北京市石景山中考一模数学试卷(含答案)
石景山区2024届初三一模数学试题答案

石景山区2024年初三统一练习数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
3.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
第一部分选择题一、选择题(共16分,每题2分)第二部分非选择题二、填空题(共16分,每题2分)9.2x≥10.22x y y+−()()11.212.1x= 13.>14.1−15.2516.2643;三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)17.解:原式2252=−+−…………………………4分7=.…………………………5分18.解:原不等式组为4178523x xxx−<+−>⎧⎪⎨⎪⎩,①.②解不等式①,得3x>−.…………………………2分解不等式②,得1x>.…………………………4分∴原不等式组的解集为1x>.…………………………5分19.解:原式22923x x xx −=⋅+()()23323x x x xx +−=⋅+()()()232x x −=. ………………………… 3分∵2360x x −−=,∴236x x −=. ………………………… 4分 ∴原式3=. ………………………… 5分20.(1)证明:∵AE 平分BAD ∠,∴12∠=∠. ∵AD BC ∥, ∴32∠=∠. ∴31∠=∠. ∴BE AB =. 又∵AD AB =, ∴BE AD =.∴四边形ABED 是平行四边形. 又∵AD AB =,∴□ABED 是菱形. ………………………… 3分(2)解:在Rt BCD △中,90C ∠=°,cos 43BC BD∠==,∴433BC BD ===.∵四边形ABED 是菱形,∴12AE BD BF BD ⊥==,.在Rt BFE △中,cos 43BF BE∠==, ∴3BE =.∴1EC BC BE =−=. ………………………… 6分CDEBAF431221.解:设这户居民2023年的用水量为x立方米.…………………………1分∵5180900⨯=,518072601801460⨯+⨯−=(),90010401460<<,∴180260x<<.根据题意列方程,得518071801040x⨯+−=().…………………………4分解这个方程,得200x=. (5)分答:这户居民2023年的用水量为200立方米. (6)分22.解:(1)∵函数0y k x b k=+≠()的图象过点03A(,)和21B−(,),∴321bk b=−+=⎧⎨⎩,.解得13kb==⎧⎨⎩,.∴该函数的解析式为3y x=+. (2)分∵函数3y x=+的图象与过点05(,)且平行于x轴的直线交于点C,∴点C的纵坐标为5.令5y=,得2x=.∴点C的坐标为25(,). (3)分(2)512m≤≤.…………………………5分23.解:(1)m的值为178,n的值为179;…………………………2分(2)甲组;…………………………3分(3)177cm176cm,.…………………………5分24.(1)证明:∵AB是O⊙的直径,CD AB⊥,∴AD AC=.又∵CF AC=,∴CF AC AD==.∴AF CD=.∴AF CD=.…………………………3分(2)解:连接OC,连接OF,如图.设O⊙的半径为x.∵AB是O⊙的直径,∴90AFB∠=°.∵CF CA=,∴112AOF∠=∠.又∵122AOF∠=∠,∴12∠=∠.又∵90CEO AFB∠=∠=°,∴CEO△∽AFB△.∴CO OE AB BF=.即262x xx=−.解得5x=.∴3OE OA AE=−=,8BE AB AE=−=.∴4CE=.∵AB是O⊙的直径,CD AB⊥,∴4DE CE==.在Rt DEB△中,BD==.…………………………6分25.解:(1)如图; ……… 2分(2)答案不唯一,如3.3,5.98;……… 4分(3)答案不唯一,如2.3.……… 5分26.解:(1)由题意,得22m t −+=−(),即22m t +=. ………………………… 2分(2)231y y y <<.理由如下:令0y =,得2220x m x m −++=(). ∴122x x m ==,.∴抛物线与x 轴的两个交点为20(,),0m (,). ∵抛物线与x 轴的一个交点为00x (,),其中002x <<, ∴02m <<. ∵22m t +=,∴12t <<.∴21t −<−<−,213t <+<.设点1A t y −(,)关于抛物线的对称轴x t =的对称点为1A n y '(,). ∵点1A t y −(,)在抛物线上, ∴点1A n y '(,)也在抛物线上. 由n t t t −=−−(),得3n t =. ∴336t <<.∴13t t t <+<.∵抛物线的解析式为222y x m x m =−++(), ∴此抛物线开口向上.当x t ≥时,y 随x 的增大而增大.∵点2B t y (,),31C t y +(,),13A t y '(,)在抛物线上,且13t t t <+<, ∴231y y y <<. ………………………… 6分27.(1)证明:延长AD 交BC 于点G ,连接CD ,如图1.∵60BD BC DBC =∠=,°, ∴DBC △是等边三角形. ∴60DC DB BC DCB ==∠=,°. ∴点D 在线段BC 的垂直平分线上. ∵AB AC =,∴点A 在线段BC 的垂直平分线上. ∴AG BC ⊥.∴90AGC GAE ∠=∠=°.∴EA BC ∥. ………………………… 2分(2)依题意补全图2,如图.数量关系:2MF MD DE =+.证明:延长FD 交AE 的延长线于点N ,连接CD ,如图2.∵DC BC =,CF BC =, ∴CF CD =. ∴11302F FDC ∠=∠=∠=°.∵EA BC ∥, ∴30N F ∠=∠=°. 又∵AMN CMF ∠=∠,AM CM =,∴AMN △≌CMF △. ∴MF MN =.在Rt EAD △中,AE AD =,可得2DE AD =.1N EADCBMF图2G E DCB A 图1在Rt NAD △中,30N ∠=°,可得2DN AD =.∴DN =.∵MN MD DN MD =+=,∴MF MD =. ………………………… 7分28.解:(1)13C C ,; ………………………… 2分(2)①3(; ………………………… 4分②030α<<°°或3090α<°≤°或150180α<°≤°;3AQ ≥. … 7分。
2020年北京市石景山区初三数学一模试卷及参考答案

2020年北京市石景山区初三一模试卷数 学学校 姓名 准考证号下面各题均有四个选项,符合题意的选项只有..一个. 1.2019年5月7日,我国自主创新研发的“东方红3号科学考察船”通过挪威DNV-GL 船级社权威认证,成为全球最大静音科考船.“东方红3”是一艘5000吨级深远海科考船,具有全球无限航区航行能力,可持续航行15000海里.将15000用科学记数法表示应为 A .50.1510⨯B .41.510⨯C .41510⨯D .31510⨯2. 下列图形中,既是轴对称图形,又是中心对称图形的是A B C D3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则不正确...的结论是A .3a >B .0b c -<C .0ab <D .ac >-–1–2–3–4–512345abc4.如图,AD 平分BAC ∠,点E 在AB 上,EF ∥AC 交AD 于点G ,若40DGF ∠=°,则BAD ∠的度数为A .20° C .50°B .40° D .80°5.若一个多边形的内角和为540°,则该多边形的边数是A .4B .5C .6D .76.在下列几何体中,其三视图中没有..矩形的是ABCD7.如图,点A ,B ,C ,D 在⊙O 上,弦AD 的延长线与弦BC 的延长线相交于点E .用①AB 是⊙O 的直径,②CB CE =,③AB AE =中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为 A . C .B . D .8.某地区经过三年的新农村建设,年经济收入实现了翻两番(即是原来的倍).为了更好地了解该地区的经济收入变化情况,统计了该地区新农村建设前后的年经济收入构成结构如下:则下列结论中不正确...的是 021322EA .新农村建设后,种植收入减少了B .新农村建设后,养殖收入实现了翻两番C .新农村建设后,第三产业收入比新农村建设前的年经济收入还多D .新农村建设后,第三产业收入与养殖收入之和超过了年经济收入的一半 二、填空题(本题共16分,每小题2分) 9.请写出一个比10小的整数: .10.如右图,身高1.8米的小石从一盏路灯下B 处向前走了8米到达点C 处时,发现自己在地面上的影子CE 长是2米,则路灯的高AB 为 米.11.分解因式:24xy x -= .12.一个不透明的盒子中装有4个黄球,3个红球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是红球的概率是 .13.如果25m n +=,那么代数式224(2)24n mm n m n+÷--的值为 . 14.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如右图,AB 为⊙O 的直径,弦CD AB ⊥于点E ,1BE =寸,1CD =尺,那么直径AB 的长为多少寸?(注:1尺=10寸) 根据题意,该圆的直径..为 寸. 15.为了做到合理用药,使药物在人体内发挥疗效作用,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如下:ED CBA根据图中提供的信息,下列关于成人患者使用该药物的说法中,①首次服用该药物1单位约10分钟后,药物发挥疗效作用;②每间隔4小时服用该药物1单位,可以使药物持续发挥治疗作用;③每次服用该药物1单位,两次服药间隔小于2.5小时,不会发生药物中毒. 所有正确的说法是 .16.在平面直角坐标系xOy中,函数1()y x x m=<的图象与函数22()y x x m=≥的图象组成图形G.对于任意实数n,过点(0,)P n且与x轴平行的直线总与图形G有公共点.写出一个满足条件的实数m的值为(写出一个即可).三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:11(2020)13tan305π-⎛⎫---⎪⎝⎭°.18.解不等式组352(3),4,3x xxx->-⎧⎪+⎨⎪⎩≥并写出该不等式组的所有非负整数解......)19.下面是小石设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:如图1,直线l 及直线l 上一点P . 求作:直线PQ ,使得PQ l ⊥. 作法:如图2,①以点P 为圆心,任意长为半径作弧,交直线l 于点A ,B ; ②分别以点A ,B 为圆心,以大于12AB 的同样长 为半径作弧,两弧在直线l 上方交于点Q ; ③作直线PQ .所以直线PQ 就是所求作的直线. 根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明.证明:连接QA ,QB .∵QA =( ① ),PA =( ② ),∴PQ l ⊥( ③ )(填推理的依据).20.关于x 的一元二次方程2(1)320m x x --+=有两个实数根.(1)求m 的取值范围;(2)若m 为正整数,求此时方程的根.21.如图,在□ABCD 中,90ACB ∠=°,过点D 作DE BC ⊥交BC 的延长线于点E .(1)求证:四边形ACED 是矩形; (2)连接AE 交CD 于点F ,连接BF . 若60ABC ∠=°,2CE =,求BF 的长.22.如图,在平面直角坐标系xOy 中,直线3y x =+与函数 (0)k y x x=>的图象交于点(1,)A m ,与x 轴交于点B .(1)求m ,k 的值;(2)过动点(0,)(0)P n n >作平行于x 轴的直线,交函数 (0)k y x x=>的图象于点C ,交直线3y x =+于点D . ①当2n =时,求线段CD 的长; ②若CD OB ≥,结合函数的图象, 直接写出n 的取值范围.23.如图,AB 是⊙O 的直径,直线PQ 与⊙O 相切于点C ,以OB ,BC 为边作□OBCD ,连接AD 并延长交⊙O 于点E ,交直线PQ 于点F .(1)求证:AF CF ⊥;(2)连接OC ,BD 交于点H ,若tan 3OCB ∠=,⊙O 的半径是5,求BD 的长.EDCBAA24.北京某超市按月订购一种酸奶,每天的进货量相同.根据往年的销售经验,每天需求量与当天最高气温(单位:C °)有关.为了确定今年六月份的酸奶订购计划,对前三年六月份的最高气温及该酸奶需求量数据进行了整理、描述和分析,下面给出了部分信息.a .酸奶每天需求量与当天最高气温关系如下:b c .2018年6月最高气温数据的频数分布直方图如下: 2017年6月最高气温数据的频数分布表d . 2019 25 26 28 29 29 30 31 31 31 32 32 32 32 32 32 33 33 33 33 33 34 34 34 35 35 35 35 36 36 36 根据以上信息,回答下列问题: (1)m 的值为 ;(2)2019年6月最高气温数据的众数为 ,中位数为 ; (3)估计六月份这种酸奶一天的需求量为600瓶的概率为 ;(4)已知该酸奶进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.2018年6月最高气温数据 C①2019年6月这种酸奶每天的进货量为500瓶,则此月这种酸奶的利润为 元;②根据以上信息,预估2020年6月这种酸奶订购的进货量不合理...的为 A .550瓶/天 B .600瓶/天 C .380瓶/天25.如图,是»AB 上的一定点,P 是弦上的一动点,连接PC ,过点A 作AQ PC ⊥交直线PC 于点Q .小石根据学习函数的经验,对线段PC ,PA ,AQ 的长度之间的关系进行了探究. (当点P 与点A 重合时,令0cm AQ =) 下面是小石的探究过程,请补充完整:(1)对于点P 在弦上的不同位置,画图、测量,得到了线段PC ,PA ,AQ 的几组值,如下表:的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象;C AB BA AB xOy(3)结合函数图象,解决问题:当AQ PC =时,PA 的长度约为 .(结果保留一位小数)26.在平面直角坐标系xOy 中,抛物线24(0)y ax ax b a =++>的顶点A 在x 轴上,与y 轴交于点B .(1)用含a 的代数式表示b ; (2)若45BAO ∠=°,求a 的值;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出a 的取值范围.cm27.如图,点E 是正方形内一动点,满足90AEB ∠=°且45BAE ∠<°,过点D 作DF BE ⊥交BE 的延长线于点F .(1)依题意补全图形;(2)用等式表示线段EF ,DF ,BE 之间的数量关系,并证明.(3)连接CE,若AB =CE 长度的最小值.28.在中,以AB 边上的中线CD 为直径作圆,如果与边AB 有交点(不与点重合),那么称为的C -中线弧. 例如,右图中是的C -中线弧.在平面直角坐标系中,已知存在C -中线弧,其中点A 与坐标原点重合,点B 的坐标为(2,0)(0)t t >.(1)当2t =时,①在点1(3,2)C -,2(0,C ,3(2,4)C ,中,满足条件的点是 ;②若在直线(0)y kx k =>上存在点P 是的C -中线弧所在圆的圆心,其中4CD =,求k 的取值范围;(2)若的C -中线弧所在圆的圆心为定点(2,2)P ,直接写出t 的取值范围.ABCD ABC △E D»DEABC △»DEABC △xOy ABC △O 4(4,2)C C ABC △»DEABC △»DEEDCBA2020北京石景山初三一模数 学阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)题号 1 2 3 4 5 6 7 8 答案BDCBBCDA二、填空题(本题共16分,每小题2分) 9.答案不唯一,如:310.911.(2)(2)x y y +-12.3813.2514.2615.①① 16.答案不唯一,如:1 (01m ≤≤)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式351(31)33=-+--⨯…………………………………4分 3=.…………………………………5分18.解:原不等式组为352(3),4.3x x x x ->-⎧⎪+⎨⎪⎩≥解不等式①,得1x >-.解不等式②,得2x ≤.…………………………………3分① ②∴原不等式组的解集为12x -<≤.…………………………………4分 ∴原不等式组的所有非负整数解为0,1,2.………………………5分 19.解:(1)补全的图形如右图所示;………2分(2)①QB ;②PB ;③等腰三角形底边上的中线与底边上的高互相重合.………5分20.解:(1)∵2=(3)4(1)2m ∆---⨯=817m -+.…………………………………1分依题意,得10,8170,m m -≠∆=-+⎧⎨⎩≥解得178m ≤且1m ≠.…………………………………3分(2)∵m 为正整数,∴2m =.…………………………………4分 ∴原方程为2320x x -+=.解得11x =,22x =.…………………………………5分 21.(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥.∴90CAD ACB ∠=∠=°. 又∵90ACE ∠=°,DE BC ⊥,∴四边形ACED 是矩形.…………………………………2分l(2)解:∵四边形ACED 是矩形, ∴2AD CE ==,AF EF =,AE CD =. ∵四边形ABCD 是平行四边形, ∴2BC AD ==,AB CD =.∴AB AE =. 又∵60ABC ∠=°, ∴ABE △是等边三角形.∴90BFE ∠=°,1302FBE ABE ∠=∠=°.在BFE Rt △中,cos 42BF BE FBE =⨯∠=⨯=…………………………………5分22.解:(1)∵直线3y x =+经过点(1,)A m ,∴4m =.……………1分又∵函数k y x=的图象经过点(1,4)A ,∴4k =.……………2分(2)①当2n =时,点P 的坐标为(0,2), ∴点C 的坐标为(2,2), 点D 的坐标为(1,2)-. ∴3CD =.……………3分②02n <≤或3n +≥…………………………………5分 23.(1)证明:连接OC ,如图1.∵四边形OBCD 是平行四边形,FEDCBAP F EDC∴DC OB ∥,DC OB =. ∵AO OB =,∴DC AO ∥,DC AO =. ∴四边形OCDA 是平行四边形. ∴AF OC ∥.∵直线PQ 与⊙O 相切于点C ,OC 是半径, ∴90OCQ ∠=°. ∴90AFC OCQ ∠=∠=°. 即AF CF ⊥.…………2分(2)解:过点B 作BN OC ⊥于点N ,如图2. ∵四边形OBCD 是平行四边形,∴2BD BH =,1522CH CO ==.在BNC Rt △中,tan 3BNNCB CN∠==, 设CN x =,3BN x =, ∴5ON x =-.在ONB Rt △中,222(5)(3)5x x -+=, 解得10x =(舍),21x =. ∴33BN x ==,5322HN x =-=. 在HNB Rt △中,由勾股定理可得BH =∴2BD BH ==…………………………………6分 24.解:(1)6;…………………………………1分A图2(2)32,32.5;…………………………………3分(3)45;…………………………………4分 (4)①28000;②C.…………………………………6分 25.解:(1)PA ;PC ,AQ ;…………………………………2分 (2)(3)2.8或6.0.…………………………………6分 26.解:(1)∵24y ax ax b =++2(2)(4)a x b a =++-,∴顶点A 的坐标为(2,4)b a --. ∵顶点A 在x 上,∴40b a -=,即4b a =.…………………………………2分 (2)抛物线为244(0)y ax ax a a =++>,则顶点为(2,0)A -,与y 轴的交点(0,4)B a 在y 轴的正半轴.∵45BAO ∠=°,………… 4分∴2OB OA ==. ∴42a =.∴12a =.…………………………………4分 (3)102a <≤或1a =.…………………………………6分 27.(1)依题意补全图形,如图1.………1分(2)线段EF ,DF ,BE 的数量关系 为:EF DF BE =+.………………2分 证明:过点A 作AM FD ^交FD 的延长线于 点M ,如图2.………………3分∵90AEFF M °???,∴四边形AEFM 是矩形.∴3290°??.∵四边形ABCD 是正方形, ∴1290°??,AB AD =,∴13??. 又∵90AEBM °??,∴AEB AMD △≌△.……………5分 ∴BE DM =,AE AM =. ∴矩形AEFM 是正方形. ∴EF MF =. ∵MF DF DM =+,∴EF DF BE =+.…………………………………6分图2图1FEDCBAMF321EDCBA(3)5…………………………………7分28.解:(1)①2C ,4C ;…………………………………2分②∵的中线4CD =,(4,0)B ,0k >,∴点C 在¼MN上(点H除外),其中点M,点N , 点(2,4)H .∵点P 是的C -中线弧所在圆的圆心,∴点P 在¼12P P 上(点Q除外),其中点1P,点2P ,点(2,2)Q .当直线y kx =过点1P时,得k .当直线y kx =过点2P时,得k =. 当直线y kx =过点(2,2)Q 时,得1k =.结合图形,可得kk 且1k ≠.…………5分 (2)443t ≤≤且2t ≠.…………………………7分ABC △ABC △»DE。
2020年北京市石景山区初三数学一模试卷及参考答案

