高一数学试题

合集下载

高一数学试题及答案

高一数学试题及答案

高一数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|在x=0处的极限值?A. 1B. 0C. 2D. 不存在2. 已知函数f(x) = 3x^2 - 2x + 1,求f(2)的值。

A. 10B. 11C. 12D. 133. 若a、b为等差数列的连续项,且a+b=10,而a与b的倒数之和为\(\frac{2}{5}\),则a的值为:A. 1B. 2C. 3D. 44. 一个圆的半径为5cm,求该圆的面积(圆周率取3.14)。

A. 78.5平方厘米B. 85平方厘米C. 90平方厘米D. 95平方厘米5. 已知一个等比数列的前三项分别为2, 6, 18,求该数列的公比。

A. 2B. 3C. 4D. 66. 若x满足方程x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. 1, 4C. 1, 6D. 3, 47. 直线y = 2x + 3与x轴的交点坐标为:A. (-1.5, 0)B. (1.5, 0)C. (-3, 0)D. (3, 0)8. 已知一个三角形的三边长分别为3cm, 4cm, 5cm,该三角形的面积是多少?A. 6平方厘米B. 7.5平方厘米C. 9平方厘米D. 12平方厘米9. 函数y = |2x - 3|与x轴所围成的图形面积为:A. 2B. 3C. 4D. 610. 若a, b, c是等差数列,且a + c = 2b,若b = 5,则a + c的值为:A. 5B. 10C. 15D. 20二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2) = ______。

12. 一个圆的直径为10cm,求该圆的周长(圆周率取3.14)为______。

13. 已知等比数列的前两项为3和9,求该数列的第四项为______。

14. 若x和y满足方程组\(\begin{cases} 2x + y = 8 \\ x - y = 2 \end{cases}\),求x的值为______。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.在△ABC中,若a =" 2" ,, , 则B等于()A.B.或C.D.或【答案】B【解析】由正弦定理得,由于是三角形的内角,或,符合大边对大角.【考点】正弦定理的应用.2.已知ABC的重心为G,内角A,B,C的对边分别为a,b,c,若,则角A为()A.B.C.D.【答案】A【解析】由于是的重心,,.代入得由于不共线,【考点】平面向量共线定理和余弦定理的应用.3.等差数列的通项公式,设数列,其前n项和为,则等于A.B.C.D.以上都不对【答案】A【解析】由题意得====【考点】裂项抵消法求数列的前项和4.等于()A.B.C.D.【解析】,故选A.【考点】诱导公式.5.在等差数列中,若,则等于A.45B.75C.180D.300【答案】C【解析】解:∵a3+a4+a5+a6+a7=450,∴5a5=450∴a5=90∴a1+a9=2a5=180,故选C..【考点】等差数列的性质.6.若定义在区间上的函数满足:对于任意的,都有,且时,有,的最大值、最小值分别为,则的值为( )A.2012B.2013C.4024D.4026【答案】C【解析】设,,,,即所以是单调递增函数,其最大值和最小值是,,令代入得:,得,所以,,故选C.【考点】抽象函数7.设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是 ( )A.①和②B.②和③C.③和④D.①和④【答案】A【解析】因为平行于同一个平面的两条直线可能相交,也可能异面所以命题②不正确;垂直于同一个平面的两个平面有可能是相交的,所以命题③也不正确.故选A【考点】1、线面平行的性质与判定;2、线面垂直的判定与性质.8.设a,b,c,均为正数,且则( )A.B.C.D.【答案】C【解析】由考虑函数与图像,可知交点横坐标大于1,即c>1.由得,,即,所以0<<1,由得,,所以0<b<1.,.由,即(*).i)当时(*)式左边为负,右边为正,所以不成立;ii)时,(*)式左边为0,右边不为0,所以不成立;所以<1.综上.【考点】本题中通过函数的特殊性选出C最大.通过求差的方法结合对数函数和指数函数的范围比较可得.9. A为△ABC的内角,且A为锐角,则的取值范围是()A.B.C.D.【答案】C【解析】∵,又A为锐角,∴,∴,∴,即的取值范围是,故选C【考点】本题考查了三角函数的值域问题点评:求解三角函数的最值问题,一般都要经过三角恒等变换,转化为y=Asin(ωx+Φ)型等,然后根据基本函数y=sinx等相关的性质进行求解10.在△ABC中,如果,那么cos C等于()【答案】D【解析】∵,∴a:b:c=2:3:4,∴,故选D【考点】本题考查了正余弦定理的综合运用点评:熟练掌握正余弦定理及其变形是解决此类问题的关键,属基础题11.将的图象向左平移个单位,得到的图象,则等于 ( ) A.B.C.D.【答案】D【解析】将的图象向左平移个单位,得到函数的图象,即,所以等于,故选D。

重庆高一数学试题及答案

重庆高一数学试题及答案

重庆高一数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)答案:C2. 已知函数f(x) = 2x + 1,求f(-1)的值:A. -1B. 1C. 3D. -3答案:A3. 如果一个数列的前三项为1,2,4,那么第四项是:A. 8B. 6C. 7D. 5答案:A4. 圆的方程为(x-2)^2 + (y-3)^2 = 9,圆心坐标为:A. (2, 3)C. (0, 0)D. (3, 2)答案:A5. 计算下列极限:lim(x→0) [sin(x)/x] 的值是:A. 0B. 1C. ∞D. -1答案:B6. 已知等差数列的第二项为5,第五项为14,求首项a1:A. 1B. 2C. 3D. 4答案:B7. 函数y = 3x^2 - 2x + 1的图像关于:A. y轴对称B. x轴对称C. 直线x = 1对称D. 原点对称答案:C8. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B:B. {2, 3}C. {1, 4}D. {3, 4}答案:B9. 计算复数z = 1 + i的模长:A. √2B. 2C. 1D. √1答案:A10. 函数f(x) = x^2 - 4x + 3的最小值是:A. -1B. 3C. 1D. 0答案:A二、填空题(每题4分,共20分)11. 函数f(x) = x^2 - 6x + 9的顶点坐标为______。

