2019年高考数学解题技巧
2019年高考数学(含解析)之解题规范与评分细则
解题规范与评分细则1.若函数f(x)=2x3—ax2+l(aWR)在(0,+河内有且只有一个零点,则胞在[一1,1]上的最大值与最小值的和为.2.设函数f(x)=t[ax2—(4a+l)x+4a+3]e x.(1)若曲线y=f(x)在点(1,巾))处的切线与x轴平行,求a;(2)若大x)在x=2处取得极小值,求a的取值范围.,一、",ax2~\~x—13.已知函数/(x)=—以—.(1)求曲线y=/(x)在点(0,一1)处的切线方程;(2)证明:当时,/(x)+e>0.ax?+x4.已知函数/(x)=ln(x+l)—---,其中a为常数.⑴当l<a<2时,讨论/(x)的单调性;⑵当x>0时,求g(x)=xln^l+~j+^ln(l+x)的最大值.5.设函数/(x)=(x-tl)(x-t2)(x-t3),其中tl,t2,t3MR,且口,t2,t3是公差为d的等差数列.⑴若t2=0,d=l,求曲线y=f(x)在点(0,。
0))处的切线方程;(2)若d=3,求/(x)的极值;⑶若曲线y=f(x)与直线y=—(x—12)—6也有三个互异的公共点,求d的取值范围.6.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线/与C交于A,B两点,\AB\ =8.⑴求/的方程;⑵求过点A,B且与C的准线相切的圆的方程.w2»12.、/5, 7.设椭圆/+奈=l.(a>b>0)的右顶点为扁上顶点为B,已知椭圆的离心率为十,|曲|=如.(1)求椭圆的方程.⑵设直线/:y=kx(k<。
)与椭圆交于P,Q两点,/与直线交于点/W,且点P,/W均在第四象限.若ABP/W的面积是△BPQ面积的2倍,求k的值.8.设抛物线C:y2=2x,点>4(2,0),8(-2,0),过点<4的直线/与C交于/W,/V两点.(1)当/与X轴垂直时,求直线B/W的方程;⑵证明:ZABM=ZABN.9.已知椭圆M:苏+%=l(a>b>0)的离心率为平,焦距为2哲斜率为k的直线/与椭圆M有两个不同的交点A,S.(1)求椭圆M的方程;⑵若k=L求|4B|的最大值;⑶设P(—2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若C,0和点共线,求k.X2y2(■3、10.已知椭圆C:/+杀=l(a>b>0)的左、右顶点分别为用,人2,右焦点为F2(l,0),点B(l,刃在椭圆C±.⑴求椭圆C的方程;⑵若直线/:y=k(x—4)(^0)与椭圆C由左至右依次交于M,N两点,已知直线ArM与A2N 相交于点G,证明:点G在定直线上,并求出定直线的方程.11.已知平面直角坐标系内两定点4(—2彖,0),B(2y[2,0)及动点C(x,y),AABC的两边3AC,BC所在直线的斜率之积为一]⑴求动点C的轨迹E的方程;⑵设P是y轴上的一点,若⑴中轨迹E上存在两点/W,N使得MP=2PN,求以AP为直径的圆的面积的取值范围.12.已知角a的顶点与原点。
高考重要数学答题技巧归纳
高考重要数学答题技巧归纳高中数学常考题型答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
2019年浙江高考数学卷最后一题解题思路
2019年浙江高考数学卷最后一题解题思路试题:f(x)=alnx+√(x+1)(a≠0,x>0)1、当a=-3/4时,求函数单调区间;2、对任意x∈[1/e2 ,∞),均有f(x)≤√x/2a,求a的取值范围。
第一问,需要强调的是用一级导数作为工具,应该使学生明白y*=△y/△x,y*>0单调上升,是因为△x>0;反之y*<0则下降。
解题有个技巧,即y*=a/x+1/2√(x+1),通分后其分子项为(x+1)+2a√(x+1)-1,这样因式分解容易得到(√(x+1)-2)(√(x+1)+1/2),故x∈[3,∞)f(x)单调上升;x∈(0,3)则单调下降。
第二问,只要抓住关键字“对任意的x”,自然将x=1代入,因为lnx=0,从而√2≤1/2a→0<a≤√2/4。
问题尚未结束,可能存在其它的x值,a的取值范围更窄(如0<a≤√2/6),因此需要基于递增函数lnx在不同区间进行讨论:令二元函数F(t,a)=√(t2+1)+2alnt-t/2a(t=√x>0,t∈[1/e,∞)1、t∈[1,∞),F(t,a)max=F(t,√2/4)=√(t2+1)+lnt/√2-√2·t求一级导数F(t,√2/4)*=t/√(t2+1)+1/t√2-√2;求二级导数F(t,√2/4)* *=1/(t2+1)√(t2+1)-1/t2√2<0,即一级导数函数为单调递减函数F(t,√2/4)*<F(1,√2/4)*=0。
故=F(t,√2/4)为单调递减函数F(t,a)max=F(1,√2/4)=0,即命题不等式F(t,a)≤0成立。
2、t∈[1/e,1),lnt=-lnt-1<0,用t替换t-1,使t∈(1,e],并令F(u=1/2a)=F(t,a)/2at=-u2+√(t2+1)·u-t lnt-,F(u)= -(u-√(t2+1)/2)2+(t2+1)/4-t lnt-,t固定时F(u)为开口向下的抛物线,判别式函数△(t)= (t2+1)/4-t lnt:(1)△(t) ≤0,F(u)≤0,命题不等式F(t,a)≤0成立;(2)△(t)>0,F(u)有两个零点u1(t )和u2(t ):u1(t )=√(t2+1)/2-√△(t),u2(t )=√(t2+1)/2+√△(t)。
高考数学小题解题技巧
高考数学小题解题技巧高考数学小题解题技巧(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,一题多解的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查,学习方法。
解题策略:(1)注意审题。
把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
高考的数学答题技巧(推荐8篇)
高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分。
1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进展函数与方程间的互相转化。
2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