2020年北京市石景山区初三一模试卷数 学学校 姓名 准考证号下面各题均有四个选项,符合题意的选项只有..一个. 1.2019年5月7日,我国自主创新研发的“东方红3号科学考察船”通过挪威DNV-GL 船级社权威认证,成为全球最大静音科考船.“东方红3”是一艘5000吨级深远海科考船,具有全球无限航区航行能力,可持续航行15000海里.将15000用科学记数法表示应为 A .50.1510⨯B .41.510⨯C .41510⨯D .31510⨯2. 下列图形中,既是轴对称图形,又是中心对称图形的是A B C D3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则不正确...的结论是A .3a >B .0b c -<C .0ab <D .ac >-–1–2–3–4–512345abc4.如图,AD 平分BAC ∠,点E 在AB 上,EF ∥AC 交AD 于点G ,若40DGF ∠=°,则BAD ∠的度数为A .20° C .50°B .40° D .80°5.若一个多边形的内角和为540°,则该多边形的边数是A .4B .5C .6D .76.在下列几何体中,其三视图中没有..矩形的是ABCD7.如图,点A ,B ,C ,D 在⊙O 上,弦AD 的延长线与弦BC 的延长线相交于点E .用①AB 是⊙O 的直径,②CB CE =,③AB AE =中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为 A . C .B . D .8.某地区经过三年的新农村建设,年经济收入实现了翻两番(即是原来的倍).为了更好地了解该地区的经济收入变化情况,统计了该地区新农村建设前后的年经济收入构成结构如下:则下列结论中不正确...的是 021322EA .新农村建设后,种植收入减少了B .新农村建设后,养殖收入实现了翻两番C .新农村建设后,第三产业收入比新农村建设前的年经济收入还多D .新农村建设后,第三产业收入与养殖收入之和超过了年经济收入的一半 二、填空题(本题共16分,每小题2分) 9.请写出一个比10小的整数: .10.如右图,身高1.8米的小石从一盏路灯下B 处向前走了8米到达点C 处时,发现自己在地面上的影子CE 长是2米,则路灯的高AB 为 米.11.分解因式:24xy x -= .12.一个不透明的盒子中装有4个黄球,3个红球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是红球的概率是 .13.如果25m n +=,那么代数式224(2)24n mm n m n+÷--的值为 . 14.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如右图,AB 为⊙O 的直径,弦CD AB ⊥于点E ,1BE =寸,1CD =尺,那么直径AB 的长为多少寸?(注:1尺=10寸) 根据题意,该圆的直径..为 寸. 15.为了做到合理用药,使药物在人体内发挥疗效作用,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如下:ED CBA根据图中提供的信息,下列关于成人患者使用该药物的说法中,①首次服用该药物1单位约10分钟后,药物发挥疗效作用;②每间隔4小时服用该药物1单位,可以使药物持续发挥治疗作用;③每次服用该药物1单位,两次服药间隔小于2.5小时,不会发生药物中毒. 所有正确的说法是 .16.在平面直角坐标系xOy中,函数1()y x x m=<的图象与函数22()y x x m=≥的图象组成图形G.对于任意实数n,过点(0,)P n且与x轴平行的直线总与图形G有公共点.写出一个满足条件的实数m的值为(写出一个即可).三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:11(2020)13tan305π-⎛⎫---⎪⎝⎭°.18.解不等式组352(3),4,3x xxx->-⎧⎪+⎨⎪⎩≥并写出该不等式组的所有非负整数解......)19.下面是小石设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:如图1,直线l 及直线l 上一点P . 求作:直线PQ ,使得PQ l ⊥. 作法:如图2,①以点P 为圆心,任意长为半径作弧,交直线l 于点A ,B ; ②分别以点A ,B 为圆心,以大于12AB 的同样长 为半径作弧,两弧在直线l 上方交于点Q ; ③作直线PQ .所以直线PQ 就是所求作的直线. 根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明.证明:连接QA ,QB .∵QA =( ① ),PA =( ② ),∴PQ l ⊥( ③ )(填推理的依据).20.关于x 的一元二次方程2(1)320m x x --+=有两个实数根.(1)求m 的取值范围;(2)若m 为正整数,求此时方程的根.21.如图,在□ABCD 中,90ACB ∠=°,过点D 作DE BC ⊥交BC 的延长线于点E .(1)求证:四边形ACED 是矩形; (2)连接AE 交CD 于点F ,连接BF . 若60ABC ∠=°,2CE =,求BF 的长.22.如图,在平面直角坐标系xOy 中,直线3y x =+与函数 (0)k y x x=>的图象交于点(1,)A m ,与x 轴交于点B .(1)求m ,k 的值;(2)过动点(0,)(0)P n n >作平行于x 轴的直线,交函数 (0)k y x x=>的图象于点C ,交直线3y x =+于点D . ①当2n =时,求线段CD 的长; ②若CD OB ≥,结合函数的图象, 直接写出n 的取值范围.23.如图,AB 是⊙O 的直径,直线PQ 与⊙O 相切于点C ,以OB ,BC 为边作□OBCD ,连接AD 并延长交⊙O 于点E ,交直线PQ 于点F .(1)求证:AF CF ⊥;(2)连接OC ,BD 交于点H ,若tan 3OCB ∠=,⊙O 的半径是5,求BD 的长.EDCBAA24.北京某超市按月订购一种酸奶,每天的进货量相同.根据往年的销售经验,每天需求量与当天最高气温(单位:C °)有关.为了确定今年六月份的酸奶订购计划,对前三年六月份的最高气温及该酸奶需求量数据进行了整理、描述和分析,下面给出了部分信息.a .酸奶每天需求量与当天最高气温关系如下:b c .2018年6月最高气温数据的频数分布直方图如下: 2017年6月最高气温数据的频数分布表d . 2019 25 26 28 29 29 30 31 31 31 32 32 32 32 32 32 33 33 33 33 33 34 34 34 35 35 35 35 36 36 36 根据以上信息,回答下列问题: (1)m 的值为 ;(2)2019年6月最高气温数据的众数为 ,中位数为 ; (3)估计六月份这种酸奶一天的需求量为600瓶的概率为 ;(4)已知该酸奶进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.2018年6月最高气温数据 C①2019年6月这种酸奶每天的进货量为500瓶,则此月这种酸奶的利润为 元;②根据以上信息,预估2020年6月这种酸奶订购的进货量不合理...的为 A .550瓶/天 B .600瓶/天 C .380瓶/天25.如图,是»AB 上的一定点,P 是弦上的一动点,连接PC ,过点A 作AQ PC ⊥交直线PC 于点Q .小石根据学习函数的经验,对线段PC ,PA ,AQ 的长度之间的关系进行了探究. (当点P 与点A 重合时,令0cm AQ =) 下面是小石的探究过程,请补充完整:(1)对于点P 在弦上的不同位置,画图、测量,得到了线段PC ,PA ,AQ 的几组值,如下表:的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象;C AB BA AB xOy(3)结合函数图象,解决问题:当AQ PC =时,PA 的长度约为 .(结果保留一位小数)26.在平面直角坐标系xOy 中,抛物线24(0)y ax ax b a =++>的顶点A 在x 轴上,与y 轴交于点B .(1)用含a 的代数式表示b ; (2)若45BAO ∠=°,求a 的值;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出a 的取值范围.cm27.如图,点E 是正方形内一动点,满足90AEB ∠=°且45BAE ∠<°,过点D 作DF BE ⊥交BE 的延长线于点F .(1)依题意补全图形;(2)用等式表示线段EF ,DF ,BE 之间的数量关系,并证明.(3)连接CE,若AB =CE 长度的最小值.28.在中,以AB 边上的中线CD 为直径作圆,如果与边AB 有交点(不与点重合),那么称为的C -中线弧. 例如,右图中是的C -中线弧.在平面直角坐标系中,已知存在C -中线弧,其中点A 与坐标原点重合,点B 的坐标为(2,0)(0)t t >.(1)当2t =时,①在点1(3,2)C -,2(0,C ,3(2,4)C ,中,满足条件的点是 ;②若在直线(0)y kx k =>上存在点P 是的C -中线弧所在圆的圆心,其中4CD =,求k 的取值范围;(2)若的C -中线弧所在圆的圆心为定点(2,2)P ,直接写出t 的取值范围.ABCD ABC △E D»DEABC △»DEABC △xOy ABC △O 4(4,2)C C ABC △»DEABC △»DEEDCBA2020北京石景山初三一模数 学阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)题号 1 2 3 4 5 6 7 8 答案BDCBBCDA二、填空题(本题共16分,每小题2分) 9.答案不唯一,如:310.911.(2)(2)x y y +-12.3813.2514.2615.①① 16.答案不唯一,如:1 (01m ≤≤)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式351(31)33=-+--⨯…………………………………4分 3=.…………………………………5分18.解:原不等式组为352(3),4.3x x x x ->-⎧⎪+⎨⎪⎩≥解不等式①,得1x >-.解不等式②,得2x ≤.…………………………………3分① ②∴原不等式组的解集为12x -<≤.…………………………………4分 ∴原不等式组的所有非负整数解为0,1,2.………………………5分 19.解:(1)补全的图形如右图所示;………2分(2)①QB ;②PB ;③等腰三角形底边上的中线与底边上的高互相重合.………5分20.解:(1)∵2=(3)4(1)2m ∆---⨯=817m -+.…………………………………1分依题意,得10,8170,m m -≠∆=-+⎧⎨⎩≥解得178m ≤且1m ≠.…………………………………3分(2)∵m 为正整数,∴2m =.…………………………………4分 ∴原方程为2320x x -+=.解得11x =,22x =.…………………………………5分 21.(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥.∴90CAD ACB ∠=∠=°. 又∵90ACE ∠=°,DE BC ⊥,∴四边形ACED 是矩形.…………………………………2分l(2)解:∵四边形ACED 是矩形, ∴2AD CE ==,AF EF =,AE CD =. ∵四边形ABCD 是平行四边形, ∴2BC AD ==,AB CD =.∴AB AE =. 又∵60ABC ∠=°, ∴ABE △是等边三角形.∴90BFE ∠=°,1302FBE ABE ∠=∠=°.在BFE Rt △中,cos 42BF BE FBE =⨯∠=⨯=…………………………………5分22.解:(1)∵直线3y x =+经过点(1,)A m ,∴4m =.……………1分又∵函数k y x=的图象经过点(1,4)A ,∴4k =.……………2分(2)①当2n =时,点P 的坐标为(0,2), ∴点C 的坐标为(2,2), 点D 的坐标为(1,2)-. ∴3CD =.……………3分②02n <≤或3n +≥…………………………………5分 23.(1)证明:连接OC ,如图1.∵四边形OBCD 是平行四边形,FEDCBAP F EDC∴DC OB ∥,DC OB =. ∵AO OB =,∴DC AO ∥,DC AO =. ∴四边形OCDA 是平行四边形. ∴AF OC ∥.∵直线PQ 与⊙O 相切于点C ,OC 是半径, ∴90OCQ ∠=°. ∴90AFC OCQ ∠=∠=°. 即AF CF ⊥.…………2分(2)解:过点B 作BN OC ⊥于点N ,如图2. ∵四边形OBCD 是平行四边形,∴2BD BH =,1522CH CO ==.在BNC Rt △中,tan 3BNNCB CN∠==, 设CN x =,3BN x =, ∴5ON x =-.在ONB Rt △中,222(5)(3)5x x -+=, 解得10x =(舍),21x =. ∴33BN x ==,5322HN x =-=. 在HNB Rt △中,由勾股定理可得BH =∴2BD BH ==…………………………………6分 24.解:(1)6;…………………………………1分A图2(2)32,32.5;…………………………………3分(3)45;…………………………………4分 (4)①28000;②C.…………………………………6分 25.解:(1)PA ;PC ,AQ ;…………………………………2分 (2)(3)2.8或6.0.…………………………………6分 26.解:(1)∵24y ax ax b =++2(2)(4)a x b a =++-,∴顶点A 的坐标为(2,4)b a --. ∵顶点A 在x 上,∴40b a -=,即4b a =.…………………………………2分 (2)抛物线为244(0)y ax ax a a =++>,则顶点为(2,0)A -,与y 轴的交点(0,4)B a 在y 轴的正半轴.∵45BAO ∠=°,………… 4分∴2OB OA ==. ∴42a =.∴12a =.…………………………………4分 (3)102a <≤或1a =.…………………………………6分 27.(1)依题意补全图形,如图1.………1分(2)线段EF ,DF ,BE 的数量关系 为:EF DF BE =+.………………2分 证明:过点A 作AM FD ^交FD 的延长线于 点M ,如图2.………………3分∵90AEFF M °???,∴四边形AEFM 是矩形.∴3290°??.∵四边形ABCD 是正方形, ∴1290°??,AB AD =,∴13??. 又∵90AEBM °??,∴AEB AMD △≌△.……………5分 ∴BE DM =,AE AM =. ∴矩形AEFM 是正方形. ∴EF MF =. ∵MF DF DM =+,∴EF DF BE =+.…………………………………6分图2图1FEDCBAMF321EDCBA(3)5…………………………………7分28.解:(1)①2C ,4C ;…………………………………2分②∵的中线4CD =,(4,0)B ,0k >,∴点C 在¼MN上(点H除外),其中点M,点N , 点(2,4)H .∵点P 是的C -中线弧所在圆的圆心,∴点P 在¼12P P 上(点Q除外),其中点1P,点2P ,点(2,2)Q .当直线y kx =过点1P时,得k .当直线y kx =过点2P时,得k =. 当直线y kx =过点(2,2)Q 时,得1k =.结合图形,可得kk 且1k ≠.…………5分 (2)443t ≤≤且2t ≠.…………………………7分ABC △ABC △»DE。
2023北京石景山初三一模数学试题及参考答案

