余角和补角课件
合集下载
《余角和补角》图形初步认识PPT课件
因为∠1与∠2和∠3都互为补角, 所以∠2=180º-∠1,∠3=180º-∠1. 所以∠2=∠3.
探究新知
已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和∠4
相等吗?为什么?
1
2
3 4
由∠1与∠2互补,得∠1+∠2=180º,所以 ∠2=180º-∠1.
由∠3与∠4互补,得∠3+∠4=180º,所以∠4=180º-∠3. 又因为∠1=∠3,所以180º-∠1=180º-∠3, 所以∠2=∠4.
北 A
30°
C
60°
西
东
O
25°
B 南
课堂小结
1.余角的定义: 一般地,如果两个角的和等于90°(直角),就说这两个角互为余角, 即其中每一个角是另一个角的余角. 2.补角的定义: 如果两个角的和等于180°(平角),就说这两个角互为补角,即其 中一个角是另一个角的补角. 3.余角与补角的性质: 同角(等角)的补角相等; 同角(等角)的余角相等. 4.方位角
又因为∠1+∠ADC=∠CDE=90°,
且∠1=∠2,
所以∠ADC=∠BDC.
课堂练习
(2)∠ADF=∠BDE.
理由:因为∠ADF=180°-∠1,∠BDE=180°-∠2,
又因为∠1=∠2,
所以∠ADF=∠BDE.
C
A
B
E
1
2
D
F
课堂练习
6.如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α 与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中 ∠α与∠β相等?
课堂小结
本图片资源介绍了两角互余与互补的概念及余(补)角 的性质,适用于余角和补角的教学.若需使用,请插入 图片【知识点解析】互余与互补.
探究新知
已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和∠4
相等吗?为什么?
1
2
3 4
由∠1与∠2互补,得∠1+∠2=180º,所以 ∠2=180º-∠1.
由∠3与∠4互补,得∠3+∠4=180º,所以∠4=180º-∠3. 又因为∠1=∠3,所以180º-∠1=180º-∠3, 所以∠2=∠4.
北 A
30°
C
60°
西
东
O
25°
B 南
课堂小结
1.余角的定义: 一般地,如果两个角的和等于90°(直角),就说这两个角互为余角, 即其中每一个角是另一个角的余角. 2.补角的定义: 如果两个角的和等于180°(平角),就说这两个角互为补角,即其 中一个角是另一个角的补角. 3.余角与补角的性质: 同角(等角)的补角相等; 同角(等角)的余角相等. 4.方位角
又因为∠1+∠ADC=∠CDE=90°,
且∠1=∠2,
所以∠ADC=∠BDC.
课堂练习
(2)∠ADF=∠BDE.
理由:因为∠ADF=180°-∠1,∠BDE=180°-∠2,
又因为∠1=∠2,
所以∠ADF=∠BDE.
C
A
B
E
1
2
D
F
课堂练习
6.如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α 与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中 ∠α与∠β相等?
课堂小结
本图片资源介绍了两角互余与互补的概念及余(补)角 的性质,适用于余角和补角的教学.若需使用,请插入 图片【知识点解析】互余与互补.
余角和补角课件(共23张PPT)
6.3.3
余角和补角
符号语言:
因为∠3 +∠4 = 180°,
所以∠3 与∠4 互为补角.
3
注意:(1) 补角是指两个角的关系;
(2) 补角只考虑两个角的数量关系,与位置无关.
4
6.3.3
余角和补角
思考
∠1 与∠2 、∠3 都互为补角,那么∠2 与∠3 的大小有什么关系?
∠1 与∠2 、∠3 都互为补角,那么∠2 = 180° -∠1,∠3 = 180° -∠1.
6.3.3
余角和补角
七年级上
6.3.3
余角和补角
学习目标
1. 了解余角、补角的概念.
重点
2. 掌握余角和补角的性质,并能利用余角、补角的性质解决相关问题.
