牵引供电系统
牵引供电系统
牵引供电系统第一章牵引变电一次设备一、概述1、什么叫牵引供电系统?牵引供电系统由哪几部分组成?铁路从地方引入110kv电源,通过牵引变电所降压至27.5kv送至电力机车的整个系统叫牵引供电系统。
牵引供电系统由以下几部分组成:地方变电站、110kv输电线、牵引变电所、27.5kv馈电线、接触网、电力机车、轨回流线、地回流线。
2、牵引供电系统的供电方式有哪几种?有以下三种: 直供方式---以钢轨与大地为回流;BT方式---电流通过吸流变压器与回流线再返回变电所,限制对通信线路的干扰;AT方式---利用自耦变压器对接触网供电,以减少对通信线路的干扰。
3、什么叫牵引网?通常将接触网、钢轨回路(包括大地)、馈电线和回流线组成的供电网称为牵引网。
4、牵引变电所的作用是什么?牵引变电所从地方引入110kv高压,通过牵引变压器降至适合电力机车运行的27.5kv 电压,送至接触网,供给电力机车运行。
其作用是接受、分配、输送电能。
5、牵引变电一次设备包括什么?牵引变电一次设备由以下几部分组成:牵引变压器、断路器、隔离开关、电压互感器、电流互感器、母线、避雷器、电抗器、电容器、接地装置等。
6、牵引变电所有哪几个电压等级?交流:110kv, 27.5kv, 10kv ,380v ,220v ,110v直流:220v(110v)7、牵引变电所对接触网的供电方式有哪几种?牵引变电所对接触网的供电有两种方式:单边供电和双边供电。
接触网通常在相邻两牵引变电所的中央断开,将两牵引变电所间两个供电臂的接触网分为两个供电分区。
每以供电分区的接触网只能从一端的牵引变电所获得电能,称为单边供电。
如果在中央断开处设开关设备时可将两供电分区连通,此处称为分区亭。
将分区亭的断路器闭合,则相邻牵引变电所间的两个接触网供电分区可同时从两变电所获得电能,此方式称为双边供电。
8、牵引变电所一次接线方式有哪几种?牵引变电所一次接线主要有桥式接线和双T型接线两种。
牵引供电系统及接触网介绍
限位定位装置(定位管、定位底座、铝合金槽型或矩形定位器 及定位线夹等)
特殊定位器、软定位器等
牵引供电系统及接触网介绍
支柱(按材质分类)
预应力钢筋混凝土支柱(横腹杆式、环形等径式)
钢柱(圆钢、H型钢、角钢格构式)
谢谢大家!
单相变压器
馈电线 27.5KV
牵引供电系统及接触网介绍
27.5kV母线 隔离开关
隔离开关 控制手柄
27.5kV真 空断路器
牵引供电系统及接触网介绍
27.5kV馈电线 与接触网相接
牵引供电系统及接触网介绍
馈线与接 触网相连
牵引供电系统及接触网介绍
露天设置的
特殊输电线. 单一、没有 备用. 电力机车的 受电弓与其 滑动接触. 负载是移动 和变化的.
牵引供电系统及接触网介绍
跨距
接触网支柱沿铁路线路分布时,线路同侧支柱中心至 另一支柱中心的距离。
支柱侧面限界
支柱内侧缘距铁路线路中心的距离。新建电 气化铁路考虑大型养路机械作业,一般不小于3.1米。 电分段 在同一相供电的不同场区、股道间,为方便、灵活 地供电而设置的绝缘设备。 电分相 在变电所出口和不同变电所供电的连接处(供电臂 末端),为隔离不同相或不同变电所电源供电而设置的绝缘 设备。
一般采用铜、铜合金(银铜、镁铜、锡铜)和钢 铝(已淘汰)三种材质。正线选用截面积120(150)平方毫 米,站线选用截面积85平方毫米。 承力所 一般采用铜、铜合金(银铜、镁铜)和钢铝三种 材质制作的19股绞线,正线选用截面积95或120平方毫米 (铜、铜合金),185平方毫米(钢铝)。站线选用截面积 70平方毫米。 接触线高度 接触线距钢轨顶面的高度。《技规》规定:接 触线距钢轨顶面的高度不超过6500mm;在区间和中间站,不 小于5700mm(旧线改造不小于5330mm);在编组站、区段站和 个别较大的中间站战场,不小6200mm;站场和区间宜取一致; 双层集装箱运输的线路,不小于6330mm(兰州枢纽6450mm, 隧道内不小于6350mm)。
牵引供电系统SCADA系统
根据分析结果,追踪和定位问题所在,为后 续的修复和优化提供依据。
测试结果评估与讨论
测试结果评估
根据设计要求和测试标准,对测试结果 进行评估,判断系统是否满足预期目标
。
改进措施提出
针对发现的问题,提出相应的改进措 施和建议,优化系统的设计和实现。
问题总结与分类
对发现的问题进行总结和分类,分析 问题的性质、严重程度和影响范围。
监控与控制
通过监控软件对现场设备进行实时监控,并 根据需要远程控制设备的运行。
04
牵引供电系统SCADA 系统设计
设计目标与原则
实时性
可靠性
确保系统能够实时监测牵引供电系统的状 态,及时响应和处理各种事件。
保证系统在各种恶劣环境下都能稳定运行 ,减少故障发生的概率。
可扩展性
安全性
考虑到未来发展的需要,系统应具有良好 的可扩展性,方便后续升级和改造。
数据处理
对采集的数据进行处理,如滤波、计算、转换等 。
数据传输
将处理后的数据通过通信网络传输到服务器或人 机界面。
控制策略实现
故障定位与隔离
通过实时监测和分析数据,定位故障点并自动或手动隔离故障区 域。
越区供电
在故障情况下,实现越区供电以保证列车的正常运行。
负荷分配与优化
根据实时数据和历史数据,对牵引供电系统的负荷进行分配和优 化,提高系统的运行效率和稳定性。
06
牵引供电系统SCADA 系统测试与验证
测试方案制定
测试目的明确