2023北京石景山初三一模数 学学校 姓名 准考证号考生须知1.本试卷共8页,共两部分,28道题。
满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
4.考试结束,将本试卷和答题卡一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的展开图,该几何体是(A )正方体(B )圆柱(C )正四棱锥(D )直三棱柱2.2022年10月31日,起飞重量约23000千克的梦天实验舱搭乘长征五号B 遥四运载火箭,在中国文昌航天发射场成功发射. 将23000用科学记数法表示应为(A )32310⨯(B )42310⨯.(C )52.310⨯(D )50.2310⨯3.如图,在△ABC 中,90ACB ∠=°,过点C 作EF AB ∥.若55ECA ∠=°,则B ∠的度数为(A )55°(B )45°(C )35°(D )25°4.下列图形中,既是轴对称图形也是中心对称图形的是(A )(B )(C )(D )5.不透明的袋子中装有两个红球和一个绿球,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次都摸到红球的概率是(A )29(B )13(C )49(D )236.如图,在O ⊙中,C 是 AB 的中点,点D 是O ⊙上一点. 若20ADC ∠=°,则BOC ∠的度数为(A )10°(B )20°(C )40°(D )80°7.党的二十大报告提出“深化全民阅读活动”.某校开展了“书香浸润心灵 阅读点亮人生”读书系列活动.为了解学生的课外阅读情况,随机选取了某班甲、乙两组学生一周的课外阅读时间(单位:小EA CFBOAB CD时)进行统计,数据如下:甲组67888910乙组47888912两组数据的众数分别为M 甲,M 乙,方差分别为2s 甲,2s 乙,则(A )M M =乙甲,22s s <乙甲(B )M M =乙甲,22s s =乙甲(C )M M =乙甲,22s s >乙甲(D )M M >乙甲,22s s <乙甲8.下面的三个问题中都有两个变量:①圆的面积y 与它的半径x ;②将游泳池中的水匀速放出,直至放完,游泳池中的剩余水量y 与放水时间x ;③某工程队匀速铺设一条地下管道,铺设剩余任务y 与施工时间x .其中,变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是(A )①②③(B )①②(C )①③(D )②③第二部分 非选择题二、填空题(共16分,每题2分)9.若代数式25x -有意义,则实数x 的取值范围是 .10.分解因式:24x y y -= .11.如果命题“若a b <,则ma mb >”为真命题,那么m 可以是 (写出一个即可).12.方程组725x y x y -=⎧⎨+=⎩,的解为 .13.在平面直角坐标系xOy 中,若反比例函数(0)ky k x=≠的图象经过点(23)A ,和点(6)B m -,,则m 的值为 .14.如图,在菱形ABCD 中,点E ,F 分别在BC ,AD 上,BE DF =.只需添加一个条件即可证明四边形AECF 是矩形,这个条件可以是 (写出一个即可).15.若关于x 的一元二次方程240x x m ++=有两个不相等的实数根,则实数m 的取值范围是 .16.为落实生态文明建设,推动绿色发展,促进人与自然和谐共生,某公司装修采用同质地的A型、B 型环保板材,具体要求如下:板材要求板材型号板材规格需用量A 型板材60cm 30cm ⨯290块AB DCEF第14题图B 型板材40cm 30cm ⨯180块现只能购得规格为150cm 30cm ⨯的符合质地要求的标准板材,一张标准板材尽可能多地裁出A 型、B 型板材,裁法如下(损耗忽略不计):裁法板材型号裁法一裁法二裁法三A 型板材210B 型板材a3上表中a 的值为 ;公司需购入标准板材至少 张.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:06cos 455(2)---π-°.18.解不等式组:435412x x x x -<-⎧⎪⎨+-<⎪⎩,.19.已知250x x --=,求代数式2211(2)x x x x+--÷的值.20.下面是证明等腰三角形性质定理1的两种添加辅助线的方法,选择其中一种,完成证明.等腰三角形性质定理1:等腰三角形的两个底角相等.已知:如图,在△ABC 中,AB AC =.求证:B C ∠=∠.方法一证明:如图,作BAC ∠的平分线交BC于点D .方法二证明:如图,取BC 的中点D ,连接AD .裁出数量(块)ABCD ABCDABC21.如图,在ABC △中,2BC AB =,D ,E 分别为BC ,AC 的中点,过点A 作AF BC∥交DE 的延长线于点F .(1)求证:四边形ABDF 是菱形;(2)若2AB =,60B ∠=°,求AE 的长.22.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(13)A ,.(1)求这个一次函数的解析式;(2)当1x <时,对于x 的每一个值,函数(0)y mx m =≠的值小于函数(0)y kx b k =+≠的值,直接写出m 的取值范围.23.2022年10月12日,“天宫课堂”第三课在中国空间站的问天实验舱开讲,“太空教师”陈冬、刘洋、蔡旭哲为广大青少年带来一场精彩的太空科普课.为了激发学生的航天兴趣,弘扬科学精神,某校甲、乙两个校区的八年级所有学生(两个校区八年级各有200名学生)参加了“格物致知 叩问苍穹”为主题的太空科普知识竞赛.为了解八年级学生的科普知识掌握情况,调查小组进行了抽样调查,过程如下,请补充完整.收集数据 调查小组计划从两个校区的八年级共选取40名学生的竞赛成绩(百分制)作为样本,下面的抽样方法中,合理的是 (填字母).A .从每个校区八年级的科技小组中分别选取20名学生的竞赛成绩组成样本;B .从每个校区八年级分别选取20名男生的竞赛成绩组成样本;C .从每个校区八年级分别随机选取10名男生、10名女生的竞赛成绩组成样本.抽样方法确定后,调查小组抽取得到两个校区的样本数据,其中乙校区的样本数据如下:66 88 84 79 92 83 95 89 100 9191 97 74 77 99 98 89 94 100 100整理、描述数据 按如下分数段整理、描述两个校区的样本数据,其中乙校区的情况如下:人数 成绩x 校区6580x <≤8085x <≤8590x <≤9095x <≤95100x ≤≤乙校区237分析数据 两个校区样本数据的平均数、中位数、方差如下表所示:校区平均数中位数方差甲校区89.388.542.6乙校区89.387.2BACDEF得出结论a . 对于抽取的八年级学生竞赛成绩,高于本校区平均分的人数更多的是 校区,成绩更稳定的是校区(填“甲”或“乙”);b . 抽样调查中,两个校区共有30%的学生竞赛成绩不低于95分.该校计划从两个校区选派成绩不低于95分的学生参加全区的竞赛,估计参赛的八年级学生中,甲校区有 人.24.如图,AB 是O ⊙的直径,点D 是弦AC 延长线上一点,过点D 作DE AB ⊥于点E ,过点C 作O ⊙的切线,交DE 于点F .(1)求证:FC FD =;(2)若E 是OB 的中点,3sin 5D =,2OA =,求FD 的长.25.篮球是学生非常喜爱的运动项目之一.篮圈中心距离地面的竖直高度是3.05m ,小石站在距篮圈中心水平距离6.5m 处的点A 练习定点投篮,篮球从小石正上方出手到接触篮球架的过程中,其运行路线可以看作是抛物线的一部分.当篮球运行的水平距离是x (单位:m ) 时,球心距离地面的竖直高度是y (单位:m ).在小石多次的定点投篮练习中,记录了如下两次训练:(1)第一次训练时,篮球的水平距离x 与竖直高度y 的几组数据如下:水平距离/m x 0123456竖直高度/my 2.0 2.7 3.2 3.5 3.6 3.5 3.2①在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并用平滑的曲线连接;②结合表中数据或所画图象,直接写出篮球运行的最高点距离地面的竖直高度,并求y 与x 满足的函数解析式;③小石第一次投篮练习没能投进,请说明理由;(2)第二次训练时,小石通过调整出手高度的方式将球投进.篮球出手后运行路线的形状与第一次相同,达到最高点时,篮球的位置恰好在第一次的正上方,则小石的出手高度是 m .26.在平面直角坐标系xOy中,抛物线2(0)y ax bx c a =++>的对称轴为x t =,两个不同的点(3)m ,,(1)t n +,在抛物线上.(1)若m n =,求t的值;A(2)若n m c <<,求t 的取值范围.27.在△ABC 中,90ACB ∠=°,CA CB =,点D 为射线CA 上一点,过点D 作DE CB∥且DE CB =(点E 在点D 的右侧),射线ED 交射线BA 于点F ,点H 是AF 的中点,连接HC ,HE .(1)如图1,当点D 在线段CA 上时,判断线段HE 与HC 的数量关系及位置关系;(2)当点D 在线段CA 的延长线上时,依题意补全图2.用等式表示线段CB ,CD ,CH 之间的数量关系,并证明.28.对于平面直角坐标系xOy 中的点P 和图形W ,给出如下定义:若图形W 上存在点Q ,使得点P 绕着点Q 旋转90°得到的对应点P '在图形W 上,则称点P 为图形W 的“关联点”.(1)图形W 是线段AB ,其中点A 的坐标为(02),,点B 的坐标为(32),,①如图1,在点1(12)P -,,2(24)P ,,3(31)P -,,4(40)P ,中,线段AB 的“关联点”是 ;②如图2,若直线13y x b =+上存在点P ,使点P 为线段AB 的“关联点”,求b 的取值范围;(2)图形W 是以(0)T t ,为圆心,1为半径的⊙T .已知点(60)M ,,(0N ,.若线段MN 上存在点P ,使点P 为⊙T 的“关联点”,直接写出t 的取值范围.图1 图2C BFH ACBE D 图1 图2参考答案阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
石景山区2024届初三一模数学试题及答案

石景山区2024年初三统一练习数 学 试 卷第一部分 选择题一、选择题(共16分,每题2分) 第1-8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,主视图是三角形的是2.2023年10月26日,搭载神州十七号载人飞船的长征二号F 摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F (代号:CZ 2F −,简称:长二F ,绰号:神箭)主要用于发射神州飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为 (A )28510⨯(B )28.510⨯(C )38.510⨯(D )40.8510⨯3.下列图书馆标志图形中,是轴对称图形的是(A )(B )(C )(D )4.如图,直线a b ∥,直线l 与a b ,分别交于点A B ,,过 点A作AC b ⊥于点C .若155∠=°,则2∠的大小为 (A )35° (B )45° (C )55° (D )125°(A )(B )(C )(D )21lba A BC5.已知30m +<,则下列结论正确的是 (A )33m m −<<−< (B )33m m <−<−< (C )33m m −<<<−(D )33m m <−<<−6.若一个多边形的内角和是720°,则该多边形的边数是 (A )4(B )5(C )6(D )77.不透明的袋子中装有两个黄球和一个红球,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次都摸到黄球的概率是 (A )29(B )13(C )49(D )238.如图,90ABC BA BC ∠==°,,BM 是ABC ∠内部的射线且45CBM ∠<°,过点A 作AD BM ⊥于点D ,过点C 作CE BM ⊥于点E , 在DA 上取点F ,使得DF DE =,连接EF . 设CE a BE b EF c ===,,,给出下面三个结论:①c b a =−);②a c +<;>.上述结论中,所有正确结论的序号是 (A )①②(B )①③(C )②③(D )①②③第二部分 非选择题二、填空题(共16分,每题2分)9x 的取值范围是 .10.分解因式:24xy x −= .11.如图,在□ABCD 中,点E 在BC 上且2EB EC =,AE 与BD 交于点F .若5BD =,则BF 的长为 . 12.方程21375x x=+的解为 . FA BECDMFCA D EB13.在平面直角坐标系xOy 中,若点11A y (,),23B y (,)在反比例函数0ky k x=>()的 图象上,则1y 2y (填“>”“<”或“=”).14.若关于x 的一元二次方程220x x m −−=有两个相等的实数根,则实数m 的值为 .15.如图,AB 是O ⊙的直径,P 是AB 延长线上一点,PC与O ⊙相切于点C .若40P ∠=°,则A ∠= °.16.某酒店在客人退房后清洁客房需打扫卫生、整理床铺、更换客用物品、检查设备共四个步骤.某清洁小组有甲、乙、丙三名工作人员,工作要求如下:①“打扫卫生”只能由甲完成;每间客房“打扫卫生”完成后,才能进行该客房的其他三个步骤,这三个步骤可由任意工作人员完成并可同时进行;②一个步骤只能由一名工作人员完成,此步骤完成后该工作人员才能进行其他步骤;在不考虑其他因素的前提下,若由甲单独完成一间客房的清洁工作,需要分钟;若由甲、乙、丙合作完成四间客房的清洁工作,则最少需要 分钟.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 171122sin 605−++°().18.解不等式组:4178523x x x x −<+−>⎧⎪⎨⎪⎩,.19.已知2360x x −−=,求代数式2926x x x x +−÷()的值.20.如图,在四边形ABCD 中,AD BC AB AD =∥,,AE 平分BAD ∠交BC 于点E ,连接DE .(1)求证:四边形ABED 是菱形;(2)连接BD 交AE 于点F .若90BCD ∠=°,6cos 3DBC ∠=,26BD =,求EC 的长.21.为了保护水资源,提倡节约用水,北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表(单位:元/立方米)供水 类型阶梯 户年用水量 (立方米) 水价 其中水费 水资源费污水处理费自来水第一阶梯0—180(含) 5 2.07 1.571.36第二阶梯 181—260(含) 7 4.07 第三阶梯260以上96.07某户居民2023年用水共缴纳1040元,求这户居民2023年的用水量.22.在平面直角坐标系xOy 中,函数0y k x b k =+≠()的图象过点03A (,)和21B −(,),与过点05(,)且平行于x 轴的直线交于点C . (1)求该函数的解析式及点C 的坐标;(2)当2x <时,对于x 的每一个值,函数0y mx m =≠()的值小于0y k x b k =+≠()的值,直接写出m 的取值范围.xyO–1–2–3–4–5–6123456–1–2–3–4–5–6123456备用图CDEBA23.为了培养学生的爱国情感,某校在每周一或特定活动日举行庄严的升国旗仪式.该校的国旗护卫队共有18名学生,测量并获取了所有学生的身高(单位:cm ),数据整理如下:a .18名学生的身高:170,174,174,175,176,177,177,177,178, 178,179,179,179,179,181,182,183,186 b .18(1)写出表中m ,n 的值;(2)该校的国旗护卫队由升旗手、护旗手、执旗手组成,其中12名执旗手分为两组:对于不同组的学生,如果一组学生的身高的方差越小,则认为该组的执旗效果越好. 据此推断:在以上两组学生中,执旗效果更好的是 (填“甲组”或“乙组”); (3)该校运动会开幕式的升国旗环节需要6名执旗手,因甲组部分学生另有任务,已确定四名执旗手的身高分别为175,177,178,178.在乙组选另外两名执旗手时,要求所选的两名学生与已确定的四名学生所组成的六名执旗手的身高的方差最小,则选出的另外两名学生的身高分别为 和 .24.如图,AB 是O ⊙的直径,CD 是O ⊙的弦,CD AB ⊥于点E ,点F 在O ⊙上且CF CA =,连接AF .(1)求证:AF CD =;(2)连接BF BD ,.若26AE BF ==,,求BD 的长.25.某农科所的科研小组在同一果园研究了甲、乙两种果树的生长规律.记果树的生长时间为 x (单位:年),甲种果树的平均高度为1y (单位:米),乙种果树的平均高度为2y (单位:米).记录的部分数据如下:对以上数据进行分析,补充完成以下内容.(1)可以用函数刻画1y 与x ,2y 与x 之间的关系,在同一平面直角坐标系xOy 中,已经画出1y 与x 的函数图象,请画出2y 与x 的函数图象;(2)当甲种果树的平均高度达到8.00米时,生长时间约为 年(结果保留小数点后一位);当乙种果树的平均高度为5.00米时,两年后平均高度约为 米(结果保留小数点后两位);(3)当甲、乙两种果树的平均高度相等时,生长时间约为 年(结果保留小数点后一位).26.在平面直角坐标系xOy 中,抛物线222y x m x m =−++()的对称轴为直线x t =. (1)求t 的值(用含m 的代数式表示);(2)点1A t y −(,),2B t y (,),31C t y +(,)在该抛物线上.若抛物线与x 轴的一个交点为00x (,),其中002x <<,比较1y ,2y ,3y 的大小,并说明理由.27.在ABC △中,AB AC =,060BAC <∠<°°,将线段BC 绕点B 逆时针旋转60°得到线段BD ,连接AD .将线段AD 绕点A 顺时针旋转90°得到线段AE ,连接DE . (1)如图1,求证:EA ∥BC ;(2)延长BC 到点F ,使得CF CB =,连接DF 交AC 于点M ,依题意补全图2 .若点M 是AC 的中点,用等式表示线段MF ,MD ,DE 之间的数量关系, 并证明.EADCB EDC B A 图1 图228.对于线段MN 和点P 给出如下定义:点P 在线段MN 的垂直平分线上,若以点P 为圆心,PM 为半径的优弧M mN 上存在三个点A B C ,,,使得ABC △是等边三角形,则称点P 是线段MN 的“关联点”.例如,图1中的点P 是线段MN 的一个“关联点”. 特别地,若这样的等边三角形有且只有一个,则称点P 是线段MN 的“强关联点”.在平面直角坐标系xOy 中,点A 的坐标为20(,).(1)如图2,在点1234313101213C C C C −(,),(,),(,),(,)中,是线段OA 的“关 联点”的是 ;(2)点B 在直线33y x =上.存在点P ,是线段OA 的“关联点”,也是线段OB 的“强关联点”.①直接写出点B 的坐标;②动点D 在第四象限且2AD =,记OAD α∠=.若存在点Q ,使得点Q 是线 段AD 的“关联点”,也是OB 的“关联点”,直接写出α及线段AQ 的取值范围.AmPCB MN图1 图2xy-3 -2 -1-1-32311 2 3-2OC 1C 3C 4C 2A石景山区2024年初三统一练习数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2021年北京市石景山区中考数学一模试卷(含解析)

2021年北京市石景山区中考数学一模试卷一、选择题(共8小题).1.下列几何体中,是长方体的为()A.B.C.D.2.2020年11月10日,中国“奋斗者”号载人潜水器在马里亚纳海沟成功坐底,坐底深度10909米,刷新中国载人深潜的新纪录.将10909用科学记数法表示应为()A.0.10909×105B.1.0909×105C.1.0909×104D.10.909×1033.实数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.m<﹣1B.|﹣2n|<0C.m+n<0D.n﹣2m>04.在下列面点烘焙模具中,其图案是中心对称图形的是()A.B.C.D.5.若一个多边形的内角和为540°,则这个多边形的边数是()A.6B.5C.4D.36.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.7.下列两个变量之间的关系为反比例关系的是()A.圆的周长与其半径的关系B.平行四边形面积一定时,其一边长与这边上的高的关系C.销售单价一定时,销售总价与销售数量的关系D.汽车匀速行驶过程中,行驶路程与行驶时间的关系8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④二、填空题(本题共16分,每小题2分)9.二次根式有意义,则x的取值范围是.10.分解因式:9x2﹣y2=.11.若,则代数式的值是.12.不透明的盒子中有3个红球,1个白球,这些球除颜色外无其他差别.从中随机摸出一个球不放回,再从中随机摸出一个球,两次摸出的恰好都是红球的概率是.13.如图,在⊙O中,半径OC⊥AB于点H,若∠OAB=40°,则∠ABC=°.14.如图,小石同学在A,B两点分别测得某建筑物上条幅两端C,D两点的仰角均为60°,若点O,A,B在同一直线上,A,B两点间距离为3米,则条幅的高CD为米(结果可以保留根号).15.为了解某市常住人口的变化情况,收集并整理了2011年至2020年的常住人口(单位:万人)数据,绘制统计图如下:根据统计图,写出一条有关该市常住人口变化情况的信息:.16.某餐厅在客人用餐完毕后收拾餐桌分以下几个步骤:①回收餐具与剩菜、清洁桌面;②清洁椅面与地面;③摆放新餐具.前两个步骤顺序可以互换,但摆放新餐具必须在前两个步骤都完成之后才可进行,每个步骤所花费时间如表所示:步骤时间(分钟)桌别回收餐具与剩菜、清洁桌面清洁椅面与地面摆放新餐具大桌532小桌321现有三名餐厅工作人员分别负责:①回收餐具与剩菜、清洁桌面,②清洁椅面与地面,③摆放新餐具,每张桌子同一时刻只允许一名工作人员进行工作.现有两张小桌和一张大桌需要清理,那么将三张桌子收拾完毕最短需要分钟.三、解答题(本题共68分,第17-22题每小题5分,第23-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程。
石景山区初三数学一模试卷及答案