重点
6.3.3
余角和补角
新课引入
问题1:下图中的∠A 和∠B 有怎样的数量关系?
A
A
30°
45°
90° 45°
C
B
∠A +∠B = 90°
90° 60°
6.3.3
余角和补角
例3 如图,点A,O,B在同一直线上,射线 OD 和射线 OE 分别平分
∠AOC 和∠BOC,图中哪些角互为余角?
解:因为点A,O,B在同一直线上,所以∠AOC 和∠BOC
互为补角.
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,
所以∠COD+∠COE= ∠AOC+ ∠BOC= (∠AOC+∠BOC )
6.3.3
余角和补角
3.如图,要测量两堵围墙所形成的∠AOB 的度数,但人不能进入围墙
,如何测量?
人教版数学七年级上册4.余角和补角课件
16 . (8 分 ) 如 图 , 已 知 直 线 AB 和 CD 相 交 于 点 O , OM 平 分 ∠ BOD , ON⊥OM,∠AOC=50°. (1)求∠AON的度数; (2)写出∠DON的余角.
解:(1)65° (2)∠DOM,∠MOB
17.(10分)如图,AB是一条直线,OC是一条射线,∠AOC=2∠AOF, ∠BOC=2∠BOE. (1)∠1与∠2互余吗?
解:如图:
19.(12分)如图甲所示,∠AOB,∠COD都是直角. (1)试猜想∠AOD与∠COB在数量上是相等、互余、还是互补的关 系,你能用推理的方法说明你的猜想是否成立吗? (2)当∠COD绕点O旋转到图乙的位置时,你本来的猜想还成立吗?
方位的表示方法
在表示方向时,要先在观测点画出方位图,然后测量出角度并在图 上表示出来,注意表示时要先写北还是南,再写偏东或偏西,偏多
少度,如图4-3-28,OA是表示北偏东30°的 一条射线,OB是表示南偏西50°的一条射线; 特别地,射线OC表示北偏西45°可写成西北 方向,OD表示东南方向.
例题
小结
1. 余角和补角的定义:
如果两个角的和等于
,就说这两个角互为余角;如果两个
角的和为
,就说这两个角互为补角.
2. 余角和补角的性质: 同角(等角)的补角________,同角(等角)的余角_________.
3. 如图,O是直线AB上的点,OC是∠AOB的平分线. (1)∠AOD的补角是__∠__B_O__D___,余角是__∠__C_O__D__; (2)∠DOB的补角是__∠__A__O_D_____. 4. 已 知 ∠ α = 20° , 则 ∠ α 的 余 角 为 _______70,° ∠ α 的 补 角 为 ______1_6_0.° 5. ∠A的补角为130°,则∠A的余角为________4.0°
人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)
1
4
3
如果两个角的和为90° (直角),那么称这两个
角 互为余角 ,简称“互余”。
几何语言叙述:
如果∠1+∠2=90°(或者∠1=90°-∠2),
那么∠1与∠2互为余角 .
总结归纳
2
1
4
3
如果两个角的和为180°(平角),那么称这两
个角 互为补角,简称“互补”。
几何语言叙述:
如果∠3+∠4=180°(或者∠3=180°-∠4),
o
10
o
30
o
o
80
60
o
100
o
120
o
150
o
170
3.填表:
∠α
5°
∠α的余角
∠α的补角
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
27°37′
117°37′
90° x
180° x
62°23′
x
4.如右图,点A、O、B在同一直线上,OD平分
AOB, COE=90°。回答下列问题:
总结归纳
性质:
同角或等角的余角相等。
同角或等角的补角相等。
例题解析
请认真观察下图,回答下列问题:
①图中有哪几对互余的角?请用几何语言形式表示:
(∠A+∠1=90°, ∠1+∠2=90°)
(∠A+∠E=90°) (∠2+∠E=90°)
②图中哪几对角是相等的角(直角除外)?为什么?