答案:(3, 0)12. 已知等比数列的前三项为2,6,18,求第四项。

答案:5413. 圆的直径为10,求该圆的面积。

答案:25π14. 已知向量a = (3, -4),b = (-1, 2),求向量a与b的点积。

答案:-1415. 计算定积分∫(0到1) x^2 dx的值。

答案:1/3三、解答题(每题10分,共50分)16. 解方程:2x^2 - 5x + 2 = 0。

高一新生入学考试数学试题及答案

高一新生入学考试数学试题及答案

高一新生入学考试数学试题及答案
一、选择题
1.若二次函数y = ax^2 + bx + c的图像开口向上,且经过点(-1, 4),则a,
b, c的符号关系是:
A. a > 0, b < 0, c > 0
B. a > 0, b < 0, c < 0
C. a > 0, b > 0, c > 0
D. a > 0, b > 0, c < 0
解答:由题意可知,二次函数的图像开口向上,所以a > 0。

又因为经过点(-1, 4),代入得4 = a(-1)^2 + b(-1) + c,化简得a - b + c = 4。

由于a > 0,所以a的系数为正,所以b的系数b为负。

而c则有可能是正数或负数,所以选项A和B均可以排除。

综上所述,答案为选项D。

二、填空题
1.解方程2x + 5 = 3 - x的解为x = ______。

解答:将方程化简得3x + 5 = 3,然后移项得3x = -2,最后除以3得x = -2/3。

所以方程的解为x = -2/3。

三、解答题
1.已知函数y = x^2 - 2x + 1。

求函数在x = 1处的切线方程。

解答:首先求得函数的导数为y' = 2x - 2。

然后代入x = 1得y' = 2(1) - 2 = 0。

所以函数在x = 1处的切线斜率为0。

由于切线经过点(1, 0),所以切线方程为y - 0 = 0(x - 1),即y = 0。

所以函数在x = 1处的切线方程为y = 0。

高一数学试题及答案

高一数学试题及答案

高一数学试题及答案注意事项:在答题卡的密封线内填写班别、姓名、考号。

选择题用2B铅笔涂黑答题卡上对应题目的答案标号,非选择题用黑色字迹的钢笔或签字笔作答,写在答题卷指定区域内。

不按要求作答的答案无效。

一、选择题1.已知U={1,3,5,7,9},A={3,5},则C_U^A={1,7,9}。

2.已知集合P={x|x<2},Q={x|-1≤x≤3},则P∪Q={x|-1≤x<2}。

3.已知函数f(x)=2x,则f(1+x)=2+2x。

4.在区间(0,∞)上为增函数的是y=x^2.5.运行程序框图输出的结果是38.6.设x是函数f(x)=lnx+x-4的零点,则x所在的区间为(3,4)。

7.已知函数f(x)={2x,x>1;x+1,x≤1},f(a)+f(1)=3,则a=1.8.如果a>1,b<-1,则函数f(x)=ax+b的图像经过第二、三、四象限。

9.已知函数f(x)=(x-a)(x-b),若f(x)的图象如图B所示,则函数g(x)=ax+b的图象是图C。

二、改写请注意格式错误和明显有问题的段落已经被删除,以下是对每段话的小幅度改写:1.选择题需要在答题卡上用2B铅笔涂黑对应题目的答案标号,非选择题需要用黑色字迹的钢笔或签字笔写在答题卷指定区域内。

2.选择题中每小题有四个选项,只有一项是符合题目要求的。

3.对于函数f(x)=2x,f(1+x)=2+2x。

4.在区间(0,∞)上为增函数的是y=x^2.5.运行程序框图输出的结果是38.6.设x是函数f(x)=lnx+x-4的零点,则x在区间(3,4)内。

7.已知函数f(x)={2x,x>1;x+1,x≤1},f(a)+f(1)=3,则a=1.8.如果a>1,b<-1,则函数f(x)=ax+b的图像经过第二、三、四象限。

9.已知函数f(x)=(x-a)(x-b),若f(x)的图象如图B所示,则函数g(x)=ax+b的图象是图C。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.垂直于同一条直线的两条直线一定 ( )A.平行B.相交C.异面D.以上都有可能【答案】D【解析】如图所示,故选D.【考点】空间直线的位置关系.2.在四边形中,,,则该四边形的面积为().A.B.C.5D.15【答案】D【解析】,因此四边形的对角线互相垂直,.【考点】四边形的面积.3.已知,向量与垂直,则实数的值为( )A.B.C.D.【答案】C【解析】因为,所以即,解得.【考点】向量垂直.4.设函数,则是()A.最小正周期为p的奇函数B.最小正周期为p的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【答案】B【解析】∵,∴最小正周期T=,为偶函数.【考点】三角函数的奇偶性与最小正周期.5.在棱长为3的正方体内任取一个点,则这个点到各面的距离大于1的概率为()A.B.C.D.【答案】C【解析】以这个正方体的中心为中心且边长为1的正方体内.这个小正方体的体积为1,大正方体的体积为27,故概率为p=.【考点】几何概型.6.已知x与y之间的几组数据如下表:则y与x的线性回归方程=x+必过点()A.(1,2) B.(2,6) C. D.(3,7)【答案】C【解析】回归直线必过样本中心点,由表格可求得.【考点】回归分析.7.锐角中,角所对的边长分别为.若A.B.C.D.【答案】C【解析】根据正弦定理,由题意,得,∴.又为锐角三角形,∴,故选C.【考点】正弦定理.8.如图,正四面体的顶点分别在两两垂直的三条射线上,则在下列命题中,错误的为()A.是正三棱锥B.直线平面C.直线与所成的角是D.二面角为【答案】B【解析】由正四面体的性质知是等边三角形,且两两垂直,所以A正确;借助正方体思考,把正四面体放入正方体,很显然直线与平面不平行,B错误.【考点】正四面体的性质、转化思想的运用.9.与直线l : y=2x+3平行,且与圆x2+y2-2x-4y+4=0相切的直线方程是( ).A.x-y±=0B.2x-y+=0C.2x-y-=0D.2x-y±=0【答案】D【解析】解:∵直线l:y=2x+3∴kl=2若圆x2+y2-2x-4y+4=0的切线与l平行所以切线的斜率k=2观察四个答案; A中直线的斜率为1,不符合条件,故A错误; B中直线的斜率为,不符合条件,故B错误; C中直线的斜率为-2,不符合条件,故C错误; D中直线的斜率为2,符合条件,故D正确;故选D【考点】直线平行点评:两条直线平行,则两直线的斜率相等,截距不等,即:l1∥l2⇔k1=k2, b1≠b210.已知,则的值是()A.B.-C.D.-【答案】C【解析】因为,那么可知,故可知的值是,选C.【考点】二倍角的余弦公式点评:解决的关键是利用二倍角的余弦公式来求解,属于基础题。

