2016-2017学年沪科版七年级下期末数学试卷 有答案

合集下载

沪科版 七年级下 数学 期末试卷附详细解析 安徽 上海 (2)

沪科版 七年级下 数学 期末试卷附详细解析 安徽 上海 (2)

安徽省合肥市2016-2017学年下学期期末考试七年级数学试题学校:___________姓名:___________班级:___________考号:___________1.下列方程是一元一次方程的是( )A .2x +5=1xB .3x -2y =6C .2x =5-xD .x 2+2x =0 2.下列四组数中,是方程410x y -=的解的是( )A .0{10x y ==- B . 3.5{4x y ==- C .15{4x y == D .1{6x y ==3.如果x y >,则下列变形中正确的是( )A .1122x y ->- B .1122x y < C .35x y > D .33x y ->- 4.解方程314y --1=373y -时,为了去分母,应将方程的两边同时乘( ) A .12 B .10 C .9 D .45.已知等腰三角形的两边长分别为3和6,则它的周长为( )A .9B .12C .15D .1215或 6.下列标志中,可以看作是轴对称图形的是( )A .B .C .D . 7.如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC 8.如图,在△ABC 中,BC 边上的高是( )A .CEB .ADC .CFD .AB9.已知方程25a x a -=+的解是6x =-,那么a =_________.10.10.一个数x 的2倍减去7的差,得36,列方程为__________.11.装修大世界出售下列形状的地砖:(1)正三角形;(2)正五边形;(3)正六边形;(4)正八边形;(5)正十边形,若只选购一种地砖镶嵌地面,你有 ___________种选择.12.如图,在△ABC 中,∠ACB=120°,将它绕着点C 旋转30°后得到△DEC,则∠ACE=________.13.如图所示,请将12A ∠∠∠、、用“>”排列__________________.14.如图,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD=BC ,AE=AC ,则∠DCE 的大小等于__________度.15.解下列方程或方程组:(1)43x -=;(2)2134x x -=+;(3)()33(25)x x --=-;(4)3157146y y ---= (5)4{316x y x y =++=;(6)23{3410x y x y -=+=16.解下列不等式(组):(1)()10351x -+≤(2)20,1.45x x x ①②-≤⎧⎪⎨+<⎪⎩17.解不等式:2113x -+≥-,并在数轴上表示出它的解集.18.如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是几边形. 19.学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?20.如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.21.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去租用这两种货车情况如下:(1)分别求甲、乙两种货车载重多少吨?(2)现在租用该公司5辆甲货车和7辆乙货车一次刚好运完这批货物,如果按每吨付费50元计算,货主应付运费多少元?22.如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1.(2)画出△ABC关于点O的中心对称图形△A2B2C2.(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A1B1C1与△A2B2C2组成的图形(填“是”或“不是”)轴对称图形.23.如图,已知点B E F C 、、、依次在同一条直线上,,AF BC DE BC ⊥⊥,垂足分别为F E 、,且,.AB DC BE CF ==试说明.AB DC ∥24.如图,已知△ABC 中,AB =AC =12厘米,BC =9厘米,AD =BD =6厘米.(1)如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,点P 运动到BC 的中点时,如果△BPD ≌△CPQ ,此时点Q 的运动速度为多少.(2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?参考答案1.C【解析】 A. 125x x+= 是分式方程,故错误; B. 326x y -=是二元一次方程,故错误; C. 52x x =-是一元一次方程,故正确; D.220x x +=是一元二次方程,故错误.故选C2.A【解析】将A 选项代入得4×0−(−10)=10,所以此选项正确; 将B 选项代入得4×3.5−(−4)=18,所以此选项错误; 将C 选项代入得4×15−4=56,所以此选项错误; 将D 选项代入得4×1−6=−2,所以此选项错误, 故选A.3.D【解析】A. 两边都乘以−12,故A 错误; B. 两边都乘以12,故B 错误; C. 左边乘3,右边乘5,故C 错误;D. 两边都减3,故D 正确;故选D.4.A【解析】 解方程3137143y y ---=时,为了去分母应将方程两边同时乘以12, 故选A5.C【解析】试题分析:分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,则不能组成三角形.故选C.考点:等腰三角形,三角形的三边关系定理6.C【解析】【分析】根据轴对称的概念对各小题分析判断即可得选项C是轴对称图形.故选C.【详解】请在此输入详解!7.A【解析】试题解析:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选A.8.B【解析】由图可知,过点A作BC的垂线段AD,则△ABC中BC边上的高是AD.故选B.点睛:本题考查了学生对三角形的高的定义的掌握情况,根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【解析】x =−6代入方程2a −5=x +a 得:2a −5=−6+a ,解得:a =−1,故答案为−1.10.2x ﹣7=36【解析】x 的2倍减去7即2x −7,根据等式可列方程为:2x −7=36.11.2【解析】(1)正三角形的每个内角是60°,能整除360°,6个能组成镶嵌;(2)正五方形的每个内角是108°,不能整除360°,不能组成镶嵌;(3)正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;(4)正八边形每个内角是135°,不能整除360°,不能镶嵌;(5)正十边形每个内角是144°,不能整除360°,不能镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有2种.故答案为2.点睛:此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.12.150°【解析】∵△ABC 绕点C 按顺时针方向旋转后得到△DEC ,∴∠DCE =∠ACB =120°,∠BCE =∠ACD =30°, ∴∠ACE =∠ACB +∠BCE =150°; 故答案为150°13.21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.14.45【解析】试题解析:设∠DCE=x ,∠ACD=y ,则∠ACE=x+y ,∠BCE=90°-∠ACE=90°-x-y . ∵AE=AC ,∴∠ACE=∠AEC=x+y ,∵BD=BC ,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y .在△DCE 中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y )+(x+y )=180°,解得x=45°,∴∠DCE=45°.考点:1.等腰三角形的性质;2.三角形内角和定理.15.(1) 7x = (2) 5x =- (3) 314x =(4) 1y =- (5) 51x y ==⎧⎨⎩ (6) 21x y =⎧⎨=⎩【解析】试题分析:(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程移项合并,把x 系数化为1,即可求出解;(3)方程去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解;(5)方程组利用代入消元法求出解即可;(6)方程组利用加减消元法求出解即可.试题解析:(1)移项得:x =4+3,解得:x =7;(2)移项合并得:x =−5;(3)去括号得:−x +3=6−15x ,移项合并得:14x =3,解得:x =314; (4)去分母得:9y −3−12=10y −14,解得:y =−1;(5)4 316x y x y =+⎧⎨+=⎩①②,把①代入②得:3y +12+y =16,解得:y =1,把y =1代入①得:x =5,则方程组的解为51x y =⎧⎨=⎩;(6)23 3410x y x y -=⎧⎨+=⎩①②, ①×4+②得:11x =22,即x =2, 把x =2代入①得:y =1,则方程组的解为21x y =⎧⎨=⎩. 16.(1) 2x -≥ (2) 24x ≤<【解析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 解:(1)10-3x-15≤1,x≥2.(2)解①得x≥2,解②得5x<4x+4,x <4,则不等式组的解集是2≤x <4.“点睛”本题考查了一元一次不等式(组)的解法:解一元一次不等式(组)时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.2x≤【解析】试题分析:利用不等式的解法,去分母,移项、合并、系数化成1,先求解,再表示在数轴上.试题解析:去分母得,−2x+1⩾−3,移项,得−2x⩾−4,系数化为1,得,x⩽2,在数轴上表示出不等式的解集为:18.14n=【解析】任何多边形的外角和是360度,即这个多边形的内角和是6×360度.边形的内角和是(n-2)180,,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解:根据题意,得(n-2)180=6×360,解得n=14.则这个多边形的边数是14.19.最多买17本.【解析】试题分析:先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.试题解析:设还能买词典x本,根据题意得:20×65+40x⩽2000,40x⩽700,x⩽1712,答:最多还能买词典17本.20.证明见解析【解析】试题分析:由题目已知条件可得∠EAC+∠2=∠DAE 、∠1+∠EAC=∠BAC 、∠1=∠2,利用角的加减关系可得∠BAC=∠DAE ;结合AC=AE 、∠C=∠E ,利用两角及其夹边对应相等的两个三角形全等即可解答本题.试题解析:∵∠1+∠EAC=∠BAC ,∠EAC+∠2=∠DAE ,∠1=∠2,∴∠BAC=∠DAE.∵∠BAC=∠DAE ,AC=AE ,∠C=∠E ,∴△ABC ≌△ADE.21.(1)甲车载重4吨,乙车载重2吨。

沪科版七年级下册数学期末考试试题及答案精选全文完整版

沪科版七年级下册数学期末考试试题及答案精选全文完整版

可编辑修改精选全文完整版沪科版七年级下册数学期末考试试卷一、选择题(本大题共有10小题,每小题4分,满分40分)1.(4分)下列实数中,是无理数的为()A.3.14 B.C.D.2.(4分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与23.(4分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.(4分)如右图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.(4分)把多项式x3﹣2x2+x分解因式结果正确的是()A.x(x2﹣2x)B.x2(x﹣2)C.x(x+1)(x﹣1)D.x(x﹣1)26.(4分)若分式的值为0,则b的值是()A.1B.﹣1 C.±1 D.27.(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.(4分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.(4分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b210.(4分)定义运算a⊗b=a(1﹣b),下面给出了关于这种运算的几个结论:11.①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)化简:=.12.(5分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是.13.(5分)若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是.14.(5分)观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解方程:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)先化简,再求值:(1+)+,其中x=2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.①求∠BED的度数(要有说理过程).②试说明BE⊥EC.20.(10分)描述并说明:海宝在研究数学问题时发现了一个有趣的现象:请根据海宝对现象的描述,用数学式子填空,并说明结论成立的理由.如果(其中a>0,b>0).那么(结论).理由∴,∴则.六、(本题满分12分)21.(12分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:平行且相等.(3)△ABC的面积是 3.5平方单位.七、(本题满分12分)22.(12分)列分式方程解应用题巴蜀中学小卖部经营某款畅销饮料,3月份的销售额为20000元,为扩大销量,4月份小卖部对这种饮料打9折销售,结果销售量增加了1000瓶,销售额增加了1600元.(1)求3月份每瓶饮料的销售单价是多少元?(2)若3月份销售这种饮料获利8000元,5月份小卖部打算在3月售价的基础上促销打8折销售,若该饮料的进价不变,则销量至少为多少瓶,才能保证5月的利润比3月的利润增长25%以上?八、(本题满分14分)23.(14分)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2参考答案与解析1、考点:无理数.专题:应用题.分析:A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.解答:解:A、B、D中3.14,,=3是有理数,C中是无理数.故选:C.点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2、考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2+2=0,故选项正确;B、=﹣2,﹣2﹣2=﹣4,故选项错误;C、﹣2+()=﹣,故选项错误;D、|﹣2|=2,2+2=4,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.3、考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 2=2×10﹣7cm.故选D.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5、考点:提公因式法与公式法的综合运用.分析:这个多项式含有公因式x,应先提取公因式,然后再按完全平分公式进行二次分解.解答:解:原式=x(x2﹣2x+1)=x(x﹣1)2.故选D.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意,得:b2﹣1=0,且b2﹣2b﹣3≠0;解得:b=1;故选A.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7、考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8、考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠的性质,对折前后角相等.解答:解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9、考点:平方差公式的几何背景.分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解答:解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10、考点:整式的混合运算.专题:新定义.分析:先认真审题.理解新运算,根据新运算展开,求出后再判断即可.解答:解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=6,∴①正确;∵a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,∴②错误;∵a+b=0,∴b=﹣a,∴(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a﹣a2+b﹣b2=0﹣a2﹣a2=﹣2a2,2ab=2a(﹣a)=﹣2a2,∴③在正确;∵a⊗b=0,∴a(1﹣b)=0,a=0或1﹣b=0,∴④错误;即正确的有2个,故选B.点评:本题考查了整式的混合运算的应用,解此题的关键是能理解新运算的意义,题目比较好,难度适中.11、考点:二次根式的性质与化简.分析:根据二次根式的性质解答.解答:解:原式===4.点评:解答此题,要根据二次根式的性质:=|a|解题.12、考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等求出∠D的度数,在三角形COD中,利用内角和定理即可求出所求角的度数.解答:解:∵AB∥CD,∠A=20°,∴∠D=∠A=20°,在△COD中,∠D=20°,∠COD=100°,∴∠C=60°.故答案为:60°点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.13、考点:配方法的应用.分析:先将代数式配成完全平方式,然后再判断a、b的值.解答:解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故b﹣a=5.故答案为:5.点评:能够熟练运用完全平方公式,是解答此类题的关键.14、考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=813,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.15、考点:实数的运算.分析:本题涉及零指数幂、负指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式===2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16、考点:解分式方程.专题:计算题.分析:观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.17、考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:解不等式①得:x≤3,由②得:3(x﹣1)﹣2(2x﹣1)>6,化简得:﹣x>7,解得:x<﹣7,在数轴上表示为:,故原不等式组的解集为:x<﹣7.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=2时,原式==1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19、考点:平行线的性质;垂线.专题:计算题.分析:①由BE为角平分线,求出∠EBC的度数,再由DE与BC平行,利用两直线平行内错角相等求出∠DEB度数即可;②由DE与BC平行,得到一对同旁内角互补,求出∠DEC度数,在三角形BEC中,利用内角和定理求出∠BEC为90°,即可得证.解答:解:①∵∠ABC=70°,BE平分∠ABC,∴∠EBC=∠ABC=70°×=35°,又∵DE∥BC,∴∠BED=∠EBC=35°;②∵DE∥BC,∴∠C+∠DEC=180°,∴∠DEC=180°﹣55°=125°,又∵∠BED+∠BEC=∠DEC,∴∠DCE=125°,∵∠BED=35°,∴∠BEC=90°,则BE⊥EC.点评:此题考查了平行线的判定,以及垂直定义,熟练掌握平行线的判定方法是解本题的关键.20、考点:分式的混合运算.专题:图表型.分析:根据题意列出关系式,猜想得到结论,利用分式的加减法则计算,再利用完全平方公式变形即可得证.解答:解:如果++2=ab(其中a>0,b>0),那么a+b=ab;理由:∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.故答案为:++2=ab;a+b=ab;∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)AA1与线段BB1平行且相等;(3)△ABC的面积=3×3﹣×2×3﹣×3×1﹣×2×1=9﹣3﹣1.5﹣1=3.5.故答案为:平行且相等;3.5.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、考点:分式方程的应用.分析:(1)设3月份每瓶饮料的销售单价为x元,表示出4月份的销售量,根据4月份销量量增加1000瓶可得出方程,解出即可;(2)利用(1)中所求得出每瓶饮料的进价,再由5月的利润比3月的利润至少增长25%,可得出不等式,解出即可.解答:解:(1)设3月份每瓶饮料的销售单价为x元,由题意得,﹣=1000解得:x=4经检验x=4是原分式方程的解答:3月份每瓶饮料的销售单价是4元.(2)饮料的进价为(20000﹣8000)÷(20000÷4)=2.4元,设销量为y瓶,由题意得,(4×0.8﹣2.4)y≥8000×(1+25%)解得y≥12500答:销量至少为12500瓶,才能保证5月的利润比3月的利润增长25%以上.点评:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是设出未知数,表示出3月份及4月份的销售量.23、考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:1 2 3 72 1 0 1(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:①如果操作第三列,a a2﹣1 a ﹣a22﹣a 1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,﹣a 1﹣a2 a a22﹣a 1﹣a2a﹣2 a2则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,已知2a2≥0,则:,解得a=1,验证当a=1时,满足不等式,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数。