2019年高考数学命题热点解析理科专题4【函数的零点与方程的根的解题方法】
2019年高考数学命题热点解析理科专题4【函数的零点与方程的根的解题方法】本专题特别注意:一.命题类型:1.零点与整数解;2.二分法;3.分段函数的零点;4.零点范围问题;5.零点个数问题;6.零点与参数;7.零点与框图;8.二次函数零点分布问题;9.抽象函数零点问题;10.复合函数零点问题;11.函数零点与导数;12.零点有关的创新试题。
二.【学习目标】1.结合二次函数的图象,了解函数的零点与方程根的联系,判断根的存在性与根的个数.2.利用函数的零点求解参数的取值范围【知识要点】1.函数的零点(1)函数零点的定义对于函数y=f(x),我们把使___________的实数x叫做函数y=f(x)的零点.(2)方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有________.(3)函数零点的判定如果函数y=f(x)在区间[a,b]上的图象是_________的一条曲线,并且有____________,那么,函数y =f(x)在区间__________内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二次函数y =f(x)=ax2+bx +c(a>0)零点的分布⎩⎪⎨⎪⎧⎩⎪⎨⎪⎧f(m)<0⎩⎪⎨⎪⎧⎩⎨⎧⎩⎪⎨⎪⎧或(一)零点与整数解;例1.已知函数f(x)在区间(0,a)上有唯一的零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为,,,则下列说法中正确的是( ) A .函数f(x)在区间内一定有零点 B .函数f(x)在区间或 内有零点,或零点是 C .函数f(x)在内无零点 D .函数f(x)在区间 或内有零点 【答案】B【解析】根据二分法原理,依次“二分”区间后,零点应存在于更小的区间,A. 函数f(x)在区间内一定有零点,不对,因为有可能在这个区间之外之内,C. 函数f(x)在内无零点,这个是不确定的;D. 函数f(x)在区间或内有零点,这个也是不确定的。
高考数学答题技巧与套路精选
高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。
说到去年高考数学和理科综合,周洁娴仍心有余悸。
数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。
她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。
“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。
”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。
陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。
做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。
“既然得不到难题分,一定要保证简单题不错。
”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。
结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。
三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。
周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。
当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。
好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。
毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。
答题时,应先做自己最拿手的科目。
四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。
”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。
他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。
“要留意题目的所有条件。
”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。
这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。
“文科综合更是重在审题。
”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。
高考数学答题技巧:立体几何篇
2019高考数学答题技巧:立体几何篇2019高考数学答题技巧:立体几何篇高考数学之立体几何高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的学问点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着多一点思索,少一点计算的发展。
从历年的考题改变看,以简洁几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
学问整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不行缺少的内容,因此在主体几何的总复习中,首先应从解决平行与垂直的有关问题着手,通过较为基本问题,熟识公理、定理的内容和功能,通过对问题的分析与概括,驾驭立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维实力和空间想象实力。
2.判定两个平面平行的方法:(1)依据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:⑴由定义知:两平行平面没有公共点。
⑵由定义推得:两个平面平行,其中一个平面内的直线必平行于另一个平面。
⑶两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么它们的交线平行。
⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⑸夹在两个平行平面间的平行线段相等。
⑹经过平面外一点只有一个平面和已知平面平行。
以上性质⑵、⑷、⑸、⑹在课文中虽未干脆列为性质定理,但在解题过程中均可干脆作为性质定理引用。
高考数学答题技巧:选择题十大解题技巧
2019年高考数学答题技巧:选择题十大解题技巧高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。
现总结了高考数学答题技巧:选择题十大解题技巧,帮助同学们提高答题效率及准确率。
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
高考数学必考题型及答题技巧
高考数学必考题型及答题技巧高考数学必考题型及答题技巧高考数学必考题型是什么题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
题型四数列的通向公式的求法。
高考数学答题技巧有哪些1、函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;高考数学考试大纲①单项选择考试范围。
集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。
②多项选择考试范围。
解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。
③填空题考试范围。
解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。
④解答题考试范围。
三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。
高考数学不及格影响院校录取吗?高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。
高考数学的解题思路技巧
高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:1 回忆法。
直接从记忆中取要选择的内容。
2 直接解答法。
多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。
把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。
(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。
分析和解决最值问题和定值问题的思路和方法也是多种多样的。
命制最值问题和定值问题能较好体现数学高考试题的命题原则。
应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。
在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。
高考学生必备数学答题技巧总结
高考学生必备数学答题技巧总结高考数学是难度比较大的,对于数学并不是十分擅长的考生,如何尽可能多得几分呢?需要掌握哪些答题技巧?下面是为大家整理的关于高考学生必备数学答题技巧,欢迎大家来阅读。
高考数学的答题技巧一、你需要了解的答题顺序其实很多同学平时并没有注意答题顺序,大部分人都是试卷发下来后采用从头到尾的顺序去答题;但是今天我想告诉各位考生,其实答题顺序很重要,很多人就因为从头到尾在前面浪费了很多时间,导致后面大题会的也没有做出来,结果就白白浪费了机会。
为此,我建议大家按照以下顺序进行答题:1.做选择题前10个或前11个首先做选择题前10个或前11个,做完后就开始涂答题卡,一定要做完选择题就涂答题卡,我见过太多的同学因为做完选择题、填空题没有及时涂答题卡,导致后面做大题没有时间涂答题卡,考试时间到还未来得及涂卡在考场苦苦哀求监考老师给一分钟机会,可是高考对每个人而言都是公平的,监考老师也不可能为了你的痛哭流涕就心软给你额外一分钟的时间,所以最后一般都是会无情的收走试卷,如果你真的将答案做出来写在了试卷上,却未来得及涂卡,那么你是不是要后悔一辈子了?所以,尽可能做完选择题前11个就涂答题卡。
一第1页共7页般而言,最后一个选择题较难,大部分人做五分钟如果还做不出来就先放弃,选择B或者C,大概率显示高考数学选择题近几年的答案一般都是B或者C。
节约时间在后面的部分,不要为了一棵树而放弃整片森林,不然得不偿失。
2.做填空题前三个高考数学中,填空题前三个一般情况下难度适中,你尽量用最短的时间作出后就填在答题纸上,避免后续时间紧张而来不及填写,最后一个填空题你先看一遍题目,倘若看完题目毫无思绪的话,暂且放弃,留到最后,倘若有时间就再回过头来看看,如果没有时间就随便填蒙一个,一般情况下都是特殊数字,比如0、1等。
3.做你会做的大题在做大题的过程中,一定要先做你会做的题目,以防万一后续由于过度紧张或时间紧张来不及做会做的题目,你先保证你能拿到的分数,再去挑战有难度的题目。
高考答题技巧:高考数学答题技巧
2019年高考答题技巧:高考数学答题技巧为方便广大考生复习,查字典数学网整理了2019年高考数学答题技巧,希望能助各位考生一臂之力。
一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取暂时性放弃,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要小题大做。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴;课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
高考数学大题解题技巧
高考数学大题解题技能各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是作者给大家整理的一些高考数学大题解题技能的学习资料,期望对大家有所帮助。
高考数学大题必考题型排列组合篇1.掌控分类计数原理与分步计数原理,并能用它们分析和解决一些简单的运用问题。
2.知道排列的意义,掌控排列数运算公式,并能用它解决一些简单的运用问题。
3.知道组合的意义,掌控组合数运算公式和组合数的性质,并能用它们解决一些简单的运用问题。
4.掌控二项式定理和二项展开式的性质,并能用它们运算和证明一些简单的问题。