高一数学必修一测试题

高一数学必修一测试题

高一数学必修一测试题一、选择题(每题4分,共20分)1. 已知函数 f(x) = 2x + 3,求 f(4) 的值是多少?A) 7 B) 11 C) 10 D) 92. 两个数的和是48,它们的差是14,求这两个数分别是多少?A) 31和17 B) 29和19 C) 27和21 D) 26和223. 已知直角三角形两直角边的长度分别为3和4,求斜边的长度。

A) 6 B) 7 C) 5 D) 104. 若 a + b = 10,且 a^2 + b^2 = 52,求 a 和 b 的值。

A) 2和8 B) 3和7 C) 4和6 D) 5和55. 某商店原售价150元的商品打8折出售,现售价是多少?A) 12元 B) 15元 C) 120元 D) 105元二、简答题(每题10分,共30分)1. 已知 a:b = 3:5,b:c = 4:7,求 a:b:c 的比值。

2. 某数与84的比是2:5,这个数与70的比是多少?3. 已知两个角的和为180度,其中一个角的补角是另一个角的3倍,求这两个角的度数。

三、解答题(每题30分,共50分)1. 已知直线 l1 过点 A(1, 2),斜率为1/3。

求直线 l1 的解析式,并画出其图像。

2. 某地去年的人口是20万,今年增长了5%,求今年的人口数。

3. 若 a:b = 2:3,且 a:b:c = 4:6:9,求 c 的值。

四、证明题(每题20分,共50分)1. 已知三角形 ABC,其中 AB = AC,过点 B 作 AC 的垂线,交于点 D。

证明:BD = CD。

2. 若 a + b = b + c,证明 a = c。

答案与解析:一、选择题1. A) 7解析:将 x = 4 代入 f(x) = 2x + 3,得到 f(4) = 2(4) + 3 = 8 + 3 = 11。

2. B) 29和19解析:设其中一个数为 x,则另一个数为 48 - x,根据题意可列出方程 x - (48 - x) = 14,解得 x = 29,那么另一个数为 48 - 29 = 19。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点【答案】C【解析】不共线的三点确定一个平面,两条平行线确定一个平面,得到A,B,C两个选项的正误,根据两个平面如果相交一定有一条交线,确定D选项是错误的,得到结果.解:不共线的三点确定一个平面,故A不正确,四边形有时是指空间四边形,故B不正确,梯形的上底和下底平行,可以确定一个平面,故C正确,两个平面如果相交一定有一条交线,所有的两个平面的公共点都在这条交线上,故D不正确,故选C.点评:本题考查平面的基本性质即推论,考查确定平面的条件,考查两个平面相交的性质,是一个基础题,越是简单的题目,越是不容易说明白,同学们要注意这个题目.2.已知全集I={x|x 是小于9的正整数},集合M={1,2,3},集合N={3,4,5, 6},M)∩N等于则(IA.{3}B.{7,8}C.{4,5, 6}D.{4, 5,6, 7,8}【答案】CM=【解析】I={x|x 是小于9的正整数}=,所以IM)∩N={4,5, 6},所以(I【考点】集合的补集与交集的运算3.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,一共有多少种选法?()A.5B.4C.9D.20【答案】C【解析】完成一项用方法一有5种,用方法二有4种,因此共有4+5=9种.【考点】分类加法计数原理.4.某路段的雷达测速区检测点,对过往汽车的车速进行检测所得结果进行抽样分析,并绘制如图所示的时速(单位km/h)频率分布直方图,若在某一时间内有200辆汽车通过该检测点,请你根据直方图的数据估计在这200辆汽车中时速超过65km/h的约有()A.辆B.辆C.辆D.辆【答案】D.【解析】由频率分布直方图知速超过65km/h的频率为:,因此200辆汽车中时速超过65km/h的约有:(辆).【考点】统计中的频率分布直方图.5.已知,则()A.B.C.D.【答案】C【解析】由,得,∴,所以选择C.正、余弦齐次式的处理,经常转化为用正切来表示.【考点】三角函数求值和“1”的巧代换.6.化简sin600°的值是( ).A.0.5B.-C.D.-0.5【答案】B【解析】.【考点】诱导公式.7.在区间[-1,2]上随机取一个数x,则的概率为A B C D【答案】C【解析】由解得,-1≤x≤1,故的概率为=,故选C.先解出的解为-1≤x≤1,本题为长度概型,故的概率为=.【考点】含绝对值不等式解法;几何概型8.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A C D.A=B=C【答案】B【解析】A∩C中包括第一象限的负角,如,不属于锐角,故A错;第一象限角中包括大于的角,如是第一象限角,但不小于,故C错;易知D错;故选B.【考点】象限角,集合间的关系.9.若角满足,则的取值范围是 ( )A.B.C.D.【答案】A【解析】本题考查不等式的性质,先根据得,再利用不等式的性质得【考点】不等式的性质10.已知两点A(4,1),B(7,-3),则与向量同向的单位向量是()A.(,-)B.(-,)C.(-,)D.(,-)【答案】A【解析】,,与向量同向的单位向量是.【考点】向量的坐标表示、单位向量.11.在△ABC中,若lg sin A-lg cos B-lg sin C=lg 2,则△ABC是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】A【解析】因为lg sin A-lg cos B-lg sin C=lg 2,所以lg sin A=lg 2 cos B sin C,即sin A=2 cos B sin C,又由于sin A=sin ( B + C)=sinBcosC+cosBsinC,故sinBcosC+cosBsinC ="2" cos B sin C,所以sinBcosC-cos B sin C=0,所以sin(B-C)=0,由于B、C为三角形的内角,所以B=C,即三角形ABC为等腰三角形.【考点】1.正弦定理;2.两角和差公式.12.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是 ( ) A.1<x<3B.x<1或x>3C.1<x<2D.x<1或x>2【答案】B【解析】原问题可转化为关于a的一次函数y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,只需,∴故选B.【考点】二次函数的性质..13.一个多面体的直观图、主视图、左视图、俯视图如下,、分别为、的中点.下列结论中正确的个数有( )①直线与相交.②.③//平面.④三棱锥的体积为.A.4个B.3个C.2个D.1【答案】B【解析】由图可知,此几何体为直棱柱,底面是以为直角顶点的等腰直角三角形,连接,连,由是中点,得,与相交,所以与异面,故①错;面,,,面,故②③正确;,故④正确.故选B.【考点】1.三视图;2.椎体体积;3.线面垂直的判定及性质.14.直线的倾斜角是()A.300B.600C.1200D.1350【答案】C【解析】由于直线的斜率为,那么根据倾斜角和斜率的关系可知,tanθ=,那么可知角为1200,故选C.【考点】直线的倾斜角和斜率的关系点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,求出tanθ=,是解题的关键15.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1="0"B.2x+y-5=0C.x+2y-5="0"D.x-2y+7=0【答案】A【解析】设所求直线为,2x+y+d=0,将(-1,3)代人得,d=-1,故所求直线方程为2x+y-1=0,选A。