沪科版七年级下册数学期末试题试卷含答案

沪科版七年级下册数学期末试题试卷含答案

沪科版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.(4分)实数、﹣、0.1010010001、、π、中,无理数的个数是()A.1 B.2 C.3 D.42.(4分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.(4分)若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a<b4.(4分)计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a45.(4分)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n26.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个7.(4分)若a2=9,=﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.±5或±118.(4分)把分式中的x和y都扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍9.(4分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2 D.4ab10.(4分)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0二、填空题(每小题5分,共20分)11.(5分)分解因式:4a2﹣25b2=.12.(5分)分式的值为0,那么x的值为.13.(5分)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为°.14.(5分)若关于x的分式方程+=1有增根,则m=.三、解答题(每小题8分,共16分)15.(8分)解不等式组:.16.(8分)解分式方程:.四、(每小题8分,共16分)17.(8分)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=﹣3.18.(8分)如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)三角形A1B1C1的面积为.五、(每小题10分,共20分)19.(10分)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.20.(10分)2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?21.(12分)某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?22.(12分)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料原料维生素C含量(单位/千克)50080原料价格(元/千克)164现配制这种饮料10千克,要求至少含有2900单位的维生素C,且费用不超过136元,试写出所需甲种原料的质量x(kg)应满足的不等式,并求出x的范围.23.(14分)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠B的度数.参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)(2017春•全椒县期末)实数、﹣、0.1010010001、、π、中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:﹣、0.1010010001、是有理数,、、π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(2017春•全椒县期末)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【分析】先求出的范围,即可得出选项.【解答】解:∵2<<3,∴3<+1<4,即+1在3和4之间,故选B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.3.(4分)(2017•资中县二模)若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a<b【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减3,不等号的方向不变,故A不符合题意;B、两边都乘以﹣1,不等号的方向改变,故B符合题意;C、两边都乘以﹣2,不等号的方向改变,故C不符合题意;D、两边都除以3,不等号的方向不变,故D不符合题意;故选:B.【点评】本题考查了不等式的性质,不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(4分)(2017春•全椒县期末)计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a4【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:(﹣3a2)2=32a4=9a4.故选C.【点评】本题考查了积的乘方的运算法则.应注意运算过程中的符号.5.(4分)(2017•安庆一模)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n2【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练利用公式法分解因式是解题关键.6.(4分)(2016•双柏县二模)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式解集,即可得知其正整数解情况.【解答】解:去括号得:4﹣x≤6﹣2x,移项得:﹣x+2x≤6﹣4,合并同类项得:x≤2,∴不等式的正整数解是:2、1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,根据不等式基本性质求出不等式解集是关键.7.(4分)(2017春•全椒县期末)若a2=9,=﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.±5或±11【分析】利用平方根及立方根定义求出a与b的值,即可求出a+b的值.【解答】解:∵a2=9,=﹣2,∴a=3或﹣3,b=﹣8,则a+b=﹣5或﹣11,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.(4分)(2017春•全椒县期末)把分式中的x和y都扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍【分析】分别用3x和3y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用3x和3y去代换原分式中的x和y,得==3×,故选B.【点评】本题考查了分式的基本性质,解题的关键是注意把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.9.(4分)(2017春•全椒县期末)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2 D.4ab【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2+2a2),4ab是公因式,故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.10.(4分)(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选B【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.二、填空题(每小题5分,共20分)11.(5分)(2017•大石桥市校级模拟)分解因式:4a2﹣25b2=(2a+5b)(2a ﹣5b).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+5b)(2a﹣5b),故答案为:(2a+5b)(2a﹣5b)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(5分)(2017•新化县二模)分式的值为0,那么x的值为3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.13.(5分)(2017春•全椒县期末)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为135°.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=45°,∴∠3=90°﹣∠1=90°﹣45°=45°,∴∠4=180°﹣45°=135°,∵直尺的两边互相平行,∴∠2=∠4=135°.故答案为:135.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.14.(5分)(2017春•全椒县期末)若关于x的分式方程+=1有增根,则m=2.【分析】根据方程有增根求出x=1,把原方程去分母得出整式方程,把x=1代入整式方程,即可求出m.【解答】解:∵关于x的分式方程+=1有增根,∴x﹣1=0,解得:x=1,方程+=1去分母得:3x﹣1﹣m=x﹣1①,把x=1代入方程①得:3﹣1﹣m=1﹣1,解得:m=2,故答案为:2.【点评】本题考查了分式方程的增根的应用,能求出方程的增根是解此题的关键.三、解答题(每小题8分,共16分)15.(8分)(2015•思茅区校级模拟)解不等式组:.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x>﹣1,由②得,x≤2,所以,原不等式组的解集是﹣1<x≤2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(8分)(2007•孝感)解分式方程:.【分析】因为1﹣3x=﹣(3x﹣1),所以可确定最简公分母为2(3x﹣1),然后把分式方程转化成整式方程,进行解答.【解答】解:方程两边同乘以2(3x﹣1),去分母,得:﹣2﹣3(3x﹣1)=4,解这个整式方程,得x=﹣,检验:把x=﹣代入最简公分母2(3x﹣1)=2(﹣1﹣1)=﹣4≠0,∴原方程的解是x=﹣(6分)【点评】解分式方程的关键是确定最简公分母,去分母,将分式方程转化为整式方程,本题易错点是忽视验根,丢掉验根这一环节.四、(每小题8分,共16分)17.(8分)(2017春•全椒县期末)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=﹣3.【分析】原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a2+2a+1﹣a2+9=2a+10,当a=﹣3时,原式=﹣6+10=4.【点评】此题考查了整式的混合运算﹣化简求值,平方根公式及完全平方公式,熟练掌握运算法则及公式是解本题的关键.18.(8分)(2017春•全椒县期末)如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)三角形A1B1C1的面积为.【分析】(1)根据图形平移的性质画出A1B1C1即可;(2)直接根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;=×3×3=.(2)S△A1B1C1故答案为:.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.五、(每小题10分,共20分)19.(10分)(2017春•全椒县期末)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.【点评】本题考查了一元一次不等式的整数解,解方程,关键是根据题意求得x 的最小整数.20.(10分)(2017•长清区一模)2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?【分析】根据题目中的关键语句“他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟”,找到等量关系列出分式方程求解即可.【解答】解:设杨老师骑自行车平均每小时行驶x千米,则驾车每小时行驶4x 千米,由题意得﹣=,解得x=15.经检验x=15是原方程的解且符合题意.答:杨老师骑自行车平均每小时行驶15千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21.(12分)(2017春•全椒县期末)某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?【分析】(1)小明家买的大米没有打折,所以一定没有超过160kg,再添40千克就能打折了,那么一定超过了120千克;(2)设小明家原来准备买大米x千克,根据原价购买4kg与打折价购买5kg的款相同,相对应的等量关系为:原价千克数:打折千克数=4:5,列出算式,求解即可.【解答】解:(1)由题意可得:120<x≤160,即小明家原计划购买大米的数量范围是120<x≤160;(2)设小明家原来准备买大米x千克,原价为元,折扣价为元.据题意列方程为:4×=5×,解得:x=160,经检验x=160是方程的解;答:小明家原来准备买160千克大米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题的等量关系为:原价千克数:打折千克数=4:5.22.(12分)(2017春•全椒县期末)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料原料维生素C含量(单位/千克)50080原料价格(元/千克)164现配制这种饮料10千克,要求至少含有2900单位的维生素C,且费用不超过136元,试写出所需甲种原料的质量x(kg)应满足的不等式,并求出x的范围.【分析】直接利用表格中数据结合至少含有2900单位的维生素C,且费用不超过136元,分别得出不等式求出答案.【解答】解:设所需甲种原料的质量xkg,由题意得:,解得:5<x≤8,答:x的范围是5<x≤8.【点评】此题主要考查了一元一次不等式组的应用,正确得出不等关系是解题关键.23.(14分)(2017春•全椒县期末)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠B的度数.【分析】(1)欲证明AB∥CD,只需推知∠A=∠D即可;(2)利用平行线的判定定理推知CE∥FB,然后由平行线的性质即可得到结论.【解答】证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.【点评】本题考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。

2016沪科版七年级下学期期末数学测试卷(1)

2016沪科版七年级下学期期末数学测试卷(1)

2016沪科版七年级下学期期末数学测试卷(1)注意事项:本卷共七大题,计23小题,满分150分,考试时间120分钟!一、选择题(本题满分40分,每小题4分。

将唯一正确答案前的代号填入下面A 、3B 、-3C 、±3D 、2、下列四个实数中,是无理数的是( ) A 、2.5 B 、π C 、103D 、1.414 3、下列计算正确的是( )A 、326a a a ∙=B 、4442b b b ∙=C 、1055x x x =+D 、78y y y ∙= 4、下列分解因式错误..的是( ) A 、243(2)(2)3x x x x x -+=+-+B 、22()()x y x y x y -+=-+-C 、22(21)x x x x -=--+D 、2221(1)x x x -+=-5、已知2()11m n +=,2mn =,则2()m n -的值为( ) A 、7 B 、5 C 、3 D 、16、已知am >bm ,则下面结论中正确的是( )A 、a >bB 、 a <bC 、 a bm m > D 、 2am ≥2bm7、不等式260x -+>的解集在数轴上表示正确的是( )8、如图,直线AB 、CD 、EF 两两相交,则图中为同旁内角的角共有( )对。

A 、3B 、4C 、5D 、69、如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A 、向右平移1格,向下3格B 、向右平移1格,向下4格C 、向右平移2格,向下4格D 、向右平移2格,向下3格10、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,那么∠EMF 的度数是( ) A 、85° B 、90° C 、95° D 、100°二、填空题(本大题共4小题,每小题5分,满分20分)11、氢原子中电子和原子核之间最近距离为0.000 000 003 05厘米,用科学记数法表示为________________________厘米. 12、当x 时,分式23x -没有意义。

