余角和补角课件

合集下载

《余角和补角》图形初步认识PPT课件

《余角和补角》图形初步认识PPT课件
因为∠1与∠2和∠3都互为补角, 所以∠2=180º-∠1,∠3=180º-∠1. 所以∠2=∠3.
探究新知
已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和∠4
相等吗?为什么?
1
2
3 4
由∠1与∠2互补,得∠1+∠2=180º,所以 ∠2=180º-∠1.
由∠3与∠4互补,得∠3+∠4=180º,所以∠4=180º-∠3. 又因为∠1=∠3,所以180º-∠1=180º-∠3, 所以∠2=∠4.
北 A
30°
C
60°
西

O
25°
B 南
课堂小结
1.余角的定义: 一般地,如果两个角的和等于90°(直角),就说这两个角互为余角, 即其中每一个角是另一个角的余角. 2.补角的定义: 如果两个角的和等于180°(平角),就说这两个角互为补角,即其 中一个角是另一个角的补角. 3.余角与补角的性质: 同角(等角)的补角相等; 同角(等角)的余角相等. 4.方位角
又因为∠1+∠ADC=∠CDE=90°,
且∠1=∠2,
所以∠ADC=∠BDC.
课堂练习
(2)∠ADF=∠BDE.
理由:因为∠ADF=180°-∠1,∠BDE=180°-∠2,
又因为∠1=∠2,
所以∠ADF=∠BDE.
C
A
B
E
1
2
D
F
课堂练习
6.如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α 与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中 ∠α与∠β相等?
课堂小结
本图片资源介绍了两角互余与互补的概念及余(补)角 的性质,适用于余角和补角的教学.若需使用,请插入 图片【知识点解析】互余与互补.

余角和补角课件(共23张PPT)

余角和补角课件(共23张PPT)

6.3.3
余角和补角
符号语言:
因为∠3 +∠4 = 180°,
所以∠3 与∠4 互为补角.
3
注意:(1) 补角是指两个角的关系;
(2) 补角只考虑两个角的数量关系,与位置无关.
4
6.3.3
余角和补角
思考
∠1 与∠2 、∠3 都互为补角,那么∠2 与∠3 的大小有什么关系?
∠1 与∠2 、∠3 都互为补角,那么∠2 = 180° -∠1,∠3 = 180° -∠1.
6.3.3
余角和补角
七年级上
6.3.3
余角和补角
学习目标
1. 了解余角、补角的概念.
重点
2. 掌握余角和补角的性质,并能利用余角、补角的性质解决相关问题.
重点
6.3.3
余角和补角
新课引入
问题1:下图中的∠A 和∠B 有怎样的数量关系?
A
A
30°
45°
90° 45°
C
B
∠A +∠B = 90°
90° 60°
6.3.3
余角和补角
例3 如图,点A,O,B在同一直线上,射线 OD 和射线 OE 分别平分
∠AOC 和∠BOC,图中哪些角互为余角?
解:因为点A,O,B在同一直线上,所以∠AOC 和∠BOC
互为补角.
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,



所以∠COD+∠COE= ∠AOC+ ∠BOC= (∠AOC+∠BOC )
6.3.3
余角和补角
3.如图,要测量两堵围墙所形成的∠AOB 的度数,但人不能进入围墙
,如何测量?