(∠2=∠A) (同角的余角相等)
O
余角和补角的定义课件
摄影
在摄影中,为了获得更好的拍摄 角度和构图,摄影师会运用补角
的概念来调整相机的角度。
余角和补角的综合应用实例
桥梁设计
在桥梁设计中,为了确保桥梁的稳定 性和安全性,需要精确地计算不同部 分的角度。余角和补角的综合运用可 以帮助工程师更好地设计和建造桥梁 。
道路规划
在道路规划和设计中,为了确保道路 的顺畅和车辆的安全行驶,需要计算 和调整道路的角度。余角和补角的运 用可以帮助设计师更好地完成这项任 务。
THANK YOU
余角和补角的定义课件
• 余角和补角的定义 • 余角和补角的性质应用 • 余角和补角的计算方法 • 余角和补角的特殊情况 • 余角和补角的实际应用
01
余角和补角的定义
余角的定义
总结词
余角是两个角的度数之和为90度。
总结词
补角是两个角的度数之和为180度。
详细描述
如果两个角的度数之和为90度,则这两个 角互为余角。例如,如果一个角是45度, 那么与它互为余角的另一个角就是45度。
角度的减法计算
利用补角的Leabharlann 质,可以将一个角度减去另一个角度,得到一 个新角度。
03
余角和补角的计算方法
余角的计算方法
定义
如果两个角的度数之和为90°,则这两个角互为余 角。
计算公式
余角 = 90° - 已知角。
举例
已知角为45°,则其余角 = 90° - 45° = 45°。
补角的计算方法
定义
总结词
余角的定义是两个角的度 数之和为90度。
详细描述
如果两个角的度数之和为 90度,则这两个角互为 余角。例如,如果一个角 是30度,那么与它互为 余角的另一个角就是60 度。
数学课件余角和补角
详细描述
余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。
余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。
《余角和补角》图形认识初步PPT课件 (共7张PPT)
⑴如果两个角的和等于 ,就说这两个角互 为余角。 ⑵如果两个角的和等于 ,就说这两个角互 为补角。 ⑶如果∠a=61°38',则∠a得余角为 , ∠a的补角为 。 ⑷如果一个角与它的余角之比是1:2,那么 这两个角是 ,这个角与它的补角之比是 。
⑸一个角等于它的补角的3倍,则这个角的补角 的余角是 。 ⑹已知∠1与∠2互为余角,则∠1与∠2的补角 之和是 。 ⑺已知∠1=120°-3m,∠2=3m-30°,则∠1 与∠2得关系是 。 1 ⑻已知一个角的余角是这个角的 ,求这个角 5 的度数 。
课 堂 作 业:
①P140 13题。 ②已知∠1=35°19´,则∠1的余角等于 度。 ③若∠1=30°,则∠1的补角为 度。 ④一个锐角的补角和它的余角之差为 度。 ⑤已知∠A是它补角的4倍,那么∠A为 度。 ⑥已知∠1与∠2互余,且∠1=15°、则∠2的 补角为 度。
第四章 图形认识初步
4.3.3.余角和补角
学习目标
理解余角和补角的定义。 会运用互余、互补P137思考前) 结合图形理解余角、补角的概念。 思考如何求一个角的余角和补角。 4分钟后,比谁能创造性地做出与例题类似 的习题。
检 测 题:
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
⑸一个角等于它的补角的3倍,则这个角的补角 的余角是 。 ⑹已知∠1与∠2互为余角,则∠1与∠2的补角 之和是 。 ⑺已知∠1=120°-3m,∠2=3m-30°,则∠1 与∠2得关系是 。 1 ⑻已知一个角的余角是这个角的 ,求这个角 5 的度数 。
课 堂 作 业:
①P140 13题。 ②已知∠1=35°19´,则∠1的余角等于 度。 ③若∠1=30°,则∠1的补角为 度。 ④一个锐角的补角和它的余角之差为 度。 ⑤已知∠A是它补角的4倍,那么∠A为 度。 ⑥已知∠1与∠2互余,且∠1=15°、则∠2的 补角为 度。
第四章 图形认识初步
4.3.3.余角和补角
学习目标
理解余角和补角的定义。 会运用互余、互补P137思考前) 结合图形理解余角、补角的概念。 思考如何求一个角的余角和补角。 4分钟后,比谁能创造性地做出与例题类似 的习题。
检 测 题:
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
《余角补角对顶角》课件
补角的实际应用
补角的定义
如果两个角的度数之和为180°,则 这两个角互为补角。
补角的性质
补角的性质包括等大、互补、同旁内 角互补等。
补角的实际应用
在几何学中,补角的应用也非常广泛 ,例如在计算角度、证明定理等方面 都有应用。
补角的应用举例
在航海学中,为了确定船只的位置, 通常需要利用补角的性质来计算船只 与陆地之间的角度。
总结词
对顶角是由两条直线交于一点所形成的相对的两个角。对顶角的度数相等。
详细描述
对顶角是由两条直线交于一点所形成的相对的两个角。根据几何学的基本定理,对顶角的度数相等,即如果两个 角是对顶角,那么它们的度数相等。这一性质在进行几何证明和计算时经常被用到。例如,在三角形中,如果两 个角是对顶角,那么它们的度数相等,可以利用这一性质进行角度的计算和证明。
补角的表示方法
用数学符号表示为∠A + ∠B = 180°。
对顶角的定义
对顶角的定义
两条直线相交时,相对的两个角互为对顶角 。
对顶角的取值范围
对顶角的取值范围是0°到180°之间。
对顶角的性质
对顶角相等,即两个对顶角的角度相等。
对顶角的表示方法
用数学符号表示为∠A = ∠B。
02
余角、补角、对顶角的性 质
对顶角的实际应用
对顶角的定义
如果两条直线相交,相对的两个角就是 对顶角。
对顶角的实际应用
在几何学中,对顶角的应用非常广泛 ,例如在证明定理、计算角度等方面
都有应用。
对顶角的性质
对顶角相等,对顶角是相交直线的交 点所形成的角。
对顶角的应用举例
在机械工程中,为了使机器的零件能 够正确地配合,通常需要利用对顶角 的性质来设计合适的角度。
补角和余角PPT课件.ppt
补角和余角
练习
若∠α+∠β=90°,∠β+∠γ=90°,则
∠α与∠γ的关系是( C )
A.互余 B.互补 C.相等 D.∠α=90°+∠γ
补角和余角
练习
如图,直线AB,CD交于点O,因为∠1 +∠3=180°,∠2+∠3=180°,所以 ∠1=∠2的依据是( C ) A.同角的余角相等 B.等角的余角相等 C.同角的补角相等 D.等角的补角相等
补角和余角
二、互角为余角
1、定义: 如果两个角的和等于一个_直__角__,就说 这两个角互为余角,简称互余,其中一 个角是另一个角的余角.
补角和余角
一、互角为补角
2、数学1= _9_0_°_-_∠__2___ ∠2= _9_0_°_-_∠__1___
补角和余角
回顾
上节课学习了哪些知识? 一、角的大小比较 二、角的和与差 三、角的平分线
补角和余角
一、互角为补角
1、定义: 如果两个角的和等于一个_平__角__,就说 这两个角互为补角,简称互补,其中一 个角是另一个角的补角.
补角和余角
一、互角为补角
2、数学符号语言表达: ∵∠1与∠2互补 ∴ ∠1+ ∠2=180°
补角和余角
课时小结
这节课学习了哪些知识? 一、互为补角的定义 二、互为余角的定义 三、补角和余角的性质
解:∵∠1与∠2互补,∴∠2 = 180°- _∠__1_. ∵∠3与∠4互补,∴∠4 = 180 ° -_∠__3_ . 又因为∠ 1= ∠ 3,所以∠___2_=_∠__4_.