2016-2017学年沪科版七年级下期末数学试卷 有答案

2016-2017学年沪科版七年级下期末数学试卷 有答案

2016-2017学年七年级下学期期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列图案可以通过一个“基本图形”平移得到的是()A.B.C.D.2.9的平方根为()A.3B.﹣3 C.±3 D.3.代数式(﹣4a)2的值是()A.16a B.4a2C.﹣4a2D.16a24.下面四个图形中∠1与∠2是对顶角的是()A.B.C.D.5.如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.a c2>bc2D.a2>b26.下列说法正确的是()A.﹣2是﹣8的立方根B.9的立方根是3C.﹣3是(﹣3)2的算术平方根D.8的算术平方根是27.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角8.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤C.n≤D.n≤9.如果不等式2x﹣m<0只有三个正整数解,那么m的取值范围是()A.m<8 B.m≥6 C.6<m≤8 D.6≤m<810.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n二、填空题(本题共8小题,每小题3分,满分24分)11.写出一个3到4之间的无理数.12.分解因式4x2﹣100=.13.计算:(14x3﹣21x2+7x)÷7x的结果是.14.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有条.15.若分式的值为0,则x的值等于.16.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.17.已知关于x的方程的解是正数,则m的取值范围是.18.下列结论中:①a2•a4=a8;②1010÷105=102;③(x2)5=x7;④(3×2﹣12÷2)0=1;⑤平移只改变图形的位置,不改变图形的形状和大小;⑥垂直于同一条直线的两条直线互相平行,所有正确结论的序号有.三、解答题(本题共8小题,满分66分)19.计算:+﹣﹣2﹣3.20.解不等式组:,并将解集在数轴上表示出来.21.计算:(a+b)2+(a﹣b)(2a+b)﹣3(a+b)(a﹣b)22.先化简(﹣)÷﹣+1,再从﹣2≤x≤2的整数中任选一个你喜欢的x值代入求值.23.将如图所示的三角形ABC,先水平向右平移5格得三角形DEF,再竖直向下平移4格得到三角形GHQ,作出这两个三角形,并标上字母.24.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.【解】∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB∥()∴∠BAC+=180°()又∵∠BAC=70°(已知)∴∠AGD=()25.在边长为a的正方形中减掉一个边长为b的小正方形(a>b)把余下的部分再剪拼成一个长方形.(1)如图1,阴影部分的面积是:;(2)如图2,是把图1重新剪拼成的一个长方形,阴影部分的面积是;(3)比较两阴影部分面积,可以得到一个公式是;(4)运用你所得到的公式,计算:99.8×100.2.26.我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?2016-2017学年七年级下学期期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列图案可以通过一个“基本图形”平移得到的是()A.B.C.D.考点:利用平移设计图案.分析:根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.解答:解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选B.点评:本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.2.9的平方根为()A.3B.﹣3 C.±3 D.考点:平方根.专题:计算题.分析:根据平方根的定义求解即可,注意一个正数的平方根有两个.解答:解:9的平方根有:=±3.故选C.点评:此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.3.代数式(﹣4a)2的值是()A.16a B.4a2C.﹣4a2D.16a2考点:幂的乘方与积的乘方.分析:根据积的乘方即可解答.解答:解:(﹣4a)2=16a2,故选:D.点评:本题考查了积的乘方,解决本题的关键是熟记积的乘方法则.4.下面四个图形中∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义作出判断即可.解答:解:根据对顶角的定义可知:只有C图中的是对顶角,其它都不是.故选:C.点评:本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.5.如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.a c2>bc2D.a2>b2考点:不等式的性质.专题:计算题.分析:根据不等式的基本性质可知:a﹣3>b﹣3;3﹣a<3﹣b;当c=0时ac2>bc2不成立;当0>a >b时,a2>b2不成立.解答:解:∵a>b,∴﹣a<﹣b,∴3﹣a<3﹣b;故本题选B.点评:主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.下列说法正确的是()A.﹣2是﹣8的立方根B.9的立方根是3C.﹣3是(﹣3)2的算术平方根D.8的算术平方根是2考点:立方根;算术平方根.专题:计算题.分析:利用立方根及算术平方根的定义判断即可.解答:解:A、﹣2是﹣8的立方根,正确;B、9的立方根为,错误;C、3是(﹣3)2的算术平方根,错误;D、8的算术平方根为2,错误,故选A点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.7.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角考点:同位角、内错角、同旁内角.分析:根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.解答:解:A、∠A与∠B是同旁内角,说法正确;B、∠3与∠1是同旁内角,说法正确;C、∠2与∠3是内错角,说法正确;D、∠1与∠2是邻补角,原题说法错误,故选:D.点评:此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤C.n≤D.n≤考点:一元一次不等式的应用.分析:根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.解答:解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)﹣1≥0,去括号得:1﹣n%+m%﹣﹣1≥0,整理得:100n+mn≤100m,故n≤.故选:B.点评:此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.9.如果不等式2x﹣m<0只有三个正整数解,那么m的取值范围是()A.m<8 B.m≥6 C.6<m≤8 D.6≤m<8考点:一元一次不等式的整数解.分析:先求出不等式的解集,根据已知得出关于m的不等式组,求出不等式组的解集即可.解答:解:2x﹣m<0,2x<m,x<,∵不等式2x﹣m<0只有三个正整数解,∴3<≤4,∴6<m≤8,故选C.点评:本题考查了解一元一次不等式,一元一次不等式组的整数解的应用,能得出关于m的不等式组是解此题的关键.10.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n考点:平方差公式;多项式乘多项式.专题:规律型.分析:已知各项利用多项式乘以多项式法则计算,归纳总结得到一般性规律,即可得到结果.解答:解:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3,…,依此类推(1﹣x)(1+x+x2+…+x n)=1﹣x n+1,故选:A点评:此题考查了平方差公式,多项式乘多项式,找出规律是解本题的关键.二、填空题(本题共8小题,每小题3分,满分24分)11.写出一个3到4之间的无理数π.考点:估算无理数的大小.专题:开放型.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解答:解:3到4之间的无理数π.答案不唯一.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.12.分解因式4x2﹣100=4(x+5)(x﹣5).考点:提公因式法与公式法的综合运用.分析:首先提取公因式4,进而利用平方差公式分解因式即可.解答:解:4x2﹣100=4(x2﹣25)=4(x+5)(x﹣5).故答案为:4(x+5)(x﹣5).点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.13.计算:(14x3﹣21x2+7x)÷7x的结果是2x2﹣3x+1.考点:整式的除法.分析:把这个多项式的每一项分别除以单项式,再把所得的商相加减求解.解答:解:(14x3﹣21x2+7x)÷7x=14x3÷7x﹣21x2÷7x+7x÷7x,=2x2﹣3x+1.故答案为:2x2﹣3x+1.点评:本题主要考查了整式的除法,解题的关键是把这个多项式的每一项分别除以单项式,再把所得的商相加减.14.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有5条.考点:点到直线的距离.分析:根据点到直线距离的定义对各选项进行逐一分析即可.解答:解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故答案为:5.点评:本题考查了点到直线的距离的概念,解题的关键在于熟记定义.15.若分式的值为0,则x的值等于1.考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.点评:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.考点:分式方程的解.分析:首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.解答:解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.点评:本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.18.下列结论中:①a2•a4=a8;②1010÷105=102;③(x2)5=x7;④(3×2﹣12÷2)0=1;⑤平移只改变图形的位置,不改变图形的形状和大小;⑥垂直于同一条直线的两条直线互相平行,所有正确结论的序号有⑤.考点:平行线的判定;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;零指数幂;平移的性质.分析:根据平行线的判定定理,同底数幂的乘法和除法的法则,幂的乘方与积的乘方的法则,平移的性质,零指数幂的性质逐一进行判断即可.解答:解:①a2•a4=a6;故此选项错误;②1010÷105=105;故此选项错误;③(x2)5=x10;故此选项错误;④(3×2﹣12÷2)0;此算式无意义,故此选项错误;⑤平移只改变图形的位置,不改变图形的形状和大小;故此选项正确;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,故此选项错误;故答案为:⑤.点评:本题考查了平行线的判定,同底数幂的乘法和除法,幂的乘方与积的乘方,平移,零指数幂,熟记各性质和法则是解题的关键.三、解答题(本题共8小题,满分66分)19.计算:+﹣﹣2﹣3.考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用立方根定义计算,第二、三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=2+0﹣﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组:,并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题考查不等式组的解法,首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.解答:解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.在数轴上可表示为:.点评:本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.21.计算:(a+b)2+(a﹣b)(2a+b)﹣3(a+b)(a﹣b)考点:整式的混合运算.专题:计算题.分析:原式利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.解答:解:原式=a2+2ab+b2+2a2+ab﹣2ab﹣b2﹣3a2+3b2=ab+3b2.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.先化简(﹣)÷﹣+1,再从﹣2≤x≤2的整数中任选一个你喜欢的x值代入求值.考点:分式的化简求值.分析:先化简,再把x=2代入求值.解答:解:(﹣)÷﹣+1=[﹣]×﹣+1,=×﹣+1,=﹣+1,=,当x=2时,原式==.点评:本题主要考查了分式的化简求值,解题的关键是正确的化简.23.将如图所示的三角形ABC,先水平向右平移5格得三角形DEF,再竖直向下平移4格得到三角形GHQ,作出这两个三角形,并标上字母.考点:作图-平移变换.分析:直接根据图形平移的性质画出△DEF与△GHQ即可.解答:解:如图所示.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.【解】∵EF∥AD(已知)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB∥DG(内错角相等,两直线平行)∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)又∵∠BAC=70°(已知)∴∠AGD=100°(等式性质)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质求出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB∥DG,根据平行线的性质得出∠BAC+∠AGD=180°,代入求出即可.解答:解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=100°(等式性质),故答案为:∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,100°,等式性质.点评:本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.25.在边长为a的正方形中减掉一个边长为b的小正方形(a>b)把余下的部分再剪拼成一个长方形.(1)如图1,阴影部分的面积是:a2﹣b2;(2)如图2,是把图1重新剪拼成的一个长方形,阴影部分的面积是(a+b)(a﹣b);(3)比较两阴影部分面积,可以得到一个公式是(a+b)(a﹣b)=a2﹣b2;(4)运用你所得到的公式,计算:99.8×100.2.考点:平方差公式的几何背景.分析:(1)大正方形与小正方形的面积的差就是阴影部分的面积;(2)根据矩形的面积公式求解;(3)根据两个图形的面积相等即可得到公式;(4)利用(3)的公式即可直接求解.解答:解:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2;(4)原式=(100﹣0.2)(100+0.2)=1002﹣0.22=10000﹣0.04=9999.96.点评:本题考查了平方差公式的几何解释,根据阴影部分的面积相等列出面积的表达式是解题的关键.26.我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.解答:解:(1)设今年5月份A款汽车每辆售价x万元.根据题意得:=,解得:x=9,经检验知,x=9是原方程的解.所以今年5月份A款汽车每辆售价9万元.(2)设A款汽车购进y辆.则B款汽车每辆购进(15﹣y)辆.根据题意得:解得:6≤y≤10,所以有5种方案:方案一:A款汽车购进6辆;B款汽车购进9辆;方案二:A款汽车购进7辆;B款汽车购进8辆;方案三:A款汽车购进8辆;B款汽车购进7辆;方案四:A款汽车购进9辆;B款汽车购进6辆;方案五:A款汽车购进10辆;B款汽车购进5辆.(3)设利润为W则:W=(8﹣6)×(15﹣y)﹣a(15﹣y)+(9﹣7.5)y=30﹣2y﹣a(15﹣y)+1.5y=30﹣a(15﹣y)﹣0.5y方案一:W=30﹣a(15﹣6)﹣0.5×6=30﹣9a﹣3=27﹣9a方案二:W=30﹣a(15﹣7)﹣0.5×7=30﹣8a﹣3.5=26.5﹣8a方案三:W=30﹣a(15﹣8)﹣0.5×8=30﹣7a﹣4=26﹣7a方案四:W=30﹣a(15﹣9)﹣0.5×9=30﹣6a﹣4.5=25.5﹣6a方案五:W=30﹣a(15﹣10)﹣0.5×10=30﹣5a﹣5=25﹣5a由27﹣9a=26.5﹣8a 得a=0.5方案一对公司更有利.点评:本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。