确保牵引供电系统SCADA系统的功能、性 能和安全性满足设计要求。
测试范围确定
涵盖系统的各个模块和组件,包括硬件、软 件和网络通信等。
牵引供电系统名词解释
牵引供电系统名词解释
牵引供电系统是指为城市轨道交通、铁路、有轨电车等交通运输工具提供动力能源的电气系统。
它的主要功能是向行驶中的车辆提供电力,使其具有牵引和制动能力,同时也为车辆提供辅助电源。
在牵引供电系统中,电源为交流或直流电源,通过接触网、第三轨等设备向车辆传输电能。
牵引供电系统通常包括以下主要组成部分:
1.接触网:接触网是铁路牵引供电系统的主要组成部分,它用于提供电力给行驶中的列车。
接触网一般由钢轨、导线和支架组成,通过支架固定在正常的高度和位置。
2.集电装置:集电装置是车辆与接触网之间传递电能的设备,它通过对接触网的接触,将电能传输到车辆上。
3.变电所:变电所是牵引供电系统的电源设备,它将电网输送的高压电流转换为适合运输工具使用的低压电流,并将其输送到接触网上。
4.牵引变流器:牵引变流器是一种用于控制电力输出的电气设备,它将接收到的电能转换为适合电动车辆使用的电流和电压。
5.辅助电源:辅助电源是为车辆提供照明、空调、信号等设备供电的电源,也可以为车辆的启动和停车提供电能。
在牵引供电系统中,各个组成部分之间的协调和运行非常重要,它们共同保证了交通运输工具的牵引和制动能力,保障了交通运输的安全和稳定。
牵引供电系统简介
、牵引供电系统简介:将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。
牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。
牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。
牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。
牵引供电回路是由牵引变电所——馈电线——接触网——电力机车——钢轨——回流联接——(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。
通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。
牵引供电设备的检修运行由供电段负责,牵引供电系统的运行调度则由供电调度负责。
供电调度通常设在铁路局调度所。
牵引供电系统供电示意图如下所示:二、牵引变电所、分区所、开闭所牵引变电所:牵引变电所的任务是将电力系统三相电压降低,同时以单相方式馈出。
降低电压是由牵引变压器来实现的,将三相变为单相是通过变电所的电气接线来达到的。
牵引变压器(主变)是一种特殊电压等级的电力变压器,应满足牵引负荷变化剧烈、外部短路频繁的要求,是牵引变电所的“心脏”。
我国牵引变压器采用三相、三相——二相和单相三种类型,因而牵引变电所也分为三相、三相——二相和单相三类。
随着技术水平的提高,我国干线电气化铁路已推广使用集中监视及控制的远动系统,牵引变电所将逐步实现无人值班,直接由供电调度实行遥控运行。
分区所:分区所设置在两个变电所中间,作用有三:提高供电质量、供电分段、越区供电。
• 开闭所:一般设置在大型站场附近,进线由变电所或接触网引入,由开关馈出多个供电线路向多个供电设备供电。
作用是增强供电的灵活性,便于供电设备的运行及检修,便于行车组织,缩小供电事故及故障范围。
牵引供电系统介绍
一、牵引供电系统组成:
满足牵引供电系统基本要求所采取措施:
(1)牵引变电所进线采用两路电源供电(两路电源引自不 同的电力变电所或同一变电所的两个不同母线),进线 系统采用带跨条的供电方式,主变采用一主一备, 27.5KV(55KV)采用母线分段,馈线采用主备供电 方式(50%或100%备用)等。
(2)采用补偿装置(固定或动态补偿),采用AT供电方 式等。高铁对供电电压的要求:接触网的标称电压为 25KV、长期最高电压为27.5KV、瞬时(5分钟)最高 电压为29KV,设计最低电压为20KV。普速对供电电压 的要求:最高工作电压为27.5KV、瞬时最大值为 29KV, 最低工作电压为20KV、非正常情况下,不得低 于19KV。
二、牵引供电回流方式
以上供电方式的回流线均不直接接钢轨,全部通过扼流 变压器接钢轨。回流线N与保护线PW的区别。
1.直接供电方式回流:所内接地。
二、牵引供电回流方式
AT供电方式(55KV):通过放电器接地。
二、牵引供电回流方式
AT供电方式(2X27.5KV),可转换为直供电方式 (TRNF):所内、接触网端均接地。
二、牵引变电设备-断路器
主要介绍断路器结构形式:单相、二相、三相、 单相:一台操作机构控制一台高压单极 二相:分机械联动(55KV及220KV等级需求较少)和电
气联动。机构联动:一台操作机构通过传动连杆带动二 极同时动作。电气联动:每个单极配备一台操作机构, 通过一套电气控制回路带动二极同时动作。电气联动断 路器:二极间同步问题、分合闸时间问题、与保护装置 间的接口问题 三相:同二相
满足牵引供电系统基本要求所采取措施:
(3)采用补偿装置(固定式或动态补偿方式),提高 机车功率因数(如动车、各谐机车)。 (4)采用Scott、平衡变压器等。 (5)采用直供加回流、AT供电方式等(目前通信方式 基本采用光纤通信,对通信信号的干扰相对减少)
铁路牵引供电系统基础知识
总结
31
谢谢大家!