石景山区初三第一次统一练习暨毕业考试数 学 试 卷考 生 须 知1.本试卷共8页.全卷共五道大题,25道小题. 2.本试卷满分120分,考试时间120分钟.3.在试卷密封线内准确填写区(县)名称、毕业学校、姓名和准考证号. 4.考试结束后,将试卷和答题纸一并交回.题号 一 二 三 四五 总分 分数第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母按规定要求填涂在答题纸第1-8题的相应位置上. 1.-1.5的倒数是 A .32-B .23-C .5.1D . -3 2.今年财政部公布的最新数据显示,1至2月累计,全国公共财政收入22426亿元,比去年同期增加1508亿元,数字1508用科学记数法表示为A .410508.1⨯B .4101508.0⨯C .21008.15⨯D .310508.1⨯ 3.无理数6在哪两个整数之间 A .1和2 B .2和3 C .3和4 D . 4与5 4.函数1-=x x y 中自变量x 的取值范围是A .x ≥1B .1x <且 0≠xC .1>xD .x ≥1且 0≠x 5.某班有10名学生参加篮球的“定点投篮”比赛,每人投10次,他们的进球数分别为:6,1,4,2,6,4,8,6,4,6.这组数据的极差和中位数分别是A .7、5B .5、5C .5、4D . 7、46.如图,AM 为⊙O 的切线,A 为切点,BD ⊥AM 于点D ,BD 交⊙O 于点C ,OC 平分∠AOB .则∠OCD 的度数为 A .︒110 B .︒115 C .︒120 D .︒1257.把同一副扑克牌中的红桃6、红桃7、红桃9三张牌背面朝上放在桌子上,从 中随机抽取两张,牌面的数字之和为奇数的概率为A .31 B .32 C .21 D .61 8.已知:如图,正方形ABCD 的边长为2,E 、F 分别为AB 、AD 的中点, G 为线段CE 上的一个动点,设x CECG=,y S GDF =∆,则y 与x第6题图D AC EB的函数关系图象大致是第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分)9.将二次函数762++=x x y 配方为k h x y +-=2)(形式,则=h ___,=k ________.10.分解因式:3244x x x -+=_______________.11. 如图,在正方形网格(图中每个小正方形的边长均为1)中,一段圆弧经过网格的格点A 、B 、C.则弧AC 所在圆的半径长为 ;弧AC 的长为 . 12.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10. . . . . . . 按照以上排列的规律,第5行从左到右的第3个数为_______;第n 行(n ≥3)从左到右的第3个数为 .(用含n 的代数式表示) 三、解答题(本题共30分,每小题5分)13.131274cos3082-⎛⎫+-︒+- ⎪⎝⎭.14.解不等式组并把解集在数轴上表示出来.3(2) 4 1214x x xx --≤⎧⎪⎨-<-⎪⎩①,②.15.已知:如图,点C 是AB 的中点,CD ∥BE ,且CD =BE . 求证:△ACD ≌△CBE .16.已知:24510x x +-=,求代数式()()()()221122x x x x x +--++-的值.A B C D第11题图17.已知:一次函数3+=x y 与反比例函数3m y x-=(0<x ,m 为常数)的图象交于点A (a ,2)、B 两点.(1)求m 的值和B 点坐标;(2)过A 点作y 轴的平行线,过B 点作x 轴的平行线,这两条直线交于点E ,若反比例函数ky x=的图象与△ABE 有公共点,请直接写出k 的取值范围.18.如图,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头D 恰好在飞机的正下方,山头C 在飞机前方,俯角为30°.飞机飞行了6千米到B 处时,往后测得山头C 、D 的俯角分别为60°和30°.已知山头D 的海拔高度为1千米,求山头C 的海拔高度. (精确到0.01 1.732≈)四、解答题(本题共20分,每小题5分)19. 已知:如图,在四边形ABCD 中,AD DC ⊥,△DBC 是等边三角形,︒=∠45ABD ,2=AD .求四边形ABCD 的周长.20.如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =1,ED =2. (1)求证:∠ABC =∠ADB ;| (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A ,试判断直线F A 与⊙O 的位置关系,并说明理由.DCBABACD21.以下是根据北京市国民经济和社会发展统计公报中的相关数据绘制成的统计表和统计图的一部分.电话用户包括固定电话用户和移动电话用户两种.-全国电话用户到达数和净增数统计表年份全国电话用户到达数(单位:万户)98160 106095 115335 127135 139031净增数(单位:万户)6866 7935 9240 a11896请根据以上信息,解答下列问题(注意:所求数据均保留整数):(1)统计表中的数据a的值为_________;(2)通过计算补全条形统计图并注明相应数据;(3),全国移动电话用户净增约12591万户,求该年固定电话用户减少了多少万户. wwW .2008-2012年全国移动电话用户统计图2008-2012年全国移动电话用户占电话用户的百分比22.问题解决:已知:如图,D为AB上一动点,分别过点A、B作ABCA⊥于点A,ABEB⊥于点B,联结CD、DE.(1)请问:点D满足什么条件时,DECD+的值最小?(2)若8=AB,4=AC,2=BE,设xAD=.用含x的代数式表示DECD+的长(直接写出结果).拓展应用:参考上述问题解决的方法,请构造图形,并求出代数式()22144x x++-+的最小值.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 如图,直线33y x=-+交轴于A点,交轴于B点,过A、B两点的抛物线1C交轴于另一点M(-3,0).(1)求抛物线1C的解析式;(2)直接写出抛物线1C关于y轴的对称图形2C的解析式;(3)如果点'A是点A关于原点的对称点,点D是图形2C的顶点,那么在x轴上是否存在点P,使得△PAD与△'A BO是相似三角形?若存在,求出符合条件的P点坐标;若不存在,请说明理由. wwW .24.如图,△ABC中,∠90ACB=︒,2=AC,以AC为边向右侧作等边三角形ACD.(1)如图24-1,将线段AB绕点A逆时针旋转︒60,得到线段1AB,联结1DB,则与1DB长度相等的线段为(直接写出结论);(2)如图24-2,若P是线段BC上任意一点(不与点C重合),点P绕点A逆时针旋转︒60得到点Q,求ADQ∠的度数;(3)画图并探究:若P是直线BC上任意一点(不与点C重合),点P绕点A逆时针旋x y xA BCDEODA yC x B (E ) FJ转 60得到点Q ,是否存在点P ,使得以 A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.25.如图,把两个全等的Rt △AOB 和Rt △ECD 分别置于平面直角坐标系xOy 中,使点E 与点B 重合,直角边OB 、BC 在y 轴上.已知点D (4,2),过A 、D 两点的直线交y 轴于点F .若△ECD 沿DA 方向以每秒2个单位长度的速度匀速平移,设平移的时间为t (秒),记△ECD 在平移过程中某时刻为△'''E C D , ''E D 与AB 交于点M ,与y 轴交于点N ,''C D 与AB 交于点Q ,与y 轴交于点P (注:平移过程中,点'D 始终在线段DA 上,且不与点A 重合).(1)求直线AD 的函数解析式;(2)试探究在△ECD 平移过程中,四边形MNPQ 的面积是否存在最大值?若存在,求出这个最大值及t 的取值;若不存在,请说明理由;(3)以MN 为边,在''E D 的下方作正方形MNRH ,求正方形MNRH 与坐标轴有两个公共点时t 的取值范围.石景山区初三第一次统一练习暨毕业考试 数学参考答案阅卷须知:备用图备用图DAC EB1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)w W w.9. 32--,;10.()22-x x ; 11. ; 12.13, 262n n -+.三、解答题(本题共6道小题,每小题5分,共30分)13-114cos302⎛⎫-︒+ ⎪⎝⎭=242-- ……………………………4分=3 …………………………………………………5分14.解:解不等式①, 1≥x …………………………………………2分解不等式②, 23<x ……………………………………………4分原不等式组的解集为231<≤x ,在数轴上表示为:……5分15.证明:∵C 是AB 的中点∴CB AC = …………………………… 1分 又∵CD ∥BE∴B ACD ∠=∠…………………………… 2分 在△ACD 和△CBE 中⎪⎩⎪⎨⎧=∠=∠=BE CD B ACD CB AC …………………………… 4分 ∴△ACD ≌△CBE …………………………………………………… 5分16.解:原式4144222-++-++=x x x x x …………………………………2分2453x x =+- ………………………… 3分当01542=-+x x 时,1542=+x x …………………………… 4分 原式132=-=-.………………………………5分17.解:(1)∵一次函数3+=x y 与反比例函数xm y 3-=(0<x ) (m 为常数)的图象交于点A (a ,2)、B 两点 ∴ 3223a a m +=⎧⎨=-⎩解得11a m =-⎧⎨=⎩ …………………………………2分∴反比例函数3m y x -=(0<x )的解析式为2y x =- 由题意解23y x y x ⎧=-⎪⎨⎪=+⎩得1112x y =-⎧⎨=⎩,2221x y =-⎧⎨=⎩………………………………3分 ∵A (1-,2),∴B (2-,1) ………………………………4分(2)914k -≤≤- ………………………………5分18.解:在Rt △ABD 中,∵∠ ABD = 30°,∴AD = AB ·tan30° = 6 × 33 = 23.……………1分∵∠ABC = 60°,∠BAC = 30°,∴∠ACB = 90°, …………………………………2分 ∴AC = AB ·cos30° = 6 ×32= 33.……………3分 过点C 作CE ⊥AD 于点E , 则∠CAE = 60°,AE = AC ·cos60°=2.……………4分 ∴DE = AD − AE = 2 3 −332 = 32 w W w. ∴山头C 的海拔高度为1+32≈1.87千米. …………5分19. 解:过点A 作BD AE ⊥于点E (1)分∵AD DC ⊥∴︒=∠90ADC∵△DBC 是等边三角形 ∴︒=∠60BDC∴︒=∠30ADB ………………… 2分 在Rt △AED 中,2=AD∴121==AD AE由勾股定理得:3=DE ………………………………3分 在Rt △AEB 中,︒=∠45ABD ∴1==AE BE ∴2=AB ………………………………4分ABCDEBACDE∴31+=BD∴31+===BD BC DC即四边形ABCD 的周长为3224++.20. (1)证明:∵AB =AC ,∴∠ABC =∠C , 又∵∠C =∠D ,∴∠ABC =∠ADB . …………1分(2) ∵∠ABC =∠ADB 又∵∠BAE =∠DAB , ∴△ABE ∽△ADB , …………………………2分 ∴AB AEAD AB=, ∴AB 2=AD ·AE =(AE +ED )·AE =(1+2)×1=3,∴AB 3分 (3) 直线F A 与⊙O 相切,理由如下:联结OA ,∵BD 为⊙O 的直径,∴∠BAD =90°,∴BD 4分BF =BO =12BD∵AB BF =BO =AB ,可证∠OAF =90°,∴直线F A 与⊙O 相切.………………………………………5分21.解:(1)11800; …………………… 1分(2)1112258.11122480%139031≈=⨯ …………………2分图略 …………………4分 (3)69511896-12591= …………………………5分22. 解:(1)当点D 、C 、E 三点在一条直线上时,DE CD +的值最小………1分(2) CD DE +=……………………2分(3)如图,令4=AB ,1=AC ,2=BE ,设x AD =,则x BD -=4,CD DE + = ……………………3分∵D 、C 、E 三点在一条直线上时,DE CD +的值最小 ∴CE 的最小值.过点E 作AB 的平行线交CA 的延长线于点F∵AB CA ⊥于A ,AB EB ⊥于B .∴AF ∥BE∴四边形AFEB 是矩形 ……………………4分∴2AF BE ==,4EF AB ==在Rt △CFE 中,90F ∠=︒, 3CF =……………5分F EDCBA23.解:(1)设抛物线的解析式为:2(0)y ax bx c a =++≠ ∵直线33y x =-+交轴于A 点,交轴于B 点,∴A 点坐标为(1,0)、B 点坐标为(0,3). ………………1分 又∵抛物线经过A 、B 、M 三点,∴0,930,3.a b c a b c c ++=⎧⎪-+=⎨⎪=⎩ 解得:123a b c =-⎧⎪=-⎨⎪=⎩. ∴抛物线1C 的解析式为:223y x x =--+.………………2分(2)抛物线1C 关于y 轴的对称图形2C 的解析式为:223y x x =-++. ……3分(3)'A 点的坐标为(-1,0),∵223y x x =-++=2(1)4x --+,wwW . ∴该抛物线的顶点为(1,4)D .………………………………4分 若△PAD 与△'A BO 相似,①当DA AP =3'BO OA =时,43AP =,P 点坐标为1(,0)3-或7(,0)3……………5分 ②当DA AP =1'3BO OA =时,12AP =,P 点坐标为(11,0)-或(13,0)…………6分 ∴当△PAD 与△'A BO 是相似三角形时,P 点坐标为1(,0)3-或7(,0)3或(11,0)-或(13,0) ………………7分24.解:(1) BC …………………………… 1分 (2由作图知AQ AP =,∠︒=06PAQ ∵△ACD 是等边三角形.∴AD AC =,PAQ CAD ∠=︒=∠06 ∴QAD PAC ∠=∠ 在△PAC 和△QAD 中⎪⎩⎪⎨⎧=∠=∠=AD AC QAD PAC AQ AP ∴△PAC ≌△QAD∴︒=∠=∠90ACP ADQ …………………………… 3分 (3)如图3,同①可证△PAC ≌△QAD ,︒=∠=∠90ACP ADQx y当AD ∥CQ 时,︒=∠-︒=∠90180ADQ CQD∵︒=∠60ADC∴︒=∠30QDC∵2==AC CD | ∴31==DQ CQ , ∴3==DQ PC 且AD CQ ≠…………………………… 5分∴此时四边形ACQD 是梯形.如图4,同理可证△PAC ≌△QAD ,︒=∠=∠90ACP ADQ当AQ ∥CD 时,︒=∠=∠60ADC QAD ,︒=∠30AQD∵2==AC AD∴4AQ DQ ==,∴PC DQ ==此时DQ 与AC 不平行,四边形ACDQ 是梯形.综上所述,这样的点P 有两个,分别在C 点两侧,当P 点在C 点左侧时,3=PC ;当P 点在C 点右侧时,PC =…………………………… 7分25.解:(1)由题意A (2.0) …………………………………………………………………1分由D (4,2),可得直线AD 解析式:2-=x y …………………………………………………2分 由B (0,4),可得直线AB 解析式:42+-=x y ,直线BD 解析式:421+-=x y ,J (21,). (2)在△ECD 平移t 秒时,由∠CDF =45°, 可得D’(t t --24,),N (t 2340-,) 设直线E’D’解析式为:13422y x t =-+- 可得M (t t 24,-),…………………………………………………3分Q (t t -+222,),P (t -20,)由△MQ D’∽△BJD ,得2)3233't S S BJD MQD -=∆∆(,可得 S △MQD ’ 2)211(3t -=…………………………………………………4分 S 梯形E’C’ PN t t t t 241)2122(212+-=-+=………………………………………5分 23)1(2112122+--=++-=t t t ∴当1=t 时,S 最大=23…………………………………………………6分 (3)当点H 在x 轴上时,有M (t t 24,-)横纵坐标相等 即t t 24-=∴34=t ∴340<<t .…………………………………………………8分|。
北京市石景山区中考一模数学试题及答案