沪科版七年级(下)期末数学试卷含答案

沪科版七年级(下)期末数学试卷含答案

4321DC BA 初中七年级数学试卷一 填空题(每题3分,共30分) 1.如果a 的平2.一种病毒的直径是0.000 000 12m ,用科学计数法表示为 m.3. 比较大小:1-.4. 关于x 的某个不等式组的解集在数轴上表示为:(如下图)则原不等式组的解集是 .5.不等式组1023x x +≥⎧⎨+<⎩的整数解是 .6. 若∠1和∠2是对顶角,∠1=25°,则∠2的余角是 °.7. 分解因式:34m m -= .8. 如下图,直线a 、b 被直线c 所截,且a ∥b ,若∠2=38°,则∠1的度数是 °. 9. 当x 时,分式24xx -有意义. 10. 某住宅小区5月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区5月份的总用水量约是 吨.二 选择题(每小题3分)11. 已知,如右图AB ∥CD ,可以得到 ( )A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4 12. 在223.14,,7π这五个数中,无理数的个数是 ( ) A. 1个 B. 2个 C. 3个 D. 4个13. 已知a b <则下列各式正确的是 ( ) A. a b <- B. 33a b ->- C. 22a b <D. 33a b ->-14. 下列计算中,正确的个数是 ( )①347x x x += ②33623y y y ⋅= ③ 538()()a b a b ⎡⎤+=+⎣⎦④2363()a b a b = A. 1个 B.2个 C.3个 D. 4个a15. 32-与32的关系是()A. 互为倒数B.绝对值相等C. 互为相反数D. 和为零()1a ba b--=-+C.1a ba b--=--D.22a ba ba b-=--()2469x x-+ C. 22x xy y++ D.22293xxy y-+a∥b条件是()∠2+∠3=180° C.∠2=∠3 D. ∠2=∠4从中抽出20名学生进行身高测量,法中正确的是B. 抽取的20名学生是样本D. 样本容量是2020.下列图形中,是由①仅通过平移得到的是()40分)6分)8分)11x÷-,其中1x=35人,若每个房间人没处住;若每个房间住8人,则空一间房,并且还有一间房也住不满,8分)个零件,在加工完成60个以后,由于改进操作方法,每天加工的零件是30天完成了任务,那么改进操作方法后每天加工多少个零件?(8分)参考答案一 填空(每小题3分,共30分)1. 42. 71.210-⨯3. <4. 23x -<≤5. 1,0x x =-=6. 657. (21)(21)m m m +-8. 1429. 2x ≠± 10. 992 二 选择三 解答题(40分)22.解:…………(3分)………………(5分)…………………… (6分)当 1x =时,原式=4211-=-+ ………………………(8分)24. 解:设有x 间宿舍,则女生数为(55)x +人,根据题意得 (1分)55358(1)55x x x +<⎧⎨->+⎩………………………………………(5分) 解得 1463x << ………………………………………(6分) 因为房间数为整数,所以5x =,(55)30x += ………(7分) 答:有5间宿舍,30名女生. ……………………(8分)25.解:设改进方法后每天加工的零件数为x ,则改进方法前每天加工的零件数为12x ,根据题意得 ……………………………(1分)12603006030xx-+= ……………………………(5分) 解这个分式方程得12x = ……………………………(6分) 经检验 ,12x =是原方程的根 ……………………………(7分) 答:改进方法后每天加工零件12个. …………………………(8分)。

沪科版2016-2017学年七年级数学(下册)期末测试卷及答案

沪科版2016-2017学年七年级数学(下册)期末测试卷及答案

2016-2017学年七年级(下)期末数学试卷一、选择题:(本大题共6题,每题2分,满分12分)1.下列计算正确的是( )A .﹣ = =﹣﹣3B 3 B.(﹣.(﹣)22=64C . = =±±25D 25 D.. =32.下列数据中准确数是( )A .上海科技馆的建筑面积约98000平方米B .“小巨人”姚明身高2.26米C .我国的神州十号飞船有3个舱D .截止去年年底中国国内生产总值(.截止去年年底中国国内生产总值(GDP GDP GDP))676708亿元3.如图,已知直线a 、b 被直线c 所截,那么∠所截,那么∠11的同旁内角是( )A .∠.∠3 3B .∠.∠4 4C .∠.∠5 5D .∠.∠6 64.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A .8或10B .8C .10D .6或125.如图,△.如图,△ABC ABC ABC、△、△、△DEF DEF 和△和△GMN GMN 都是等边三角形,且点E 、M 在线段AC 上,点G 在线段EF 上,那么∠么∠1+1+1+∠∠2+2+∠∠3等于( )A .90°.90°B B B.120°.120°C .150°D .180°6.象棋在中国有着三千多年的历史,是趣味性很强的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(﹣棋子“马”和“车”的点的坐标分别为(﹣22,﹣,﹣11)和()和(33,1),那么表示棋子“将”的点的坐标为( )A .(.(11,2)B B.(.(.(11,0)C C.(.(.(00,1)D D.(.(.(22,2)二、填空题:(本大题共12题,每题2分,满分24分)7.计算:= . 8.(﹣.(﹣88)2的六次方根为 .9.在π(圆周率)、﹣π(圆周率)、﹣1.51.51.5、、、、0. 五个数中,无理数是 .1010.计算:(﹣.计算:(﹣)×÷2= (结果保留三个有效数字).1111.在数轴上,实数.在数轴上,实数2﹣对应的点在原点的 侧.(填“左”、“右”)1212.已知点.已知点P (﹣(﹣11,a )与点Q (b ,4)关于x 轴对称,那么a+b= .1313..已知点M 在第二象限,它到x 轴、y 轴的距离分别为2个单位和3个单位,那么点M 的坐标是 . 1414..如图,已知直线a ∥b ,将一块三角板的直角顶点放在直线a 上,如果∠1=42°,那么∠那么∠2= 2= 度.1515.如图,.如图,.如图,AB AB AB∥∥CD CD,∠A=56°,∠C=27°,则∠,∠A=56°,∠C=27°,则∠,∠A=56°,∠C=27°,则∠E E 的度数为 .1616.如图,在△.如图,在△.如图,在△ABC ABC 和△和△DEF DEF 中,已知CB=DF CB=DF,∠,∠,∠C=C=C=∠∠D ,要使△,要使△ABC ABC ABC≌△≌△≌△EFD EFD EFD,还需添加一个条件,,还需添加一个条件,那么这个条件可以是 .1717.如图,在△.如图,在△.如图,在△ABC ABC 中,中,OB OB OB、、OC 分别是∠分别是∠ABC ABC 和∠和∠ACB ACB 的角平分线,过点O 作OE OE∥∥AB AB,,OF OF∥∥AC AC,交,交边BC 于点E 、F ,如果BC=10BC=10,那么,那么C △OEF 等于 .1818.如图,在△.如图,在△.如图,在△ABC ABC 中,∠CAB=65°,把△中,∠CAB=65°,把△ABC ABC 绕着点A 逆时针旋转到△逆时针旋转到△AB'C'AB'C'AB'C',联结,联结CC'CC',并且使,并且使CC'CC'∥∥AB AB,那么旋转角的度数为,那么旋转角的度数为 度.三、计算题,写出计算过程(本大题共4题,每题6分,满分24分)1919.计算:.计算:+﹣.2020.计算:(.计算:(﹣)22﹣(+)22.2121.计算:﹣.计算:﹣.计算:﹣33÷()(结果表示为含幂的形式).2222.解方程:(.解方程:()33=﹣512512..四、解答题(本大题共5题,满分40分,其中第23、24每题6分,第25、26每题8分,第27题12分)2323.阅读并填空:如图,在△.阅读并填空:如图,在△.阅读并填空:如图,在△ABC ABC 中,点D 、P 、E 分别在边AB AB、、BC BC、、AC 上,且DP DP∥∥AC AC,,PE PE∥∥AB AB.试.试说明∠说明∠DPE=DPE=DPE=∠∠BAC 的理由.解:因为DP DP∥∥AC AC(已知),(已知),所以∠ =∠ ( ).因为PE PE∥∥AB AB(已知),(已知),所以∠ =∠ ( )所以∠所以∠DPE=DPE=DPE=∠∠BAC BAC(等量代换).(等量代换).。

沪科版七年级下册数学期末试题试卷含答案

沪科版七年级下册数学期末试题试卷含答案

沪科版七年级下册数学期末试题试卷含答案上海科技版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.实数中,无理数的个数是()。

A。

1 B。

2 C。

3 D。

42.估计√2+1的值在()之间。

A。

2到3之间 B。

3到4之间 C。

4到5之间 D。

5到6之间3.若a<b,则下列各式中,错误的是()。

A。

a-3<b-3 B。

-a<-b C。

-2a>-2b D。

a<b4.计算(-3a^2)^2的结果是()。

A。

3a^4 B。

-3a^4 C。

9a^4 D。

-9a^45.下列多项式在实数范围内不能因式分解的是()。

A。

x^3+2x B。

a^2+b^2 C。

D。

m^2-4n^26.不等式4-x≤2(3-x)的正整数解有()个。

A。

1个 B。

2个 C。

3个 D。

无数个7.若a^2=9,则a的值为()。

A。

-5 B。

-11 C。

-3或3 D。

±3或±58.把分式中的x和y都扩大3倍,分式的值()。

A。

不变 B。

扩大3倍 C。

缩小3倍 D。

扩大9倍9.多项式12ab^3c+8a^3b的各项公因式是()。

A。

4ab^2 B。

4abc C。

2ab^2 D。

4ab10.若(x^2+px+q)(x-2)展开后不含x的一次项,则p 与q的关系是()。

A。

p=2q B。

q=2p C。

p+2q=0 D。

q+2p=0二、填空题(每小题5分,共20分)11.分解因式:4a^2-25b^2=()。

12.分式的值为1/3,那么x的值为()。

13.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()°。

14.若关于x的分式方程(x+1)/(x-2)+1=1有增根,则m=()。

三、解答题(每小题8分,共16分)15.解不等式组:(略)16.解分式方程:(略)四、计算题(每小题8分,共16分)17.先化简,再求值:(a+1)^2-(a+3)(a-3),其中a=-3.(略)18.如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.1)在网格中画出三角形A1B1C1.2)三角形A1B1C1的面积为()。

沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试题一、选择题(本大题共10小题,每小题4分,共40分) 1、4的平方根是( )A 、2B 、-2C 、±2D 、16 2、下列四个实数中,是无理数的是( ) A 、2 B 、38 C 、103D 、π 3、下列计算正确的是( )A 、326a a a •=B 、()923a a = C 、1055x x x =+ D 、78y y y •= 4、下列分解因式错误..的是( ) A 、2221(1)x x x -+=- B 、())(2-x 2x 422+=-xC 、)12(2-2--=+x x x xD 、243(2)(2)3x x x x x -+=+-+5、不等式2x -6≤0的解集在数轴上表示正确的是( )6、下列说法:(1)同一平面内,两条直线不平行就相交,(2)两条直线被第三条直线所截,同位角相等,(3)过一点有且只有一条直线垂直于已知直线,(4)如果两条直线都和第三条直线平行,那么这两条直线平行.其中错误的说法有( )A 、1个B 、2个C 、3个D 、4个7、已知2()11m n +=,2mn =;则22m n +的值为( ) A 、15 B 、11 C 、7 D 、38、已知am >bm ,m<0;则下面结论中不正确...的是( ) A 、a <b B 、 a >b C 、a bm m> D 、 2am <2bm9、如图,直线AB ∥CD,直线EF 分别交AB 、CD 于点M 、N ;下列各角可以由∠END 通过平移得到的角是( )A 、∠CNFB 、∠AMFC 、∠EMBD 、∠AME10、如图,已知BE ∥C F ,若要AB ∥CD ,则需使( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠1=∠4D 、∠2=∠4二、填空题(本大题共4小题,每小题5分,满分20分) 11、当x 时,分式23x -有意义.F E DCB A N M3F ECB A 42112、PM2.5是雾霾中直径小于或等于2.5μm (1μm =0.000001m )的颗粒物,容易被吸入人的肺部,对人体健康造成影响.2.5μm 用科学记数法表示是______________m. 13、分解因式:a 3b 2-2a 2b 2+ab 2=_______________. 14、已知关于x 的方程1222++=+x x a 的解是负数,那么a 的取值范围是 . 三、(本大题共2小题,每小题8分,满分16分)15. 计算(-2)0-(21)-2 +2-216.化简(2x)2+(6x 3-8x 4) ÷2x 2四、(本大题共2小题,每小题8分,满分16分)17.解不等式组()⎪⎩⎪⎨⎧≤-<+)2....(5)1(21.. (132)x x18.解方程:33122x x x-+=--.五、(本大题共2小题,每小题10分,满分20分) 19、如图,直线AB 、CD 相交于点O ,OE 平分∠DOB ,若∠AOC=40º,求∠AOE 的度数.20、完成下面(1)(2)的画图,回答问题(3)(4) 如图,P 是∠AOB 的边OA 上一点.(1)过点P 画OB 的垂线,垂足为H ; (2)过点P 画OA 的垂线,交OB 于点C ;(3)点O 到直线PC 的距离是线段_______的长度;(4)把线段OP 、PH 和OC 按从小到大用“<”连接:__________________;理由是______________________________.六、(本题满分12分) 21、先化简,再求值:12212122+-+÷-+-+x x x x x x x ,其中3x =O A P DE C B A O七、(本题满分12分) 22. 观察下列等式:⋅⋅⋅⋅⋅⋅+=⨯+=⨯+=⨯;)(,),()(434434332332322122121(1)探索这些等式中的规律,直接写出第n 个等式(用含n 的等式表示); (2)试说明你的结论的正确性。

2016~2017学年第二学期初一数学期末试卷(含答案)