6
牵引网
牵引网是由馈电线 (供电线)、接触网 、钢轨、大地和回流 线组成的供电系统, 完成对电力机车的送 电任务。
馈电线:连接牵引变电所和接触网的导线和电缆。它把牵引变电所 主变压器二次侧27.5KV的电压输送到接触网。
接触网:一种特殊的输电线,架设在铁路上方,机车受电弓与其磨 擦受电。
钢轨、大地和回流线:牵引变电所处的横向回流线,它将轨或与轨 平行的其它导线与牵引变压器指定端子相联。又能大大降低牵引负 荷电流对通信的干扰。
和保护线间的辅助联接PW 保护线 R 钢轨 ATP 自耦变压器所SP分 区所 AT处采用横向连接线CPW实现轨道、保护线和AT中性点的连接,通过 放电器(SD)将AT的中性点与大地相连。与不并联的AT供电方式比 ,全并联AT供电更具有线路载流能力大、供电区段长、适应高速等 优点。
29
越区供电
30
12
接触网分相绝缘器
分相绝缘器(电分相):串在接触网上,目的是把两相不同的供电区分开,并使机车光 滑过渡,主要用在牵引变电所出口处和分区处。
13
分区所(SP),开闭所(SSP)
SP: 为了增加供电的灵活性,提高运行的可靠性,在两个牵引变电所的供电区间常加设分 区所
SSP:实际上是起配电作用的开关站。开闭所就是高压开关站,从严格意义上讲是“高压配 电”站,仅仅起配电作用,实现环网供电、双路互投等功能。
带回流线的直接供电方式,是在接触网同高度的外侧增设了一条回流线,减轻了接触网对 邻近通信线路的干扰。这种供电方式的特点是:结构简单,投资和维护量小;供电可靠性 高;牵引网阻抗比直供和BT方式都小,能耗较低,供电距离增长;防干扰效果强于直供不 如BT供电方式。
牵引供电系统简介PPT课件
连接牵引变电所和接触网的导线
• 接触网
沿线路露天敷设,通过和受电弓的滑动接触把电能输送给电力机 车的供电设施。由接触线、承力索以及支持、悬挂和定位等装置组成。 从牵引网角度关注的是接触线、承力索和加强线等载流导线。
• 牵引变电所
拓扑结构三相不对称; 变压器接线特殊。
.
牵引供电系统主要技术问通信干扰
• 变电所两侧的牵引网区段被称作供电臂。 • 变电所的主要设备
牵引变压器(有多种接线方式) 断路器(SF6、真空、少油、油断路器),隔离开关 避雷器、避雷针 电压互感器、电流互感器 二次设备(控制、保护、测量、计量、监视和电源设备) 无功补偿装置、调压装置
.
牵引网(Traction Network)
(1)直接供电方式(T-R方式, Trolley-Rail)
T R
结构简单,投资少,维护费用低; 一部分电流从大地回流,对邻近通信线干扰大。
.
(2)吸流变压器供电方式(BT方式)
吸流变压器 Booster Transformer
F T
Us
I
R
• 防干扰效果好; • 牵引网阻抗偏大; • 电力机车过BT时,易产生电弧; • 由于是串联系统,可靠性较低。
.
(5)同轴电缆供电方式(CC方式)
同轴电缆 Coaxial Cable
T Us
R CC
• 防干扰效果好,占用空间小; • 牵引网阻抗小; • 投资大
.
1.5 牵引供电系统的特点及主要问题
• 负荷特点
移动性,变化剧烈,非线性,单相; 电流回路不可靠,存在薄弱环节(弓网受流)
铁路供电系统—牵引供电系统的供电方式
任务1 铁路供配电系统概述
带回流线的直接供电方式
相对直接供电方式,钢轨电位和 对通信线路的干扰有所改善。
优点:钢轨电位降低;牵引网阻 抗降低,供电距离增长;对弱电系统 的电磁干扰减小。
缺点:相对BT方式,结构简单, 投资少,维护费用低;牵引网阻抗减 小,供电距离增长。
项目三 铁路供电系统
任务1 铁路供配电系统概述
项目三 铁路供电系统
任务1 铁路供配电系统概述
一 铁路供配电系统的组成 二 牵引供电系统的供电方式
任务1 铁路供配电系统概述
供电方式的种类
铁路牵引供电系统主要的供电方式有3种:直接供电方式、带回流 线的直接供电方式和AT(自耦变压器)供电方式。
任务1 铁路供配电系统概述
直接供电方式
牵引电流通过电力机车后直接从钢轨或大地返回牵引变电所; 优点:结构简单,投资最少,维护费用低;在负荷电流较大的情 况下,钢轨电位高; 缺点:对弱电系统的电磁干扰较大,不适用平原地区及城市附近。
一 铁路供配电系统的组成 二 牵引供电系统的供电方式
任务1 铁路供配电系统概述
AT(自耦变压器)供电方式
自耦变压器供电方式又称AT供电方式,它是在馈电线中设置自耦 变压器,将其并联于接触网、钢轨和正馈线之中。
任务1 铁路供配电系统概述
AT(自耦变压器)供电方式
它是用自耦变压器代替了吸流变压器,正馈线代替了回流线。接 触网与钢轨、正馈线与钢轨间的自耦变压器两半线圈上电压相等。
任务1 铁路供配电系统概述
AT(自耦变压器)供电方式
自耦变压器并联于接触网上,不需增设电分段,能适应高速、大 功率机车的运行。但AT供电方式接触网结构复杂,供变电设施较多, 运营维护难度较大。
牵引供电系统外部电源与供电方式
高速铁路牵引供电系统的实际应用中,需要关注供电能力、电能质量和环 境保护等方面的问题。