北京市石景山区初三统一练习暨毕业考试数学试卷一、选择题(本题共32分,每小题4分) 1.32-的相反数是 A .23- B .23C .32-D .32 2.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为 A .3105.245⨯B .6105.245⨯ C .7100.5245⨯ D .3105245⨯3.正五边形的每个内角等于 A .72°B .108°C .54°D .36°4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量的平均数和众数分别是A .7.8,9B .7.8,3C .4.5,9D .4.5,3 5.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为 A .1)2(22--=x y B .32)4(22+-=x yC .9)2(22--=x yD . 33)4(22--=x y6.如图,△ABC 内接于⊙O ,BA =BC ,∠ACB =25°,AD 为⊙O 的直径,则∠DAC 的度数是 A .25 B .30° C .40° D .50°7.转盘上有六个全等的区域,颜色分布如图所示,若指针固定不动,转动转盘, 当转盘停止后,则指针对准红色区域的概率是 A .21 B .31 C .41 D .61 8.如图,边长为1的正方形ABCD 中有两个动点P , Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC →CD 作匀速运动,P ,Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P ,Q 两点的运动时间为x 秒,两点之间的距离为y ,下列图象中,能表示y 与x 的函数关系的图象大致是月用水量(吨)5 6 7 8 9 10 户数112231第8题图QPC DAB第6题图 第7题图红黄 蓝 红 蓝 蓝O DCBAyAy O x 1 2 y O x12 yOx12 y O x12 A BC D二、填空题(本题共16分,每小题4分)9. 分解因式:ax ax 163-=_______________.10. 如图,CD AB //,AC 与BD 相交于点O ,3=AB , 若3:1:=BD BO ,则CD 等于_____.11.如图所示,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60°和30°,则条幅的高度BC 为 米(结果可以保留根号).12.在平面直角坐标系xOy 中,已知直线l :x y =,作1A (1,0)关于x y =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于x y =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;….请继续操作并探究:点3A 的坐标是 ,点2014B 的坐标是 .三、解答题(本题共30分,每小题5分)13.02014130tan 3512)(-︒+--.14.解方程:xx x -=+--53153. 15.如图,在△ABC 和△ADE 中,AC AB =, AE AD =,DAE BAC ∠=∠,点C 在DE 上. 求证:(1)△ABD ≌△ACE ;(2)ADC BDA ∠=∠.16.已知:23=y x ,求代数式yx yx 3294+-的值.17.如图,一次函数21+=kx y 的图象与x 轴交于点B (0 2-,),与函数xmy =2(0>x )的图象交于点A (a 1,). ECBAD BDC第11题图OCD BA第10题图CB A D(1)求k 和m 的值; (2)将函数xmy =2(0x >)的图象沿y 轴向下平移3个单位后交x 轴于点C .若点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台. (1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案? 四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,2AB =,︒=∠=∠60C A ,DB AB ⊥于点B ,45DBC ∠=︒,求BC 的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.(1)请根据以上信息,直接补全条形统计图和扇形统计图;(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史? (3)若该校共有学生540人,请估算全校有多少学生选修篮球课? 21.如图,⊙O 是△ABC 的外接圆,AC AB =,连结CO 并延长交⊙O 的切线AP 于点P .(1)求证:BCP APC ∠=∠;三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图 人数分布统计图 人数 音乐史 管乐 篮球 健美操 油画 课程 10 9 8 7 6 5 4 3 2 1(2)若53sin =∠APC ,4=BC ,求AP 的长.22.实验操作(1)如图1,在平面直角坐标系xOy 中,△ABC 的顶点的横、纵坐标都是整数,若所经过的路线长为 .(1)求m 的值;(2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的表达式;(3)将抛物线2C 绕点(n n ,1+)旋转︒180得到抛物线3C ,若抛物线3C 与直线121+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围.BPCO A24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠AFE =∠DFC ,交射线AB 于点E ,交射线CB 于点G . (1) 若82FG =,则_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;(3)过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C 为顶点的四边形是平行四边形.25.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义: “水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,则“水平底”5=a ,“铅垂高”4=h ,“矩面积”20==S ah . (1)已知点)2,1(A ,)1,3(-B ,),0(t P .①若A ,B ,P 三点的“矩面积”为12,求点P 的坐标; ②直接写出A ,B ,P 三点的“矩面积”的最小值. (2)已知点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①若E ,F ,M 三点的“矩面积”为8,求m 的取值范围;②直接写出E ,F ,N 三点的“矩面积”的最小值及对应n 的取值范围.D A 备用图E DA F北京市石景山区初三统一练习暨毕业考试数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分) 题 号 1 2 3 4 5 6 7 8 答 案 D B B A C CBA二、填空题(本题共4道小题,每小题4分,共16分)9.)4)(4(-+x x ax ; 10.6; 11.34; 12.(3,2),(,). 三、解答题(本题共30分,每小题5分) 13.解:02014130tan 3512)(-︒+-- =1333532-⨯+- ………………………………………4分 =6-33 ………………………………………5分 14. 解:方程两边同乘以)5(-x ,得 ………………………………………1分3)5(3-=-+-x x . ………………………………………2分解得25=x . ………………………………………3分 经检验:25=x 是原分式方程的解. ………………………………4分所以25=x 是原方程的解. ………………………………………5分15.证明:(1)DAE BAC ∠=∠ ,DAC DAE DAC BAC ∠-∠=∠-∠∴.CAE BAD ∠=∠∴. …………………………1分 在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AD EAC BAD AC AB , ……………2分 ∴△ABD ≌△ACE . ………………………3分 (2)AEC ADB ∠=∠∴. AE AD = ,AEC ADC ∠=∠∴. …………………………4分 ADC BDA ∠=∠∴. …………………………5分16.解:由已知y x 32=, ………………………………………2分 ∴原式yy yy 3396+-=………………………………………4分21-=. ………………………………………5分 17.解:(1)根据题意,将点B (0 2-,)代入21+=kx y ,∴22-0+=k . ………………………………………………………1分∴1=k . …………………………………………………2分∴A (3 1,).将其代入x my =2,可得:3=m …………………3分(2)(2 53,)或(2 3-,). ………………………………………5分18.解:设该公司购进甲型显示器x 台, 则购进乙型显示器()50-x 台.(1)依题意可列不等式:77000)50(20001000≤-+x x ……………2分解得:23≥x …………………………………………………………3分∴该公司至少购进甲型显示器23台.(2)依题意可列不等式:x x -≤50解得:25≤x ………………………………………………………4分 ∵23≥x∴x 为23,24,25. 答:购买方案有:①甲型显示器23台,乙型显示器27台; ②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台. …………5分四、解答题(本题共20分,每小题5分)19. 解:过点D 作BC DE ⊥于点E . ……………………1分︒=∠=⊥60 2,A AB AB DB ,,∴3260tan =︒⨯=AB BD . ………………2分 45DBC ∠=︒,BC DE ⊥, ∴645sin =︒⨯==BD DE BE …………3分︒=∠︒=∠=∠9060DEC A C ,260tan =︒=∴DECE . ……………………4分62+=∴BC .………………………………5分20.解:(1)条形统计图补充数据:6(图略). ………………………………………1分扇形统计图补充数据:20. ……………………………2分(2)180×308=48(人). ………………………………………………3分 (3)()1543030303020866=++÷⎪⎭⎫⎝⎛⨯++. ……………4分 EBAD144540154=⨯(人). …………………………………………5分 21.(1)证明:连结AO 并延长交BC 于D 、⋂BC 于EAP 切⊙O 于点AAPBC BC EA AC AB ACAB PA EA //∴⊥∴=∴=⊥∴⋂⋂…………………1分 BCP APC ∠=∠∴…………………………2分(2)解:BC AE ⊥221==∴BC CD53sin ==∠PO AO APC ∴设k OP k OA 5,3==,则k OA OC 3==………………3分AP BC //∴△PAO ∽△CDO …………………………4分 COPOCD PA =∴ kkPA 352=∴∴310=PA …………………………5分22. 解:()画出点P …………………..1分画出△DEF ………………..2分 () x y–5–4–3–2–112345–5–4–3–2–112345P F E D C B A O BPCO E DEG D A B CF°A'C'B'PCA C B…………………………….4分34π=⋂AB ……………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵方程01)1(22=-+-+m x mmx有两个实数根, ∴0≠m 且0≥∆, ……………………1分则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m又∵m 为非负整数,∴1=m . ………………………………2分(2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2)(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a ,同理:b a b +-=+2)4(12,可得3=b , …………………………4分∴2C :()322+-=x y)(或742+-=x x y . …………5分(3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶点为(322-n n ,), (6)分当n x 2=时,11221+=+⨯=n n y , 由题意,132+>-n n ,即:4>n . ……………………………7分24.解:(1)90° ………………………………………………2分 (2)正确画图 ………………………………………………3分四边形ABCD 是矩形, ∴∠D=90°.△FGC 是等边三角形,=60GFC ∴∠︒ . ∠DFC =∠AFE ,∴∠DFC =60°. …………4分 DC =8 ,∴331660sin =︒=DC FC .△FGC 是等边三角形,∴GC =FC =1633. BC=AD =12, ∴GB=12-1633.………………………………5分 (3)过点F 作FK ⊥BC 于点K四边形ABCD 是矩形∴∠ABC =90°,AD//BC∴∠DFC =∠KCF ,∠AFG =∠KGF∠DFC =∠AFG∴∠KCF =∠KGF∴FG =FC ……………………………………………………………6分∴GK =CK四边形FHEC 是平行四边形∴FG =EG ……………………………………………………………7分 ∠FGK =∠EGB, ∠FKG =∠EBG=90°∴△FGK ≌△EGB∴BG =GK=KC=4312=……………………………………………8分25.解:(1)由题意:4=a .①当2>t 时,1-=t h ,则12)1(4=-t ,可得4=t ,故点P 的坐标为(0,4);……………1分 当1<t 时,t h -=2,则12)2(4=-t ,可得1-=t ,故点P 的坐标为(0,1)-.…………2分②A ,B ,P 三点的“矩面积”的最小值为4. ……………………3分(2)①∵E ,F ,M 三点的“矩面积”的最小值为8,∴⎩⎨⎧≤≤≤≤24040m m .∴210≤≤m . K H E G D A B C F∵0>m ,∴210≤<m . ………………………………………………………4分 ②E ,F ,N 三点的“矩面积”的最小值为16,…………………………5分 n 的取值范围为84≤≤n ………………………………………………7分F E。
北京市石景山区中考数学一模试卷

.
15.(3 分)2014 年 5 月 1 日起,北京市居民用水实施阶梯水价.按年度用水量
计算,将居民家庭全年用水量划分为三档,水价分档递增,水量分档和水价
标准如下:第一阶梯用水量不超过 180 立方米,水价为每立方米 5 元;第二
阶梯用水量在 180(不含)﹣260(含)立方米之间,超出 180 立方米的部分
第6页(共8页)
(2)将图 1 中的直线 A′B 沿着 EC 方向平移,与直线 EC 交于点 D,与直线 BC 交 于点 F,过点 F 作直线 AB 的垂线,垂足为点 H.
①如图 2,若点 D 在线段 EC 上,请猜想线段 FH,DF,AC 之间的数量关系,并 证明;
②若点 D 在线段 EC 的延长线上,直接写出线段 FH,DF,AC 之间的数量关系.
上,满足 OA= ,OC=1.将矩形 OABC 绕原点 O 以每秒 15°的速度逆时针旋
转.设运动时间为 t 秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为 S,
表示 S 与 t 的函数关系的图象大致如图所示,则矩形 OABC 的初始位置是
()
第2页(共8页)
A.
B.
C.
D.
二、填空题(本题共 18 分,每小题 3 分)
请回答以下问题:
(1)此次调查对象共
人,扇形统计图中 m 的值为
;
(2)请补全条形统计图并在图上标出数据;
(3)据统计,该市某大学有学生 15000 人,请根据上述调查结果估计这所大学
2014﹣2015 学年度第一学期参加过至少两次公益活动的大约有
人.
25.(5 分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是 OB 中点,过点 D 作
【附5套中考模拟试卷】北京市石景山区2019-2020学年中考数学一模考试卷含解析

北京市石景山区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数为无理数的是()A.-5 B.72C.0 D.π2.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.12a B.a C.32a D.3a3.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(3C.3米D.360米4.方程2x2﹣x﹣3=0的两个根为()A.x1=32,x2=﹣1 B.x1=﹣32,x2=1 C.x1=12,x2=﹣3 D.x1=﹣12,x2=35.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A.204030650x yx y+=⎧⎨+=⎩B.204020650x yx y+=⎧⎨+=⎩C.203040650x yx y+=⎧⎨+=⎩D.704030650x yx y+=⎧⎨+=⎩6.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)7.4的平方根是()A.2 B.±2 C.8 D.±88.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为()A.76°B.74°C.72°D.70°9.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°10.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外D.点B、点C都在⊙A外11.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A .43B .35C .53D .3412.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b 、的等式为________.14.计算20180(1)(32)---=_____.15.对于函数n m y x x =+,我们定义11n m y nx mx --'=+(m 、n 为常数).例如42y x x =+,则342y x x '=+.已知:()322113y x m x m x =+-+.若方程0y '=有两个相等实数根,则m 的值为__________. 16.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE=3,则BC 的长是_____.17.如图,AB 、CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB ,你补充的条件是_____.18.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.(1)求抛物线的解析式;(2)当PO+PC的值最小时,求点P的坐标;(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.20.(6分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.58B.38C.1116D.1221.(6分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)22.(8分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.23.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?24.(10分)解不等式组:,并把解集在数轴上表示出来.25.(10分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.26.(12分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?27.(12分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、﹣5是整数,是有理数,选项错误;B、72是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确.故选D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM ,∵CH 是等边△ABC 的对称轴,∴HB=12AB , ∴HB=BG ,又∵MB 旋转到BN ,∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===,∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a , ∴HN=2a , 故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.3.C【解析】【分析】过点A 作AD ⊥BC 于点D.根据三角函数关系求出BD 、CD 的长,进而可求出BC 的长.【详解】如图所示,过点A 作AD ⊥BC 于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×33=403;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×3=1203∴BC=BD+DC=40312031603+=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值. 4.A【解析】【分析】利用因式分解法解方程即可.【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=32,x2=-1.故选A.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).5.A【解析】【分析】根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为20 4030650x yx y+=⎧⎨+=⎩,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.6.A【解析】【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.7.B【解析】【分析】依据平方根的定义求解即可.【详解】∵(±1)1=4,∴4的平方根是±1.故选B.【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.8.B【解析】【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.【详解】解:∵∠A=56°,∠C=88°,∴∠ABC=180°-56°-88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,∴∠BDE=180°-18°-88°=74°.故选:B.【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.9.C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,+=16,∵OC2+AO2=22AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【点睛】考点:勾股定理逆定理.10.D【解析】【分析】先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系. 【详解】由题意可求出∠A=30°,∴AB=2BC=4, 由勾股定理得Q>3,∴点B、点C都在⊙A外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD =AD ,再根据等边对等角的性质可得∠A =∠ACD ,然后根据正切函数的定义列式求出∠A 的正切值,即为tan ∠ACD 的值.【详解】∵CD 是AB 边上的中线,∴CD =AD ,∴∠A =∠ACD ,∵∠ACB =90°,BC =6,AC =8,∴tan ∠A =6384BC AC ==, ∴tan ∠ACD 的值34. 故选D .【点睛】 本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A =∠ACD 是解本题的关键.12.C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(a+b )2﹣(a ﹣b )2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.S 阴影=4S 长方形=4ab ①,S 阴影=S 大正方形﹣S 空白小正方形=(a+b )2﹣(b ﹣a )2②,由①②得:(a+b )2﹣(a ﹣b )2=4ab .故答案为(a+b )2﹣(a ﹣b )2=4ab .【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.14.0【解析】分析:先计算乘方、零指数幂,再计算加减可得结果.详解:())0201812--=1-1=0故答案为0.点睛:零指数幂成立的条件是底数不为0.15.12【解析】分析:根据题目中所给定义先求y ',再利用根与系数关系求m 值.详解:由所给定义知,2221y x m x m '=+-+,若22210x m x m +-+=,22414m m =--⨯n ()=0,解得m=12. 点睛:一元二次方程的根的判别式是()200ax bx c a ++=≠,△=b 2-4ac,a,b,c 分别是一元二次方程中二次项系数、一次项系数和常数项.△>0说明方程有两个不同实数解,△=0说明方程有两个相等实数解,△<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.16【解析】【分析】由折叠的性质可知AE=CE ,再证明△BCE 是等腰三角形即可得到BC=CE ,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB=180362︒-︒=72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE 是等腰三角形是解题的关键.17.∠A=∠C或∠ADC=∠ABC【解析】【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【详解】添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点睛】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.18.1.【解析】【详解】∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=34-x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,32);(3)存在,具体见解析.【解析】【分析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)D与P重合时有最小值,求出点D的坐标即可;(3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.【详解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,且顶点在BC边上,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=34 -,∴抛物线解析式为y=34-(x﹣2)2+3,即y=34-x2+3x;(2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;∴当点P与点D重合时,PO+PC的值最小,设直线AC的解析式为y=kx+b,根据题意,得40,3,k bb+=⎧⎨=⎩解得3,43.kb⎧=-⎪⎨⎪=⎩∴直线AC的解析式为334y x=-+,当x=2时,33342y x=-+=,∴当PO+PC的值最小时,点P的坐标为(2,32);(3)存在.①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,3394y x=-+=-,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,3394y x=-+=-,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).【点睛】二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.20.A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:105 168=,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即m Pn =.21.51.96米.【解析】【分析】先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,sin60CD BC︒=,即可求出CD的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,sin60CD BC︒=∴3sin606030351.96CD BC=⋅︒=⨯=≈(米).答:文峰塔的高度CD约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.22.(1)45;(2)710.【解析】【分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元.【解析】【分析】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x的分式方程,解之经检验即可得出结论;(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论.【详解】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得:661, 32x x+=解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=1.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3,∴甲队应得的报酬为24000160023⨯=+(元),乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.25.(1)C(﹣3,2);(2)y1=6x,y2=﹣13x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=kx,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵32 61m nm n+=⎧⎨+=⎩,∴133 mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y1<y2时,则3<x<1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.26.(1)12;(2)78【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是12;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=78.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.27.(1)()20320416y x x=-+≤≤;(2)80米/分;(3)6分钟【解析】【分析】(1)根据图示,设线段AB 的表达式为:y=kx+b ,把把(4,240),(16,0)代入得到关于k ,b 的二元一次方程组,解之,即可得到答案,(2)根据线段OA ,求出甲的速度,根据图示可知:乙在点B 处追上甲,根据速度=路程÷时间,计算求值即可,(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:设线段AB 的表达式为:y=kx+b (4≤x≤16),把(4,240),(16,0)代入得:4240160k b k b +=⎧⎨+=⎩, 解得:20320k b =-⎧⎨=⎩, 即线段AB 的表达式为:y= -20x+320 (4≤x≤16), (2)又线段OA 可知:甲的速度为:2404=60(米/分), 乙的步行速度为:()24016460164+-⨯-=80(米/分), 答:乙的步行速度为80米/分,(3)在B 处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),与终点的距离为:2400-960=1440(米), 相遇后,到达终点甲所用的时间为:144060=24(分), 相遇后,到达终点乙所用的时间为:144080=18(分), 24-18=6(分),答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算:9115()515÷⨯-得()A.-95B.-1125C.-15D.11252.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=13.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位4.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A.0.86×104B.8.6×102C.8.6×103D.86×1025.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.506.下列图形中,周长不是32 m的图形是( )A.B.C.D.7.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣48.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm29.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.3D.310.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+111.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是A.B.C.D.12.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.14.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C 的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.15.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.16.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.17.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC 的值为_________.18.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.。
2022年北京市石景山区中考数学一模试卷