高一数学考试试题及答案

高一数学考试试题及答案

高一数学考试试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 函数y=x^2-4x+3的顶点坐标为:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A4. 圆的方程为(x-2)^2+(y-3)^2=25,则圆心坐标为:A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)答案:A5. 直线y=2x+3与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (0, -3/2)D. (0, 3/2)答案:B6. 函数y=|x|的图像是:A. 一条直线B. 两条直线C. 一条曲线D. 两条曲线答案:B7. 已知等差数列{an}的前三项分别为2, 5, 8,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B8. 函数y=sin(x)的周期为:B. 2πC. π/2D. 4π答案:B9. 已知向量a=(3, -4),b=(2, 5),则a·b的值为:A. -1B. 11C. -11D. 1答案:C10. 圆的方程为x^2+y^2-6x+8y-24=0,则该圆的半径为:A. 2B. 4C. 6D. 8答案:C二、填空题(每题4分,共20分)11. 函数y=3x-2的反函数为______。

答案:y=(1/3)x+2/312. 已知等比数列{bn}的前三项分别为3, 6, 12,则该数列的公比为______。

13. 若a, b, c是三角形的三边长,且满足a^2+b^2=c^2,则该三角形为______三角形。

答案:直角14. 函数y=1/x的图像在第二象限内是______的。

答案:递减15. 已知向量a=(4, 1),b=(2, -3),则|a+b|的值为______。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.已知点()在第三象限,则角在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由于点是第三象限角,,在第二象限.【考点】三角函数在各个象限的符号.3.等比数列的前项和为,若,,则()A.15B.30C.45D.60【答案】C【解析】可以将每三项看作一项,则也构成一个等比数列.所以,故选C.【考点】等比数列性质.4.三边长分别是,则它的最大锐角的平分线分三角形的面积比是( )A.1:1B.1:2C.1:4D.4:3【答案】B【解析】如图,设,由余弦定理可得,所以为钝角,又因为,由大边对大角,可知为的最大锐角,作角的平分线,交于点,则有,故选B.【考点】1.余弦定理;2.三角形的面积公式.5.设是不同的直线,是不同的平面,下列命题中正确的是( )A.若,则B.若,则C.若,则⊥D.若,则【答案】C【解析】由可知与的关系为:相交、平行或线在面内,故A、B错;由可在中a中找一条直线使,又,所以,而,所以,得,故选C.【考点】面面垂直的判定.6.若,则下列不等式成立的是()A.B.C.D.【答案】D【解析】因为,所以,所以。

因为,所以。

所以。

故D正确。

【考点】对数的基础知识。

7.函数,的最小正周期为()A.B.C.D.【答案】C【解析】这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如的最小正周期为,而的最小正周期为,故函数的最小正周期为,故选C.【考点】三角函数的图像与性质.8.圆与圆的位置关系为( )A.内切B.相交C.外切D.相离【答案】B【解析】圆心分别为(-2,0),(2,1),半径分别为2,3.圆心距,所以,两圆的位置关系为相交,选B。

【考点】圆与圆的位置关系点评:简单题,判定圆与圆的位置关系,有“代数法”和“几何法”。

数学题高一试题及答案

数学题高一试题及答案

数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。

A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。

答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。

答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。

证明:首先求导数f'(x) = 3x^2 - 6x。

令f'(x) = 0,解得x = 0 或x = 2。

验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。

7. 解不等式:x^2 - 4x + 4 > 0。

解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。

因此,解集为{x|x ≠ 2}。

四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。

解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。

计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。

答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。

解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。

高一数学全册试题及答案

高一数学全册试题及答案

高一数学全册试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 若f(x) = 2x + 1,则f(-1)的值为:A. -1B. 1C. 3D. -33. 等差数列{an}的首项为2,公差为3,则a5的值为:A. 17B. 14C. 11D. 84. 以下哪个选项是不等式x^2 - 4x + 3 < 0的解集?A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∪ (3, +∞)D. (1, 3)二、填空题(每题5分,共20分)5. 若函数f(x) = x^2 - 2x + 1,求f(1)的值为______。