磁悬浮列车牵引供电系统
磁悬浮列车牵引供电系统通常采用直流供电方式,通过磁悬浮变电所将来自电网的高压交流电转换为 直流电,为磁悬浮列车提供动力。
牵引供电系统外部电 源与供电方式
目录
• 牵引供电系统概述 • 牵引供电系统外部电源 • 牵引供电系统供电方式 • 牵引供电系统外部电源与供电方式的
优化 • 牵引供电系统外部电源与供电方式的
实际应用案例
01
牵引供电系统概述
牵引供电系统的定义与功能
定义
牵引供电系统是为电气化铁路或 城市轨道交通提供电能的系统, 通过接触网向电力机车或电动汽 车提供所需直流或交流电能。
容量
牵引供电系统外部电源的容量应根据 牵引负荷的大小和运行方式进行选择 ,以确保供电的可靠性和稳定性。
稳定性
外部电源的稳定性对牵引供电系统的 正常运行至关重要,应采取措施确保 电源的电压、频率和波形等参数的稳 定。
03
牵引供电系统供电方式
直接供电方式
01
直接供电方式是一种简单的牵引 供电方式,通过牵引网直接向电 力机车供电。
02
该方式结构简单,投资少,但会 对沿线通信线路产生干扰。
串联电容补偿供电方式
串联电容补偿供电方式是在牵引网中 串联电容,补偿感性负载的无功功率, 提高功率因数。
该方式可以减少对通信线路的干扰, 但需要增加补偿装置和滤波装置。
吸流变压器供电方式
吸流变压器供电方式是通过吸流变压 器将牵引电流从接触网引至回流线, 减少对通信线路的干扰。
轨道交通供电系统—轨道交通SCADA系统
城市轨道交通接触网
3.SCADA系统的优点 对供电系统的监控有以下优点:
(1)集中监控可提高系统运行的安全可靠和经济性。正常时,实现合理的系统运行方式;事故 时,可及时直接显示和记录事故发生时间和内容,有利于加快事故处理。 (2)集中控制使调度人员直接控制运行方式的改变,运行操作效率及其可靠性高,值班人员在 变电所内仅需对电气设备进行监护,劳动条件得到改善。 (3)有利于变电所实现无人值班化,可节省变电所基建和运行费用。
城市轨道交通接触网
1.电力监控系统的任务
城市轨道交通运行的管理和调度是由控制中心来实现的,其中的电力调度是供电系统运行 的管理和调度部门;而城市轨道交通供电系统的各类变电所及其他主要设备是沿线路分散 设置的。
要保证系统运行的安全、可靠及经济性,就必须由电力调度人员对系统进行集中管理和调 度,实现系统运行状态的监视和运行方式的控制。早期的集中调度是通过调度电话来实施 的,通过值班人员对系统运行方式进行监视和控制,属于一种效率低、可靠性差的间接监 控方式。
城市轨道交通接触网
(2)遥信(YX):是指将被控站设备的状态,如断路器的位置信号、报警信号等,传 输给调度端。遥信的内容包括:
①遥信对象的位置信号; ②高中压断路器、直流快速断路器的各种故障跳闸信号; ③变压器、整流器的故障信号; ④交直流电源系统故障信号; ⑤降压变电所低压进线断路器、母联断路器的故障跳闸信号; ⑥钢轨电位限制装置的动作信号; ⑦预告信号; ⑧断路器手车位置信号; ⑨无人值班变电所的大门开启信号。
1.调度端 调度端设在电力调度所内完成远动对象的监控、数据统计及管理功能等,髙速铁路中 主机均为网络化设备。
城市轨道交通接触网
牵引供电系统简介
牵引供电系统简介一、系统功能牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路:AC110 kV或AC220kV,城市轨道交通:中心变电所AC220kV或AC110kV→AC35 kV环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV或AC2×25kV,城市轨道交通:DC750V、DC1500V或DC3000V),向电力机车提供连续电能。
电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。
交流电气化铁路与城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。
图1.1 交流电气化铁路牵引供电系统图1.2 城市轨道交通牵引供电系统二、牵引网供电方式1.交流电气化铁路交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT供电方式和AT供电方式。
(1)直接供电方式直接供电方式又可分为不带回流线直接供电方式(图 2.1)和带回流线的直接供电方式(图2.2)两种。
图2.1 不带回流线的直接供电方式图2.2 带回流线的直接供电方式不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。
在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。
带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。