2016~2017学年第二学期初一数学期末试卷(含答案)

2016~2017学年第二学期初一数学期末试卷 2017.6一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填写在题后的括号内) 1.下列运算中,正确的是( )A .22x x x =⋅B .22)(xy xy =C .632)(x x =D .422x x x =+ 2.如果a b <,下列各式中正确的是( ) A .22ac bc < B .11a b > C .33a b ->- D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .5 5.如图,不能判断l 1∥l 2的条件是( )A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠3 6.下列长度的四根木棒,能与长度分别为2cm 和5cm 的木棒构成三角形的是( ) A .3 B .4 C .7 D .107.下列命题是真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若a 2=b 2,则a =b D .同角的余角相等8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE 的依据是( )A .SASB .AASC .HLD .ASA9.若关于x 的不等式组0321x m x -<⎧⎨-≤⎩的所有整数解的和是10,则m 的取值范围是( )A .45m <<B .45m <≤C .45m ≤<D .45m ≤≤(第5题图)(第8题图)(第15题图)(第17题图)10.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则S 5的值为( )A .81 B D .111 二、填空题(本大题共有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在题中的横线上)11.肥皂泡额泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm . 12.分解因式:23105x x -= . 13.若4,9nnx y ==,则()nxy = . 14.内角和是外角和的2倍的多边形是 边形.15.如图,A 、B 两点分别位于一个池塘的两端,C 是AD 的中点,也是BE 的中点,若DE =20米,则AB 的长为____________米.16.若多项式9)1(2+-+x k x 是一个完全平方式,则k 的值为 .17.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =88°,则∠C 的度数为= .18.若二元一次方程组⎩⎨⎧=++=+m y x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为____________.三、解答题(本大题共有8小题,共54分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题共有2小题,满分8分)计算: (1)201701)1()2017()21(---+-π (2)32423)2()(a a a a ÷+⋅-1FDA 20.(本题共有2小题,满分8分)因式分解: (1)a a a +-232 (2)14-x21.(本题共有2小题,满分8分) (1)解方程组:⎩⎨⎧=++=18223y x y x (2)求不等式241312+<--x x 的最大整数解.22.(本题满分5分)先化简,再求值: 22(3)(2)(2)2x x x x +++--,其中1x =-.23.(本题满分5分)已知63=-y x .(1)用含x 的代数式表示y 的形式为 ; (2)若31≤<-y ,求x 的取值范围.24.(本题满分6分)如图,在△ABC 和△DEF 中,已知AB = DE ,BE = CF ,∠B =∠1, 求证:AC ∥DF .25.(本题满分7分)规定两数a ,b 之间的一种运算,记作(a ,b ):如果b a c,错误!未找到引用源。

2016-2017学年沪科版初一数学下册期末测试卷及答案

2016-2017学年沪科版初一数学下册期末测试卷及答案

2016-2017学年七年级(下)期末数学试卷一、选择题1.在实数,,0.101001,中,无理数的个数是()A.0个B.1个C.2个D.3个2.下列图形中,不能通过其中一个四边形平移得到的是()A. B.C.D.3.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C. +=﹣1 D.•=﹣14.某种计算机完成一次基本运算的时间约为0.000000003秒,把数据0.000000003用科学记数法表示为()A.0.3×10﹣8B.0.3×10﹣9C.3×10﹣8D.3×10﹣95.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=26.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠5=∠4 C.∠5+∠3=180°D.∠4+∠2=180°7.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为()A.26cm B.52cm C.78cm D.104cm8.如图,长方形ABCD的周长为16,以长方形四条边为边长向外作四个正方形,若四个正方形面积之和为68,则长方形ABCD的面积为()A.12 B.15 C.18 D.209.观察下列等式:a1=n,a2=1﹣,a3=1﹣,a4=1﹣,…根据其蕴含的规律可得()A.a2016=n B.a2016=C.a2016=D.a2016=10.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6<m≤7 D.3≤m<4二、填空题11.分解因式:2x3﹣8x= .12.若关于x的分式方程=3+有增根,则m的值为.13.把一块三角板的直角顶点放在直尺的边上,如果∠1=28°,那么∠2= .14.定义运算:a⊗b=a(1﹣b),下面给出关于这种运算的几个结论:①2⊗(﹣2)=6;②(a⊗b)﹣(b⊗a)=a﹣b;③若a⊗b=0,则a=0;④若a+b=0,则(a⊗a)+(b⊗b)=2ab,其中一定正确的是(把所有正确结论的序号填在横线上).三、解答题15.计算:()2+(﹣1)2016×(π﹣3)0﹣+()﹣2.16.先化简,再求值:()÷,其中a=2.四、每小题8分,满分16分17.解不等式:﹣>2.18.解分式方程: +=1.五、每小题10分,满分20分19.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.若关于x的方程+=2的解为正数,求m的取值范围.六、本题满分12分21.如图,∠ABD和∠BDC两个角的平分线交于点E,DE的延长线交AB于F.(1)如果∠1+∠2=90°,那么AB与CD平行吗?请说明理由;(2)如果AB∥CD,那么∠2和∠3互余吗?请说明理由.七、本题满分12分22.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.八、本题满分14分23.“端午节”是我国传统佳节,历来有吃粽子的习俗,我市食品加工厂,拥有A、B两条粽子加工生产线,原计划A生产线每小时加工粽子的个数是B生产线每小时加工粽子个数的.(1)若A生产线加工4000个粽子所用的时间与B生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A、B生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A、B生产线每天均加工100个,由于受其他原因影响,在实际加工过程中,A生产线每小时比原计划少加工100个,B生产线每小时比原计划少加工50个,为了尽快将粽子投放到市场,A生产线每天比原计划多加工3小时,B生产线每天比原计划多加工小时,这样每天加工的粽子不少于6300个,求a的最小值.参考答案与试题解析一、选择题1.在实数,,0.101001,中,无理数的个数是()A.0个B.1个C.2个D.3个【考点】无理数.【专题】存在型.【分析】先把化为2的形式,再根据无理数是无限不循环小数进行解答即可.【解答】解:∵ =2,∴在这一组数中无理数有:共一个;、0.101001是分数,是整数,故是有理数.故选B.【点评】本题考查的是无理数的概念,即无限不循环小数为无理数.如π,,0.8080080008…(2016春•扬州期末)下列图形中,不能通过其中一个四边形平移得到的是()A. B.C.D.【考点】生活中的平移现象.【分析】根据平移与旋转的性质得出.【解答】解:A、能通过其中一个四边形平移得到,错误;B、能通过其中一个四边形平移得到,错误;C、能通过其中一个四边形平移得到,错误;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确.故选D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.3.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C. +=﹣1 D.•=﹣1【考点】分式的加减法;幂的乘方与积的乘方;单项式乘单项式;分式的乘除法.【专题】计算题.【分析】A、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式变形后,利用同分母分式的减法法则计算得到结果,即可做出判断;D、原式约分得到结果,即可做出判断.【解答】解:A、原式=8a6,错误;B、原式=﹣3a3b5,错误;C、原式===﹣1,正确;D、原式=•=,错误,故选C【点评】此题考查了分式的加减法,幂的乘方与积的乘方,单项式乘单项式,以及分式的乘除法,熟练掌握运算法则是解本题的关键.4.某种计算机完成一次基本运算的时间约为0.000000003秒,把数据0.000000003用科学记数法表示为()A.0.3×10﹣8B.0.3×10﹣9C.3×10﹣8D.3×10﹣9【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000003=3×10﹣9,故选D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2【考点】由实际问题抽象出分式方程.【分析】设原计划每天修建道路x m,则实际每天修建道路为(1+20%)x m,根据采用新的施工方式,提前2天完成任务,列出方程即可.【解答】解:设原计划每天修建道路x m,则实际每天修建道路为(1+20%)x m,由题意得,﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.6.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠5=∠4 C.∠5+∠3=180°D.∠4+∠2=180°【考点】平行线的判定.【分析】依据平行线的判定定理即可判断.【解答】解:A、已知∠1=∠3,根据内错角相等,两直线平行可以判断,故命题正确;B、不能判断;C、同旁内角互补,两直线平行,可以判断,故命题正确;D、同旁内角互补,两直线平行,可以判断,故命题正确.故选B.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为()A.26cm B.52cm C.78cm D.104cm【考点】勾股定理的应用;一元一次不等式的应用.【分析】设长为3acm,宽为2acm.由题意30+3a+2a≤160,解不等式求出a的最大值,即可解决问题.【解答】解:设长为3acm,宽为2acm.由题意30+3a+2a≤160,解得a≤26,∴a的最大值为26,3a=78,∴该行李箱的长的最大值为78cm,故选C.【点评】本题考查一元一次不等式的应用,解题的关键是学会构建不等式解决实际问题,属于中考常考题型.8.如图,长方形ABCD的周长为16,以长方形四条边为边长向外作四个正方形,若四个正方形面积之和为68,则长方形ABCD的面积为()A.12 B.15 C.18 D.20【考点】完全平方公式的几何背景.【分析】设长方形的长为x,宽为y.依据长方形的周长为16,四个正方形的面积之和为68可得到2x+2y=16,2x2+2y2=68,最后依据完全平方公式进行变形可求得xy的值.【解答】解:设长方形的长为x,宽为y.根据题意可知:2x+2y=16,2x2+2y2=68,所以x+y=8,x2+y2=34.所以64﹣2xy=34.解得:xy=15.所以长方形ABCD的面积为15.故选:B.【点评】本题主要考查的是完全平方公式的应用,依据完全平方公式得到64﹣2xy=34是解题的关键.9.观察下列等式:a1=n,a2=1﹣,a3=1﹣,a4=1﹣,…根据其蕴含的规律可得()A.a2016=n B.a2016=C.a2016=D.a2016=【考点】规律型:数字的变化类.【分析】根据题意分别用含n的式子表示出a1、a2、a3、a4,从而得出数列的循环周期为3,据此即可得解答.【解答】解:∵a1=n,a2=1﹣=1﹣=,a3=1﹣=1﹣=﹣,a4=1﹣=1+n﹣1=n,∴这一列数每3个数为一周期,∵2016÷3=672,∴a2016=a3=﹣=,故选:D.【点评】本题主要考查数字的变化规律,根据已知数列的计算公式得出其循环周期是解题的关键.10.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6<m≤7 D.3≤m<4【考点】一元一次不等式组的整数解.【分析】首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组只有1个整数解即可求得m的范围.【解答】解:,解①得x<m,解②得x≥3.则不等式组的解集是3≤x<m.∵不等式组有4个整数解,∴不等式组的整数解是3,4,5,6.∴6<m≤7.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题11.分解因式:2x3﹣8x= 2x(x﹣2)(x+2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.12.若关于x的分式方程=3+有增根,则m的值为﹣2 .【考点】分式方程的增根.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:2=3x﹣3﹣m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:2=3﹣3﹣m,解得:m=﹣2,故答案为:﹣2【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13.把一块三角板的直角顶点放在直尺的边上,如果∠1=28°,那么∠2= 62°.【考点】平行线的性质.【分析】先根据互为余角的两个角的和等于90°求出∠3的度数,再根据两直线平行,同位角相等解答.【解答】解:如图,∵∠1=28°,∴∠3=90°﹣∠1=90°﹣28°=62°,∵直尺的两边互相平行,∴∠2=∠3=62°.故答案为62°.【点评】本题考查了平行线的性质,熟练掌握两直线平行,同位角相等是解题的关键,对直角三角板和直尺的常识性的了解也很重要.14.定义运算:a⊗b=a(1﹣b),下面给出关于这种运算的几个结论:①2⊗(﹣2)=6;②(a⊗b)﹣(b⊗a)=a﹣b;③若a⊗b=0,则a=0;④若a+b=0,则(a⊗a)+(b⊗b)=2ab,其中一定正确的是①②④(把所有正确结论的序号填在横线上).【考点】有理数的混合运算.【专题】新定义.【分析】原式各项利用题中的新定义计算得到结果,即可作出判断.【解答】解:①原式=2×3=6,正确;②原式=a(1﹣b)﹣b(1﹣a)=a﹣ab﹣b+ab=a﹣b,正确;③根据题意得:a(1﹣b)=0,可得a=0或b=1,错误;④根据题意得:a+b=0,即a=﹣b,则当a=0时,原式=a(1﹣a)+b(1﹣b)=﹣b(1+b)+b(1﹣b)=﹣2b2=2ab,正确,故答案为:①②④【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.三、解答题15.计算:()2+(﹣1)2016×(π﹣3)0﹣+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式利用乘方的意义,立方根定义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=3+1﹣3+9=10.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,再求值:()÷,其中a=2.【考点】分式的化简求值.【专题】计算题.【分析】先对通分,再对a2﹣1分解因式,进行化简.【解答】解:原式===﹣=.∵a=2,∴原式=﹣1.【点评】本题主要考查分式的化简求值.四、每小题8分,满分16分17.解不等式:﹣>2.【考点】解一元一次不等式.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,把x的系数化为1得,x<﹣9.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.18.解分式方程: +=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.五、每小题10分,满分20分19.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.【考点】平方差公式的几何背景.【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a﹣b)=a2﹣b2;(3)从左到右依次利用平方差公式即可求解.【解答】解:(1),S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.【点评】本题考查了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.(10分)(2016春•滁州期末)若关于x的方程+=2的解为正数,求m的取值范围.【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程解为正数,求出m的范围即可.【解答】解:去分母得:2﹣x﹣m=2x﹣4,解得:x=,由分式方程解为正数,得到x>0且x≠2,∴>0,且≠2,解得:m<6且m≠0.【点评】此题考查了分式方程的解,始终注意分式方程分母不为0这个条件.六、本题满分12分21.如图,∠ABD和∠BDC两个角的平分线交于点E,DE的延长线交AB于F.(1)如果∠1+∠2=90°,那么AB与CD平行吗?请说明理由;(2)如果AB∥CD,那么∠2和∠3互余吗?请说明理由.【考点】平行线的判定与性质;余角和补角.【分析】(1)根据平行线的性质可得出∠ABD=2∠2,∠BDC=2∠1,再由∠1+∠2=90°可得出∠ABD+∠BDC=180°,依据“同旁内角互补,两直线平行”即可得出结论;(2))根据平行线的性质可得出∠ABD=2∠2,∠BDC=2∠1,∠EBF=∠2,再由AB∥CD可得出∠ABD+∠BDC=180°,根据角的关系即可得出∠1+∠2=90°,结合直角三角形的性质及等量替换即可得出∠2+∠3=90°,此题得解.【解答】解:(1)平行,理由如下:∵DE平分∠BDC,BE平分∠ABD,∴∠ABD=2∠2,∠BDC=2∠1,∵∠1+∠2=90°,∴∠ABD+∠BDC=2×(∠1+∠2)=180°,∴AB∥CD.(2)互余,理由如下:∵DE平分∠BDC,BE平分∠ABD,∴∠ABD=2∠2,∠BDC=2∠1,∠EBF=∠2,∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠1+∠2=90°,∴∠BED=90°,∠BEF=90°,∴∠EBF+∠3=90°,∴∠2+∠3=90°,即∠2和∠3互余.【点评】本题考查了平行线段的判定及性质、余角和补角以及角的计算,解题的关键是:(1)找出∠ABD+∠BDC=180°;(2)找出∠2+∠3=90°.本题属于中档题,难度不大,解决该题型题目时,牢记平行线的判定及性质是关键.七、本题满分12分22.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.【考点】不等式的解集;解二元一次方程组.【分析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.【解答】解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).八、本题满分14分23.“端午节”是我国传统佳节,历来有吃粽子的习俗,我市食品加工厂,拥有A、B两条粽子加工生产线,原计划A生产线每小时加工粽子的个数是B生产线每小时加工粽子个数的.(1)若A生产线加工4000个粽子所用的时间与B生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A、B生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A、B生产线每天均加工100个,由于受其他原因影响,在实际加工过程中,A生产线每小时比原计划少加工100个,B生产线每小时比原计划少加工50个,为了尽快将粽子投放到市场,A生产线每天比原计划多加工3小时,B生产线每天比原计划多加工小时,这样每天加工的粽子不少于6300个,求a的最小值.【考点】分式方程的应用.【分析】(1)首先根据“原计划A生产线每小时加工粽子个数是B生产线每小时加工粽子个数的”设原计划B生产线每小时加工粽子5x个,则原计划A生产线每小时加工粽子4x个,再根据“A生产线加工4000个粽子所用时间与B生产线加工4000个粽子所用时间之和恰好为18小时”列出方程,再解即可;(2)根据题意可得A加工速度为每小时300个,B的加工速度为每小时450个,根据题意可得A的加工时间为(a+3)小时,B的加工时间为(a+a)小时,再根据每天加工的粽子不少于6300个可得不等式(400﹣100)(a+3)+(500﹣50)(a+a)≥6300,再解不等式可得a的取值范围,然后可确定答案.【解答】解:(1)设原计划B生产线每小时加工粽子5x个,则原计划A生产线每小时加工粽子4x 个,根据题意得+=18,∴x=100,经检验x=100为原分式方程的解∴4x=4×100=400,5x=5×100=500,答:原计划A、B生产线每小时加工粽子各是400、500个;(2)由题意得:(400﹣100)(a+3)+(500﹣50)(a+a)≥6300,解得:a≥6,∴a的最小值为6.【点评】此题主要考查了分式方程和一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系和等量关系,列出方程和不等式.。