6. 等比数列{bn}的首项为1,公比为2,则b3的值为______。

7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B的值为______。

8. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标为______。

三、解答题(每题10分,共60分)9. 已知函数f(x) = x^2 - 4x + 3,求该函数的最小值。

10. 计算定积分∫(0到1) (2x + 3)dx。

11. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a5。

12. 求函数y = ln(x)在区间[1, e]上的值域。

13. 已知直线l:y = 3x + 2与圆C:(x - 2)^2 + (y - 3)^2 = 9相交,求交点坐标。

14. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

答案:一、选择题1. C2. D3. B4. A二、填空题5. 06. 87. {2, 3}8. (-1/2, 0)三、解答题9. 函数f(x) = x^2 - 4x + 3的最小值为f(2) = -1。

10. 定积分∫(0到1) (2x + 3)dx = (x^2 + 3x)|_0^1 = 4。

(完整版)高一数学试题及答案解析

(完整版)高一数学试题及答案解析

高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题,满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的答案填在指定位置上.)1.9090αβ<<<,则2β-A.第二象限角C.第三象限角2.α终边上的一点,且满足A.3.设()g x1 (30)2=,则A1sin2x.2sin4.α的一个取值区间为()A.5.A.6.设A.C.7.ABC∆中,若cot cot1A B>,则ABC∆一定是()A.钝角三角形B.直角三角形C.锐角三角形D.以上均有可能8.发电厂发出的电是三相交流电,它的三根导线上的电流分别是关于时间t的函数:2sin sin()sin()3A B C I I t I I t I I t πωωωϕ==+=+且0,02A B C I I I ϕπ++=≤<,则ϕ=() A .3πB .23πC .43πD .2π9.当(0,)x π∈时,函数21cos 23sin ()sin x x f x x++=的最小值为()A ..3C ..410.()f x =的A .1112131415的映射:(,)()cos3sin3f a b f x a x b x→=+.关于点(的象()f x 有下列命题:①3()2sin(3)4f x x π=-; ②其图象可由2sin3y x =向左平移4π个单位得到; ③点3(,0)4π是其图象的一个对称中心④其最小正周期是23π⑤在53[,124x ππ∈上为减函数 其中正确的有三.解答题(本大题共5个小题,共计75分,解答应写出文字说明,证明过程或演算步骤.)24)t ≤≤经长期观察,()y f t =的曲线可近似的看成函数cos (0)y A t b ωω=+>.(1)根据表中数据,求出函数cos y A t b ω=+的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1m 时才对冲浪者开放,请根据(1)中的结论,判断一天中的上午8:00到晚上20:00之间,有多少时间可供冲浪者运动?20.(本题满分13分)关于函数()f x 的性质叙述如下:①(2)()f x f x π+=;②()f x 没有最大值;③()f x 在区间(0,2π上单调递增;④()f x 的图象关于原点对称.问:(1)函数()sin f x x x =⋅符合上述那几条性质?请对照以上四条性质逐一说明理由.(221.0)(0,)+∞上的奇函数)x 满足(1)f =cos 2m θ-(1(2的最大值和最小值;(3N . 的两个不等实根,函数22()1x tf x x -+的(1(2(3123。

