平面A1B1C1D1,所以AA1⊥B1D1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)又因为在正方形A1B1C1D1中,A1C1⊥B1D1,所以B1D1⊥平面CAA1C1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)又因为B1D1⊂平面CB1D1,所以平面CAA1C1⊥平面CB1D1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)19.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.20.(12分)已知函数f(x)=2sin(x+)cos(x+)+sin2x.(1)求函数f(x)的最大值;(2)求函数f(x)的单调递增区间.【解答】解:(1)因为函数f(x)=2sin(x+)cos(x+)+sin2x=sin(2x+)+sin2x=cos2x+sin2x=2(sin2x+cos2x)=2sin(2x+)所以f(x)的最大值为2;(2)为了求函数f(x)的单调递增区间,可以令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,所以函数f(x)的单调递增区间为[﹣+kπ,+kπ],k∈Z.21.(12分)已知在△ABC中,内角A,B,C所对边的边长分别是a,b,c,若a,b,c满足a2+c2﹣b2=.(1)求角B;(2)若b=2,c=2,求△ABC的面积.【解答】解:(1)在△ABC中,内角A,B,C所对边的边长分别是a,b,c,若a,b,c满足a2+c2﹣b2=.则:,解得:(2)根据(1),由于b=2,c=2所以利用余弦定理得:,解得:a=2或4.所以:①当a=2时,②当a=4时,22.(12分)已知等比数列{a n}是递增数列,其前n项和为S n,且S3=13,a2=3.(I)求数列{a n}的通项公式;(II)设b n=1+log3a n,求数列{a n b n}的前n项和T n.【解答】解:(I)设{a n}的公比为q,由已知得解得或,又因为数列{a n}为递增数列所以a1=1,q=3,∴a n=3n﹣1(n∈N+).(II)由题意知,b n=n,则a n b n=3n﹣1,∴T n=1+2•3+3•32+…+n•3n﹣1,①3T n=3+2•32+3•33+…+n•3n,②由①﹣②,得﹣2T n=1+3+32+…+3n﹣1+n•3n﹣,∴T n=+.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省衡阳县第三中学2017-2018学年高二上学期期中考试数学(文)
试题
时量120分钟,满分150分.
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A ={x|2<x <4},B ={x|x <3或x >5},则A ∩B =( )
A .{x|2<x <5}
B .{x|x <4或x >5}
C .{x|2<x <3}
D .{x|x <2或x >5}
2.在ABC ∆中,15=a ,10=b ,︒=60A ,则=B cos ( ) A.322- B.322
C.36
- D.36
3.与-π6角终边相同的角是( )
A. π6
B. π3
C. 11π6
D. 4π3
4.已知向量a =(1,3),b =(cos θ,sin θ),若a ∥b ,则tan θ=( ) A.33 B. 3 C .-3
3 D .-3
5. 若函数f ()x =sin x cos x ,x ∈R ,则函数f ()x 的最小值为( )
A. -1
4 B . -1
2 C. -3
2 D. -1
6.若0a b <<,则下列不等式恒成立的是( )
A.11
a b > B. a b -> C. 22a b > D. 33a b <
7.在△ABC 中,若2=a ,b = 30=∠A , 则B ∠等于
A .60
B .60或 120
C .30
D .30或150
8.等差数列{a n }中,S 10=120,那么a 1+a 10的值是( )
A .12
B .24
C .36
D .48
9.在区间[1,2]上随机地取一个数X ,则事件:“2x 2-3x ≤ 0”发生的概率为( )
2.3A 3
.4B 1
.3C 1
.4D
10.在∆ABC 中,C b a cos 2=,则这个三角形一定是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰或直角三角形
11.在R 上定义运算⊙:b a ab b a ++=2⊙,则满足0)2(<-x x ⊙的实数x 的取值范围为( )
A.(0,2)
B.(-2,1)
C.),1()2,(∞+--∞
D.(-1,2)
12.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则 sin(log 3a 1+log 3a 2+....+log 3a 7)的值为( ) A.21
B.23
C.1
D.-23
二.填空题(本大题共4小题,每小题5分,合计20分)
13.函数sin (2)4y x π
=+的最小正周期为 ;
14. f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=_______.
15.若对任意的实数k ,直线y -2=k (x +1)恒经过定点M ,则M 的
坐标是
16.数列{an}前n 项和为n s ,且2n S n n =-,(n ∈N*),则n a =______.
三、说明,证明过程或演算步骤)
17.已知集合=A {}2
|230x x x --<,=B {}|(1)(1)0x x m x m -+--≥. (1)当0=m 时,求B A ;(2)若A B ≠
⊂,求实数m 的取值范围.