由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。
在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km)。
牵引供电系统
适用:工矿企业、城市地上交通和地铁供电, 由于相对距离较近,对供电电压的安全性却要求 较高,所以采用电压较低的直流制供电更有优越 性。矿山运输的直流电电压为1500V,城市电车 为650~800V,地铁为720~820V。 2)低频单相交流制 即牵引网供电电流为低频单相交流的电力牵引 2 16 Hz,牵引电压为15KV或 电流制。电流频率为 3 11KV。 优点:导线截面减小,送电距离也可相应地提 高到50~70Km;电力机车上采用交流整流子式牵 引电动机,容易变压。且低频整流相对容易, 电抗也小。
4)标幺值 ●发电机 ●变压器
X d
''
S 100 S X T % Sd X T 100 SN Xd%
d N
''
取100MVA
●输电线(接触网) 2.短路容量
X X
S U
按表1.4 取
d 2 d
牵引供电计算和设计所需要的短路容量,主要 指电力系统在牵引变电所进线点(通常称为负载 点)短路时的短路容量。
Байду номын сангаас
3.牵引变电所一次侧的供电方式
1)一边供电:牵引变电所的电能由电力系统中 一个方向的发电厂送来。
国家规定,电气化铁道为一级负荷,牵引变电 所必须由两路输电线供电,而且每路输电线要有 各自的杆塔和走线。
2)两边供电:牵引变电所的电能由电力系统中 两个方向的发电厂送来。
3)环形供电:是指若干个发电厂、地区变电站 通过高压输电线路连接成环形的电力系统,牵引 变电所处于环形电力系统的一个环路之中。 牵引变电所一次侧供电方式,决定于电气化铁 路所经过的地区电力系统的具体情况。两边供电 或环形供电比一边供电的可靠性更高,且有更好 的供电质量(频率稳定、电压波动幅度较小)。 因此,牵引变电所一次侧供电方式,应尽可能采 用两边供电和环形供电。
高铁变电所牵引供电系统认知—牵引供电系统的构成
学 校:
牵引供电系统的构成
牵引供 电系统 示意图
电力牵引是以电能为动力能源,其牵引动力是电力机车。电力机车是一种非自给性机车,必需在电气 化铁道沿线设置一套完善的、不间断的向电力机车供电的设备。由这种设备构成的供电系统叫做牵引供电 系统。牵引供电系统由牵引变电所和牵引网构成,作用是接受电力系统的三相高压电能,经降压、分相后 通过牵引网向电力机车供电。牵引供电系统的构成可用牵引供电系统示意图说明。
Hale Waihona Puke 牵引供电系统的构成电气化铁路牵引供电系统
心脏
牵引变电所
电分相
回流线
列车
牵引变电所 动 脉
接触网 电分相
钢轨
牵引供电系统的构成
1.牵引变电所
牵引变电所沿电气化铁道沿线分布,每一个牵引变电 所负责两侧接触网的供电。
牵引变电所的左、右两侧接触网称为供电臂或供电分 区,一个供电臂的长度对应于线路的区间数约为1~5个。 牵引变电所的作用是降压和分相,它将电力系统的三相高 压电转换成两个单相电,通过馈电线分别供给两侧的接触 网。
牵引网
牵引网由馈电线、接触网、钢轨与地、回流线等组成。
牵引供电系统的构成
3.牵引供电系统的其它供电设备
牵引供电系统其他设施和设备有(1)分区亭(2)开闭所(3)A T所 (1)分区亭可以使单线区段相邻牵引变电所的相邻两接触网实行 单边供电或双边供电,也可使复线区段牵引变电所的上、下行接触 网实行分开供电或并联供电 (2)开闭所内不进行电压变换,只扩大馈线回路数,并通过开关 设备实现电路的开闭,相当于配电所。 (3)牵引供电系统采用AT供电方式时,除牵引变电所、分区亭 和开闭所外,在牵引网上还需有放置自耦变压器(AT)的场所, 即AT所。
模块2.牵引供电系统《高速铁路牵引供电》教学课件
2.1.4 高速铁路牵引供电系统
3. 高速铁路变电所、分区所主接线及接触网标称电压
1 牵引变电所电源侧主接线 电源侧主接线应结合外部电源条件确定,两路电压均可靠时,采用线路变压器组接线。 采用分支接线,在两回线间设置由隔离开关分段的跨条,实现电源进线与变压器交叉供电。 2 牵引变电所馈线侧接线 采用户外单体布置时,实现上、下行断路器互为备用的联络开关设置在所内线路侧;采 用GIS柜布置时,联络开关设置在所外上网开关的线路侧。
额定电压(kV) 输送功率(MV·A ) 输送距离(km)
110
10~50
50~150
220
100~150
100~300ຫໍສະໝຸດ 5001 000~1 500
150~850
世界各国采用工频、单相、交流接触网额定电压为25 kV的高速电气化铁路,毫无例外地 均采用高压供电。
日本山阳等新干线,牵引变电所的进线电压采用27.5 kV。电源的变动和不平衡承受能力 都有所提高,更能保证机车稳定、高速运行,也更加经济。法国大部分牵引变电所的进线电 压为225 kV,只有一个变电所为63 kV。德国牵引网电压采用15 kV,牵引变电所进线电压采 用110 kV。另外,它使用 Hz频率给铁路专门供电,有其特殊性。