高一数学考试卷-含答案

高一数学考试卷-含答案

高一数学考试试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线10mx ny +-=过第一、三、四象限,则( )A .0,0m n >>B .0,0m n <>C .0,0m n ><D .0,0m n <<2.函数()1x f x e x=-的零点所在的区间是( ) A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭ 3.设,,l m n 表示三条直线,,,αβγ表示三个平面,则下面命题中不成立的是( )A .若.l m αα⊥⊥,则l m ;B .若,,m m l n β⊂⊥是l 在β内的射影,则m n ⊥;C .若,,m n m n αα⊂⊄,则n α;D .若.αγβγ⊥⊥,则αβ.4.若直线()()1:3410l k x k y -+++=与()()2:12330l k x k y ++-+=垂直,则实数k 的值是( )A .3或-3B . 3或4 C. -3或-1 D .-1或45.一个几何体的三视图如下图所示,则该几何体的表面积为( )A .1023+B .103+ C. 123+ D .1123+6.直线102n mx y +-=在y 轴上的截距是-1,且它的倾斜角是直线3330x y --=的倾斜角的2倍,则( )A .3,2m n =-=-B . 3,2m n == C. 3,2m n ==- D .3,2m n =-=7.母线长为1的圆锥的侧面展开图的圆心角等于120︒,则该圆锥的体积为( )A .2281πB .4581π C. 881π D .1081π 8.在正方体1111ABCD A B C D -中,CD 的中点为1,M AA 的中点为N ,则异面直线1C M 与BN 所成角为( )A .30︒B .60︒ C. 90︒ D .120︒9.已知点(),M a b 在直线34200x y +-=上,则22a b +的最小值为( )A .3B . 4 C. 5 D .610.已知边长为a 的菱形ABCD 中,60ABC ∠=︒,将该菱形沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为( )A .36aB .312a C. 3312a D .3212a 11.已知三棱柱111ABC A B C -的所有棱长都相等,侧棱垂直于底面,且点D 是侧面11BB C C 的中心,则直线AD 与平面11BB C C 所成角的大小是( )A .30︒B .45︒ C. 60︒ D .90︒12.如图,在多面体ABCDEF 中,四边形ABCD 是边长为3的正方形,3,2EFAB EF =,且点E 到平面ABCD 的距离为2,则该多面体的体积为( )A .92B .5 C. 6 D .152第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线3450x y +-=与直线6140x my ++=平行,则它们之间的距离是 .14.设函数()2,1ln ,1x x f x x x -⎧<=⎨≥⎩,若函数()y f x k =-有且只有两个零点,则实数k 的取值范围是 .15.已知点()0,2关于直线l 的对称点为()4,0,点()6,3关于直线l 的对称点为,则m n += .16.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离为0022Ax By Cd A B ++=+.已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若12d d =,则直线12P P 与直线l 平行;②若12d d =-,则直线12P P 与直线l 垂直;③若120d d ⋅>,则直线12P P 与直线l 平行或相交;④若120d d ⋅<,则直线12P P 与直线l 相交,其中所有正确命题的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,三棱柱111ABC A B C -的侧棱垂直于底面,其高为6cm ,底面三角形的边长分别为3,4,5cm cm cm ,以上、下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积V .18.过点()3.0P 有一条直线l ,它夹在两条直线1:220l x y --=与2:30l x y ++=之间的线段恰被点P 平分,求直线l 的方程.19.如图,四棱锥P ABCD -中,,1,2,BCAD BC AD AC CD ==⊥,且平面PCD ⊥平面ABCD .(1)求证:AC PD ⊥;(2)在线段PA 上是否存在点E ,使BE 平面PCD ?若存在,确定点E 的位置,若不存在,请说明理由.20.如图,在ABC ∆中,边BC 上的高所在的直线方程为320,x y BAC -+=∠的平分线所在的直线方程为0y =,若点B 的坐标为()1,3.(1)求点A 和点C 的坐标;(2)求ABC ∆的面积.21. 某化工厂每一天中污水污染指数()f x 与时刻x (时)的函数关系为()()[]25log 121,0,24f x x a a x =+-++∈,其中a 为污水治理调节参数,且()0,1a ∈.(1)若12a =,求一天中哪个时刻污水污染指数最低; (2)规定每天中()f x 的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a 应控制在什么范围内?22.已知在三棱锥P ABC -中,,E F 分别是,AC AB 的中点,,ABC PEF ∆∆都是正三角形,PF AB ⊥.(1)求证:PC ⊥平面PAB ;(2)求二面角P AB C --的平面角的余弦值;(3)若点,,,P A B C 在一个表面积为12π的球面上,求ABC ∆的边长.试卷答案一、选择题1-5: CBDAC 6-10: AACBD 11、12:CD二、填空题 13.125 14. 1+2∞(,) 15. 33516. ③④ 三、解答题17.解:111334636(cm )2ABC A B C V -⨯=⨯=三棱柱. …………………3分 设圆柱底面圆的半径为r ,则22341345ABC S r AB BC AC ∆⨯⨯===++++, ……………………6分 1236(cm )OO V r h ππ==圆柱. ………………………9分所以11113(366)cm ABC A B C OO V V V π-=-=-三棱柱圆柱. ……………………10分18.解:设直线l 夹在直线12,l l 之间的线段是AB (A 在1l 上,B 在2l 上), ,A B 的坐标分别是()()1122,,,x y x y .因为AB 被点P 平分,所以12126,0x x y y +=+=,于是21216,x x y y =-=-.……………………3分 由于A 在1l 上,B 在2l 上,所以1111220(6)()30x y x y --=⎧⎨-+-+=⎩, 解得111116,33x y ==,即A 的坐标是1116,33⎛⎫ ⎪⎝⎭. ……………………6分 直线PA 的方程是0316110333y x --=--, ……………………10分 即 8240x y --=.所以直线l 的方程是8240x y --=. …………………12分19.证明:D C B EF PA(1)连接AC ,∵平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =, AC CD ⊥,AC ⊂平面ABCD ,∴AC ⊥平面PCD , ……………………4分∵PD ⊂平面PCD ,所以AC PD ⊥. ……………………5分(2) 当点E 是线段PA 的中点时,//BE 平面PCD . ……………………6分证明如下:分别取,AP PD 的中点,E F ,连接,,.BE EF CF则EF 为PAD ∆的中位线,所以//EF AD ,且112EF AD ==, 又//BC AD ,所以//BC EF ,且BC EF =,所以四边形BCFE 是平行四边形,所以//BE CF , …………………10分 又因为BE ⊄平面PCD ,CF ⊂平面PCD所以//BE 平面PCD .…………………12分 20.解:(1)由3200x y y -+=⎧⎨=⎩,得顶点(2,0)A -. …………………2分 又直线ABx 轴是BAC ∠的平分线, 故直线AC 的斜率为1-,AC 所在直线的方程为2y x =-- ①直线BC 上的高所在直线的方程为320x y -+=,故直线BC 的斜率为3-, 直线BC 方程为33(1)y x -=--,即3 6.y x =-+ ② ……………4分 联立方程①②,得顶点C 的坐标为(4,6)-. ………………6分(2 ………………8分 又直线BC 的方程是360x y +-=,所以A 到直线BC 的距离 ………………10分所以ABC ∆ ……………12分21.解:(1) …………………2分当()2f x = 即4x =.所以一天中早上4点该厂的污水污染指数最低. …………………4分(2)设()25log 1t x =+,则当024x ≤≤时,01t ≤≤.则()31, 01, 1t a t a g t t a a t -++≤≤⎧=⎨++<≤⎩, …………………7分 显然()g t 在[]0,a 上是减函数,在[],1a 上是增函数,则()()(){}max max 0,1f x g g =, …………………9分因为()()031,12g a g a =+=+, 则有 ()()0313123g a g a =+≤⎧⎪⎨=+≤⎪⎩,解得23a ≤, ……………………11分又(0,1)a ∈,故调节参数a . ……………………12分22.(1)证明:连接FC ,因为在等边ABC ∆中, F 为AB 中点,所以AB CF ⊥.因为AB CF ⊥,AB PF ⊥,PF CF=F .所以AB ⊥平面PCF , 又PC ⊂平面PCF ,所以PC AB ⊥, ………………2分 在PAC ∆中,PE 为边AC 上的中线, 又1122PE EF BC AC ===, 所以PAC ∆为直角三角形,且AP PC ⊥. ………………4分 因为PC AB ⊥,PC AP ⊥,AP AB A =,所以PC ⊥平面PAB . ……………………5分 (2)解:由(1)可知, PFC ∠为所求二面角的平面角.设AB a =,则2a PF =,FC =,在直角三角形CFP 中,cos 3PF PFC FC ∠==. ……………………8分(3)解:设球半径为r ,则2412r ππ=,所以r = ………………9分 设ABC ∆的边长为a ,因为PC ⊥平面PAB ,,AP PB ⊂平面PAB所以PC AP ⊥,PC BP ⊥,且由(2)知,2PC a =. 因为PF AF FB ==,所以PAB ∆为直角三角形,且PA PB ⊥,2PA PB a ==,2a =,所以a = …………………12分。