沪科版七年级下册数学期末试题试卷及答案

沪科版七年级下册数学期末试题试卷及答案

沪科版七年级下册数学期末考试试卷一、选择题:本题共10小题,每小题3分,共30分.1.(3分)下列图案可以通过一个“基本图形”平移得到的是()A.B.C.D.2.(3分)27的立方根是()A.3 B.﹣3 C.9 D.﹣93.(3分)2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣9米 B.1.2×10﹣8米 C.12×10﹣8米D.1.2×10﹣7米4.(3分)在实数,,0.123123…,π,﹣2中,无理数的个数是()A.1 B.2 C.3 D.45.(3分)不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.6.(3分)下列计算正确的是()A.a3•a2=a6 B.6a2÷2a2=3a2C.x5+x5=x10D.y7•y=y87.(3分)若分式的值为0,则x取值为()A.x=1 B.x=﹣1 C.x=0 D.x=±18.(3分)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+29.(3分)已知(m+n)2=11,mn=2,则(m﹣n)2的值为()A.7 B.5 C.3 D.110.(3分)如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题:本题共4小题,每小题4分,共16分.11.(4分)分解因式y2﹣25=.12.(4分)如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为.13.(4分)如果一个正数的平方根是a+3和2a﹣15,则这个数为.14.(4分)观察下列算式:请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是.三、解答题15.(6分)计算:()﹣1+(﹣2010)0﹣+.16.(7分)画出图A右移4格,再下移4格后的图形,并求出三角形的面积.(每个小正方形的边长都为1)17.(8分)已知:x+y=5,xy=6,求(x﹣4)(y﹣4)的值.18.(8分)已知△ABC中,∠B=70°,CD平分∠ACB,∠2=∠3,求∠1的度数.19.(8分)解不等式组:并在数轴上表示它的解集.20.(10分)化简:()÷21.(12分)“最美女教师”张丽莉舍身救学生的事件发生后,某校的学生们自发的为这位可敬的女教师捐款治病.了解到:第一次捐款总额为20000元,第二次捐款总额为56000元,第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.则该学校第一次有多少人捐款?22.(15分)有一天,李小虎同学用“几何画板”画图,他先画了两条平行线AB、CD,然后在平行线间画了一点E,连接BEDE后(如图①),他用鼠标左键点住点E,拖动后,分别得到如图②、图③、图④等图形,这时他突然一想,∠B、∠D 与∠BED之间的度数有没有某种联系呢?接着小虎同学通过利用“几何画板”的“度量角度”和“计算”的功能,找到了这三个角之间的关系.(1)你能探讨出图①至图④各图中的∠B、∠D与∠BED之间的关系吗?请你写出关系式;(2)请你说明图③所写关系式成立的理由.参考答案与试题解析一、选择题:本题共10小题,每小题3分,共30分.1.(3分)(2017春•固镇县期末)下列图案可以通过一个“基本图形”平移得到的是()A.B.C.D.【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【解答】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选B.【点评】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.2.(3分)(2009•包头)27的立方根是()A.3 B.﹣3 C.9 D.﹣9【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵3的立方等于27,∴27的立方根等于3.故选A.【点评】此题主要考查了求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.3.(3分)(2013•绵阳)2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣9米 B.1.2×10﹣8米 C.12×10﹣8米D.1.2×10﹣7米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)(2017春•固镇县期末)在实数,,0.123123…,π,﹣2中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,π是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.(3分)(2010•潼南县)不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式2x+3≥5的解集是x≥1,大于应向右画,且包括1时,应用点表示,不能用空心的圆圈,表示1这一点,据此可求得不等式的解集以及解集在数轴上的表示.【解答】解:不等式移项,得2x≥5﹣3,合并同类项得2x≥2,系数化1,得x≥1;∵包括1时,应用点表示,不能用空心的圆圈,表示1这一点;故选D.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心圆点,没有等于号的画空心圆圈.6.(3分)(2017春•固镇县期末)下列计算正确的是()A.a3•a2=a6 B.6a2÷2a2=3a2C.x5+x5=x10D.y7•y=y8【分析】根据;同底数幂的乘法,底数不变指数相加;同底数幂的除法,底数不变指数相减;单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式;合并同类项,系数相加字母和字母的指数不变;对各选项计算后利用排除法求解.【解答】解:A、a3•a2=a5;故本选项错误;B、6a2÷2a2=3;故本选项错误;C、x5+x5=2x5;故本选项错误;D、y7•y=y8;故本选项正确.故选:D.【点评】本题考查底数幂的乘法,整式的除法,合并同类项,很容易混淆,一定要记准法则才能做题.7.(3分)(2017春•固镇县期末)若分式的值为0,则x取值为()A.x=1 B.x=﹣1 C.x=0 D.x=±1【分析】分式的值为零需同时具备两个条件:(1)分子为0;(2)分母不为0.【解答】解:由题意,得x2﹣1=0且x﹣1≠0,解得x=﹣1,故选:B.【点评】此题主要考查了分式值为零的条件:是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.8.(3分)(2014•毕节市)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2【分析】A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.【解答】解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(3分)(2017春•固镇县期末)已知(m+n)2=11,mn=2,则(m﹣n)2的值为()A.7 B.5 C.3 D.1【分析】将完全平方式展开,然后根据(m+n)2=11,mn=2,求出m2+n2的值,再整体代入求解.【解答】解:∵(m+n)2=11,mn=2,∴m2+n2+2mn=11,∴m2+n2=11﹣2mn=11﹣4=7,∴(m﹣n)2=m2+n2﹣2mn=7﹣4=3.故选C.【点评】此题主要考查完全平方式的展开式,解此题的关键是学会将(m﹣n)2进行拆分,然后再整体代入,比较简单.10.(3分)(2017春•固镇县期末)如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【分析】根据平行线的性质、角平分线的定义、余角的定义作答.【解答】解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选C.【点评】此题难度中等,需灵活应用平行线的性质、角平分线的定义、余角的定义等知识点.二、填空题:本题共4小题,每小题4分,共16分.11.(4分)(2017春•固镇县期末)分解因式y2﹣25=(y﹣5)(y+5).【分析】利用平方差公式进行分解即可.【解答】解:原式=(y﹣5)(y+5),故答案为:(y﹣5)(y+5).【点评】此题主要考查了运用公式法分解因式,关键是掌握平方差公式a2﹣b2=(a+b)(a﹣b).12.(4分)(2017春•固镇县期末)如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为12°.【分析】根据对顶角的性质、邻补角的性质,可得答案.【解答】解:由对顶角相等,得∠AOD=∠BOC=168°,由邻补角互补,得∠AOC=180°﹣∠AOD=12°,故答案为:12°.【点评】本题考查了对顶角、邻补角,利用对顶角的性质是解题关键.13.(4分)(2017春•固镇县期末)如果一个正数的平方根是a+3和2a﹣15,则这个数为49.【分析】根据正数的平方根有两个,且互为相反数,由此可得a的方程,解方程即可得到a的值;进而可得这个正数的平方根,最后可得这个正数的值.【解答】解:∵一个正数的平方根是a+3和2a﹣15,∴a+3和2a﹣15互为相反数,即(a+3)+(2a﹣15)=0;解得a=4,则a+3=﹣(2a﹣15)=7;则这个数为72=49;故答案为49.【点评】本题考查了平方根的概念,注意一个正数有两个平方根,它们互为相反数.14.(4分)(2017春•固镇县期末)观察下列算式:请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是1﹣x n+1.【分析】用多项式乘以多项式的计算法则计算即可得出答案;根据规律猜想出结果为1﹣x n+1.【解答】解:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3,…,猜想(1﹣x)(1+x+x2+…+x n)=1﹣x n+1.故答案为:1﹣x n+1.【点评】主要考查了平方差公式,学生的归纳总结能力.本题是个阅读材料题,要会从所给出的数列中找到它们的规律.三、解答题15.(6分)(2017春•固镇县期末)计算:()﹣1+(﹣2010)0﹣+.【分析】此题涉及到负整数指数幂,0指数幂,开方,分别根据各个知识点计算出结果,再计算加减法即可.【解答】解:原式=2+1﹣3+3=3.【点评】此题主要考查了负整数指数幂,0指数幂,开方,主要是同学们要准确把握各个知识点.16.(7分)(2017春•固镇县期末)画出图A右移4格,再下移4格后的图形,并求出三角形的面积.(每个小正方形的边长都为1)【分析】根据平移的知识,先把三角形的各个顶点先向右平移四格,再向下平移四格即可,并求出三角形的面积.【解答】解:作图如右:三角形的面积为×6×2=6.【点评】本题主要考查了作图﹣平移变换的知识,解题的关键是掌握平移不改变图象的大小和形状,平移只会改变图象的位置,此题难度不大.17.(8分)(2017春•固镇县期末)已知:x+y=5,xy=6,求(x﹣4)(y﹣4)的值.【分析】(x﹣4)(y﹣4)根据多项式乘多项式的计算法则计算,再把x+y=5,xy=6代入计算即可求解.【解答】解:∵x+y=5,xy=6,∴(x﹣4)(y﹣4)=xy﹣4(x+y)+16=6﹣20+16=2.【点评】考查了多项式乘多项式,关键是熟练掌握计算法则正确进行计算.18.(8分)(2017春•固镇县期末)已知△ABC中,∠B=70°,CD平分∠ACB,∠2=∠3,求∠1的度数.【分析】利用角平分线的性质可得∠3=∠DCB,等量代换得∠2=∠DCB,利用内错角相等,两直线平行判定DE∥BC,利用两直线平行,同位角相等即可求此角.【解答】解:CD平分∠ACB,∴∠3=∠DCB(角平分线定义).∵∠2=∠3(已知),∴∠2=∠DCB(等量代换).∴DE∥BC(内错角相等,两直线平行),∴∠1=∠B=70°(两直线平行,同位角相等).【点评】本题主要考查了平行线的判定和性质,比较简单.19.(8分)(2017春•固镇县期末)解不等式组:并在数轴上表示它的解集.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得:x<2,由②得:x>﹣1,在数轴上表示如下:所以不等式组的解集为﹣1<x<2.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.(10分)(2016•东莞市校级三模)化简:()÷【分析】本题须先对分母进行因式分解,再利用乘法的分配律分别相乘即可求出结果.【解答】解:原式===1.【点评】本题主要考查了分式的混合运算,解题时要注意运算顺序和简便方法的应用.21.(12分)(2017春•固镇县期末)“最美女教师”张丽莉舍身救学生的事件发生后,某校的学生们自发的为这位可敬的女教师捐款治病.了解到:第一次捐款总额为20000元,第二次捐款总额为56000元,第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.则该学校第一次有多少人捐款?【分析】关键描述语为:“人均捐款额比第一次多20元”;等量关系为:第二次人均捐款数﹣第一次人均捐款数=20.【解答】解:设该学校第一次有x人捐款.由题意可列方程:,解得:x=400,经检验:x=400时2x≠0,x≠0,所以x=400是方程的根,答:学校第一次有400人捐款.【点评】此题主要考查了分式方程的应用,列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.22.(15分)(2017春•固镇县期末)有一天,李小虎同学用“几何画板”画图,他先画了两条平行线AB、CD,然后在平行线间画了一点E,连接BEDE后(如图①),他用鼠标左键点住点E,拖动后,分别得到如图②、图③、图④等图形,这时他突然一想,∠B、∠D与∠BED之间的度数有没有某种联系呢?接着小虎同学通过利用“几何画板”的“度量角度”和“计算”的功能,找到了这三个角之间的关系.(1)你能探讨出图①至图④各图中的∠B、∠D与∠BED之间的关系吗?请你写出关系式;(2)请你说明图③所写关系式成立的理由.【分析】(1)根据两直线平行,内错角相等,两直线平行解答;(2)选择③,过点E作EF∥AB,根据两直线平行,内错角相等可得∠D=∠DEF,∠B=∠BEF,再根据∠BED=∠DEF﹣∠BEF整理即可得证.【解答】解:(1)①∠B+∠D=∠BED;②∠B+∠D+∠BED=360°;③∠BED=∠D﹣∠B;④∠BED=∠B﹣∠D;(2)选图③.过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∠B=∠BEF,又∵∠BED=∠DEF﹣∠BEF,∴∠BED=∠D﹣∠B.【点评】本题考查了平行线的性质,此类题目解题关键在于过拐点作平行线.。

