信息论与编码课程报告

合集下载

信息论与编码实验报告

信息论与编码实验报告

信息论与编码实验报告信息论与编码实验报告实验一:英文文本信息量的计算一、实验目的及要求a)实验目的1、通过本实验熟悉Matlab 软件编程环境2、编写M 文件实现对英文文本信息量的统计,掌握信息量、信源熵的计算方法b)实验要求1、了解matlab 中M 文件的编辑、调试过程2、编写程序实现对给定英文文本信息量的统计3、英文文本中字母不区分大小写,考虑空格的信息量,但不考虑标点符号的信息量4、建议英文文本采用txt 格式二、实验步骤及运行结果记录a)实验步骤1、查找各个英文字母及空格出现的频率2、在Matlab 中读取给定的英文文章3、计算英文文章的长度4、统计在该文章中各个字母及空格出现的次数并放入数组N 中5、计算各个字母和空格的信息量及整篇文章的信息量6、计算信源熵b)实验结果sumI = +003;H = 三、程序流程图四、程序清单,并注释每条语句五、实验小结通过本次实验熟悉了Matlab 软件编程环境和一些函数的功能及使用,掌握了信息量、信源熵的计算方法。

1 附一:开始读取英文文章计算文章的长度嵌套的for 循环语句假判断是否符合循环条件真if 否elseif 判断字是否为大写母输入相应的频率否elseif 判断是否为小写字母计算各个字母、空格及整篇文章的信息量是判断是否为小写字母是计算信源熵是放入数组N 中对应的位置放入数组N 中对应的位置放入数组N 中对应的位置结束附二: wenzhang=textread(‘实验一:english ‘,’\’); M=size(wenzhang); row=M(1,1); line=M(1,2); N=zeros(1,27); for i=1:row for j=1:line %读取英文文章%文章的长度ifdouble(wenzhang(i,j))>96&&double(wenz hang(i,j))double(wenzhang(i,j))>64&&double(wenz hang(i,j))N(1,double(wenzhang(i,j))-64)=N(1,doubl e(wenzhang(i,j))-64)+1; elseif double(wenzhang(i,j))==32N(1,27)=N(1,27)+1; end end end %统计各字母和空格出现的个数并存入N数组中。

信息论与编码实验2-实验报告

信息论与编码实验2-实验报告

信息论与编码实验2-实验报告信息论与编码实验 2 实验报告一、实验目的本次信息论与编码实验 2 的主要目的是深入理解和应用信息论与编码的相关知识,通过实际操作和数据分析,进一步掌握信源编码和信道编码的原理及方法,提高对信息传输效率和可靠性的认识。

二、实验原理(一)信源编码信源编码的目的是减少信源输出符号序列中的冗余度,提高符号的平均信息量。

常见的信源编码方法有香农编码、哈夫曼编码等。

香农编码的基本思想是根据符号出现的概率来分配码字长度,概率越大,码字越短。

哈夫曼编码则通过构建一棵最优二叉树,为出现概率较高的符号分配较短的编码,从而实现平均码长的最小化。

(二)信道编码信道编码用于增加信息传输的可靠性,通过在发送的信息中添加冗余信息,使得在接收端能够检测和纠正传输过程中产生的错误。

常见的信道编码有线性分组码,如汉明码等。

三、实验内容与步骤(一)信源编码实验1、选取一组具有不同概率分布的信源符号,例如:A(02)、B (03)、C(01)、D(04)。

2、分别使用香农编码和哈夫曼编码对信源符号进行编码。

3、计算两种编码方法的平均码长,并与信源熵进行比较。

(二)信道编码实验1、选择一种线性分组码,如(7,4)汉明码。

2、生成一组随机的信息位。

3、对信息位进行编码,得到编码后的码字。

4、在码字中引入随机错误。

5、进行错误检测和纠正,并计算错误纠正的成功率。

四、实验结果与分析(一)信源编码结果1、香农编码的码字为:A(010)、B(001)、C(100)、D (000)。

平均码长为 22 比特,信源熵约为 184 比特,平均码长略大于信源熵。

2、哈夫曼编码的码字为:A(10)、B(01)、C(111)、D (00)。

平均码长为 19 比特,更接近信源熵,编码效率更高。

(二)信道编码结果在引入一定数量的错误后,(7,4)汉明码能够成功检测并纠正大部分错误,错误纠正成功率较高,表明其在提高信息传输可靠性方面具有较好的性能。

信息论与编码技术实验报告

信息论与编码技术实验报告

《信息论与编码技术》实验报告实验一:请根据公式-plogp ,说明小概率事件和大概率事件对熵的贡献。

解:先做图,然后分析。

将公式写为)(log )(2p p p f -=对它编写计算和画图程序如下:p=0:0.01:1;x=-p.*log2(p);plot(p,x);从图中曲线看出,小概率事件和大概率事件的情况下,熵值都很低,贡献很小,在概率为0.5附近时熵值最大,故此时对熵的贡献最大。