高一数学试题及答案(8页)

高一数学试题及答案(8页)

高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。

A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。

A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。

A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。

A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。

A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。

A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。

A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。

A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。

A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。

A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案) 人教版数学必修I测试题一、选择题(共10题,每题5分,共50分)1、设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(CU B)=()A、{2}B、{2,3}C、{3}D、{1,3}2、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN ()A、{}B、{0,1}C、{1,2}D、{0,2}3、函数y=1+log2x,(x≥4)的值域是()A、[2,+∞)B、(3,+∞)C、[3,+∞)D、(-∞,+∞)4、在y=1/x2,y=2x,y=x2+x,y=3x5四个函数中,幂函数有()A、1个B、2个C、3个D、4个5、如果a>1,b<-1,那么函数f(x)=ax+b的图象在()A第一、二、三象限 B第一、三、四象限C第二、三、四象限 D第一、二、四象限6、设集合M={x|x2-6x+5=0},N={x|x2-5x=0},则MN等于()A.{}B.{5}C.{1,5}D.{-1,-5}7、若102x=25,10x则等于()A、-15B、5C、11/50D、6258、函数y=ax+2(a且a≠1)图象一定过点()A(0,1)B(0,3)C(1,0)D(3,0)9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟。

骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则与故事情节相吻合是()10、若f(2x)=x2,则f(3)=()A、9B、49/4C、9/4D、3/2二、填空题(共4题,每题4分,共16分)11、函数y=x+1+1/(2-x)的定义域为(-∞,2)U(2,∞)。

12、f(x)=x2+1,x≤0;f(x)= -2x,x>0.若f(x)=10,则x=-2.13、函数f(x)=2+log5(x+3)在区间[-2,2]上的值域是[2,3]。

高一数学试题及答案

高一数学试题及答案

高一数学试题及答案一、选择题(本大题共12小题,每小题5分,共60分,每题有且只有一个选项是正确的,请把答案填在答题卡上)1.某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为( ) A .40 B .48 C .50 D .80 【答案】 C2.同时掷两枚骰子,所得点数之和为5的概率为( ).A .14 B . 19 C .16 D .112【答案】 B3.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥【答案】 B4.函数12sin[()]34y x π=+的周期、振幅、初相分别是()A .3π,2-,4πB .3π,2,12π C .6π,2,12π D .6π,2,4π 【答案】C5.下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630° 【答案】选B.6.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-43【答案】 D【解析】 x <0,r =x 2+16,∴cos α=x x 2+16=15x ,∴x2=9,∴x =-3,∴tan α=-43.7.如果cos(π+A )=-12,那么sin(π2+A )=( )A .-12B.12 C .-32D.32【答案】 B解析:.cos(π+A )=-cos A =-12,则cos A =12,sin(π2+A )=cos A =12.8.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3【答案】 C解析:.由已知f (x )=sin x +φ3是偶函数,可得φ3=k π+π2,即φ=3k π+3π2(k ∈Z ).又φ∈[0,2π],所以φ=3π2,故选C.9.已知函数sin()y A x B ωϕ=++的一部分图象 如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B【答案】 C.10.甲、乙、丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图,若s 甲,s 乙,s 丙分别表示他们测试成绩的标准差,则( ) A .s 甲<s 乙<s 丙 B .s 甲<s 丙<s 乙 C .s 乙<s 甲<s 丙 D .s 丙<s 甲<s 乙甲 乙 丙 【答案】 D11.已知1cos()63πα+=-,则sin()3πα-的值为( )A .13B .13-C .233D .233-【答案】 A12.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点(3π4,0),则ω的最小值是( )A.13 B .1 C.53D .2 【答案】 D解析:选D.将函数f (x )=sin ωx 的图象向右平移π4个单位长度得到函数y =sin[ω(x -π4)]的图象,因为所得图象经过点(34π,0),则sin ω2π=0,所以ω2π=k π(k ∈t ),即ω=2k (k ∈t ),又ω>0,所以ωmin =2,故选D.二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡上) 13. 已知样本9,10,11,,x y 的平均数是102,则xy =________________. 【答案】9614.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次, 则3个球颜色全不相同的概率为_______________. 【答案】2/915.如果sin α-2cos α3sin α+5cos α=-5,那么tan α的值为_______________.【答案】 -2316.16.函数f(x )=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,则k 的取值范围是_____________________.【答案】13k <<三、解答题(本大题共70分,解答应写出必要分文字说明、演算步骤或证明过程)17.(本小题满分10分) 已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1) 化简()f α; (2)若31sin()23πα-=-,求()f α的值. 【答案】17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。

高一数学期末考试试题及答案

高一数学期末考试试题及答案

高一数学期末考试试题及答案高一期末考试试题一、选择题1.已知集合M={x∈N/x=8-m,m∈N},则集合M中的元素的个数为()A.7 B.8 C.9 D.10答案:B。

解析:当m=1时,x=7;当m=2时,x=6;当m=3时,x=5;当m=4时,x=4;当m=5时,x=3;当m=6时,x=2;当m=7时,x=1;当m=8时,x=0.因此,集合M中的元素的个数为8.2.已知点A(x,1,2)和点B(2,3,4),且AB=26,则实数x的值是()A.−3或4 B.6或2 C.3或−4 D.6或−2答案:C。

解析:根据勾股定理,AB=√[(x-2)²+(1-3)²+(2-4)²]=√[(x-2)²+4]。

因为AB=26,所以√[(x-2)²+4]=26,解得x=3或-7.但是题目中说了点A的横坐标为实数,所以x=3.3.已知两个球的表面积之比为1:9,则这两个球的半径之比为()A.1:3 B.1:3 C.1:9 D.1:81答案:B。