带回流线的直接供电方式,机车部分电流通过钢轨和大地流回牵引变电所(约70%), 其余通过回流线流回牵引变电所(约30%)。
2.2.3 BT供电方式
BT(Booster Transformer)供电方式又称吸流变压器供电方式,其主要目的是提高牵引 网防干扰能力,目前已经基本不采用,如图所示。
BT供电方式存在着一种现象:当机车处在BT间隔内时会失去吸流防护效果。同等条件下, BT供电方式变电所的间距要小很多,且每隔3~4 km在接触网内存在断口,机车通过断口时 可能会产生电火花,缩短接触网的使用寿命。
牵引供电系统
牵引供电系统说起电气化铁路,大家可能首先想到的就是线路两旁一根根的线杆和列车头顶密如蛛网的电线吧。
没错电气化铁路与普通铁路最明显的不同在于,它除了地上一条线(轨道)、还有天上一张网(接触网),是一种立体化的线路。
电力机车所需的电能来自发电厂由输电线路、变电装置、牵引用电网络、回流电路等组成的供用电系统供应。
世界各国采用的供电制式各不相同,我国的电气化铁路选择了25千伏单相工频(50赫兹)交流供电制式。
这种供电制式与工业生产所使用电流频率简称工频相同能使牵引动力获得最佳效果。
从天上到下,一套复杂完整的大系统为电气化列车的运行提供了保证。
1电气化铁路的心脏——牵引变电所牵引变电所是牵引供电系统的心脏,它的主要任务是将国家电力系统送来的三相高压电变换成适合电力机车使用的单相交流电。
牵引变电所从国家电网引入220千伏或110千伏三相交流电将三相电转换为适合电气列车使用的单相交流27.5千伏电源并送上接触网。
除此而外,它还起着供电保护、测量、控制电气设备提高供电质量,降低电力牵引负荷对公共电网影响的作用。
为确保牵引供电万无一失,牵引供电系统都采用“双备份”模式,两套设备通过切换装置可以互为备用并随时处于“战备”状态,以备不时之需。
通常将变电所设备分为一次设备和二次设备,一次设备是指接触高电压的电气设备,如牵引变压器、高压断路器、高压隔离开关、高压(电压和电流)互感器、输电线路、母线、避雷器等,它们主要完成电能变换、输送、分配等功能。
二次设备则主要是控制、监视、保护设备。
随着科技的发展,二次设备更加的集成化和智能化,形成了牵引变电所自动化系统为牵引变电所的远动控制提供了可能。
2电气化铁路的动脉——接触网当我们乘坐在电气化铁路的旅客列车上出行时,会看到路基两旁有一根根电杆竖立着顶端安装有单臂结构装置伸向线路侧上方且悬挂有电线,并将其固定在距轨道面一定高度的地方,在股道多的车站或编组站,悬挂结构及各种线网多如蛛网。
牵引供电SCADA系统概述
够迅速恢复。
高可用性与容错性
冗余设计
采用硬件和软件的冗余设计,确保系统在部分组件发生故障时仍 能正常运行。
负载均衡
合理分配系统负载,避免单个组件过载,提高系统的整体稳定性。
故障检测与自动恢复
实时监测系统状态,发现故障时自动切换到备用组件,确保系统持 续提供服务。
实时性与性能优化
01
实时数据处理
优化数据处理算法,提高系统对 实时数据的处理速度,确保数据 的及时性和准确性。
牵引供电SCADA系统 概述
目 录
• 牵引供电SCADA系统简介 • 牵引供电SCADA系统关键技术 • 牵引供电SCADA系统应用场景与案例 • 牵引供电SCADA系统面临的挑战与解决方案 • 牵引供电SCADA系统发展趋势与展望
01
牵引供电SCADA系统简 介
定义与功能
定义
牵引供电SCADA系统(Supervisory Control And Data Acquisition)是 一种用于监控和控制牵引供电系统的 自动化系统。
02
牵引供电SCADA系统关 键技术
数据采集与传输技术
数据采集
通过传感器、变送器等设备,实时采集牵引供电设备的运行状态、电气参数和 环境信息。
数据传输
利用有线或无线通信技术,将采集的数据传输至系统主站,实现数据的实时共 享。
数据处理与分析技术
数据处理
对采集数据进行清洗、转换和存储,确保数据质量和可用性。
系统应用与发展
应用
牵引供电SCADA系统广泛应用于铁路、地铁、轻轨等轨道交 通领域,实现对牵引供电系统的全面监控和管理,提高运营 效率和管理水平。
发展
随着信息技术和自动化技术的发展,牵引供电SCADA系统将 不断升级和完善,实现更加智能化、高效化的监控和管理, 为轨道交通的安全、可靠、高效运行提供更加有力的保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牵引供电系统说起电气化铁路,大家可能首先想到的就是线路两旁一根根的线杆和列车头顶密如蛛网的电线吧。
没错电气化铁路与普通铁路最明显的不同在于,它除了地上一条线(轨道)、还有天上一张网(接触网),是一种立体化的线路。
电力机车所需的电能来自发电厂由输电线路、变电装置、牵引用电网络、回流电路等组成的供用电系统供应。
世界各国采用的供电制式各不相同,我国的电气化铁路选择了25千伏单相工频(50赫兹)交流供电制式。