沪科版数学七年级下册《期末试卷》(3套版附答案)

沪科版数学七年级下册《期末试卷》(3套版附答案)

沪科版数学七年级下册《期末试卷》(3套版附答案)一、选择题:本大题共10小题,每小题3分,共30分.每小题都给出A 、B 、G 、D 的四个选项,其中只有一个是正确的1.如果a >b ,那么下列结论一定正确的是()A .a -3<b -3B .3-a >3-bC .33ab -<- D .-3a >-3b2.下列实数中,是有理数的是()AB .2.020020002 CD . 14π 3.下列调查中,最适合采用全面调查(普查)的是()A .对“神州十一号”载人飞船各零部件质量检查B .长江铜陵段水质检测C .了解某批次节能灯的使用寿命D .了解热播电视剧《人民的名义》的收视率4.在平面直角坐标系内,点P (2m+1,m -3)不可能在()A .第一象限B .第二象限C .第三象限D .第四象限5.如果3a -21和2a+1是正实数m的值为()A .2B .3C .4D .96.不等式组10420x x -??->?…的解集在数轴上表示为() A . B . C . D .学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……7.关于x、y的二元一次方程组123x y mx y+=++=中,未知数x、y满足x+y>-3,则m的取值范围是()A.m≥-4B.m>-4C.m<-4D.m≤-48.如图,点E在BC延长线上,下列条件中,不能推断AB∥CD 的是()A.∠4=∠3B.∠1=∠2C.∠B=∠5D.∠B+∠BCD=180°9.根据图中提供的信息,可知一个杯子的价格是()A.51元B.35元C.8元D.7.5元10.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN 的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)11.若点P(a,b)在第四象限,则点M(b-a,a-b)在第象限.12.一个样本容量为80的抽样数据中,其最大值为157,最小值为76,若确定组距为10,则这80个数据应分成组.13.如图,△ABC中,∠ACB=90°,CD⊥AB于D,则点A到直线BC的距离是线段的长.14.若关于x 、y 的二元一次方程组254x my x ny +=??-=?的解是35x y =??=?,则关于s 、t 的二元一次方程组2()()5()()4s t m s t s t n s t ++-=??+--=?的解是.15.如图所示,直线BC 经过原点O ,点A 在x 轴上,AD ⊥BC 于D ,若B (m ,3),C (n ,-5),A (4,0),则AD?BC= .16.已知不等式组153x a x a <三、解答题(本大题共6小题,共52分)17.(1)计算:211|2|9??-+-;(2)解二元一次方程23123417x y x y +=??+=?. 18.(1)解不等式6-2(x+1)≤3(x -2).(2)解不等式组3(2)421152x x x x -+??-?-(1)请在网格平面内作出平面直角坐标系;(2)将△ABC平移至△DEF,使得A、B、C的对应点依次是D、E、F,已知D(2,3),请在网格中作出△DEF;(3)若Q(a,b)是△DEF内一点,则△ABC内点Q的对应点点P的坐标是(用a、b表示)20.为丰富学生课余生活,我校准备开设兴趣课堂.为了了解学生对绘画、书法、舞蹈、乐器这四个兴趣小组的喜爱情况,在全校进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息尚不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中乐器部分的圆心角的度数;(3)如果我校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的25名学生,估计书法兴趣小组至少需要准备多少名教师?21.某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是100元.(1)每辆大车、小车的租车费用各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?哪种租车方案最省钱?组卷:0真题:1难度:0.40解析收藏相似题下载试题篮22.△AOB 中,∠AOB=90°,以顶点O 为原点,分别以OA 、OB 所在直线为x 轴、y 轴建立平面直角坐标系(如图),点A (a ,0),B (0,b +|a -2|=0(1)点A 的坐标为;点B 的坐标为.(2)如图①,已知坐标轴上有两动点D 、E 同时出发,点D 从A 点出发沿x 轴负方向以每秒1个单位长度的速度匀速移动,点E 从O 点出发以每秒2个单位长度的速度沿y 轴正方向移动,点E 到达B 点时运动结束,AB 的中点C 的坐标是(1,2),设运动时间为t (t >0)秒,问:是否存在这样的t ,使S △OCD=S △OCE ?若存在,请求出t 的值:若不存在,请说明理由.(3)如图②,点F 是线段AB 上一点,满足∠FOA=∠FAO ,点G 是第二象限中一点,连OG 使得∠BOG=∠BOF ,点P 是线段OB 上一动点,连AP 交OF 于点Q ,当点P 在线段OB 上运动的过程中,OQA BAP k OPA∠+∠=∠的值是否会发生变化?若不变,请求出k 的值;若变化,请说明理由.参考答案与解析一、选择题:本大题共10小题,每小题3分,共30分.每小题都给出A、B、G、D的四个选项,其中只有一个是正确的1.【分析】根据不等式的性质逐项分析即可.【解答】解:A、不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误;B、不等式两边乘(或除以)同一个负数,不等号的方向改变,不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,故本选项正确;D、不等式两边乘(或除以)同一个负数,不等号方向改变.故本选项错误.故选:C.【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.【分析】根据有理数和无理数的定义可得答案.【解答】14是无理数,2.020020002是有理数.故选:B.【点评】本题考查了实数,有理数是有限小数或无限循环小数,无理数是无限不循环小数.3.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对“神州十一号”载人飞船各零部件质量检查,适合普查,故A符合题意;B、对长江铜陵段水质检测,调查范围广,适合抽样调查,故B不符合题意;C、对某批次节能灯的使用寿命的调查,调查具有普坏性,适合抽样调查,故C不符合题意;D、对热播电视剧《人民的名义》的收视率,调查范围广,适合抽样调查,故D不符合题意;故选:A.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【分析】直接利用四个象限内点的坐标特点分析得出答案即可.【解答】解:假设点P在第一象限,则,解得m>3,故点P(2m+1,m-3)可能在第一象限;假设点P在第而象限,则,该不等式组无解,故点P(2m+1,m-3)不可能在第二象限;假设点P在第三象限,则,解得m<?,故点P(2m+1,m-3)可能在第三象限;假设点P在第四象限,则,解得:故点P(2m+1,m-3)可能在第四象限;故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.分析】根据正数有两个平方根,且互为相反数,求出m的值,即可求出所求.【解答】解:根据题意得:3a-21+2a+1=0,解得:a=4,∴m=(12-21)2=81,,故选:D.【点评】此题考查了算术平方根,以及平方根,熟练掌握各自的定义是解本题的关键.6.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:由x-1≥0,得x≥1,由4-2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.【点评】考查了解一元一次不等式组,在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【分析】解方程组求出221x my m=-=-,代入x+y>-3得出关于m的不等式,解之可得答案.【解答】解:解方程组123x y mx y+=++=得221x my m=-=-,∵x+y>-3,∴2-m+2m-1>-3,解得m>-4,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠3=∠4,∴AD∥BC,故本选项错误;B、∵∠1=∠2,∴AB∥CD,故本选项正确;C、∵∠B=∠5,∴AB∥CD,故本选项正确;D、∵∠B+∠BCD=180°,∴AB∥CD,故本选项正确.故选:A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.9.【分析】要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.【解答】解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选:C.【点评】此题的关键是如何把左图中一杯一壶的已知量用到右图中,这就要找规律,仔细看不难发现,右图是左图的2倍+一个杯子.10.【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选:B.【点评】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】应先判断出所求的点的横纵坐标的符号,进而判断所在的象限.【解答】解:∵点P(a,b)在第四象限,∴a>0,b<0,∴b-a<0,a-b>0,∴点M(b-a,a-b)在第二象限.故填:二.【点评】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.【分析】根据分组数的确定方法:组距=(最大值-最小值)÷组数计算.【解答】解:(157-76)÷10=8.1,∴这80个数据应分9组,故答案为:9.。

沪科版七年级(下)期末数学试卷含答案[1]

沪科版七年级(下)期末数学试卷含答案[1]

-1 -2中七年级数学试卷一填空题(每题3分,共30分)1.如果a的平方根是4±,那么a=.2.一种病毒的直径是0。

000 000 12m ,用科学计数法表示为m.3. 比较大小:12-。

4。

关于x的某个不等式组的解集在数轴上表示为:(如下图)则原不等式组的解集是。

5.不等式组1023xx+≥⎧⎨+<⎩的整数解是。

得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为沪科版七年级(下)期末数学试卷含答案(word版可编辑修改)的全部内容。