解析:设两个球的半径分别为r1和r2,则它们的表面积之比为4πr1²:4πr2²=1:9,化简得.4.圆x+y=1上的动点P到直线3x−4y−10=0的距离的最小值为()A.2 B.1 C.3 D.4答案:A。

解析:首先求出直线3x−4y−10=0与圆x+y=1的交点Q,解得Q(2,-1),然后求出点P到直线的距离d,设P(x,y),则d=|(3x-4y-10)/5|,根据点到直线的距离公式。

将P点的坐标代入d中,得到d的表达式为d=|(3x-4y-16)/5|。

将d表示成x和y的函数,即d=f(x,y)=(3x-4y-16)/5,然后求出f(x,y)的最小值。

由于f(x,y)的系数3和-4的比值为3:4,所以f(x,y)的最小值为f(2,-1)=-2/5,即P点到直线的最小距离为2/5,取整后为2.5.直线x−y+4=0被圆x²+y²+4x−4y+6=0截得的弦长等于()A.12B.22C.32D.42答案:B。

高一数学试题及解析答案

高一数学试题及解析答案

高一数学试题及解析答案一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 3的零点是:A. 1B. 2C. 3D. 4答案:B解析:将f(x)设为0,即x^2 - 4x + 3 = 0,解得x = 1 或 x = 3。

由于题目要求零点,所以正确选项是B。

2. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B解析:集合A与集合B的交集是它们共有的元素,即A∩B = {2, 3}。

3. 若a, b, c是三角形的三边长,且满足a^2 + b^2 = c^2,则该三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定答案:A解析:根据勾股定理,若a^2 + b^2 = c^2,则三角形为直角三角形。

4. 函数y = 2x - 1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C解析:函数y = 2x - 1的斜率为正,截距为负,因此图象经过第一、三、四象限,不经过第二象限。

二、填空题(每题5分,共20分)1. 等差数列{an}的首项a1 = 2,公差d = 3,则第五项a5 = _______。

答案:17解析:等差数列的通项公式为an = a1 + (n - 1)d,代入n = 5,a1= 2,d = 3,得a5 = 2 + (5 - 1) * 3 = 17。

2. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f'(x) = _______。

答案:3x^2 - 6x + 2解析:对f(x)求导得f'(x) = 3x^2 - 6x + 2。

3. 圆的方程为(x - 2)^2 + (y + 3)^2 = 25,圆心坐标为(2, -3),半径为_______。

答案:5解析:圆的半径为方程中的常数项的平方根,即r = √25 = 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大连育明高中2009-2010学年度上学期期中
高一数学试卷答案
命题人:杨秀丽 校对人:缪哲
分)卷(选择题,共第60I
一、
选择题
1.C
2.A
3.B
4.D
5.B
6.C
7.C
8.D
9.A 10.B 11.D 12.B
二、
填空
a b a 21.
13+- ⎪⎭

⎢⎣⎡+∞,21.14 31,0,1.15- ()()()3,2,1.16 三 解答题
17.解:{}4,2-=A {}{}{}4242,或或或则-∅=⊆B A B
440,-<><∆∅=a a B 或得由若
{}42=-=a B 可求若 {}无解若4=B
{}{}244,242-=≥-<-=-=a a a a a B 或或综上可求,若
18. 解:(1){}
51≤<-=x x A
当m=3时 {
}31<<-=x x B 则{}31≥-≤=x x x B C
R

{}53≤≤=⋂
x x B A C
R
(2){}51≤<-=x x A {}
41<<-=⋂x x B A
04242
=-⨯-m m=8 此时{}
42<<-=x x B 符合题意。

19.解:(1)任取.0,,1221>-x x x x 令
()()[]()()()11211212x f x x f x f x x x f x f <-+=-+=∴()为减函数x f ∴
(2)021==x x 令 ()00=f 再0,21=-=x x x 令.
()()x f x f -=-()为奇函数x f ∴.
(3)()[]上为减函数在)由(
n m x f ,1 ()m f x f =max )( ()n f x f =min )( ()()m mf m f -==1可证:
()n n f -= ()[]m n x f --∴,值域为
20.解:(1) 0>=t a x 令,则
()
0,2)1(21212)(222>++-=+++-=+--=t t t t t t x f
()()10,值域为为减函数,,且函数在∞-∴∞+
(2)[]1,2-∈x ⎥
⎦⎤⎢⎣⎡∈a a t ,12 轴t=-1 上为减函数,
函数在⎥⎦

⎢⎣⎡a a ,12
()71207)(2min -=+--==-=a a f x f a=-4(舍)或a=-2
21.解:(1)f(x)为奇函数 定义域R f(0)=0 b=1
()a
x f x x ++-=∴+121
2 f(-1)=f(1) 1,2==∴b a
(2) ()1
21
21++
-=x
x f ()()为减函数在+∞∞-∴,x f 16
7
)41()(max =
=f x f
又f(x)为奇函数,原不等式可化为:
()()()
222222t k f k t f t t f -=--<-∴ 023,22222>--∴+->-k t t k t t t
31,01240-<∴<+<∆∴k k 即不等式恒成立, ⎪⎭⎫ ⎝

-∞-∴31,的范围是k
22.(1)证明:
()()()0
,0,1
,021121221>-=-<-=>x x x x x f x f x x x a x f x 任取()()为增函数。

在+∞∴,0x f
(2)()x
x x h x x
a 12)(121
+=∞+<-上恒成立,令,
在 ()()()[]2
12112122112)(,1x x x x x x x h x h x x x f --=
-<<任取
()()上为增函数,在∞+∴>>∴>>1,022,1,12121x h x x x x 3,3)1(≤∴=≤∴a h a
(3)f(x)定义域为R 且不为0,0>∴mn
())(),(,,0)1(,0n f n m f m m n ==∴+∞>>为增函数在由时当
20,0,012>⇒>∆>∴=+-∴a a mn ax x 有两不等实根
()01,)(),(,0,0==∴≠==∴∞-<a mn n m m f n n f m n m 此时而为减函数,可证时当 {}()
+∞⋃∈∴,20a。

相关文档
最新文档