补角和余角
三、补角和角余角的性质
如图,∠1=∠3,∠1与∠2互补,∠3与∠4互补,那 么∠2与∠4有什么关系?
解:∵∠1与∠2互补,∴∠2 = 180°- _∠__1_. ∵∠3与∠4互补,∴∠4 = 180 ° -_∠__3_ . 又因为∠ 1= ∠ 3,所以∠___2_=_∠__4_.
人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件
理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
人教版数学七年级上册 4.余角与补角课件(24张)
解得: x =60 答:这个角的度数是60 °。
已知一个角的补角是它的3倍,这个角是多度?
解:设这个角为x°, 则这个角的补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角的度数为45°
变式训练: 已知一个角的补角是这个角的余角的4倍,求这个 角的度数
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
注意点
1 互余、互补是两角之间的数量关系,只与他们的 度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是 90 ,补角是 180 ,
同一个锐角的补角比90余。角大 90 。
4 只有锐角才有余角。 5 同角的余角(补角)相等;
•
2.对于这种能力,人们普遍存在一种 疑问, 即为什 么只有 一部分 人会发 生联觉 现象。 一些人 用基因 来解释 这个问 题。有 研究者 已经注 意到, 如果一 个家族 中有一 人具有 联觉能 力,那 么很可 能会出 现更多 这样的 人。
•
3.科学研究指出,联觉现象大多出现 在数学 较差的 人身上 ,此外 ,左撇 子、方 向感较 差以及 有过预 知经历 的人也 通常会 出现联 觉现象 。也有 人认为 ,联觉 能力与 一个人 的创造 力有关 ,许多 著名的 科学家 和艺术 家都具 备联觉 能力。
DC
E
1
23 4
A
O
B
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
小结
互余
互补
两角间 1 2 90 1 2 180
已知一个角的补角是它的3倍,这个角是多度?
解:设这个角为x°, 则这个角的补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角的度数为45°
变式训练: 已知一个角的补角是这个角的余角的4倍,求这个 角的度数
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
注意点
1 互余、互补是两角之间的数量关系,只与他们的 度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是 90 ,补角是 180 ,
同一个锐角的补角比90余。角大 90 。
4 只有锐角才有余角。 5 同角的余角(补角)相等;
•
2.对于这种能力,人们普遍存在一种 疑问, 即为什 么只有 一部分 人会发 生联觉 现象。 一些人 用基因 来解释 这个问 题。有 研究者 已经注 意到, 如果一 个家族 中有一 人具有 联觉能 力,那 么很可 能会出 现更多 这样的 人。
•
3.科学研究指出,联觉现象大多出现 在数学 较差的 人身上 ,此外 ,左撇 子、方 向感较 差以及 有过预 知经历 的人也 通常会 出现联 觉现象 。也有 人认为 ,联觉 能力与 一个人 的创造 力有关 ,许多 著名的 科学家 和艺术 家都具 备联觉 能力。
DC
E
1
23 4
A
O
B
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
小结
互余
互补
两角间 1 2 90 1 2 180
人教版七年级数学上册《余角和补角》课件(共21张PPT)
=27°28′
∠ 的补角=180o -∠ ∠ 的补角=180o - 62°32′
=117°28′ 答:这个角的余角为27°28′,补角117°28′。
2、余角和补角的性质。
(1)余角的基本性质:
∠ 的余角=90°- ∠
∠ 的余角=90°- ∠
若∠ = ∠
则90°- ∠ =90°- ∠
AC
解:∠BOC=∠AOB -∠AOC =90°- ∠AOC
D
∠AOD= ∠AOB -∠BOD
B
=90°- ∠AOC
O
例4、如图∠AOC= ∠BOC=∠DOE=90°,则 图中与∠3互余的角是__∠__2_, _∠__4_, 图中与∠4互余的角是_∠__3_, __∠__1_, 图中有与∠3互补的角吗?_∠__B_O__D___.