这种供电制式与工业生产所使用电流频率简称工频相同能使牵引动力获得最佳效果。
从天上到下,一套复杂完整的大系统为电气化列车的运行提供了保证。
1电气化铁路的心脏——牵引变电所牵引变电所是牵引供电系统的心脏,它的主要任务是将国家电力系统送来的三相高压电变换成适合电力机车使用的单相交流电。
牵引变电所从国家电网引入220千伏或110千伏三相交流电将三相电转换为适合电气列车使用的单相交流27.5千伏电源并送上接触网。
除此而外,它还起着供电保护、测量、控制电气设备提高供电质量,降低电力牵引负荷对公共电网影响的作用。
为确保牵引供电万无一失,牵引供电系统都采用“双备份”模式,两套设备通过切换装置可以互为备用并随时处于“战备”状态,以备不时之需。
通常将变电所设备分为一次设备和二次设备,一次设备是指接触高电压的电气设备,如牵引变压器、高压断路器、高压隔离开关、高压(电压和电流)互感器、输电线路、母线、避雷器等,它们主要完成电能变换、输送、分配等功能。
二次设备则主要是控制、监视、保护设备。
随着科技的发展,二次设备更加的集成化和智能化,形成了牵引变电所自动化系统为牵引变电所的远动控制提供了可能。
2电气化铁路的动脉——接触网当我们乘坐在电气化铁路的旅客列车上出行时,会看到路基两旁有一根根电杆竖立着顶端安装有单臂结构装置伸向线路侧上方且悬挂有电线,并将其固定在距轨道面一定高度的地方,在股道多的车站或编组站,悬挂结构及各种线网多如蛛网。
这就是电气化铁路牵引供电系统的主要供电设备——接触网。
接触网是在露天设置,不但受到各种气象条件的影响,而且还受到电力机车行走时带来的动作用力,加上接触网又无法设置备用的条件,所以接触网的工作环境条件非常恶劣。
为了保证电气化铁路可靠安全运营,接触网的结构必须经久耐用,这就决定了对接触网要有特殊的结构。
接触网的功能,不但要把电能输送给边行走边受流的电力机车使用,还要保证电力机车在走行时其受电弓与接触线在滑动摩擦接触过程中有良好的受流条件,特别是在环境条件变化的时候,线路基础引起的震动,轨道的不平顺,车体上下弹性跳动,受电弓弓臂和接触滑板在受压状态下机车快速运行时产生的垂直加速度,以及接触网导线不平整等因素的存在,都不应出现受电弓与接触线分离现象(通常称离线),否则将会导致受流恶化,严重时会产生电弧烧伤接触线和受电弓的滑板,后果不堪设想。
安全可靠的供电对接触网的结构提出了特殊的要求。
通过不断优化,现在的接触网主要有以下几个部分构成:(1)接触悬挂部分。
包括承力索、接触线、吊弦、中心锚结、锚段关节、补偿装置等。
其中接触线是与电力机车受电弓直接接触处于滑动摩擦受流的导线。
(2)支持装置。
用以悬吊和支撑接触悬挂并将其各种受力载荷传递给支柱或桥隧等大型建筑物,还应通过定位构件将承力索和接触线固定在一定范围内,使受电弓在滑行时与接触线有良好的接触。
根据接触网所在位置及工作环境的不同,支持装置的结构又可分为腕臂支持装置、软横跨、硬横跨、桥梁支持装置及隧道支持装置等。
(3)支柱与基础。
用以安装支持装置、悬吊接触悬挂并承受其载荷。
另有因供电系统需要的供电线、加强线,以及因供电方式不同而设置的回流线、正馈线、保护线等附加导线均安装在支柱的不同高度位置上,以及为了供电安全与维护检修作业的需要而设置的保护设备、电气设备等也安装在支柱上。
随着电气化铁路特别是高速电气化铁路的发展,对接触网结构和供电质虽提出了更加严格的要求。
接触网的悬挂方式也衍生出简单接触悬挂、简单链形悬挂弹性链形悬挂、复链形悬挂等多种方式。
由于篇幅限制,我们在此就不一一详细介绍了。
3电气化铁路供电方式的变迁电气化铁路中单相文流电的电流回路主要是由钢轨担任的。
但钢轨与大地之间不可能做到理想的绝缘,不仅可能带来危险,还会严重影响沿途通信。
为防止电气化铁路的电磁干扰以及减轻回流的泄漏给地下金属管道带来的高电位差,人们采取了各种办法,供电方式的结构形式也在逐渐演变。
(1)直接供电方式供电方式。
(TR供电方式)所谓直接供电,就是牵引网不采取任何措施,回流电通过钢轨返回牵引变电所。
由于钢轨和大地之间没有良好的绝缘牵引回流从钢轨泄漏到地中的回流分量较大,对铁路沿线平行接近的架空通信线和广播线路产生较大的电磁干扰。
但这种方式结构最简单,投资最省。
我国早期修建的电气化铁路大都是采用这种供电方式。
(2)带回流线的直接供电方式(TN-RF供电方式)为了改善钢轨中的回路电流流入大地所造成的危险影响和干扰影响,于是在接触网的支柱上再架设一条与钢轨并联的回流线,利用回流线与钢轨间的并联连接线使钢轨中的回路电流尽可能地由回流线流回到牵引变电所中,从而减少大地回流,减小对沿线通信的干扰。
这种改进型的直接供电方式的供电性能和供电质量得到了改善,在我国电气化铁路上得到了广泛的采用。
(3)吸流变压器供电方式(BT供电方式)BT是英文的Booster Transformer的缩写,即“吸流变压器”。
吸流变压器并非名符其实的变压器,它既不升压也不降压,仅是一个原边和次边线圈匝数相等的电磁耦合器。
它的作用就是通过电磁耦合使牵引电流从钢轨吸引到回流线。