2022年北京市石景山区中考数学一模试卷1.(单选题,2分)在△ABC中,AB=3,AC=2,BC=a,a的值可能是()A.1B.3C.5D.72.(单选题,2分)如图是某个几何体的展开图,该几何体是()A.长方体B.正方体C.三棱柱D.圆柱3.(单选题,2分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>-2B.a+3>cC.-a>bD.ab<ac4.(单选题,2分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(-a2)3=a6D.-2a3b÷ab=-2a2b5.(单选题,2分)如图,△ABC中,AC=√3,D,E分别为CB,AB上的点,CD=1,AD=BD=2,若AE=EB,则DE的长为()A. √5B.2C. √3D.16.(单选题,2分)方程组 {x −y =32x +y =6的解为( )A. {x =3y =0B. {x =0y =3C. {x =1y =4D. {x =4y =17.(单选题,2分)研究与试验发展(R D )经费是指报告期为实施研究与试验发展(R D )活动而实际发生的全部经费支出.基础研究活动是研究与试验发展(R D )活动的重要组成.下面的统计图是自2016年以来全国基础研究经费及占R D 经费比重情况.根据统计图提供的信息,下面四个推断中错误的是( ) A.2016年至2021年,全国基础研究经费逐年上升B.2016年至2021年,全国基础研究经费占R D 经费比重逐年上升C.2016年至2021年,全国基础研究经费平均值超过1000亿元D.2021年全国基础研究经费比2016年的2倍还多8.(单选题,2分)已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如表: x … -1 1 3 … y …-1.5-2…① 二次函数y=ax 2+bx+c 可改写为y=a (x-1)2-2的形式 ② 二次函数y=ax 2+bx+c 的图象开口向下③ 关于x 的一元二次方程ax 2+bx+c=-1.5的两个根为0或2④ 若y >0,则x >3其中所有正确的结论为( ) A. ① ④ B. ② ③ C. ② ④ D. ① ③9.(填空题,2分)若代数式 √x +3 有意义,则实数x 的取值范围是___ . 10.(填空题,2分)分式方程3x+2 = 1x的解为___ . 11.(填空题,2分)如图,将△ABC 沿BC 方向平移一定的距离得到△DEF .请写出一条正确的结论,可以为 ___ .12.(填空题,2分)在平面直角坐标系xOy 中,点A (2,m ),B (n ,3)都在反比例函数 y =6x 的图象上,则 mn 的值为 ___ .13.(填空题,2分)已知m >0,n >0,若m 2+4n 2=13,mn=3,请借助如图直观分析,通过计算求得m+2n 的值为 ___ .14.(填空题,2分)如图,AB 为⊙O 的直径,点P 在AB 的延长线上,PC ,PD 分别与⊙O 相切于点C ,D ,若∠CPA=40°,则∠CAD 的度数为 ___ .15.(填空题,2分)某班学生分组做抛掷瓶盖实验,各组实验结果如下表: 累计抛掷次数 100 200 300 400 500 盖面朝上次数54105158212264盖面朝上频率0.5400 0.5250 0.5267 0.5300 0.5280 16.(填空题,2分)如图,某建筑公司有A (1,3),B (3,3),C (5,3)三个建筑工地,三个工地的水泥日用量分别为a 吨,b 吨,c 吨.有M (1,5),N (3,1)两个原料库供应水泥.使用一辆载重量大于(a+b+c )吨的运输车可沿图中虚线所示的道路运送水泥.为节约运输成本,公司要进行运输路线规划,使总的“吨千米数”(吨数×运输路程千米数)最小.若公司安排一辆装有(a+c )吨的运输车向A 和C 工地运送当日所需的水泥,且a >c ,为使总的“吨千米数”最小,则应从 ___ 原料库(填“M”或“N”)装运;若公司计划从N 原料库安排一辆装有(a+b+c )吨的运输车向A ,B ,C 三个工地运送当日所需的水泥,且a :b :c=3:2:1,为使总的“吨千米数”最小,写出向三个工地运送水泥的顺序 ___ (按运送的先后顺序依次排列即可).17.(问答题,5分)计算:30-4sin45°+ √8 +|1- √2 |.18.(问答题,5分)解不等式组: {3(x +1)<x −1x+92>2x ,并写出它的最大整数解.19.(问答题,5分)已知m 2-m=1,求代数式(2m+1)(2m-1)-m (m+3)的值.20.(问答题,5分)已知:如图,Rt△ABC 中,∠ACB=90°,CB <CA . 求作:线段AB 上的一点M ,使得∠MCB=∠A . 作法:① 以点C 为圆心,CB 长为半径作弧,交AB 于点D ;② 分别以点B ,D 为圆心,大于 12 BD 长为半径作弧,两弧在AB 的右侧相交于点E ; ③ 作直线CE ,交AB 于点M . ∠MCB 即为所求.根据小伟设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接CD,ED,EB.∵CD=CB,ED=EB,∴CE是DB的垂直平分线( ___ )(填推理的依据).∴CM⊥AB.∴∠MCB+∠B=90°.∵∠ACB=90°.∴∠A+∠B=90°.∴∠MCB=∠A( ___ )(填推理的依据).21.(问答题,5分)已知:关于x的一元二次方程x2-2mx+m2-1=0.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)选择一个你喜欢的整数m的值代入原方程,并求出这个方程的解.22.(问答题,6分)如图所示,△ABC中,∠ACB=90°,D,E分别为AB,BC的中点,连接DE并延长到点F,使得EF=DE,连接CD,CF,BF.(1)求证:四边形BFCD是菱形;,DE=5,求菱形BFCD的面积.(2)若cosA= 51323.(问答题,5分)在平面直角坐标系xOy中,直线l1:y= 1x+b与直线l2:y=2x交于点A2(m,n).(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.24.(问答题,6分)如图,AB为⊙O的直径,C,D为⊙O上两点,BD̂=AD̂,连接AC,BC,AD,BD,过点D作DE || AB交CB的延长线于点E.(1)求证:直线DE是⊙O的切线;(2)若AB=10,BC=6,求AD,BE的长.25.(问答题,6分)2022年是中国共产主义青年团成立100周年,某中学为普及共青团知识,举行了一次知识竞赛(百分制).为了解七、八年级学生的答题情况,从中各随机抽取了20名学生的成绩,并对数据(成绩)进行了整理、描述和分析.下面给出部分信息.a.七年级学生竞赛成绩的频数分布表及八年级学生竞赛成绩的扇形统计图:分组/分数频数频率50≤x<60 1 0.0580 80 82 85 85 85 89c.七、八两年级竞赛成绩数据的平均数、中位数、众数以及方差如下:(1)写出表中m,n的值:m=___ ,n=___ ;八年级学生竞赛成绩扇形统计图中,表示70≤x<80这组数据的扇形圆心角的度数是 ___ °;(2)在此次竞赛中,竞赛成绩更好的是 ___ (填“七”或“八”)年级,理由为 ___ ;(3)竞赛成绩90分及以上记为优秀,该校七、八年级各有200名学生,估计这两个年级成绩优秀的学生共约 ___ 人.26.(问答题,6分)在平面直角坐标xOy中,点(4,2)在抛物线y=ax2+bx+2(a>0)上.(1)求抛物线的对称轴;(2)抛物线上两点P(x1,y1),Q(x2,y2),且t<x1<t+1,4-t<x2<5-t.① 当t=3时,比较y1,y2的大小关系,并说明理由;2② 若对于x1,x2,都有y1≠y2,直接写出t的取值范围.27.(问答题,7分)如图,△ACB中,AC=BC,∠ACB=90°,D为边BC上一点(不与点C重合),CD<BD,点E在AD的延长线上,且ED=AD,连接BE,过点B作BE的垂线,交边AC于点F.(1)依题意补全图形;(2)求证:BE=BF;(3)用等式表示线段AF与CD的数量关系,并证明.28.(问答题,7分)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.。
2020年北京市石景山区初三数学一模试卷及参考答案

2020年北京市石景山区初三数学一模试卷及参考答案2020年北京市石景山区初三一模试卷数学学校:__________ 姓名:__________ 准考证号:__________考生须知:1.本试卷共8页,共三道大题,28道小题。
满分100分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。
在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
4.考试结束,将本试卷和答题卡一并交回。
一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个。
1.2019年5月7日,我国自主创新研发的“东方红3号科学考察船”通过挪威DNV-XXX权威认证,成为全球最大静音科考船。
“东方红3”是一艘5000吨级深远海科考船,具有全球无限航区航行能力,可持续航行海里。
将用科学记数法表示应为A。
0.15×10^5B。
1.5×10^4C。
15×10^4D。
15×10^32.下列图形中,既是轴对称图形,又是中心对称图形的是A。
B。
C。
D。
3.实数a,b,c在数轴上的对应点的位置如图所示,则不正确的结论是A。
a>3B。
b-c<0C。
ab<0D。
a>-c4.如图,AD平分∠BAC,点E在AB上,EF∥AC交AD 于点G,若∠DGF=40°,则∠BAD的度数为A。
20°B。
40°C。
50°D。
80°5.若一个多边形的内角和为540°,则该多边形的边数是A。
4B。
5C。
6D。
76.在下列几何体中,其三视图中没有矩形的是A。
B。
C。
D。
7.如图,点A,B,C,D在⊙O上,弦AD的延长线与弦BC的延长线相交于点E。
用①AB是⊙O的直径,②CB=CE,③AB=AE中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为A。
10-石景山-2019年初三数学一模参考答案

石景山区2019年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数。
一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.答案不唯一,10.>11.31012.813.12 14.315.552x y x y =+⎧⎪⎨=-⎪⎩16.三、解答题(本题共68分,第17 - 22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解:(1)补全的图形如图所示:(2)菱形;四条边都相等的四边形是菱形; 菱形的对边平行. 18.解:原式=213+ 2+=.………………2分………………5分………………4分 ………………4分 ………………5分19.解:解不等式13(3)x x -<-,得4x >.解不等式52x x +≥,得5x ≥. ∴原不等式组的解集为5x ≥. 20.(1)证明:依题意,得()()2342m m ∆=⎡-+⎤-+⎣⎦ 26948m m m =++--()21m =+.∵()210m +≥, ∴0∆≥.∴方程总有两个实数根.(2)解:解方程,得1212x x m ==+,, ∵方程的两个实数根都是正整数,∴21m +≥. ∴1m -≥.∴m 的最小值为1-.21.(1)证明:∵点E 为CD 中点, ∴CE =DE .∵EF =BE ,∴四边形DBCF 是平行四边形.(2)解:∵四边形DBCF 是平行四边形,∴CF ∥AB ,DF ∥BC .∴30FCG A ∠=∠=︒,90CGF CGD ACB ∠=∠=∠=︒.在Rt △FCG 中,CF =6,∴132FG CF ==,CG = ∵4DF BC ==, ∴1DG =. 在Rt △DCG 中, 由勾股定理,得CD =………………………………2分………………………………3分 ………………………………4分………………………………5分………………………………2分 ………………………………4分 ………………………………5分 ………………………………2分………………………………3分………………………………4分………………………………5分 CFDG EBA22.(1)证明:连接CO 并延长交AF 于点G . ∵CD 是⊙O 的切线, ∴90ECO ∠=︒.∵AB 是⊙O 的直径, ∴90AFB ∠=︒. ∵BE CD ⊥, ∴90CEF ∠=︒.∴四边形CEFG 是矩形.∴GF CE =,90CGF ∠=︒. ∴CG AF ⊥.∴12GF AF =. ∴12CE AF =.(2)解:∵CG AF ⊥, ∴CF CA =.∴CBA CAF ∠=∠.∴tan tan 2CBA CAF ∠=∠=.∵AB 是⊙O 的直径,∴90ACB ∠=︒.在Rt △CBA 中,设BC x =,2AC x =,则=52AB =⨯.∴BC x ==23.解:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6), ∴6k =-. …………… 1分 ∵直线2y mx =-与x 轴交于点B (-1,0),∴2m =-. ……………………… 2分(2)①判断:PD =2PC .理由如下: ……… 3分当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2)∴PC =1,PD =2.∴PD =2PC . …………… 4分②10n -<≤或3n -≤. …………… 6分………………………………3分………………………………4分………………………………5分………………………………2分24.解:(1) (2)(3)25.解:(1)(2乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排 在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生. (3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=.26.解:(1)∵1(0)y kx k =+≠经过点A 23(,),∴1k =. ∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2,∴1m =. (2)∵抛物线2y ax bx a =++的对称轴为1x =,∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =-.∴抛物线的顶点坐标为()1,0.……………………………4分 ……………………………6分………………………………4分……………………………1分……………………………2分(3) 当0a >时,如图,若抛物线过点B 01(,),则1a =.结合函数图象可得01a <<. 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.27.(1)补全的图形如图1所示. …………… 1分 (2)证明:△ABC 是等边三角形,∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分 60ADE ACB ∴∠=∠=︒.90GMD ∠=︒,2DG DM DE ∴==. …………… 3分 DE BC AC ==, DG AC ∴=.AG CD ∴=. …………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠.ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =,BEF BHF ∴△≌△. …………… 6分 BE BH CD AG ∴===. AB AC =,AH CG ∴=.…………… 7分 ………………………………6分 图1图228.解:(1)①5.②如图,(5d E =点.()d EF ∴线段的最小值是5. ∴符合题意的点F 满足()5d F 点≤. 当()=5d F 点时, 125BF DF ==.∴点1F 的坐标为()4,0,点2F 的坐标为()4,0-. ∴1k =-或1k =.结合函数图象可得1k ≤-或1k ≥.(2)33t -<<.………………………………5分………………………………7分。
2019-2020学年度石景山区初三一模数学试卷及答案

2019-2020学年初三统一练习暨毕业考试数学试卷考生须知1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个.1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为(A)41310⨯(B)51.310⨯(C)60.1310⨯(D)71.310⨯2.如图是某几何体的三视图,该几何体是(A)三棱柱(B)三棱锥(C)长方体(D)正方体3.实数a,b,c在数轴上对应点的位置如图所示,则正确的结论是(A)2a>-(B)1b>(C)0a c+>(D)0abc>4.下列图案中,是中心对称图形的为(A)(B)(C)(D)b ca–1–2–3–412345.如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G , 若1∠=70︒,则2∠的度数是 (A )60︒ (B )55︒ (C )50︒(D )45︒6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用 平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()32,,则表示其他位置的点的坐标正确的是7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是 指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是 (A )与2017年相比,2018年年末全国农村贫困人口减少了1386万人 (B )2015 ~2018年年末,与上一年相比,全国农村贫困发生率逐年下降 (C )2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万BACDEGF 212014 ~ 2018年年末全国农村贫困人口统计图2014 ~ 2018年年末全国农村贫困发生率统计图(D )2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点 8.如图,在平面直角坐标系xOy 中,△AOB 可以看作是 由△OCD 经过两次图形的变化(平移、轴对称、旋转) 得到的,这个变化过程不可能...是 (A )先平移,再轴对称 (B )先轴对称,再旋转 (C )先旋转,再平移 (D )先轴对称,再平移二、填空题(本题共16分,每小题2分) 9.写出一个大于2且小于3的无理数:.10.右图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m n . (填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为. 12.若正多边形的一个内角是135︒,则该正多边形的边数为. 13.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC .若6AE =,3EC =,8DE =, 则BC =.14.如果230m m --=,那么代数式211m m m m +⎛⎫-÷ ⎪⎝⎭的值是.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为.16.如图,AB 是⊙O 的一条弦,P 是⊙O 上一动点 (不与点A ,B 重合),C ,D 分别是AB ,BP 的中点.EDCBA若AB = 4,∠APB = 45°,则CD 长的最大值为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 及直线l 外一点A . 求作:直线AD ,使得AD ∥l .作法:如图2,①在直线l 上任取一点B ,连接AB ; ②以点B 为圆心,AB 长为半径画弧, 交直线l 于点C ;③分别以点A ,C 为圆心,AB 长为半径 画弧,两弧交于点D (不与点B 重合); ④作直线AD .所以直线AD 就是所求作的直线. 根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD .∵AD=CD=BC=AB ,∴四边形ABCD 是().∴AD ∥l ().18.计算:()02cos3023π︒++-.19.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 20.关于x 的一元二次方程()2320x m x m -+++=. (1)求证:方程总有两个实数根;lA图1图2l(2)若方程的两个实数根都是正整数,求m的最小值.21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形; (2)若30A ∠=︒,4BC =,6CF =,求CD 的长.22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.23.如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线2y mx =-于点C ,交 函数()0ky x x=<的图象于点D . ①当1=-n 时,判断线段PD 与PC 的数量关系,并说明理由; ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.CFDG EBA24.如图,Q 是»AB 上一定点,P 是弦AB 上一动点,C 为AP 中点,连接CQ ,过点P 作PD ∥CQ 交»AB 于点D ,连接AD ,CD .已知8AB cm ,设A ,P 两点间的距离为x cm ,C ,D 两点间的距离为y cm . (当点P 与点小荣根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,得到了与x 的几组对应值:(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA DP ⊥时,AP 的长度约为cm .25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了 整理、描述和分析.下面给出了部分信息.a .甲、乙两校40名学生成绩的频数分布统计表如下:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以 下为不合格)b .甲校成绩在70≤x <80这一组的是: 70707071727373737475767778c 根据以上信息,回答下列问题: (1)写出表中n 的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是; (3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.28.在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -,(1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的 “正方距”,记作d (M ). (1)已知点(0,4)E ,①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取 值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <e ,直接写出t 的取值范围.DB2019年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2020届北京市石景山区中考数学一模试卷(有答案)(加精)