答:这个角是60°.
练习2、(1)如果∠的余角是∠的2
倍,求 ∠的度数。
(2)如果∠1的补角是∠1的3 倍,求∠1的度数。
练习2、(1)如果∠的余角是∠的2 倍, 求 ∠的度数。
解:设∠的度数为x度,则 ∠的余
角为(90-x)度。 由题意,得: 90-x=2 x -3x=-90
x=30(度)
答:∠ 的度数为30度。
即∠ 的余角= ∠ 的余角
同角或等角的余角相等。
图形一
(2)补角的基本性质:
∠ 的补角= 180o -∠
∠ 的补角= 180o -∠
若∠=∠
则 180o -∠=180o -∠
即∠ 的补角= ∠的补角
同角或等角的补角相等。
图形2
例1、如图,∠AOC=∠BOD=Rt∠, 问有哪两个锐角相等?
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
∠ 的补角=180o -∠ ∠ 的补角=180o - 62°32′
=117°28′ 答:这个角的余角为27°28′,补角117°28′。
2、余角和补角的性质。
(1)余角的基本性质:
∠ 的余角=90°- ∠
∠ 的余角=90°- ∠
若∠ = ∠
则90°- ∠ =90°- ∠
AC
解:∠BOC=∠AOB -∠AOC =90°- ∠AOC
D
∠AOD= ∠AOB -∠BOD
B
=90°- ∠AOC
O
例4、如图∠AOC= ∠BOC=∠DOE=90°,则 图中与∠3互余的角是__∠__2_, _∠__4_, 图中与∠4互余的角是_∠__3_, __∠__1_, 图中有与∠3互补的角吗?_∠__B_O__D___.
答:这个角是60°.
练习2、(1)如果∠的余角是∠的2
倍,求 ∠的度数。
(2)如果∠1的补角是∠1的3 倍,求∠1的度数。
练习2、(1)如果∠的余角是∠的2 倍, 求 ∠的度数。
解:设∠的度数为x度,则 ∠的余
角为(90-x)度。 由题意,得: 90-x=2 x -3x=-90
x=30(度)
答:∠ 的度数为30度。
即∠ 的余角= ∠ 的余角
同角或等角的余角相等。
图形一
(2)补角的基本性质:
∠ 的补角= 180o -∠
∠ 的补角= 180o -∠
若∠=∠
则 180o -∠=180o -∠
即∠ 的补角= ∠的补角
同角或等角的补角相等。
图形2
例1、如图,∠AOC=∠BOD=Rt∠, 问有哪两个锐角相等?
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
余角和补角-完整版PPT课件
∠α的余角
85° 58° 45° 27°37′ 无
135° α
无 90°-α
∠α的补角
175° 148° 135° 117°37′ 90°
45° 180°-α
练习
判断
1、90度的角叫余角,180度的角叫补角。
×
2、若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为余角 ×
3、如果一个角有补角,那么这个角一定是钝角
1
(1)写出图中所有的直角_____A__O_D_,_____B_O_D_,__ EOC
A
(2)写出图中与 AOE相等的_____3______________
(3)写出图中 DOE所有的余角_____1_,____3_________
(4)写出图中 AOE所有的余角_____2_,____4_________
2画完图后请回答下列问题:
A
(1)图中有哪几对互余的角?
C
∠1∠2=90°, ∠2∠3(2)你能发现哪几个角是相等的(直角除外)?
∠1=∠3 B
(3)你能用一句话概括以上规律吗?