5.了解随机事件的产生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式运算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式运算一些事件的概率。
8.会运算事件在n次独立重复实验中恰好产生k次的概率.立体几何篇高考立体几何试题一样共有4道(挑选、填空题3道,解答题1道),共计总分27分左右,考核的知识点在20个之内。
挑选填空题考核立几中的运算型问题,而解答题侧重考核立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为条件。
随着新的课程改革的进一步实行,立体几何考题正朝着“多一点摸索,少一点运算”的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的进程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、运算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,第一应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌控立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
高考数学解题技巧讲义194页
高考数学解题技巧讲义194页一、概述高考数学考试一直是考生们最为担心的科目之一。
而数学解题技巧的掌握则是高考数学考试中取得好成绩的关键之一。
为了帮助广大考生更好地备战高考数学考试,我们特意整理归纳了一些高考数学解题技巧,以讲义的形式呈现,希望对考生们有所帮助。
二、基本技巧1. 熟练掌握基础知识在备战高考数学考试时,首先要做的就是熟练掌握基础知识。
只有基础知识扎实,才能在解题过程中游刃有余,避免在基础问题上出现失误。
建议考生们在平时多加强基础知识的学习,做到熟练掌握。
2. 注重思维训练在解题过程中,良好的思维能力是至关重要的。
建议考生们注重思维训练,可以通过做一些思维训练题来提高自己的解题能力,培养良好的解题思路。
3. 熟练运用解题方法掌握多种解题方法,并且能够熟练运用这些方法是高考数学考试成功的关键之一。
建议考生们在平时的学习中多多尝试不同的解题方法,培养自己的解题技巧,提高解题效率。
三、具体技巧1. 代入法在解决一些复杂的数学题目时,代入法是一种常用的解题方法。
通过将已知数值代入到方程中进行计算,可以帮助考生们更好地理解问题,并得出正确的答案。
2. 勾股定理的应用勾股定理在高考数学中出现的频率较高,考生们要熟练掌握勾股定理的应用方法,能够灵活运用在解题过程中,这对于提高解题效率和得分具有重要意义。
3. 几何图形分析法对于一些几何题目,采用几何图形分析法是一种比较常见的解题方法。
通过画图、分析图形的性质,可以帮助考生们更好地理解问题,找到解题的突破口。
4. 利用比值解题在解决一些比例题目时,可以灵活运用比值的概念,通过设立方程,建立比例关系,从而解题。
考生们要熟练掌握比值的运用方法,能够灵活运用在解题过程中。
四、总结通过本文的讲义,我们向考生们介绍了一些高考数学解题的基本技巧和具体方法。
通过不断地训练和实践,相信考生们在备战高考数学考试时能够熟练掌握各种解题方法,取得优异的成绩。
希望广大考生们能够在备战高考数学考试时,根据本文提供的解题技巧进行实践,相信一定能够取得理想的成绩。
高考数学答题步骤介绍_高考数学答题技巧
高考数学答题步骤介绍_高考数学答题技巧高考数学选择题答题步骤1.数学突破运算运算是考场解题的奠基石,运算能力不过关,解题基本无法进行到最后,据估计高三学生绝大多数同学都或多或少有运算困扰,但是却苦于无从提高,因为这被公认为是“基础”没有人也没有资料专门讲解,如果有也是把很多题目放在一块,这是造成很多学生运算一直无法提高的主要原因.2.突破数学概念公式图形这一块内容在数学课本或者资料上都有详细归纳,但高一高二解题一般公式书归纳的内容基本可以,但是进入高三,随着题目的复杂化,你会发现,数学课本或者公式书上的内容还远远不够,我就举一些高一课本中的简单例子,如函数的奇偶性周期性等考试中会涉及很多结论,而这些可能在书上或一般公式书都没有,怎么办?这就需要你自己总结,又如函数的零点定理,它只是充分条件而不是必要条件,那么需要添加什么才能变成充要条件呢,再比如空间几何经常会考一些内外接球,可能你会计算,但是在考场上如果你没有归纳出内外接球半径计算公式,那么最终你可能由于时间关系外加紧张,可能会出现错误。
同时考试中涉及的图形可能并不完全是课本中熟知的,而是课本中基本图形的扩展图形,什么是扩展图形呢,我举一个简单例子,如直线大家都会画,那么对x或y添加绝对值,或者对x,y同时加绝对值它的图形你还会画吗?又如反比例函数y=1/x,扩展图形y=2x+1/x ,y=-2x+1/x, y=(-2x+1)/(x+3)等你知道吗?3.突破选择数学的选择题在考试中占据半壁江山,选择题的解题的解答直接会影响到整个试卷的做题规划,那么如何在较短的时间内提高选择题的解题效率是我们无法回避的现实问题。
那么选择题到底该如何突破呢?突破选择题主要包括:选项特征,选择题快速计算技巧,选择题题目特征及解法,以及一些常见选择题的特殊结论等4.突破-解答题数学解答题是考试中我们遇到的另外一种题型,但是它的解法不同于选择题,由于高考中解答题的特殊性,使我们可以通过一些策略可以取得令人满意的分数。
高考数学大题答题技巧方法
高考数学大题答题技巧方法高考数学的大题涉及到6个考点,分别圆锥曲线、导数、概率、数列、三角函数和立体几何。
那么这几种题型该如何复习,又有什么解题技巧呢?下面给大家共享一些关于高考数学大题答题技巧(方法),盼望对大家有所关心。