实验二:请对a 、b 、c 霍夫曼编码,它们的概率是0.6、0.3、0.1。

并以此对符号串ababaacbaa 编码和译码。

解:编码步骤分为:事件排序,符号编码,信源编码,信道编码。

MATLAB 程序:clc;a=0.3;b=0.3;c=0.4; %%%霍夫曼编码A=[a,b,c];A=fliplr(sort(A)); %%%降序排序if (a==b)&(a>c), %%实现了当a,b,c 其中两概率相同时的编码,及3值均不同时的编码 u='a';x=a;v='b';y=b;w='c';z=c;elseif (a==b)&(a<c),u='c';x=c;v='a';y=a;w='b';z=b;elseif (c==b)&(c>a),u='b';x=b;v='c';y=c;w='a';z=a;elseif (c==b)&(c<a),u='a';x=a;v='b';y=b;w='c';z=c;elseif(a==c)&(a>b),u='a',x=a;v='c',y=c;w='b',z=b;elseif(a==c)&(a<b),u='b';x=b;v='a';y=a;w='c';z=c;elseif A(1,1)==a,u='a';x=a;elseif A(1,1)==b,u='b';x=b;elseif A(1,1)==c,u='c';x=c;endif A(1,2)==a,v='a';y=a;elseif A(1,2)==b,v='b';y=b;elseif A(1,2)==c,v='c';y=c;endif A(1,3)==a,w='a';z=a;elseif A(1,3)==b,w='b';z=b;elseif A(1,3)==c,w='c';z=c;endend %%%x,y,z按从大到小顺序存放a,b,c的值,u,v,w存对应字母if x>=(y+z),U='0';V(1)='0';V(2)='1';W(1)='1';W(2)='1';else U='1';V(1)='0';V(2)='0';W(1)='1';W(2)='0';enddisp('霍夫曼编码结果:')if u=='a',a=fliplr(U),elseif u=='b',b=fliplr(U),else c=fliplr(U),end if v=='a',a=fliplr(V),elseif v=='b',b=fliplr(V),else c=fliplr(V),end if w=='a',a=fliplr(W),elseif w=='b',b=fliplr(W),else c=fliplr(W),end %%%编码步骤为:信源编码,信道编码disp('信源符号序列:')s='ababaacbaa' %%%信源编码q=[];for i=s;if i=='a',d=a;elseif i=='b';d=b;else d=c;end;q=[q,d];endm=[]; %%%符号变数字for i=q;m=[m,str2num(i)];endP=[1,1,1,0;0,1,1,1;1,1,0,1];G=[eye(3),P];%%%信道编码%%%接下来的for循环在程序中多次使用,此处作用是将已编码组m每3个1组放入mk中进行运算之后存入Ck数组中,每次mk中运算结束之后清空,再进行下一组运算,而信道编码结果数组C则由C=[C,Ck]存入每组7个码。

信息论课程实验报告—哈夫曼编码

信息论课程实验报告—哈夫曼编码
else if(T[j].weight < T[*p2].weight)
*p2 = j;
}
}
void CreateHuffmanTree(HuffmanTree T)
{
int i,p1,p2;
InitHuffmanTree(T);
InputWeight(T);
for(i = n;i < m;i++)
4)依次继续下去,直至信源最后只剩下两个信源符号为止,将这最后两个信源符号分别用二元码符号“0”和“1”表示;
5)然后从最后—级缩减信源开始,进行回溯,就得到各信源符号所对应的码符号序列,即相应的码字。
四、实验目的:
(1)进一步熟悉Huffman编码过程;(2)掌握C语言递归程序的设计和调试技术。以巩固课堂所学编码理论的知识。
#include "stdio.h"
#include "stdlib.h"
#include <float.h>
#include <math.h>
#define n 8
#define m 2*n-1
typedef struct
{
float weight;
int lchild,rchild,parent;
}
}
void InputWeight(HuffmanTree T)
{
float temp[n] = {0.20,0.18,0.17,0.15,0.15,0.05,0.05,0.05};
for(int i = 0;i < n;i++)
T[i].weight = temp[i];
}

信息论与编码实习报告

信息论与编码实习报告

信息论与编码实习报告一、引言信息论与编码是通信工程、计算机科学和电子工程等领域的重要基础课程。

本次实习旨在通过实际操作,深入理解和掌握信息论与编码的基本原理和技术,提高我们的实际操作能力和问题解决能力。

二、实习内容1、信息论基础:实习的第一部分,我们通过自学和讨论的方式,深入学习了信息论的基本概念和原理,包括信息的度量、熵、信道容量等。

2、编码理论:在这一阶段,我们重点学习了线性编码、循环编码、哈夫曼编码等编码方法,并了解了编码的效率及其可靠性。

3、模拟与数字通信系统:我们通过模拟软件,设计和实现了简单的模拟通信系统,同时,也通过实验箱,了解了数字通信系统的基本原理和技术。

4、无线通信和网络:在这一部分,我们重点学习了无线通信和网络的基础知识,包括无线信道模型、无线调制解调技术、无线网络协议等。

5、实习项目:最后,我们根据所学的知识,完成了一个实习项目——设计并实现一个具有高可靠性和高效率的通信系统。

三、实习收获通过这次实习,我们收获颇丰。

首先,我们对信息论与编码的基本概念和原理有了更深入的理解和掌握,能够更好地将理论知识应用到实际中。

其次,我们提高了自己的实际操作能力和问题解决能力,能够在实践中发现和解决问题。

最后,我们了解了通信系统的基本原理和技术,对未来的学习和工作有了更好的准备。

四、结论本次实习是我们学习信息论与编码的重要环节,我们通过实际操作,深入理解和掌握了信息论与编码的基本原理和技术,提高了自己的实际操作能力和问题解决能力。

我们也发现了自己的不足之处,将在未来的学习和工作中更加努力,不断提高自己的能力和水平。

信息论与编码曹雪虹课后习题答案随着科技的发展,信息已经成为现代社会中不可或缺的一部分。

在大学中,信息论与编码作为一门重要的学科,已经成为了计算机科学、通信工程、电子工程等专业的必修课程。

而在这门课程中,曹雪虹教授的教材《信息论与编码》被广泛使用。

本文将介绍一些该教材的课后习题答案,以帮助读者更好地掌握信息论与编码的相关知识。

信息论与编码实验报告

信息论与编码实验报告

信息论与编码实验报告一、实验目的本实验主要目的是通过实验验证信息论与编码理论的基本原理,了解信息的产生、传输和编码的基本过程,深入理解信源、信道和编码的关系,以及各种编码技术的应用。