18.如图,在正方体A B C D -1111A B C D 中,E 、F 为棱AD 、AB 的中点.
(1)求证:EF ∥平面11C B D ;
(2)求证:平面11C A A C ⊥平面11C B D
19.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,频率分布直方图(如图),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]
(1)求频率分布图中a 的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.
20.已知函数()in ()c o s ()s in 244f x x x x ππ=+
++ (1)求函数f(x)的最大值;
(2)求函数f(x)的单调递增区间;
21.已知在A B C △中,内角A B C ,,所对边的边长分别是a b c ,,,若a b c ,,满足
222a c b c +-=.
(1)求角B ;
(2)若2b =,c =,求A B C △的面积。
22.已知等比数列{}n a 是递增数列,其前n 项和为n S ,且3213,3S a ==.
(1)求数列{}n a 的通项公式;
(2)设n n a b 3log 1+=,求数列{}n n b a 的前n 项和n T .
高二文科数学答案
一.选择题:
1-5 CDCBB 6-10 DBBBA 11-12 AB
二.填空题:
13 :π 14 :﹣2
15 :(﹣1,2) 16 :2n ﹣2
三.解答题:
17.解: (1)当m=0时,
B={x ¦(x+1)(x-1)≥0}={x ¦x ≥1或x ≤-1}5
A={x ¦X 2-2X-3˂0}={x ¦-1˂X ˂3}
B A ={x ¦1≤X ˂3}5……………6分
(2) B={x ¦ [x-(m-1)][x-(m+1)]≥0}
={x ¦x ≥m+1或x ≤m-1}
又∵A B
≠⊂
∴m+1≤-1或m-1≥3
即:m ≤-2或m ≥4………………12分
18.解:连接BD
(1)在正方体A B C D -1111A B C D 中11D B //DB
∵E 、F 为棱AD 、AB 的中点
∴EF//DB ∴EF//11D B
又∵EF ⊄平面11C B D ,11D B ≠⊂11C B D
∴EF ∥平面11C B D ………………………………6分
(2)在正方体A B C D -
1111A B C D 中111D A A ⊥B ∵11D B //DB, DB ⊥AC ∴
11D A C ⊥B 1A C A
⋂=A A ∴11B D ⊥平面11C A A C
∴平面
11C A A C ⊥平面11
C B
D ………………………12分 19:解:(1)( 0.004+a+0.022+0.028+0.022+0.018)×10=1
a=0.006………………………………3分
(2) 该企业的职工对该部门评分不低于80的人数为:
(0.022+0.018)×10×50=20(人)
评分不低于80的概率为:2
5……………………3分
(3)评分在[40,50]的受访职工人数是0.004×10×50=2(人)
评分在[50,60]的受访职工人数是0.006×10×50=3(人)
分别用A1,A2; B1, B2, B3表示
{A1,A2},{A1,B1}{A1,B2}{A1,B3}{A2,B1}{A2,B2}{A2,B3}{B1,B2}{B1,B3}{B2,B3},共有10种情况,其中评分都在[40,50]只有{A1,A2}一种情况
∴从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率是1
10……………………………12分
20. 解:(1)f(x)=23sin(x+4π)cos(x+4π
)+sin2x =3sin(2x+2π
)+sin2x
=2sin(2x+4π
)
f(x)max=2
(2)当2K π-2π≤ 2x+4π≤2K π+2π
(K ∈Z)时,
K π-83π≤ x ≤ K π+8π
(K ∈Z)
所以f(x)的单调增区间为[ K π-83π,K π+8π
].(K ∈Z)
21. 解:
(1)222
a c
b
c +-=
则22222a c b a c +-=
cos B
=2 ∴∠B=30°……………6分
∴sin B =1
2,
由正弦定理b sin B =c sin C ,
得sin C
=2,∠C=60°
∵∠A+∠B+∠C=180° ,∠A=90°,sin 1A = S=1
s in 2b c A
=12分
22. 解:设{}n a 的公比为q ,
由已知得2
1111133a a q a q a q ⎧++=⎨
=⎩ 解得119
11
33a a q q =⎧=⎧⎪⎨⎨
==⎩⎪⎩或
又因为数列{}n a 为递增数列 所以11a =,3q =
∴1
*3()n n a n N -=∈ .………………………………6分
(2)1
3,-⋅==n n n n n b a n b 1
2333321-⋅++⋅+⋅+=∴n n n T n
n n T 333323332⋅+⋅+⋅+=∴ 21
3-213-33312-12-=⋅++++=∴-n n
n n n n T )(
41
43)12(+-=∴n
n n T .………………………………12分。