得分得分评卷人4321DC BA 21abc6。

若∠1和∠2是对顶角,∠1=25°,则∠2的余角是 °. 7. 分解因式:34m m -= 。

8。

如下图,直线a 、b 被直线c 所截,且a ∥b ,若∠2=38°,则∠1的度数是 °.9。

当x 时,分式24xx -有意义。

10. 某住宅小区5月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区5月份的总用水量约是 吨。

二 选择题(每小题3分)11。

已知,如右图AB ∥CD ,可以得到( )A 。

∠1=∠2B 。

∠2=∠3C 。

∠1=∠4 D.∠3=∠412.在223.14,,7π这五个数中,无理数的个数是 ( ) A. 1个 B 。

2个 C 。

3个 D 。

4个13。

已知a b <则下列各式正确的是 ( ) A. a b <- B 。

33a b ->- C. 22a b < D. 33a b ->-14。

下列计算中,正确的个数是 ( )①347x x x += ②33623y y y ⋅= ③ 538()()a b a b ⎡⎤+=+⎣⎦④2363()a b a b = A. 1个 B 。

2个 C 。

3个 D 。

4个15。

32-与32 的关系是 ( )342ab1A. 互为倒数 B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年七年级下学期期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列图案可以通过一个“基本图形”平移得到的是()A.B.C.D.2.9的平方根为()A.3B.﹣3 C.±3 D.3.代数式(﹣4a)2的值是()A.16a B.4a2C.﹣4a2D.16a24.下面四个图形中∠1与∠2是对顶角的是()A.B.C.D.5.如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.a c2>bc2D.a2>b26.下列说法正确的是()A.﹣2是﹣8的立方根B.9的立方根是3C.﹣3是(﹣3)2的算术平方根D.8的算术平方根是27.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角8.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤C.n≤D.n≤9.如果不等式2x﹣m<0只有三个正整数解,那么m的取值范围是()A.m<8 B.m≥6 C.6<m≤8 D.6≤m<810.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n二、填空题(本题共8小题,每小题3分,满分24分)11.写出一个3到4之间的无理数.12.分解因式4x2﹣100=.13.计算:(14x3﹣21x2+7x)÷7x的结果是.14.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有条.15.若分式的值为0,则x的值等于.16.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.17.已知关于x的方程的解是正数,则m的取值范围是.18.下列结论中:①a2•a4=a8;②1010÷105=102;③(x2)5=x7;④(3×2﹣12÷2)0=1;⑤平移只改变图形的位置,不改变图形的形状和大小;⑥垂直于同一条直线的两条直线互相平行,所有正确结论的序号有.三、解答题(本题共8小题,满分66分)19.计算:+﹣﹣2﹣3.20.解不等式组:,并将解集在数轴上表示出来.21.计算:(a+b)2+(a﹣b)(2a+b)﹣3(a+b)(a﹣b)22.先化简(﹣)÷﹣+1,再从﹣2≤x≤2的整数中任选一个你喜欢的x值代入求值.23.将如图所示的三角形ABC,先水平向右平移5格得三角形DEF,再竖直向下平移4格得到三角形GHQ,作出这两个三角形,并标上字母.24.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.【解】∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB∥()∴∠BAC+=180°()又∵∠BAC=70°(已知)∴∠AGD=()25.在边长为a的正方形中减掉一个边长为b的小正方形(a>b)把余下的部分再剪拼成一个长方形.(1)如图1,阴影部分的面积是:;(2)如图2,是把图1重新剪拼成的一个长方形,阴影部分的面积是;(3)比较两阴影部分面积,可以得到一个公式是;(4)运用你所得到的公式,计算:99.8×100.2.26.我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?2016-2017学年七年级下学期期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列图案可以通过一个“基本图形”平移得到的是()A.B.C.D.考点:利用平移设计图案.分析:根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.解答:解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选B.点评:本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.2.9的平方根为()A.3B.﹣3 C.±3 D.考点:平方根.专题:计算题.分析:根据平方根的定义求解即可,注意一个正数的平方根有两个.解答:解:9的平方根有:=±3.故选C.点评:此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.3.代数式(﹣4a)2的值是()A.16a B.4a2C.﹣4a2D.16a2考点:幂的乘方与积的乘方.分析:根据积的乘方即可解答.解答:解:(﹣4a)2=16a2,故选:D.点评:本题考查了积的乘方,解决本题的关键是熟记积的乘方法则.4.下面四个图形中∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义作出判断即可.解答:解:根据对顶角的定义可知:只有C图中的是对顶角,其它都不是.故选:C.点评:本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.5.如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.a c2>bc2D.a2>b2考点:不等式的性质.专题:计算题.分析:根据不等式的基本性质可知:a﹣3>b﹣3;3﹣a<3﹣b;当c=0时ac2>bc2不成立;当0>a >b时,a2>b2不成立.解答:解:∵a>b,∴﹣a<﹣b,∴3﹣a<3﹣b;故本题选B.点评:主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.下列说法正确的是()A.﹣2是﹣8的立方根B.9的立方根是3C.﹣3是(﹣3)2的算术平方根D.8的算术平方根是2考点:立方根;算术平方根.专题:计算题.分析:利用立方根及算术平方根的定义判断即可.解答:解:A、﹣2是﹣8的立方根,正确;B、9的立方根为,错误;C、3是(﹣3)2的算术平方根,错误;D、8的算术平方根为2,错误,故选A点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.7.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角考点:同位角、内错角、同旁内角.分析:根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.解答:解:A、∠A与∠B是同旁内角,说法正确;B、∠3与∠1是同旁内角,说法正确;C、∠2与∠3是内错角,说法正确;D、∠1与∠2是邻补角,原题说法错误,故选:D.点评:此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤C.n≤D.n≤考点:一元一次不等式的应用.分析:根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.解答:解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)﹣1≥0,去括号得:1﹣n%+m%﹣﹣1≥0,整理得:100n+mn≤100m,故n≤.故选:B.点评:此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.9.如果不等式2x﹣m<0只有三个正整数解,那么m的取值范围是()A.m<8 B.m≥6 C.6<m≤8 D.6≤m<8考点:一元一次不等式的整数解.分析:先求出不等式的解集,根据已知得出关于m的不等式组,求出不等式组的解集即可.解答:解:2x﹣m<0,2x<m,x<,∵不等式2x﹣m<0只有三个正整数解,∴3<≤4,∴6<m≤8,故选C.点评:本题考查了解一元一次不等式,一元一次不等式组的整数解的应用,能得出关于m的不等式组是解此题的关键.10.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n考点:平方差公式;多项式乘多项式.专题:规律型.分析:已知各项利用多项式乘以多项式法则计算,归纳总结得到一般性规律,即可得到结果.解答:解:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3,…,依此类推(1﹣x)(1+x+x2+…+x n)=1﹣x n+1,故选:A点评:此题考查了平方差公式,多项式乘多项式,找出规律是解本题的关键.二、填空题(本题共8小题,每小题3分,满分24分)11.写出一个3到4之间的无理数π.考点:估算无理数的大小.专题:开放型.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解答:解:3到4之间的无理数π.答案不唯一.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.12.分解因式4x2﹣100=4(x+5)(x﹣5).考点:提公因式法与公式法的综合运用.分析:首先提取公因式4,进而利用平方差公式分解因式即可.解答:解:4x2﹣100=4(x2﹣25)=4(x+5)(x﹣5).故答案为:4(x+5)(x﹣5).点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.13.计算:(14x3﹣21x2+7x)÷7x的结果是2x2﹣3x+1.考点:整式的除法.分析:把这个多项式的每一项分别除以单项式,再把所得的商相加减求解.解答:解:(14x3﹣21x2+7x)÷7x=14x3÷7x﹣21x2÷7x+7x÷7x,=2x2﹣3x+1.故答案为:2x2﹣3x+1.点评:本题主要考查了整式的除法,解题的关键是把这个多项式的每一项分别除以单项式,再把所得的商相加减.14.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有5条.考点:点到直线的距离.分析:根据点到直线距离的定义对各选项进行逐一分析即可.解答:解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故答案为:5.点评:本题考查了点到直线的距离的概念,解题的关键在于熟记定义.15.若分式的值为0,则x的值等于1.考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.点评:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.考点:分式方程的解.分析:首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.解答:解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.点评:本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.18.下列结论中:①a2•a4=a8;②1010÷105=102;③(x2)5=x7;④(3×2﹣12÷2)0=1;⑤平移只改变图形的位置,不改变图形的形状和大小;⑥垂直于同一条直线的两条直线互相平行,所有正确结论的序号有⑤.考点:平行线的判定;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;零指数幂;平移的性质.分析:根据平行线的判定定理,同底数幂的乘法和除法的法则,幂的乘方与积的乘方的法则,平移的性质,零指数幂的性质逐一进行判断即可.解答:解:①a2•a4=a6;故此选项错误;②1010÷105=105;故此选项错误;③(x2)5=x10;故此选项错误;④(3×2﹣12÷2)0;此算式无意义,故此选项错误;⑤平移只改变图形的位置,不改变图形的形状和大小;故此选项正确;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,故此选项错误;故答案为:⑤.点评:本题考查了平行线的判定,同底数幂的乘法和除法,幂的乘方与积的乘方,平移,零指数幂,熟记各性质和法则是解题的关键.三、解答题(本题共8小题,满分66分)19.计算:+﹣﹣2﹣3.考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用立方根定义计算,第二、三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=2+0﹣﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组:,并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题考查不等式组的解法,首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.解答:解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.在数轴上可表示为:.点评:本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.21.计算:(a+b)2+(a﹣b)(2a+b)﹣3(a+b)(a﹣b)考点:整式的混合运算.专题:计算题.分析:原式利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.解答:解:原式=a2+2ab+b2+2a2+ab﹣2ab﹣b2﹣3a2+3b2=ab+3b2.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.先化简(﹣)÷﹣+1,再从﹣2≤x≤2的整数中任选一个你喜欢的x值代入求值.考点:分式的化简求值.分析:先化简,再把x=2代入求值.解答:解:(﹣)÷﹣+1=[﹣]×﹣+1,=×﹣+1,=﹣+1,=,当x=2时,原式==.点评:本题主要考查了分式的化简求值,解题的关键是正确的化简.23.将如图所示的三角形ABC,先水平向右平移5格得三角形DEF,再竖直向下平移4格得到三角形GHQ,作出这两个三角形,并标上字母.考点:作图-平移变换.分析:直接根据图形平移的性质画出△DEF与△GHQ即可.解答:解:如图所示.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.【解】∵EF∥AD(已知)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB∥DG(内错角相等,两直线平行)∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)又∵∠BAC=70°(已知)∴∠AGD=100°(等式性质)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质求出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB∥DG,根据平行线的性质得出∠BAC+∠AGD=180°,代入求出即可.解答:解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=100°(等式性质),故答案为:∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,100°,等式性质.点评:本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.25.在边长为a的正方形中减掉一个边长为b的小正方形(a>b)把余下的部分再剪拼成一个长方形.(1)如图1,阴影部分的面积是:a2﹣b2;(2)如图2,是把图1重新剪拼成的一个长方形,阴影部分的面积是(a+b)(a﹣b);(3)比较两阴影部分面积,可以得到一个公式是(a+b)(a﹣b)=a2﹣b2;(4)运用你所得到的公式,计算:99.8×100.2.考点:平方差公式的几何背景.分析:(1)大正方形与小正方形的面积的差就是阴影部分的面积;(2)根据矩形的面积公式求解;(3)根据两个图形的面积相等即可得到公式;(4)利用(3)的公式即可直接求解.解答:解:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2;(4)原式=(100﹣0.2)(100+0.2)=1002﹣0.22=10000﹣0.04=9999.96.点评:本题考查了平方差公式的几何解释,根据阴影部分的面积相等列出面积的表达式是解题的关键.26.我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.解答:解:(1)设今年5月份A款汽车每辆售价x万元.根据题意得:=,解得:x=9,经检验知,x=9是原方程的解.所以今年5月份A款汽车每辆售价9万元.(2)设A款汽车购进y辆.则B款汽车每辆购进(15﹣y)辆.根据题意得:解得:6≤y≤10,所以有5种方案:方案一:A款汽车购进6辆;B款汽车购进9辆;方案二:A款汽车购进7辆;B款汽车购进8辆;方案三:A款汽车购进8辆;B款汽车购进7辆;方案四:A款汽车购进9辆;B款汽车购进6辆;方案五:A款汽车购进10辆;B款汽车购进5辆.(3)设利润为W则:W=(8﹣6)×(15﹣y)﹣a(15﹣y)+(9﹣7.5)y=30﹣2y﹣a(15﹣y)+1.5y=30﹣a(15﹣y)﹣0.5y方案一:W=30﹣a(15﹣6)﹣0.5×6=30﹣9a﹣3=27﹣9a方案二:W=30﹣a(15﹣7)﹣0.5×7=30﹣8a﹣3.5=26.5﹣8a方案三:W=30﹣a(15﹣8)﹣0.5×8=30﹣7a﹣4=26﹣7a方案四:W=30﹣a(15﹣9)﹣0.5×9=30﹣6a﹣4.5=25.5﹣6a方案五:W=30﹣a(15﹣10)﹣0.5×10=30﹣5a﹣5=25﹣5a由27﹣9a=26.5﹣8a 得a=0.5方案一对公司更有利.点评:本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。

相关文档
最新文档