一、三角函数题留意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很简单由于马虎,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最终下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最终一问证明不等式成立时,假如一端是常数,另一端是含有n的式子时,一般考虑用放缩法;假如两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,肯定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时肯定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简洁(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简洁;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、留意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1、搞清随机试验包含的全部基本领件和所求大事包含的基本领件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(依据p1+p2+...+pn=1);5、留意计数时利用列举、树图等基本方法;6、留意放回抽样,不放回抽样;7、留意“零散的”的学问点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、留意条件概率公式;9、留意平均分组、不完全平均分组问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学解题技巧
2017年高考数学解题技巧,欢迎大家的参考借鉴!掌握正确有效的解题方法和解题技巧,不仅可以帮助同学们培养好的数学素养,也是提升学生数学解题效率的关键。
2017年高考数学解题技巧
一、好好读题,看清是什么类型的题型。
二、把握已知条件,着重考虑通过这些已知条件可以算出些什么新的条件。
三、搞清楚已知条件和待计算问题之间的平衡关系。
四、学会使用倒推法,从待计算问题开始看看必须什么条件,通过已知条件是否可以知悉。
五、以上四点基本可以应付一般的题型,主要是平常多练习,熟能生巧。
六、考试先做简单的题,细心一些,争取一遍过,可以提高自信心,再做难一些但会的,还是要细心,加强注意力,争取不要返工。
最后攻分数大的难题,确有不会的不要灰心,腾出好好检查如填空、选择、或判断等相应简单的部分,不要在这些不必要的地方丢分,会起到意想不到的效果。
祝你成功。
2017年高考数学解题技巧
解题方法1:调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以
平稳自信、积极主动的心态准备应考。
解题方法2:沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
解题方法3:“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
解题方法5:一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。
应该说,审题要慢,解答要快。
审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。
而思路一旦形成,则可尽量快速完成。
解题方法4:“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯
和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异。
先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。
高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力, 4.先小后大。
小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗
5.先点后面。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,
由点到面6.先高后低。
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
解题方法6:确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。
所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
解题方法7:讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。
这就要求不但会而且要对、对且全,全而规范。
会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分” 也就相应低了,此所谓心理学上的“光环效应”。
“书写要工整,卷面能得分”讲的也正是这个道理。
解题方法8:面对难题,讲究方法,争取得分
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。
下面有两种常用方法。
1.缺步解答。
对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。
如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。
还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。
而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过
渡环节。
若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。
也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
解题方法9:以退求进,立足特殊
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
总之,退到一个你能够解决的程度上,通过对“特殊”
的思考与解决,启发思维,达到对“一般”的解决。
解题方法10:应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,
此为“点”;综合联系,提炼关系,依靠数学方法,建立数学
模型,此为“线”,如此将应用性问题转化为纯数学问题。
当然,求解过程和结果都不能离开实际背景。
解题方法11:执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手
找必要条件。
解题方法12:回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。