北京市石景山区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个.1.实数a,b,c在数轴上的对应点的位置如图所示,则a的相反数是()A.a B.b C.﹣b D.c2.2016年9月15日天宫二号空间实验室在酒泉卫星发射中心发射成功,它的运行轨道距离地球393000米.将393000用科学记数法表示应为()A.0.393×107B.3.93×105C.3.93×106D.393×1033.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.25° B.35° C.65° D.115°4.篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是轴对称图形的为()A.B.C.D.5.已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4 B.5 C.6 D.86.在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是()A.B.C.D.7.若某几何体的三视图如图所示,则该几何体是()A.B.C.D.8.周末小石去博物馆参加综合实践活动,乘坐公共汽车0.5小时后想换乘另一辆公共汽车,他等候一段时间后改为利用手机扫码骑行摩拜单车前往.已知小石离家的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象大致如图.则小石骑行摩拜单车的平均速度为()A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时9.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.当行驶速度为40km/h时,每消耗1升汽油,甲车能行驶20kmB.消耗1升汽油,丙车最多可行驶5kmC.当行驶速度为80km/h时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同D.当行驶速度为60km/h时,若行驶相同的路程,丙车消耗的汽油最少二、填空题(本题共18分,每小题3分)11.分解因式:2x2﹣18= .12.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y= .13.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是m.14.如果x2+x﹣5=0,那么代数式(1+)÷的值是.15.某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30°),目标B的位置为(2,180°),目标C的位置为(4,240°),则图中目标D的位置可记为.16.首都国际机场连续五年排名全球最繁忙机场第二位,该机场2012﹣2016年客流量统计结果如表:年份2012 2013 2014 2015 2016客流量(万人次)8192 8371 8613 8994 9400根据统计表中提供的信息,预估首都国际机场2017年客流量约万人次,你的预估理由是.三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:6sin60°﹣()﹣2﹣+|2﹣|.18.解不等式组:并写出它的所有整数解.19.如图,在四边形ABCD中,AB∥DC,E是CB的中点,AE的延长线与DC的延长线相交于点F.求证:AB=FC.20.列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?21.关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.22.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y=(m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.23.如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.24.阅读下列材料:2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家议论的重点内容之一.北京自1984年开展大气监测,至2012年底,全市已建立监测站点35个.2013年,北京发布的首个PM2.5年均浓度值为89.5微克/立方米.2014年,北京空气中的二氧化硫年均浓度值达到了国家新的空气质量标准;二氧化氮、PM10、PM2.5年均浓度值超标,其中PM2.5年均浓度值为85.9微克/立方米.2016年,北京空气中的二氧化硫年均浓度值远优于国家标准;二氧化氮、PM10、PM2.5的年均浓度值分别为48微克/立方米、92微克/立方米、73微克/立方米.与2015年相比,二氧化硫、二氧化氮、PM10年均浓度值分别下降28.6%、4.0%、9.8%;PM2.5年均浓度值比2015年的年均浓度值80.6微克/立方米有较明显改善.(以上数据来源于北京市环保局)根据以上材料解答下列问题:(1)2015年北京市二氧化氮年均浓度值为微克/立方米;(2)请你用折线统计图将2013﹣2016年北京市PM2.5的年均浓度值表示出来,并在图上标明相应的数据.25.如图,在四边形ABCD中,∠D=90°,AC平分∠DAB,且点C在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=,AC=m,写出求线段CE长的思路.26.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.(3)性质应用:如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B= °.(4)类比学习:如图4,在凹四边形ABCD中,点E,F,G,H分别是边AD,AB,BC,CD的中点,顺次连接各边中点得到四边形EFGH.若AB=AD,CB=CD,则四边形EFGH是.(填写序号即可)A.梯形 B.菱形 C.矩形 D.正方形.27.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4a﹣3(a≠0)的顶点为A.(1)求顶点A的坐标;(2)过点(0,5)且平行于x轴的直线l,与抛物线y=ax2﹣4ax+4a﹣3(a≠0)交于B,C两点.①当a=2时,求线段BC的长;②当线段BC的长不小于6时,直接写出a的取值范围.28.在正方形ABCD中,点E是对角线AC上的动点(与点A,C不重合),连接BE.(1)将射线BE绕点B顺时针旋转45°,交直线AC于点F.①依题意补全图1;②小研通过观察、实验,发现线段AE,FC,EF存在以下数量关系:AE与FC的平方和等于EF的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1:将线段BF绕点B逆时针旋转90°,得到线段BM,要证AE,FC,EF的关系,只需证AE,AM,EM的关系.想法2:将△ABE沿BE翻折,得到△NBE,要证AE,FC,EF的关系,只需证EN,FN,EF的关系.…请你参考上面的想法,用等式表示线段AE,FC,EF的数量关系并证明;(一种方法即可)(2)如图2,若将直线BE绕点B顺时针旋转135°,交直线AC于点F.小研完成作图后,发现直线AC上存在三条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.29.在平面直角坐标系xOy中,对“隔离直线”给出如下定义:点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.如图1,直线l:y=﹣x﹣4是函数y=(x<0)的图象与正方形OABC的一条“隔离直线”.(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y=(x<0)的图象与正方形OABC的“隔离直线”的为;请你再写出一条符合题意的不同的“隔离直线”的表达式:;(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是(,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.北京市石景山区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个.1.实数a,b,c在数轴上的对应点的位置如图所示,则a的相反数是()A.a B.b C.﹣b D.c【考点】29:实数与数轴;28:实数的性质.【分析】根据相反数的意义求解即可.【解答】解:a=﹣2,c=2,a的相反数是c,故选:D.2.2016年9月15日天宫二号空间实验室在酒泉卫星发射中心发射成功,它的运行轨道距离地球393000米.将393000用科学记数法表示应为()A.0.393×107B.3.93×105C.3.93×106D.393×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将393000用科学记数法表示为:3.93×105.故选:B.3.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.25° B.35° C.65° D.115°【考点】JA:平行线的性质;J3:垂线.【分析】先根据两直线平行,同旁内角互补,得出∠1+∠ABC+∠2=180°,再根据BC⊥AB,∠1=65°,即可得出∠2的度数.【解答】解:∵直线a∥b,∴∠1+∠ABC+∠2=180°,又∵BC⊥AB,∠1=65°,∴∠2=180°﹣90°﹣65°=25°,故选:A.4.篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是轴对称图形的为()A.B.C.D.【考点】P3:轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:B.5.已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4 B.5 C.6 D.8【考点】L3:多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.6.在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是()A.B.C.D.【考点】X4:概率公式.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是红球的概率==.故选B.7.若某几何体的三视图如图所示,则该几何体是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是长方形可判断出此几何体为四棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个矩形,∴此几何体为四棱柱.故选:A.8.周末小石去博物馆参加综合实践活动,乘坐公共汽车0.5小时后想换乘另一辆公共汽车,他等候一段时间后改为利用手机扫码骑行摩拜单车前往.已知小石离家的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象大致如图.则小石骑行摩拜单车的平均速度为()A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时【考点】E6:函数的图象.【分析】根据函数图象得出小石骑行摩拜单车的路程为:(10﹣4)km,行驶的速度为:(1﹣0.6)小时,进而求出速度即可.【解答】解:由题意可得,小石骑行摩拜单车的平均速度为:(10﹣4)÷(1﹣0.6)=15(千米/小时),故选:C.9.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【考点】N2:作图—基本作图;KB:全等三角形的判定.【分析】根据作图得出符合全等三角形的判定定理SSS,即可得出答案.【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选D.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.当行驶速度为40km/h时,每消耗1升汽油,甲车能行驶20kmB.消耗1升汽油,丙车最多可行驶5kmC.当行驶速度为80km/h时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同D.当行驶速度为60km/h时,若行驶相同的路程,丙车消耗的汽油最少【考点】E6:函数的图象.【分析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【解答】解:A、当行驶速度为40km/h时,每消耗1升汽油,甲车能行驶15km,错误;B、消耗1升汽油,丙车最多可行驶大于5km,错误;C、当行驶速度为80km/h时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同,正确;D、当行驶速度为60km/h时,若行驶相同的路程,甲车消耗的汽油最少,错误;故选C二、填空题(本题共18分,每小题3分)11.分解因式:2x2﹣18= 2(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)12.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y= ﹣x2+2x(答案不唯一).【考点】H3:二次函数的性质.【分析】直接利用二次函数的性质分析其a,c的值进而得出答案.【解答】解:∵开口向下,∴a<0,∵抛物线过坐标原点,∴c=0,∴答案不唯一,如y=﹣x2+2x.故答案为:y=﹣x2+2x(答案不唯一).13.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是 4.8 m.【考点】SA:相似三角形的应用;U5:平行投影.【分析】设此树的高度是hm,再根据同一时刻物高与影长成正比即可得出结论.【解答】解:设此树的高度是hm,则=,解得h=4.8(m).故答案为:4.8.14.如果x2+x﹣5=0,那么代数式(1+)÷的值是 5 .【考点】6D:分式的化简求值.【分析】先将原式化简,然后将x2+x=5代入即可求答案.【解答】解:当x2+x=5时,∴原式=×=x2+x=5故答案为:515.某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30°),目标B的位置为(2,180°),目标C的位置为(4,240°),则图中目标D的位置可记为(5,120°).【考点】D3:坐标确定位置.【分析】根据坐标的意义,第一个数表示距离,第二个数表示度数,根据图形写出即可.【解答】解:由图可知,图中目标D的位置可记为(5,120°).故答案为:(5,120°).16.首都国际机场连续五年排名全球最繁忙机场第二位,该机场2012﹣2016年客流量统计结果如表:年份2012 2013 2014 2015 2016客流量(万人次)8192 8371 8613 8994 9400根据统计表中提供的信息,预估首都国际机场2017年客流量约9823 万人次,你的预估理由是由之前连续3年增长率预估2017年客流量的增长率约为4.5% .【考点】V5:用样本估计总体.【分析】计算出之前连续3年客流量的增长率,估计出2017年客流量的增长率,据此可得答案.【解答】解:∵2012~2013年客流量的增长率为×100%≈2.19%,2013~2014年客流量的增长率为×100%≈2.89%,2014~2015年客流量的增长率为×100%≈4.42%2015~2016年客流量的增长率为×100%≈4.51%,∴预估2017年的客流量增长率约为4.5%,即2017年客流量约为9400×(1+4.5%)=9823(万人次),故答案为:9823,由之前连续3年增长率预估2017年客流量的增长率约为4.5%.三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:6sin60°﹣()﹣2﹣+|2﹣|.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方和开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:6sin60°﹣()﹣2﹣+|2﹣|=6×﹣9﹣2+2﹣=3﹣9﹣2+2﹣=﹣718.解不等式组:并写出它的所有整数解.【考点】CC:一元一次不等式组的整数解;CB:解一元一次不等式组.【分析】先求出不等式组的解集,再求出不等式组的整数解即可.【解答】解:解不等式①,得x≥﹣2.解不等式②,得x<1.∴原不等式组的解集为﹣2≤x<1.∴原不等式组的整数解为﹣2,﹣1,0.19.如图,在四边形ABCD中,AB∥DC,E是CB的中点,AE的延长线与DC的延长线相交于点F.求证:AB=FC.【考点】KD:全等三角形的判定与性质.【分析】欲证明AB=CF只要证明△AEB≌△FEC即可;【解答】证明:∵AB∥DC,∴∠1=∠F,∠B=∠2,∵E是BC的中点,∴BE=CE,在△AEB和△FEC中,∴△AEB≌△FEC,∴AB=FC.20.列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?【考点】8A:一元一次方程的应用.【分析】设良马x天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设良马x天能够追上驽马.根据题意得:240x=150×(12+x),解得:x=20.答:良马20天能够追上驽马.21.关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.【考点】AA:根的判别式.【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且△=(2m﹣3)2﹣4(m﹣1)≥0,然后求出两个不等式的公共部分即可;(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.【解答】解:(1)根据题意得m≠0且△=(2m﹣3)2﹣4(m﹣1)≥0,解得m≤且m≠0;(2)∵m为正整数,∴m=1,∴原方程变形为x2+x=0,解得x1=0,x2=﹣1.22.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y=(m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.【解答】解:(1)∵双曲线y=(m≠0)经过点A(2,﹣3),∴m=﹣6.∴双曲线的表达式为y=﹣.∵点B(n,2)在双曲线y=﹣上,∴点B的坐标为(﹣3,2).∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),∴解得,∴直线的表达式为y=﹣x﹣1;(2)符合条件的点P的坐标是(1,﹣6)或(6,﹣1).23.如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质.【分析】(1)方法一:连接AC,利用角平分线判定定理,证明DA=DC即可;方法二:只要证明△AEB≌△AFD.可得AB=AD即可解决问题.(2)在Rt△ACF,根据AF=CF•tan∠ACF计算即可.【解答】(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)解:连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABVD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠ACF=2.24.阅读下列材料:2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家议论的重点内容之一.北京自1984年开展大气监测,至2012年底,全市已建立监测站点35个.2013年,北京发布的首个PM2.5年均浓度值为89.5微克/立方米.2014年,北京空气中的二氧化硫年均浓度值达到了国家新的空气质量标准;二氧化氮、PM10、PM2.5年均浓度值超标,其中PM2.5年均浓度值为85.9微克/立方米.2016年,北京空气中的二氧化硫年均浓度值远优于国家标准;二氧化氮、PM10、PM2.5的年均浓度值分别为48微克/立方米、92微克/立方米、73微克/立方米.与2015年相比,二氧化硫、二氧化氮、PM10年均浓度值分别下降28.6%、4.0%、9.8%;PM2.5年均浓度值比2015年的年均浓度值80.6微克/立方米有较明显改善.(以上数据来源于北京市环保局)根据以上材料解答下列问题:(1)2015年北京市二氧化氮年均浓度值为50 微克/立方米;(2)请你用折线统计图将2013﹣2016年北京市PM2.5的年均浓度值表示出来,并在图上标明相应的数据.【考点】VD:折线统计图.【分析】(1)根据降低率,可得答案;(2)根据每年的数值,可得答案.【解答】解:(1)设2015年北京市二氧化氮年均浓度值为x微克/立方米,根据题意,得(1﹣4%)x=48,解得x=50,故答案为:50;(2)2013﹣2016年北京市PM2.5的年均浓度值折线统计图.25.如图,在四边形ABCD中,∠D=90°,AC平分∠DAB,且点C在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=,AC=m,写出求线段CE长的思路.【考点】ME:切线的判定与性质;T7:解直角三角形.【分析】(1)连接OC,如图1中.只要证明OC∥AD,由AD⊥CD,即可证明OC⊥CD解决问题.(2)过点B作BF⊥CE于F,如图2中.①在Rt△ACB中,根据BC=AC•tan∠CAB,求出BC.②在Rt△CFB 中,由∠BCF=42°及BC的长,可求CF,BF的长;③在Rt△EFB中,由∠E的三角函数值及BF的长,可EF 的长;④由CE=CF+EF,可求CE的长.【解答】(1)证明:连接OC,如图1中.∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠3=∠2,∴∠3=∠1,∴AD∥OC,∴∠OCD=∠D=90°,又∵OC是⊙O的半径,∴CD是⊙O的切线.(2)求解思路如下:过点B作BF⊥CE于F,如图.①在Rt△ACB中,根据BC=AC•tan∠CAB,求出BC.②在Rt△CFB中,由∠BCF=42°及BC的长,可求CF,BF的长;③在Rt△EFB中,由∠E的三角函数值及BF的长,可EF的长;④由CE=CF+EF,可求CE的长.26.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.(3)性质应用:如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B= 64 °.(4)类比学习:如图4,在凹四边形ABCD中,点E,F,G,H分别是边AD,AB,BC,CD的中点,顺次连接各边中点得到四边形EFGH.若AB=AD,CB=CD,则四边形EFGH是 C .(填写序号即可)A.梯形 B.菱形 C.矩形 D.正方形.【考点】LO:四边形综合题.【分析】(2)延长BC交AD于点M,根据三角形的外角的性质即可解决问题.(3)利用(2)中结论如图3中,设∠B=x,∠ECB=∠E CD=α,∠EAD=∠EAB=β,列出方程组即可解决问题.(3)结论:四边形EFGH是矩形.利用三角形的中位线定理,首先证明是平行四边形,再证明有一个角是90度即可.【解答】解:(2)延长BC交AD于点M∵∠BCD是△CDM的外角,∴∠BCD=∠CMD+∠D,同理∠CD是△ABM的外角,∴∠CMD=∠A+∠B,∴∠BCD=∠A+∠B+∠D;(2)如图3中,设∠B=x,∠ECB=∠ECD=α,∠EAD=∠EAB=β.由(2)可知,,解得x=64°故答案为64.(3)四边形EFGH是矩形,证明:连接AC,BD,交EH于点M,∵E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=HG=AC,EF∥HG∥AC,∴四边形EFGH是平行四边形,∵AB=AD,BC=DC,∴A、C在BD的垂直平分线上,∴AM⊥EH,已证EF∥AC,同理可证FG∥BD,∴∠EFG=90°,∴□EFGH是矩形;故答案为C.27.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4a﹣3(a≠0)的顶点为A.(1)求顶点A的坐标;(2)过点(0,5)且平行于x轴的直线l,与抛物线y=ax2﹣4ax+4a﹣3(a≠0)交于B,C两点.①当a=2时,求线段BC的长;②当线段BC的长不小于6时,直接写出a的取值范围.【考点】H3:二次函数的性质.【分析】(1)配方得到y=ax2﹣4ax+4a﹣3=a(x﹣2)2﹣3,于是得到结论;(2)①当a=2时,抛物线为y=2x2﹣8x+5,如图.令y=5得到2x2﹣8x+5=5,解方程即可得到结论;②令y=5得到ax2﹣4ax+4a﹣3=5,解方程即可得到结论.【解答】解:(1)∵y=ax2﹣4ax+4a﹣3=a(x﹣2)2﹣3,∴顶点A的坐标为(2,﹣3);(2)①当a=2时,抛物线为y=2x2﹣8x+5,如图.令y=5,得2x2﹣8x+5=5,解得,x1=0,x2=4,∴线段BC的长为4,②令y=5,得ax2﹣4ax+4a﹣3=5,解得,x1=,x2=,∴线段BC的长为,∵线段BC的长不小于6,∴≥6,∴0<a≤.28.在正方形ABCD中,点E是对角线AC上的动点(与点A,C不重合),连接BE.(1)将射线BE绕点B顺时针旋转45°,交直线AC于点F.①依题意补全图1;②小研通过观察、实验,发现线段AE,FC,EF存在以下数量关系:AE与FC的平方和等于EF的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1:将线段BF绕点B逆时针旋转90°,得到线段BM,要证AE,FC,EF的关系,只需证AE,AM,EM的关系.想法2:将△ABE沿BE翻折,得到△NBE,要证AE,FC,EF的关系,只需证EN,FN,EF的关系.…请你参考上面的想法,用等式表示线段AE,FC,EF的数量关系并证明;(一种方法即可)(2)如图2,若将直线BE绕点B顺时针旋转135°,交直线AC于点F.小研完成作图后,发现直线AC上存在三条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.【考点】LO:四边形综合题.【分析】(1)①根据题意补全图形即可;②过B作MB⊥BF,使BM=BF,连接AM、EM,由正方形的性质得出∠ABC=90°,∠1=∠2=45°,AB=BC,由SAS证明△MBE≌△FBE,得出EM=EF,证出∠4=∠5,由SAS证明△AMB≌△CFB,得出AM=FC,∠6=∠2=45°,证出∠MAE=∠6+∠1=90°,在Rt△MAE中,由勾股定理即可得出结论;(2)过B作MB⊥BF,使BM=BF,连接ME、MF、AM,同(1)得:△MBF≌△EBF,得出MF=EF,同(1)得:△AMB≌△CBE,得出AM=EC,∠BAM=∠BCE=45°,证出∠MAE=∠BAM+∠BAC=90°,得出∠MAF=90°,在Rt △MAF中,由勾股定理即可得出结论.【解答】解:(1)①补全图形,如图1所示:②AE2+FC2=EF2;理由如下:过B作MB⊥BF,使BM=BF,连接AM、EM,如图2所示:∵四边形ABCD是正方形,∴∠ABC=90°,∠1=∠2=45°,AB=BC,∵∠3=45°,∴∠MBE=∠3=45°,在△MBE和△FBE中,,∴△MBE≌△FBE(SAS),∴EM=EF,∵∠4=90°﹣∠ABF,∠5=90°﹣∠ABF,∴∠4=∠5,在△AMB和△CFB中,,。
2022年北京市石景山区初三(第一次)模拟考试数学试题及答案解析