二、实验设备及原理实验设备:计算机、编码器、解码器、信道模拟器、信噪比计算器等。

实验原理:信息论是由香农提出的一种研究信息传输与数据压缩问题的数学理论。

信源产生的消息通常是具有统计规律的,信道是传送消息的媒体,编码是将消息转换成信号的过程。

根据信息论的基本原理,信息的度量单位是比特(bit),一个比特可以表示两个平等可能的事件。

信源的熵(Entropy)是用来衡量信源产生的信息量大小的物理量,熵越大,信息量就越多。

信道容量是用来衡量信道传输信息的极限容量,即信道的最高传输速率,单位是比特/秒。

编码是为了提高信道的利用率,减少传输时间,提高传输质量等目的而进行的一种信号转换过程。

常见的编码技术有霍夫曼编码、香农-费诺编码、区块编码等。

三、实验步骤1.运行编码器和解码器软件,设置信源信息,编码器将信源信息进行编码,生成信道输入信号。

2.设置信道模拟器的信道参数,模拟信道传输过程。

3.将信道输出信号输入到解码器,解码器将信道输出信号进行解码,恢复信源信息。

4.计算信道容量和实际传输速率,比较两者的差异。

5.改变信道参数和编码方式,观察对实际传输速率的影响。

四、实验结果与分析通过实验,我们可以得到不同信道及编码方式下的信息传输速率,根据信道参数和编码方式的不同,传输速率有时会接近信道容量,有时会低于信道容量。

这是因为在真实的传输过程中,存在信噪比、传输距离等因素导致的误码率,从而降低了实际传输速率。

在实验中,我们还可以观察到不同编码方式对传输速率的影响。

例如,霍夫曼编码适用于信源概率分布不均匀的情况,可以实现数据压缩,提高传输效率。

而区块编码适用于数据容量较大的情况,可以分块传输,降低传输错误率。

此外,通过实验我们还可以了解到信息论中的一些重要概念,如信源熵、信道容量等。

信息论与编码实验报告-Shannon编码

信息论与编码实验报告-Shannon编码

实验报告课程名称:信息论与编码姓名:系:专业:年级:学号:指导教师:职称:年月日实验三 Shannon 编码一、实验目的1、熟悉离散信源的特点;2、学习仿真离散信源的方法3、学习离散信源平均信息量的计算方法4、熟悉 Matlab 编程二、实验原理给定某个信源符号的概率分布,通过以下的步骤进行香农编码 1、信源符号按概率从大到小排列;12.......n p p p ≥≥≥2、确定满足下列不等式的整数码长i K 为()()1i i i lb p K lb p -≤<-+3、为了编成唯一可译码,计算第i 个消息的累加概率:4、将累加概率i P 变换成二进制数;5、取i P 二进制数的小数点后i K 位即为该消息符号的二进制码字。

三、实验内容1、写出计算自信息量的Matlab 程序2、写出计算离散信源平均信息量的Matlab 程序。

3、将程序在计算机上仿真实现,验证程序的正确性并完成习题。

四、实验环境Microsoft Windows 7 Matlab 6.5五、编码程序计算如下信源进行香农编码,并计算编码效率:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.06543210a a a a a a a P X MATLAB 程序:(1) a=[0.2 0.18 0.19 0.15 0.17 0.1 0.01]; k=length(a);y=0; for i=1:k-111()i i k k P p a -==∑for n=i+1:kif (a(i)<a(n))t=a(i);a(i)=a(n);a(n)=t;endendends=zeros(k,1);b=zeros(k,1);for m=1:ks(m)=y;y=y+a(m);b(m)=ceil(-log2(a(m)));z=zeros(b(m),1);x=s(m);p=b2d10(x);for r=1:b(m)z(r)=p(r);enddisp('Êä³ö½á¹ûΪ£º')disp('³öʸÅÂÊ'),disp(a(m))disp('ÇóºÍ½á¹û'),disp(s(m))disp('±àÂëλÊý'),disp(b(m))disp('×îÖÕ±àÂë'),disp(z')end(2) function y=b2d10(x)for i=1:8temp=x.*2;if(temp<1)y(i)=0;x=temp;elsex=temp-1;y(i)=1;endend(3) p=[0.2 0.19 0.18 0.17 0.15 0.1 0.01]; sum=0;sum1=0;for i=1:7a(i)=-log2(p(i));K(i)=ceil(a(i));R(i)=p(i)*K(i);sum=sum+R(i);c(i)=a(i)*p(i);sum1=sum1+c(i);endK1=sum;H=sum1;Y=H/K1;disp('ƽ¾ùÐÅÏ¢Á¿'),disp(H)disp('ƽ¾ùÂ볤'),disp(K1)disp('±àÂëЧÂÊ'),disp(Y)六、实验结果输出结果为:出事概率0.2000,求和结果0,编码位数3,最终编码000出事概率0.1900,求和结果0.2000,编码位数3,最终编码001出事概率0.1800,求和结果0.3900,编码位数3,最终编码011出事概率0.1700,求和结果0.5700,编码位数3,最终编码100出事概率0.1500,求和结果0.7400,编码位数3,最终编码101出事概率0.1000,求和结果0.8900,编码位数4,最终编码1110出事概率0.0100,求和结果0.9900,编码位数7,最终编码1111110编码效率:平均信息量2.6087平均码长3.1400编码效率0.8308七、实验总结通过本次的实验,掌握了Shannon编码的实验原理以及编码过程。

信息论与编码理论课程实验报告

信息论与编码理论课程实验报告
2、建立待压缩的数据(如文本、图像等)的信源模型。进行相关统计,确定该数据的信源符号集,以及相应的概率集合,从而确定该信源的概率空间。该部分实验涉及数据读入(文档读写、图像读写)、信源符号出现概率统计等等
二、实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等)
设备:PC机
软件:matlab 2007
0.0055 0.0115 0.0061 0.0176 0
构建信源模型如下:
h i j k l m n
0.0267 0.0672 0.0042 0.0030 0.0521 0.0212 0.0733
o p q r s t u
0.0842 0.0254 0.0048 0.0648 0.0933 0.0739 0.0327
9.实验报告独立完成,无抄袭现象,并按时提交,格式规范。
综合评定:
附录(程序源代码)
1.编写MATLAB程序
clc
clear all
%随机输入一组数据
string='abdddssdsssdabaabaddkkidkidkdiakdjjaidjaid';
%将上述中所有英文字母化为小写
string=lower(string);
自评/互评成绩:100(评阅者签名:熊萌萌)
2、教师评价
评价标准
评语等级



及格
不合格
1.实验态度认真,实验目的明确
2.实验方案或流程图思路清晰、合理
3.实验程序设计合理,能运行
4.实验步骤记录详细,具备可读性
5.实验数据合理
6.实验结论正确
7.实验总结分析合理、透彻
8.实验报告完整、文字叙述流畅,逻辑性强