由于接触网与回流线中流过的电流大致相等、方向相反,因此对邻近的架空通信线路和广播线路的电磁感应绝大部分被抵消。
吸流变压器使牵引网阻抗约增大50%,能耗增加,应用就受到限制。
(4)自耦变压器供电方式(AT供电方式)AT是Auto Transformer(自耦变压器)的英文缩写。
它是将单相自耦变压器的原理移植到电气化铁路供电系统的供电方式,从自辐变压器绕组的中点抽出一个端子直接接到钢轨,就能把单相变压器的输出端分成两个电压相等的电源。
电力机车受电的工作电压是自耦变压器输入端电压的一半,这时牵引变电所牵引变压器的供电电压可达到50千伏,大大提高了供电能力。
电力机车从接触网受电后,牵引电流一般由钢轨流回,但由于自耦变压器的作用经钢轨流回的电流经自耦变压器的另一段绕组和正馈线流回牵引变电所。
当电力机车取用电流时,由于自祸变压器的作用,流经接触网和正馈线的电流仅为机车负荷电流的一半。
另外,这种供电方式可在不提高牵引网绝缘水平的条件下将馈电电压提高一倍,可成倍提高牵引网的供电能力,加上牵引网的阻抗小,电压损失小,电能损耗低,供电距离长,牵引供电的各项技术指标十分优越,在高速、重载等负荷大的电气化铁路,是一种首选的供电方式,目前已得到广泛应用。
现在,我国铁路根据实际情况,对沿线通信无特殊要求的一般区段,基本上都还采用带回流线的直接供电方式(TR-NF),在重载、高速、大密度的繁忙干线和电源设施薄弱的地区,则采用AT供电方式。
4电力牵引的特点及优越性电气化铁路的供电系统是由发电厂集中提供电能,经变电站,通过高压输电线(110kV)传输给牵引变电所,转变成电压27.5kV或55kV送到接触网上,供给沿线运行的电力机车。
而牵引供电是指电力系统从铁路牵引变电所开始,向牵引接触网的供电。
电力牵引是一种新型有轨运输牵引动力形式。
在干线铁路、城市轨道交通运输和工矿运输中有着广泛的作用。
电力牵引是利用电能作为牵引动力,将电能转换为机械能,驱动铁路列车、电动车组和城市轨道交通车辆等有轨运输工具运行的一种运输形式。
电力牵引按其牵引网供电电流制式不同,分为工频单相交流制、低频单相交流制和直流制。
我国电气化铁路采用工频单相交流制电力牵引,直流制电力牵引仅用于城市轨道交通运输系统和工矿运输系统。
我国电力牵引供电系统的主要特点有以下几方面:(1)电力机车是单相移动性随机负荷,是一种负序源。
(2)非线性整流器机车,成为一种谐波源,并从电力系统和牵引供电系统获取无功。
(3)供电方式及设备种类多样化,有直接供电方式、带回流线的直接供电方式、串联吸流变压器、BT供电方式、自耦变压器AT供电方式,这些供电方式的技术和经济特性有较大的差异。
对牵引变压器,有单相、YN,d11接线、斯科特接线、伍德桥接线、阻抗匹配平衡型、三相不等容量型等形式,它们具有不同的结构和性能特点。
由于供电方式不同,接触网结构类型也较多。
(4)牵引供电系统和电力机车在电气上是—个连续的整体,易于实现自动化和信息化管理。
电力牵引的优越性主要有以下几点:(1)电力牵引的动力大,生产效率高电力牵引的能量取于强大的电力系统,牵引动力大,能最大限度适应铁路运输多拉快跑的需要。
据有关资料统计,电力牵引的生产效率比内燃机车的生产效率高50%以上,对于客货运输繁忙的铁路干线,电力牵引的这种优越性尤为显著。
(2)电力牵引节省能源,经济效益好一方面电力机车本身的电能转换效率高;另一方面,电力的生产能够高效率地综合利用各种廉价的自然能源,这对于节约国家有限的煤炭、石油资源,提高铁路运输的经济效益十分有利。
(3)有利于优化生态环境,改善劳动条件电力机车运行时不会产生有害气体,对铁路沿线的居民和列车乘客不会造成危害,特别是在多隧道的山区线路,这种无有害气体产生的优点更为可贵。
电力机车的司乘人员工作条件好,维护检修工作量小,大大降低了工人的劳动强度。
5电气化铁路供电系统设计中存在的问题(1)牵引变压器的选型问题铁路部门从经济性考虑,在牵引变压器选型方面大多会采用V/V(V/X)接线变压器,会产生较严重的三相功率不平衡问题。
而可大大减少对电力系统负序影响的阻抗平衡牵引变压器或Scott牵引变压器,由于造价相对较高,往往不被选用。
特别是220kV 三相平衡牵引变压器,铁路部门认为目前尚无可靠制造和应用经验,广泛推广面临困难。
(2)系统短路容量问题从保证高速铁路牵引供电系统的电压水平、确保动车组稳定正常运行的角度出发,要求在牵引变电站进线处外部配套电源的系统短路容量一般不小于特定数值。
目前给牵引变电站供电的110kV电源,铁路方面提出的系统短路容量大都低于1000MV A,相当多的牵引变电站短路容量在500 MV A 以下,有的甚至只有200、300 MV A,按此标准建设电气化铁路供电工程,将导致系统压降很大。
从供电安全可靠性考虑,要达到这个要求供电部门有一定困难。
因此为保障电气化铁路的安全供电,要加强对电气化铁路短路容量问题的合理性研究。
(3)负序谐波治理问题近年来电气化铁路大量投运,现有电气化铁路仍有部分线路存在着负序、谐波超标等问题。