2022年北京市石景山区初三(第一次)模拟考试数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 《2021年通信业统计公报》中显示:截至2021年底,我国累计建成并开通5G基站约1425000个,建成全球最大5G网.将1425000用科学记数法表示应为( )A. 1.425×103B. 142.5×104C. 14.25×105D. 1.425×1062. 如图所示正三棱柱的俯视图是( )A. B. C. D.3. 实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是A. |a|>bB. b>aC. a+b<0D. ab>04. 如图是我国四家新能源车企的标志,其中是.中心对称图形但不.是.轴对称图形的是 ( )A. B.C. D.5. 如图,直线l1,l2,l3交于一点,l2⊥l3,l4//l1.若∠1=50°,则∠2的度数为A. 40°B. 50°C. 130°D. 140°6. 不透明的盒子中有两张卡片,上面分别印有北京2022年冬奥会相关图案(如图所示),除图案外两张卡片无其他差别.从中随机摸出一张卡片,记录其图案,放回并摇匀,再从中随机摸出一张卡片,记录其图案,那么两次记录的图案都是甲的概率是( )A. 12B. 13C. 14D. 167. 在5次英语听说机考模拟练习中,甲、乙两名学生的成绩(单位:分)如表:甲3237403437乙3635373537若要比较两名学生5次模拟练习成绩谁比较稳定,则选用的统计量及成绩比较稳定的学生分别是( )A. 众数,甲B. 众数,乙C. 方差,甲D. 方差,乙8. 如图,一个边长为8cm的正方形,把它的边延长xcm得到一个新的正方形,周长增加了y1cm,面积增加了y2cm2.当x在一定范围内变化时,y1和y2都随x的变化而变化,则y1与x,y2与x满足的函数关系分别是A. 一次函数关系,二次函数关系B. 反比例函数关系,二次函数关系C. 一次函数关系,一次函数关系D. 反比例函数关系,一次函数关系二、填空题(本大题共8小题,共24.0分)9. 若代数式1x−3有意义,则实数x的取值范围是_________.10. 因式分解:a3−ab2=.11. 正六边形一个外角的度数为_________.12. 已知关于x的方程x2−2x+m=0有两个不相等的实数根,写出一个满足条件的实数m 值:m=______.13. 如图,为估算某鱼塘的宽AB的长,在陆地上取点C,D,E,使得A,C,D在同一条直线上,B,C,E在同一条直线上,且CD=12AC,CE=12BC.若测得ED的长为10m,则AB的长为______m.14. 若n 为整数,且n <√21<n +1,则n 的值为______.15. 在平面直角坐标系xOy 中,点A(2,m),B(m,n)在反比例函数y =kx (k ≠0)的图象上,则n 的值为______.16. 某甜品店会员购买本店甜品可享受八折优惠.“五一”期间该店又推出购物满200元减20元的“满减”活动.说明:①“满减”是指购买的甜品标价总额达到或超过200元时减20元.“满减”活动只享受一次;②会员可按先享“满减”优惠再享八折优惠的方式付款,也可按先享八折优惠再享“满减”优惠的方式付款(八折后满200元才可享受“满减”优惠).小红是该店会员.若购买标价总额为220元的甜品,则最少需支付_________元;若购买标价总额为x 元的甜品,按先享八折优惠再享“满减”优惠的方式付款最划算,则x 的取值范围是_________.三、计算题(本大题共2小题,共12.0分)17. 计算:(12)−1−4cos30∘+√12+|−2|.18. 解不等式组:{5x +3>2xx−22<6−3x .四、解答题(本大题共10小题,共80.0分。
2021年北京市石景山区九年级下学期中考一模数学试卷带讲解

【分析】根据条形统计图中了2011年至2020年的常住人口数据,写一条合理的人口变化信息,即可.
【详解】解:由条形统计图的数据信息,可知:从2011年至2019年,常住人口数量一直在增加,从2019年至2020年,常住人口数量开始下降了.
由二次函数 图像可知:当 时, ,故④错误.
∴正确结论的序号是:②③,
故选C.
【点睛】本题主要考查二次函数的图像和性质,掌握二次函数的待定系数法,二次函数的性质以及图像上点的坐标特征,是解题的关键.
二、填空题(本题共16分,每小题2分)
9.若二次根式 有意义,则 的取值范围是________.
【分析】根据二次根式有意义的条件:被开方数≥0,列不等式即可.
【详解】A.圆的周长与其半径是正比例关系,不符合题意,
B.平行四边形面积一定时,其一边长与这边上的高成反比例关系,符合题意,
C.销售单价一定时,销售总价与销售数量成正比例关系,不符合题意,
D.汽车匀速行驶过程中,行驶路程与行驶时间成正比例关系,不符合题意,
故选B.
【点睛】本题主要考查成反比例函数关系的量,关键就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.
14.如图,小石同学在 两点分别测得某建筑物上条幅两端 两点的仰角均为 ,若点 在同一直线上, 两点间距离为3米,则条幅的高 为_________米(结果可以保留根号)
3
【分析】过点C作CE∥AB,交BD于点E,可得四边形ABEC是平行四边形,在直角 中,利用锐角三角函数的定义,即可求解.
【详解】过点C作CE∥AB,交BD于点E,
石景山区2021年初三统一练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市石景山区2022年中考一模数学试卷一、选择题〔此题共16分,每题2分〕1.以下各式计算正确的选项是〔〕A2C3L5r 2 3A. a 2a 5aB. a a a2•实数a , b在数轴上的位置如下列图,以下说法正确的选项是〔# ft1TIF.BCD5 .如图,AD // BC, AC 平分/ BAD,假设/ B = 40 °A. 40°B. 65°C. 70°D.80°2D D4.以下博物院的标识中不是.轴对称图形的是〔〕ab C. a6 a2 a3D. (a2)3 a5MJ ^rl M那么/ C的度数是〔6.如图,在平面直角坐标系 xOy 中,点C , B , E 在y 轴上,Rt △ ABC 经过变化得到 Rt △ EDO ,假设点 B 的坐标为(0,1),OD=2,那么这种变化可以是〔 〕 7•甲、乙两地相距 300千米,一辆货车和一辆轿车分别从甲地开往乙地〔轿车的平均速度大于货车的平均速度〕,如图线段OA 和折线BCD 分别表示两车离甲地的距离 y 〔单位:千米〕与时间 x 〔单位:小时〕 之间的函数关系•那么以下说法正确的选项是〔 〕&罚球是篮球比赛中得分的一个组成局部,罚球命中率的上下对篮球比赛的结果影响很大•以下列图是对 某球员罚球训练时命中情况的统计:下面三个推断:① 当罚球次数是500时,该球员命中次数是 411,所以 罚球命中〞的概率是0.822 ; ② 随着罚球次数的增加, 罚球命中〞的频率总在0.812附近摆动,显示出一定的稳定 性,可以估计该球员 罚球命中〞的概率是0.812 ;③ 由于该球员 罚球命中〞的频率的平均值是 0.809,所以 罚球命中〞的概率是0.809. 其中合理的是〔 〕 A .①B .②C .①③D .②③A . △ ABC 绕点B . △ ABC 绕点 C . △ ABC 绕点D . △ ABC 绕点 C 顺时针旋转 C 逆时针旋转 O 顺时针旋转 O 逆时针旋转 90 °再向下平移 90 °再向下平移 90 °再向左平移 90 °再向右平移5个单位长度 5个单位长度 3个单位长度 1个单位长度A .两车同时到达乙地C .货车出发3小时后,轿车追上货车B .轿车在行驶过程中进行了提速 D .两车在前80千米的速度相等0.822 0.8120 100 200 300 400 500 600 700 800 900 1000 1100 1200 罚球次数二、填空题〔此题共 16分,每题2分〕9 •对于函数y —,假设x 2,那么y _________ 3〔填“ >或 “<〕x10•假设正多边形的一个外角是 45 °那么该正多边形的边数是 _______ •11•如果x y 5,那么代数式〔1 + 丄〕2X 2的值是 _____________________ •x y x y12•我国古代数学名著?孙子算经?中记载了一道题,大意是: 100匹马恰好拉了 100片瓦,3匹小 马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.假设设小马有 x 匹,大马有y 匹,依题 意,可列方程组为 _____________ •14・ 如图,在△ ABC 中,D , E 分别是AB , AC 边上的点, DE // BC •假设AD — , BD 2 , DE 3,那么 BC ______________________ •15 •某学校组织学生到首钢西十冬奥广场开展综合实践活动, 数学小组的同学们在距奥组委办公楼 钢老厂区的筒仓〕20m 的点B m 的测角仪测得筒仓顶点 C 的仰角为63°贝U 筒仓CD 的高约为13 .如图, AB 是O O 的直径, CD 是弦,CDAE ____________ • AB 于点E ,假设O O 的半径是5 , CD 8,那么〔原首E1.9—〕16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图,(1) 利用刻度尺在AOB的两边OA, OB上分别取OM ON ;(2) 利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P ;(3) 画射线OP .那么射线OP为AOB的平分线.请写出小林的画法的依据___________________________________________________ 三、解答题〔此题共68分,第17、18题,每题5分;第19题4分;第20-23题,每题5分;第24、25 题,每题6分;第26、27题,每题7分;第28题8分〕17.计算:2sin45° 5 (-尽.33(x 1) 4x 5,18•解不等式组:x 62x219•问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题•如图,点 形ABCD 的对角线交点,AB 5 ,下面是小红将菱形 ABCD 面积五等分的操作与证明思路,O 是菱 请补充完整〔1〕在AB 边上取点E ,使AE〔2〕在BC 边上取点F ,使BF〔3〕在CD 边上取点G ,使CG〔4〕在DA 边上取点H ,使DH由于AE _____ + ______ _4,连接 0A , OE ; _______ ,连接OF ; _______ ,连接OG ; _______ ,连接OH • _+ _____ + _____ 可证S A AOE S 四边形EOFBS四边形FOGC 1S四边形GOHD=S A HOA.220.关于x 的一元二次方程 mx (3m 2)x 6 0 .〔1〕当m 为何值时,方程有两个不相等的实数根;〔2〕当m 为何整数时,此方程的两个根都为负整21.如图,在四边形 〔1〕求证:AE 〔2〕假设 tan D ABCD 中, ACE ;3,求AB 的长.BCD 90 ° BC CD 2局,CE AD 于点 E .a22 .在平面直角坐标系xOy中,函数y 〔x 0〕的图象与直线h: y x b交于点A(3,a 2).x〔1〕求a,b的值;〔2〕直线l2:y x m与x轴交于点B,与直线h交于点C,假设S △ ABC > 6,求m的取值范围.23.如图,AB是O O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交O O于点C ,连接BC , 过点D作FD丄OC交O O的切线EF于点F .1〔1〕求证:CBE — F ;2〔2〕假设O O的半径是2韶,点D是OC中点,CBE 15° ,求线段EF的长.24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了他们的10次测验, 10次成绩如下〔单位:分〕:整理、分析过程如下,请补充完整.〔1〕按如下分数段整理、描述这两组数据〔示〔3〕假设从甲、乙两人中选择一人参加知识竞赛,你会选〔填甲〞或乙〕,25 .如图,半圆0的直径AB 5cm,点M在AB上且AM 1cm,点P是半圆0上的动点,过点B作BQ PM交PM〔或PM的延长线〕于点Q •设PM x cm, BQ ycm •〔当点P与点A或点B重合时,y的值为0〕小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小石的探究过程,请补充完整:〔1〕通过取点、画图、测量,得到了x与y的几组值,如下表:〔2〔3〕结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60时,PM的长度约为__________________ c m.26. 在平面直角坐标系xOy中,将抛物线G-i:y mx2 2 3〔m 0〕向右平移.3个单位长度后得到抛物线G2,点A是抛物线G2的顶点.〔1〕直接写出点A的坐标;〔2〕过点〔0, 3〕且平行于x轴的直线I与抛物线G2交于B , C两点.①当BAC =90。
时,求抛物线G2的表达式;②假设60° BAC 120。
,直接写出m的取值范围.27. 在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP, DQ .〔1〕依题意补全图1;〔2〕①连接DP,假设点P, Q, D恰好在同一条直线上,求证:DP2 DQ2 2AB2;②假设点P, Q , C恰好在同一条直线上,那么BP与AB的数量关系为:___________S1备用團〔1〕点A 的坐标为〔1,0〕,点B 的坐标为〔3,3〕,那么点A , B 的“确定圆〞的面积为 __________ ;〔2〕点A 的坐标为〔0,0〕,假设直线y x b 上只存在一个点 B ,使得点A , B 的“确定圆〞的面积 为9 ,求点B 的坐标;°〔3〕点A 在以P 〔m,0〕为圆心,以1为半径的圆上,点 B 在直线y —x 3上,假设要使所有 3点A , B 的“确定圆〞的面积都不小于9 ,直接写出m 的取值范围.28. 对于平面上两点 A , B ,给出如下定义:以点 圆〞如图为点A , B 的“确定圆〞的示意图.A 或B 为圆心,AB 长为半径的圆称为点 A , B 的“确定北京市石景山区2022年中考一模数学试卷参考答案及评分标准阅卷须知:1 •为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2 •假设考生的解法与给出的解法不同,正确者可参照评分参考相应给分3•评分参考中所注分数,表示考生正确做到此步应得的累加分数.、填空题〔此题共16分,每题2分〕x y 100,9• < •10.八. 11. 5. 12. x-3y 100.313. 2. 14. 4. .16.〔1〕斜边和一条直角边分别相等的两个直角三角形全等;〔2〕全等三角形的对应角相等.三、解答题〔此题共68分,第17、18题,每题5分;第19题4分;第20-23题,每题5分;第24、25题,每题6分;第26、27题,每题7分;第28题8分〕.解容许写出文字说明,演算步骤或证明过程.17. 解:原式=2 5 13 2 ...... 4分24 2 2. ..................5 分3(x 1) 4x 5, ①18. 解:原不等式组为x 6 —2x——. ②2解不等式①,得x 2 . .................. 2分解不等式②,得x 2 . .................. 4分•••原不等式组的解集为x < 2 . .................. 5分19 .解:3, 2, 1;............................... 2 分EB、BF;FC、CG; GD、DH ;HA. ................... 4 分220.解:〔1〕T b 4ac2(3 m 2)224m(3 m 2)2> 02•••当m 0且m 时,方程有两个不相等实数根. ........ 3分3、 2 小〔2〕解方程,得:X1 ,X2 3 . ............. 4分m•/ m为整数,且方程的两个根均为负整数,•m 1 或m 2 .•m 1或m 2时,此方程的两个根都为负整数. ................... 5分过点B 作BH 丄CE 于H ,如图1. •/ CE 丄 AD , •••/BHC = Z CED = 90° 1 D 90•••/ BCD = 90 °••• 12 90 ,•2 D .又 BC = CD△ BHC 也△CED .••• BH CE .•/ BH 丄 CE , CE 丄 AD ,/ A = 90 ° •四边形ABHE 是矩形, • AE BH . • AE CE .〔法二〕过点 C 作CH 丄AB 交AB 的延长线于 H .图略,证明略.〔2〕解: •••四边形ABHE 是矩形,• AB HE .a22.解:〔1〕T 函数y x 0的图象过点A 3,a 2 ,x解得a 3 .①当S △ ABC = 1 可得—(2 4解得m设DE x,CE3x ,CD10x 2 10 .x 2.DE 2,CE 6 .................................. 4 分 CH DE 2AB HE 62 4 . (5)分5•••直线 • b〔2〕设直线直线y h: 2 .y 与直线 x b 过点 A 3,1 , 2与x 轴交于点D , m 与x 轴交于点B(m, 0), m 2 m 2b 交于点C( , ).2 2那么D(2,0),CE DE•/在 Rt △ CED 中,tanD 2 , m m)2S △ BCD + S △ ABD =6 时,如图 1.23. 〔1〕②当S △ ABC= S △ BCD- S ^ABD=6 时,如图 2.1 2 1 可得一(m 2) -(m 2) 1 6 ,4 2解得m 8, m 2〔舍〕.综上所述,当m > 8或m < 2时,S △ABC > 6 .证明:连接0E交DF于点H ,••• EF是O O的切线,0E是O O的半径,••• OE 丄EF .F•/ FD31FCBE1 90°. 丄OC ,2 902 ,3.1〔2〕212 解:••• CBE 15°,CBE24 .解:〔1〕〔2〕〔3〕••• F 3 2CBE 30°.•••O 0的半径是2; 3 ,点D是OC中点,• OD3.在Rt ODH 中,ODcos 3• OHOH ' (2)2.............................. 3分••• HE 2.3 2EH在Rt FEH 中, tan FEF .............................. 4分••• EF3EH 6 23............................. 5分0, 1, 4, 5, 0, 0................................. 1分分14, 84.5,81甲,理由:两人的平均数相同且甲的方差小于乙两人的平均数相同且甲的极差小于乙〔写出其中一条即可〕或:乙,理由:在90 100勺分数段中,乙的次数大于甲 (4),说明甲成绩稳定;,说明甲成绩变化范围小〔答案不唯一,理由须支撑推断结论〕f y/cm-F -1 --------- r〔2〕〔3〕1.1 或3.7 .26•解:〔1〕A 3,2・.3〔2〕①设抛物线G2的表达式为y m〔x 、.3〕2 2 3 ,如下列图,由题意可得AD 2; 3 .3 .3.•/ BAC=90 °,AB AC , ••• ABD =45 .••• BD AD .3.•••点B的坐标为〔0, .3〕.•••点B在抛物线G2上,可得m —.3•抛物线G?的表达式为y即y — x2 2x , 3.3②.3 m 3.927.〔1〕补全图形如图1.〔2〕①证明:A B图1....... 6 分分连接BD,如图2,•••线段AP绕点A顺时针旋转90。