信息论与编码-课程设计报告

信息论与编码-课程设计报告

目录一:实验原理----------------------------1二:程序源代码--------------------------1三:实验分析-----------------------------6四:实验结论---------------------------7赫夫曼编码一:实验原理哈夫曼编码的具体步骤归纳如下:① 概率统计(如对一幅图像,或m幅同种类型图像作灰度信号统计),得到n个不同概率的信息符号。

② 将n个信源信息符号的n个概率,按概率大小排序。

③ 将n个概率中,最后两个小概率相加,这时概率个数减为n-1个。

④ 将n-1个概率,按大小重新排序。

⑤ 重复③,将新排序后的最后两个小概率再相加,相加和与其余概率再排序。

⑥ 如此反复重复n-2次,得到只剩两个概率序列。

⑦ 以二进制码元(0.1)赋值,构成哈夫曼码字。

编码结束。

哈夫曼码字长度和信息符号出现概率大小次序正好相反,即大概信息符号分配码字长度短,小概率信息符号分配码字长度长。

C、哈夫曼编码的特点(1)哈夫曼编码的构造顺序明确,但码不是唯一的(因以大赋1还是小的赋1而异;(2)哈夫曼编码的字长参差不齐,硬件实现不方便;(3)只有在概率分布很不均匀时,哈夫曼编码才有显著的效果,而在信源分布均匀时,一般不使用哈夫曼编码。

二:程序源代码:#define MAXVALUE 10000#define MAXLEAF 30#define MAXNODE 59#define MAXBIT 10#define LENTH 30#include "stdio.h"#include<iostream>typedef struct{float gailv;int flag;int parent;int lchild;int rchild;char ch;int t;}HNodeType;typedef struct{int bit[MAXBIT];int start;}HCodeType;typedef struct{float gailv;char letter;}mytype; /*it's the type of data save in file*/typedef struct filehuff{int count;mytype mydata[MAXLEAF];filehuff(){count=0; };};filehuff filedata;char code[MAXVALUE];HNodeType HuffNode[MAXNODE];void savetofile(){FILE *fp;if((fp=fopen("datafile.txt","wb"))==NULL){printf("打开失败 ....");return;}if(fwrite(&filedata,sizeof(filedata),1,fp)!=1) printf("写入文件失败 ....");fclose(fp);}void openfile(){ FILE *fp;if((fp=fopen("datafile.txt","rb"))==NULL){return;}fread(&filedata,sizeof(filedata),1,fp);}void translate(){char c;int i,j,k=0,m,n=0;printf("请输入你想要译码的二进制序列 ");printf("\n");getchar();scanf("%c",&c);for(i=0;(i<MAXVALUE)&&(c=='1'||c=='0');i++){ code[i]=c;scanf("%c",&c);}printf("对应的信源符号为:");for(j=0;j<=MAXVALUE&&HuffNode[j].parent!=-1;j++) m=j+1;for(j=0,k=m;j<=i;j++){if(code[j]=='0'){n=HuffNode[k].lchild;if(n==-1){printf("%c",HuffNode[k].ch);k=m;j--;continue;}k=n;}else{n=HuffNode[k].rchild;if(n==-1){printf("%c",HuffNode[k].ch);k=m;j--;continue;}k=n;}}}void Huffman(){HCodeType HuffCode[MAXLEAF],cd;int i,j,m1,m2,x1,x2,c,p,m;if(filedata.count==0){ printf("\n输入信源符号总数 : ");scanf("%d",&m);filedata.count=m;for(i=0;i<2*m-1;i++){ HuffNode[i].gailv=0;HuffNode[i].parent=-1;HuffNode[i].flag=0;HuffNode[i].lchild=-1;HuffNode[i].rchild=-1;HuffNode[i].ch='a';}for(i=0;i<m;i++){ printf("请输入 (概率,信源符号):");scanf("%f %c",&HuffNode[i].gailv,&HuffNode[i].ch); filedata.mydata[i].gailv=HuffNode[i].gailv; filedata.mydata[i].letter=HuffNode[i].ch;savetofile();}}else{ m=filedata.count;for(i=0;i<2*m-1;i++){ HuffNode[i].gailv=0;HuffNode[i].parent=-1;HuffNode[i].flag=0;HuffNode[i].lchild=-1;HuffNode[i].rchild=-1;HuffNode[i].ch=3;}for(i=0;i<m;i++){ HuffNode[i].gailv=filedata.mydata[i].gailv;HuffNode[i].ch=filedata.mydata[i].letter;}}for(i=0;i<m-1;i++){ m1=m2=MAXVALUE;x1=x2=0;for(j=0;j<m+i;j++){ if(HuffNode[j].gailv<m1&&HuffNode[j].flag==0){ m2=m1;x2=x1;m1=HuffNode[j].gailv;x1=j;}else if(HuffNode[j].gailv<m2&&HuffNode[j].flag==0){ m2=HuffNode[j].gailv;x2=j;}}HuffNode[x1].parent=m+i;HuffNode[x2].parent=m+i;HuffNode[x1].flag=1;HuffNode[x2].flag=1;HuffNode[m+i].gailv=HuffNode[x1].gailv+HuffNode[x2].gailv;HuffNode[m+i].lchild=x1;HuffNode[m+i].rchild=x2;}for(i=0;i<m;i++){ cd.start=m-1;c=i;p=HuffNode[c].parent;while(p!=-1){ if(HuffNode[p].lchild==c)cd.bit[cd.start]=0;else cd.bit[cd.start]=1;cd.start--;c=p;p=HuffNode[c].parent;}for(j=cd.start+1;j<m;j++)HuffCode[i].bit[j]=cd.bit[j]; HuffCode[i].start=cd.start;}printf("对应的赫夫曼编码如下:");printf("\n信源符号概率编码\n");for(i=0;i<m;i++){printf("%c %f ",HuffNode[i].ch,HuffNode[i].gailv); for(j=HuffCode[i].start+1;j<m;j++)printf("%d",HuffCode[i].bit[j]);printf("\n");}printf("按任意键继续......\n");}main(){char yn;printf("\n");printf("\n");printf(" 信息论与编码实验 \n");openfile();Huffman();for(;;){printf("\n是否想要把序列译码为信源符号 ?: (输入 y or n) "); scanf("%c",&yn);if(yn=='y'||yn=='Y')translate();elsebreak;}return 0;system("pause");}三:实验分析编码实例如下:由图中可以看出,符合基本的赫夫曼编码的原理,概率大的用短码,概率小的用长码。