同角的余角相等
互为余角
互为补角
对应图形 数量关系 性质
1 2
21
∠1 ∠2 = 90 ° ∠1 ∠2 = 180 °
2
1
1 2
43
互为余角 如果两个角的和等于90°,那 么这两个角互为余角。(简称 互余)
几何语言:∵∠1∠2=900 ∴∠1与∠2互为余角
互为补角 如果两个角的和等于180°, 那么这两个角互为补角。(简 称互补)
几何语言:∵∠3∠4=1800 ∴∠3与∠4互为补角
帮∠ α 找朋友:
∠α
5° 32° 45° 62°23′ 90°
《余角和补角》教学课件
∵ ∠1+ ∠2= 180° ∴ ∠1、 ∠2互为补角
1
2
1
2
互余和互补的两个角只与它们的数量有关,与位置无关。
例题讲解
例3 已知∠α=50°17′,求∠α的余角和补角。 解:∠α的余角=90°-50°17′= 39°43′,
∠α的补角=180°-50°17′= 129°43′。
根据例题动脑填一填
定义一
互为余角:如果两个角的和等于90°(或直角),就说这两个角互为余角(简称 互余),也可以说其中一个角是另一个角的余角。
∵ ∠1+ ∠2= 90° ∴ ∠1、 ∠2互为余角
1 2
1 2
定义二
互为补角:如果两个角的和等于180°(或平角),就说这两个角互为补角, 简称互补,也可以说其中一个角是另一个角的补角
2 1
4 3
解: ∠2与∠4相等 ∵ ∠1﹢∠2 = 180°, ∠3﹢∠4 = 180° ∴ ∠2 = 180°─∠1, ∠4 = 180°─∠3 ∵ ∠1 =∠3 ∴ ∠2 =∠4
等角的补角相等
性质
1、余角的性质 同角(等角)的余角相等
2、补角的性质 同角(等角)的补角相等
补角具有同样的性质吗?
自我检测
1、判断题:
(1)互余的两个角必定都是锐角。 ( )
(2)一个角的余角必定是钝角。
()
(3)一个角的补角必定是钝角。
()
(4)若 AOB与 BOC互补,则A、O、C同在一直线上. 90 °,
则这三个角叫做互余.
()
课堂小结
本节课我们学习的主要内容是什么?
A
1
解: ∵ ∠1+ ∠BOC = 90 °
课件余角补角的概念与性质.ppt
知识抢答
判断:
看谁反应快
1.如果∠1=30°,∠2=25°,∠3=35°,那么∠1、 ∠2、∠3这三个角称为互为余( )
2.两块直角三角板中∠A=90°, C
D
∠D=90°,则∠A与∠D互为补角。 ()
E F
A
B
开动脑筋
1、如图,O为直线AB上一点,
∠AOD=900,则图中哪些角互为
余角?哪些角互为补角?
图中给出的各角,那些互为补角?
10o30o60o80o100o
120o
150o
170o
(1)互为余角数量关系为:
因为∠α+ ∠β=90°, 所以∠α和 ∠β互余.
因为∠α和 ∠β互余, 所以∠α+ ∠β=90°.
(2)互为补角数量关系为:
因为∠α+ ∠β=180°, 因为∠α和 ∠β互补, 所以∠α和 ∠β互补. 所以∠α+ ∠β=180°.
∠1+ ∠ 2=900
如果两个角的和是一个直角(90度) , 这两个角叫做互为余角,简称互余。
其中的一个角叫做另一个角的余角。
图中给出的各角,那些互为余角?
10o
30o
50o
60o
40o
80o
如l 图,将一三角板(尺)的直角顶点放在直线 上 (三角板和直线在同一平面内),随意绕该顶点在 同一平面内转动三角板(三角板总在直线的上方), 问∠1与∠2的和是否会发生变化?
注意:互余、互补是指两个角的数量关系,与位置无关
今天你需要完成的任务是:
1.课本第139页 7题,第140页11题,13题. 2.∠α的余角是它的3倍,∠α是多少度?
3.(选做题)一个角的余角比这个角的补角的 1 还小10°,求这个