信息论与编码课程实验报告

信息论与编码课程实验报告

福建农林大学计算机与信息学院信息工程类信息论与编码课程实验报告实验项目列表实验名称1:信源建模一、实验目的和要求(1)进一步熟悉信源建模;(2)掌握MATLAB程序设计和调试过程中数值的进制转换、数值与字符串之间的转换等技术。

二、实验内容(1)假设在一个通信过程中主要传递的对象以数字文本的方式呈现。

(2)我们用统计的方式,发现这八个消息分别是由N1,N2,…,N8个符号组成的。

在这些消息是中出现了以下符号(符号1,符号2,…,符号M)每个符号总共现了(次数1,次数2,…,次数M)我们认为,传递对象的信源模型可表示为:X为随机变量(即每次一个字符);取值空间为:(符号1,符号2,…,符号M);其概率分布列为:(次数1/(N1+…+N8),…,次数M/( N1+…+N8))三、实验环境硬件:计算机软件:MATLAB四、实验原理图像和语声是最常用的两类主要信源。

要充分描述一幅活动的立体彩色图像,须用一个四元的随机矢量场X(x,y,z,t),其中x,y,z为空间坐标;t 为时间坐标;而X是六维矢量,即表示左、右眼的亮度、色度和饱和度。

然而通常的黑白电视信号是对平面图像经过线性扫描而形成。

这样,上述四元随机矢量场可简化为一个随机过程X(t)。

图像信源的最主要客观统计特性是信源的幅度概率分布、自相关函数或功率谱。

关于图像信源的幅度概率分布,虽然人们已经作了大量的统计和分析,但尚未得出比较一致的结论。

至于图像的自相关函数,实验证明它大体上遵从负指数型分布。

其指数的衰减速度完全取决于图像类型与图像的细节结构。

实际上,由于信源的信号处理往往是在频域上进行,这时可以通过傅里叶变换将信源的自相关函数转换为功率谱密度。

功率谱密度也可以直接测试。

语声信号一般也可以用一个随机过程X(t)来表示。

语声信源的统计特性主要有语声的幅度概率分布、自相关函数、语声平均功率谱以及语声共振峰频率分布等。

实验结果表明语声的幅度概率分布可用伽玛(γ)分布或拉普拉斯分布来近似。

信息论与编码实验报告

信息论与编码实验报告

信息论与编码实验报告一、实验目的信息论与编码是一门涉及信息的度量、传输和处理的学科,通过实验,旨在深入理解信息论的基本概念和编码原理,掌握常见的编码方法及其性能评估,提高对信息处理和通信系统的分析与设计能力。

二、实验原理(一)信息论基础信息熵是信息论中用于度量信息量的重要概念。

对于一个离散随机变量 X,其概率分布为 P(X) ={p(x1), p(x2),, p(xn)},则信息熵H(X) 的定义为:H(X) =∑p(xi)log2(p(xi))。

(二)编码原理1、无失真信源编码:通过去除信源中的冗余信息,实现用尽可能少的比特数来表示信源符号,常见的方法有香农编码、哈夫曼编码等。

2、有噪信道编码:为了提高信息在有噪声信道中传输的可靠性,通过添加冗余信息进行纠错编码,如线性分组码、卷积码等。

三、实验内容及步骤(一)信息熵的计算1、生成一个离散信源,例如信源符号集为{A, B, C, D},对应的概率分布为{02, 03, 01, 04}。

2、根据信息熵的定义,使用编程语言计算该信源的信息熵。

(二)香农编码1、按照香农编码的步骤,首先计算信源符号的概率,并根据概率计算每个符号的编码长度。

2、确定编码值,生成香农编码表。

(三)哈夫曼编码1、构建哈夫曼树,根据信源符号的概率确定树的结构。

2、为每个信源符号分配编码,生成哈夫曼编码表。

(四)线性分组码1、选择一种线性分组码,如(7, 4)汉明码。

2、生成编码矩阵,对输入信息进行编码。

3、在接收端进行纠错译码。

四、实验结果与分析(一)信息熵计算结果对于上述生成的离散信源,计算得到的信息熵约为 184 比特/符号。

这表明该信源存在一定的不确定性,需要一定的信息量来准确描述。

(二)香农编码结果香农编码表如下:|信源符号|概率|编码长度|编码值|||||||A|02|232|00||B|03|174|10||C|01|332|110||D|04|132|111|香农编码的平均码长较长,编码效率相对较低。

信息论与编码实验报告

信息论与编码实验报告

信息论与编码实验报告一、实验目的1.了解信息论与编码的基本概念和原理。

2.学习如何通过信息论与编码方法实现对数据的压缩和传输。

3.掌握信息论与编码实验的实验方法和实验技能。

4.提高实验设计、数据分析和报告撰写的能力。

二、实验内容1.通过对输入信源进行编码,实现对数据的压缩。

2. 比较不同编码方法的压缩效果,包括Shannon-Fano编码和霍夫曼编码。

3.通过传输信道对编码后的数据进行解码,还原原始信源。

4.分析并比较不同编码方法的传输效果,包括码率和传输质量。

三、实验原理1.信息论:熵是信息论中衡量信源不确定性的指标,熵越小表示信源的可预测性越高,在编码过程中可以压缩数据。

2. 编码方法:Shannon-Fano编码通过分治的方法将输入信源划分为不同的子集,分别进行编码;霍夫曼编码则通过构建最佳二叉树的方式,将较常出现的信源符号编码为较短的二进制码,较少出现的信源符号编码为较长的二进制码。

3.传输信道:信道可能存在误码和噪声,通过差错控制编码可以在一定程度上保障传输数据的正确性和完整性。

四、实验步骤1. 对给定的输入信源进行Shannon-Fano编码和霍夫曼编码。

2.计算编码后的码率,分析不同编码方法的压缩效果。

3.将编码后的数据传输到信道,模拟信道中的误码和噪声。

4.对传输后的数据进行解码,还原原始信源。

5.比较不同编码方法的传输质量,计算误码率和信噪比。

五、实验结果与分析1. 编码结果:通过对输入信源进行编码,得到了Shannon-Fano编码和霍夫曼编码的码表。

2.压缩效果:计算了不同编码方法的码率,比较了压缩效果。

3.传输结果:模拟信道传输后的数据,对数据进行解码,还原原始信源。

4.传输质量:计算了误码率和信噪比,分析了不同编码方法的传输质量。

六、实验总结通过本次实验,我深刻理解了信息论与编码的基本概念和原理,并掌握了信息论与编码实验的实验方法和实验技能。

在实验过程中,我遇到了一些困难,比如对编码方法的理解和实验数据的处理。

信息论与编码实验报告-差错控制方法

信息论与编码实验报告-差错控制方法

实验报告课程名称:信息论与编码姓名:系:专业:年级:学号:指导教师:职称:年月日实验六 差错控制方法一、实验目的1、 了解纠错编码的基本原理2、了解几种常用编码:奇偶校验码、正反码等,线性分组码、循环码、卷积码的编解码原理3、 重点掌握线性分组码、循环码、卷积码的编解码原理。

二、实验原理N 个重复码是一种将输入比特重复n 遍的编码,假设信道的错误率为p ,接收端收到n 个比特后进行译码,如果n 个接收比特的“1”的个数多于”0“的个数,则译码为“1”反之为“0”,假设编码输入时等概的。

(1)计算n=5的信道错误率与译码的错误率的关系; (2)用matlab 仿真得到上述的曲线。

三、实验内容n 重复码是一种将输入比特重复n 遍的编码,假设信道的错误率为p ,接收端收到n 个比特后进行译码,如果n 个接收比特的“1”的个数多于“0”的个数,则译码为“1”,反之为“0”。

假设编码输入时等概的。

(1)计算n =5时信道错误率与译码错误率的关系; (2)用Matlab 仿真得到上述的曲线;实验步骤:(1)令n1,n2分别表示接收到的n 个比特中“0”和“1”的个数,则误码率可以写成Pb=P (n1<n0|”1”)P(1)+P(n1>n0|”0”)P(0)当n=5时,编码时“1”被映射成“11111”;“0”映射成“00000”,信道错误率为p ,则322541550521322541550521)1()1()"0"()1()1()"1"(ee e e e ee e e e pp C p p C p C n n P p p C p p C p C n n P -+-+=>-+-+=<因此 2345)1(10)1(5e e e e e b p p p p p P -+-+=四、实验环境Microsoft Windows 7Matlab 6.5五、编码程序MATLAB编码:n=5;m=0:-0.5:-3;pe=10.^m;Datad=(sign(randn(1,100000))+1)/2;s=[d;d;d;d;d];s=reshape(s,1,5*length(d));for k=1:length(pe)err=rand(1,length(d)*5);err=err<pe(k);r=rem(s+err,2);r=reshape(r,5,length(d));dd=sum(r)>2;error(k)=sum(abs(dd-d))/length(d);endloglog(pe,error)六、实验结果七、实验总结通过本次实验,掌握了差错控制编码的实验原理与编码过程。

信息论与编码报告

信息论与编码报告

信息论报告摘要:信息论是一门用概率论与数理统计方法来研究信息的度量、传递和交换规律的科学。

它主要是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、存储和传递等问题的基础理论。

自香农在1948年发表奠定信息论基础的《通信的数学理论》一文以来,信息论学科迅速发展并延伸到许多领域中。

信息理论不仅在通信、计算机、控制等领域中有直接指导意义,还渗透到经济学、生物学、医学等广泛领域。

本文简要介绍信息论的基本原理和发展史,重点介绍信息论在数据压缩、密码学、信号处理及量子理论中的应用。

关键词:信息、信息论、密码学、数据压缩、量子理论、熵1.信息论原理1.1信息论中的信息信息是信息论中最重要最基本的概念。

早期,人们对信息的理解是很肤浅的。

最早把信息作为科学对象来加以研究的是通信领域,而这一领域的奠基之作当推哈特莱于1928年在《贝尔系统电话杂志》上发表的题为《信息传输》的论文。

他把信息理解为选择通信符号的方式,并用选择的自由度来计量这种信息的大小。

1948年,通信专家香农在《贝尔系统电话杂志》上发表了一篇名为《通信的数学理论》的论文,在文中他以概率论为工具,阐明了通信中的一系列基本理论问题,给出了计算信源信息量和信道容量的方法和一般公式,得到了一组表示信息传递重要关系的编码定理。

香农在定量测度信息时,把信息定义为随机不确定性的减少,亦即信息是用来减少随机不确定性的东西。

基于这一思想,布里渊直接指出,信息就是负熵[1]。

而控制论的奠基人维纳则把信息看做广义通信的内容,他指出:“正如熵是无组织(无序)程度的度量一样,消息集合所包含的信息就是组织(有序)程度的度量。

事实上完全可以将消息所包含的信息解释为负熵”[2]。

1.2信息论基础(1)香农在论文《A Mathematical Theory of Communication 》中给出了信息熵的定义:()i ii p p log ∑-=H (1-2-1)这一定义可以用来推算传递经二进制编码后的原信息所需的信道带宽。

信息论与编码实验报告(DOC)

信息论与编码实验报告(DOC)

计算机与信息学院信息论与编码实验报告专业班级学生姓名及学号周伟康20112910 课程教学班号任课教师苏兆品实验指导教师实验地点2013 ~ 2014 学年第一学期信息论与编码课程设计目录一.课程设计目的 (2)二.课程设计要求 (2)三.课程设计描述 (2)四.程序结构 (2)五.算法及部分源码 (3)六.用例测试 (9)七.总结 (20)一.课程设计目的通过编程实现,在理解掌握的基础上进一步扩展课授的几种无失真信源编码算法。

以实践检验理论。

二.课程设计要求1.对一灰度图像进行游程编码的设计实现(将Huffman与游程结合)。

2.试对任意的数字序列(如学号、电话号码)进行自适应算术编码。

3.围绕设计题目查阅资料,掌握编码的基本原理。

4.按设计要求和编码原理进行算法的设计,算法的设计应满足正确性、可读性、健壮性、高效率等要求。

5.在此基础上,可以进行扩展三.课程设计描述本次设计实现内容:1.对任意的信源符号序列进行N元Huffman编码/译码。

2.对任意的信源符号序列进行N元Fano 编码/译码。

3.对任意的信源符号序列进行N元Elias 编码/译码。

4.对像素矩阵进行游程与上述编码方式结合的编码/译码。

5.数字串的自适应算数编码/译码。

6.对任意给定译码规则的译码和判断其是否为即时码。

输入数据从键盘或磁盘文件读入,运算结果显示到屏幕或保存到文件。

编写可视化图形交互界面。

本次设计程序用Java实现,由本人独立完成。

四.程序结构本次设计采用MVC设计模式:控制包下为文件读写线程执行包下是执行主类模式包分编码译码两部分Item:封装每个码元符号信息和操作AnlysisModel:信源序列统计分析模型其他如右图顾名思义视图包也分编码译码两部分MainFrame:主框架界面编码下:算数编码面板分组码编码面板译码下:算数译码面板分组码译码面板五. 算法及部分源码a) N 元Huffman 编码:算法:1) 将每个信源符号加入优先队列Heap 。

信息论与编码实验报告

信息论与编码实验报告

实验报告课程名称:信息论与编码姓名:系:专业:年级:学号:指导教师:职称:年月日目录实验一信源熵值的计算 (1)实验二 Huffman信源编码 (5)实验三 Shannon编码 (9)实验四信道容量的迭代算法 (12)实验五率失真函数 (15)实验六差错控制方法 (20)实验七汉明编码 (22)实验一 信源熵值的计算一、 实验目的1 进一步熟悉信源熵值的计算 2熟悉 Matlab 编程二、实验原理熵(平均自信息)的计算公式∑∑=--==qi i i qi i i p p p p x H 1212log 1log )(MATLAB 实现:))(log *.(2x x sum HX -=;或者))((log *)(2i x i x h h -= 流程:第一步:打开一个名为“nan311”的TXT 文档,读入一篇英文文章存入一个数组temp ,为了程序准确性将所读内容转存到另一个数组S ,计算该数组中每个字母与空格的出现次数(遇到小写字母都将其转化为大写字母进行计数),每出现一次该字符的计数器+1;第二步:计算信源总大小计算出每个字母和空格出现的概率;最后,通过统计数据和信息熵公式计算出所求信源熵值(本程序中单位为奈特nat )。

程序流程图:三、实验内容1、写出计算自信息量的Matlab 程序2、已知:信源符号为英文字母(不区分大小写)和空格。

输入:一篇英文的信源文档。

输出:给出该信源文档的中各个字母与空格的概率分布,以及该信源的熵。

四、实验环境Microsoft Windows 7Matlab 6.5五、编码程序#include"stdio.h"#include <math.h>#include <string.h>#define N 1000int main(void){char s[N];int i,n=0;float num[27]={0};double result=0,p[27]={0};FILE *f;char *temp=new char[485];f=fopen("nan311.txt","r");while (!feof(f)) {fread(temp,1, 486, f);}fclose(f);s[0]=*temp;for(i=0;i<strlen(temp);i++){s[i]=temp[i];}for(i=0;i<strlen(s);i++){if(s[i]==' ')num[26]++;else if(s[i]>='a'&&s[i]<='z')num[s[i]-97]++;else if(s[i]>='A'&&s[i]<='Z')num[s[i]-65]++;}printf("文档中各个字母出现的频率:\n");for(i=0;i<26;i++){p[i]=num[i]/strlen(s);printf("%3c:%f\t",i+65,p[i]);n++;if(n==3){printf("\n");n=0;}}p[26]=num[26]/strlen(s);printf("空格:%f\t",p[26]);printf("\n");for(i=0;i<27;i++){if (p[i]!=0)result=result+p[i]*log(p[i]);}result=-result;printf("信息熵为:%f",result);printf("\n");return 0;}六、求解结果其中nan311.txt中的文档如下:There is no hate without fear. Hate is crystallized fear, fear’s dividend, fear objectivized. We hate what we fear and so where hate is, fear is lurking. Thus we hate what threatens our person, our vanity andour dreams and plans for ourselves. If we can isolate this element in what we hate we may be able to cease from hating.七、实验总结通过这次实验,我们懂得了不必运行程序时重新输入文档就可以对文档进行统计,既节省了时间而且也规避了一些输入错误。

信息论与编码课程设计报告(语音编码与测试)

信息论与编码课程设计报告(语音编码与测试)

语音编码及测试一、摘要利用手机录制18份小语音样本共3分钟,利用Matlab读取语音音频,并使用其统计函数对音频进行数据种类,个数及概率统计,利用统计得到的数据种类和概率进行概率密度函数拟合,拟合得到两段概率密度函数。

同时使用Lloyds分类算法对统计好的数据进行分类,共分为nR2个类别,即512类,得到其相应区间及质心。

对概率密度函数进行对应区间的积分得到区间对应的概率,然后使用Huffman编码进行二元编码,得到512个码字与质心对应。

测试阶段利用码字库,对随机录制的一段小语音进行编码得到音频对应的码字。

关键字:概率密度函数、Lloyds分类算法、Huffman编码、码字二、问题重述2.1语音编码录制一份语音,使用相应的工具对其音频进行提取,对提取到的音频进行概2个类率统计拟合出概率密度函数。

选取适当的方法将统计好的音频数字分为nR2个区间及区间对应的质心,既码字,概率密度函数进行别,分类后相应得到nRnR2个区间积分,由此得到nR2个码字及其概率对应,最后选取适当的编码方法得到质心对应的码字,都成编码库2.2编码测试录制一段小语音利用上诉的码字及其编码库,最终得到每个音频数对应的码字。

三、问题分析3.1语音编码由于录制的语音是作为实验得到码书的样本,因此语音的录制面要广且量应尽可能的多才能保证实验的合理性。

使用Matlab对语音进行音频读取及相应的概率统计,对统计后的结果利用Matlab中cftool工具箱对数据及其概率进行拟合,得到概率密度函数。

考虑到数据量及其较大的重复性,对于分类阶段采用统计好的音频数据,利用Matlab 中Lloyds 算法函数按nR 2分类,其结果会得到nR 2个区间及区间对应的质心,既码字。

利用密度函数对nR 2个区间进行积分得到nR 2个码字对应的概率,最后利用Matlab 中Huffman 编码程序对其概率进行0、1编码。

得到nR 2个码书构成本次实验的码字库。

信息论课程总结

信息论课程总结

《信息论与编码》课程总结信息论与编码作为我们的一门所学课程从它的名称我们就可以知道它是由信息论和编码组成,信息论是编码的基础。

也就是说信息论是理论而编码就是我们的实际操作了。

纵观本书可以看出,信息论与编码是一门应用概率论、随机过程和数理统计等方法来研究信息的存储、传输、控制、和利用的一般规律的科学。

可见它与我们大二所学的概率论与数理统计有很大的联系。

从学习我们也可以看出,书中的很多定义和证明都是从概率论角度出发的,从而衍生出信息论。

作为一名信息与计算科学专业的学生,从这个名字就可以看出信息论与编码对我们所学的专业也是挺重要的了。

通常人们公认信息论的奠基人是当代伟大的数学家和美国杰出的科学家香农,他著名的论文《通信的数学理论》是信息论的理论基础,半个世纪以来,以通信理论为核心的经典信息论,正以信息技术为物化手段,向尖端方向发展,并以神奇般的力量把人类推人信息时代。

那么信息论与编码到底是干嘛的呢?它主要研究如何提高信息系统的可靠性、有效性、保密性和认证性,以使信息系统最优化。

所谓可靠性高就是要使信源发出的消息经过新到传输以后,尽可能准确的、不失真的再现在接收端;而所谓有效性高,就是经济效果好,即用经可能少的和尽可能少的设备来传送一定数量的信息;所谓保密性就是隐蔽和保护通信系统中传送的信息,使他只能被授权接受者获取,而不能被未授权者接受和理解;而认证性是指接受者能正确的判断所接受的消息的正确性,验证消息的完整性,而不是伪造的和被修改的。

20世纪中出现了一个很厉害的人!香农!自香农信息论问世以后,信息理论本身得到不断的发展和深化,尤其在这个理论指导下,信息技术也得到飞快的发展。

这又使对信息的研究冲破了香农狭义信息论的范畴,几乎渗透到自然科学与社会科学的所有领域。

从而形成了一门具有划时代意义的新兴学科----信息科学。

所以信息论是信息科学发展的源泉,也是信息科学的基础理论。

随着信息时代的到来,计算机的应用越来越广泛,所以只要涉及信息的存储,传输和处理的问题就要利用香农信息论的理论---无失真通信的传输的速率极限(香农极限),无失真和限失真信源编码理论(数据压缩原理)和信道编码原理(纠错码原理)。

信息论与编码 自学报告

信息论与编码 自学报告

《信息论与编码》课程自学报告题目:AAC音频压缩编码学号:xxxxxxxxx姓名:xxxxxxx任课教师:xxxxxxx联系方式:xxxxxxxxxxxxx二零一六年一月一日一、自学内容小结与分析1. 基本概念要想无失真地传送连续信源的消息,要求信息率R 必须为无穷大。

这实际上是做不到的,因此实际通信系统允许一定的失真存在,那么对信息率的要求便可降低,换言之,就是允许压缩信源输出的信息率。

信息率失真理论研究的就是信息率与允许失真之间的关系。

1.1 失真函数与平均失真度为了定量地描述信息率与失真的关系,首先定义失真的测度。

设离散无记忆信源1212 , ,, (),(),,()()n n a a a X p a p a p a P X ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭。

信源符号通过信道传送到接收端Y ,1212 , , , (),(),,()()m m b b b Y p b p b p b P Y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭。

对于每一对(),i j a b ,指定一个非负的函数(),0i j d a b ≥ (1) 称d(a i ,b j )为单个符号的失真度或失真函数。

用它来表示信源发出一个符号a i ,而在接收端再现b j 所引起的误差或失真。

由于a i 和b j 都是随机变量,所以失真函数d(a i ,b j )也是随机变量,限失真时的失真值,只能用它的数学期望或统计平均值,因此将失真函数的数学期望称为平均失真度,记为11[(,)]()(/)(,)nmi j i j i i j i j D E d a b p a p b a d a b ====∑∑ (2)1.2 信息率失真函数的定义 1.2.1 D 允许试验信道平均失真由信源分布p(a i )、假想信道的转移概率p(b j /a i )和失真函数d(a i ,b j )决定,若p(a i )和d(a i ,b j )已定,则调整p(b j /a i )使D̅≤D ,称P D ={p (bj ai):D ̅≤D}为D 失真许可的试验信道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论与编码课程报告
信息论与编码是一门重要的课程,在计算机科学与技术,通信工程,信号处理
等专业中发挥着重要的作用。

信息论涉及到信息的量化、源编码、信息隐藏,噪声抑制以及信息协议的分析等诸多方面。

而编码中的许多领域如信号处理、视频编码、图像处理等又建立在信息论的基础之上。

在这门课程中,学生可以学习如何把信息量化,以及不同的编码方法和算法,明白信息和音频的处理,还可以学习复杂格式的音频、视频编码。

此外,学习中还会涉及到模拟和数字信号,熵、信道容量与噪讲,数字信号处理,数字信号编码等多种多样的知识点,其中还包括噪讲模型、噪讲容量等多种不同概念。

整个信息论和编码领域有着丰富的应用,为听力、视觉等智能分析技术的实现
提供了理论支撑。

基于信息论的研究发明了压缩编码技术,它可以用来压缩数据,提高传输速率和储存空间,同时编码技术可以使数据免于传输过程中的损耗,有效地实现了音频、视频等多种数据的传输。

此外,信息论和编码在模式识别与多媒体通信、卫星通信、生物医学等多个领域都有着重要的应用。

综上所述,信息论与编码课程是个重要的学科,在计算机科学与技术,通信工程,算法,信号处理,多媒体通信,生物医学等领域中有着广泛的应用。

该课程主要是以学习源编码,熵、信道容量,噪讲,数字信号处理,数字信号编码,噪讲模型,压缩编码等多种专业概念为基础,因此有深入研习的必要,以获得多方面的知识和理解,为日后的技能应用打实基础。

相关文档
最新文档