人教版数学七年级上册4.余角和补角课件

人教版数学七年级上册4.余角和补角课件

16 . (8 分 ) 如 图 , 已 知 直 线 AB 和 CD 相 交 于 点 O , OM 平 分 ∠ BOD , ON⊥OM,∠AOC=50°. (1)求∠AON的度数; (2)写出∠DON的余角.
解:(1)65° (2)∠DOM,∠MOB
17.(10分)如图,AB是一条直线,OC是一条射线,∠AOC=2∠AOF, ∠BOC=2∠BOE. (1)∠1与∠2互余吗?
解:如图:
19.(12分)如图甲所示,∠AOB,∠COD都是直角. (1)试猜想∠AOD与∠COB在数量上是相等、互余、还是互补的关 系,你能用推理的方法说明你的猜想是否成立吗? (2)当∠COD绕点O旋转到图乙的位置时,你本来的猜想还成立吗?
方位的表示方法
在表示方向时,要先在观测点画出方位图,然后测量出角度并在图 上表示出来,注意表示时要先写北还是南,再写偏东或偏西,偏多
少度,如图4-3-28,OA是表示北偏东30°的 一条射线,OB是表示南偏西50°的一条射线; 特别地,射线OC表示北偏西45°可写成西北 方向,OD表示东南方向.
例题
小结
1. 余角和补角的定义:
如果两个角的和等于
,就说这两个角互为余角;如果两个
角的和为
,就说这两个角互为补角.
2. 余角和补角的性质: 同角(等角)的补角________,同角(等角)的余角_________.
3. 如图,O是直线AB上的点,OC是∠AOB的平分线. (1)∠AOD的补角是__∠__B_O__D___,余角是__∠__C_O__D__; (2)∠DOB的补角是__∠__A__O_D_____. 4. 已 知 ∠ α = 20° , 则 ∠ α 的 余 角 为 _______70,° ∠ α 的 补 角 为 ______1_6_0.° 5. ∠A的补角为130°,则∠A的余角为________4.0°

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

1
4
3
如果两个角的和为90° (直角),那么称这两个
角 互为余角 ,简称“互余”。
几何语言叙述:
如果∠1+∠2=90°(或者∠1=90°-∠2),
那么∠1与∠2互为余角 .
总结归纳
2
1
4
3
如果两个角的和为180°(平角),那么称这两
个角 互为补角,简称“互补”。
几何语言叙述:
如果∠3+∠4=180°(或者∠3=180°-∠4),
o
10
o
30
o
o
80
60
o
100
o
120
o
150
o
170
3.填表:
∠α

∠α的余角
∠α的补角
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
27°37′
117°37′
90° x
180° x
62°23′
x
4.如右图,点A、O、B在同一直线上,OD平分
AOB, COE=90°。回答下列问题:
总结归纳
性质:
同角或等角的余角相等。
同角或等角的补角相等。
例题解析
请认真观察下图,回答下列问题:
①图中有哪几对互余的角?请用几何语言形式表示:
(∠A+∠1=90°, ∠1+∠2=90°)
(∠A+∠E=90°) (∠2+∠E=90°)
②图中哪几对角是相等的角(直角除外)?为什么?
(∠2=∠A) (同角的余角相等)
O

余角和补角的定义课件

余角和补角的定义课件

摄影
在摄影中,为了获得更好的拍摄 角度和构图,摄影师会运用补角
的概念来调整相机的角度。
余角和补角的综合应用实例
桥梁设计
在桥梁设计中,为了确保桥梁的稳定 性和安全性,需要精确地计算不同部 分的角度。余角和补角的综合运用可 以帮助工程师更好地设计和建造桥梁 。
道路规划
在道路规划和设计中,为了确保道路 的顺畅和车辆的安全行驶,需要计算 和调整道路的角度。余角和补角的运 用可以帮助设计师更好地完成这项任 务。
THANK YOU
余角和补角的定义课件
• 余角和补角的定义 • 余角和补角的性质应用 • 余角和补角的计算方法 • 余角和补角的特殊情况 • 余角和补角的实际应用
01
余角和补角的定义
余角的定义
总结词
余角是两个角的度数之和为90度。
总结词
补角是两个角的度数之和为180度。
详细描述
如果两个角的度数之和为90度,则这两个 角互为余角。例如,如果一个角是45度, 那么与它互为余角的另一个角就是45度。
角度的减法计算
利用补角的Leabharlann 质,可以将一个角度减去另一个角度,得到一 个新角度。
03
余角和补角的计算方法
余角的计算方法
定义
如果两个角的度数之和为90°,则这两个角互为余 角。
计算公式
余角 = 90° - 已知角。
举例
已知角为45°,则其余角 = 90° - 45° = 45°。
补角的计算方法
定义
总结词
余角的定义是两个角的度 数之和为90度。
详细描述
如果两个角的度数之和为 90度,则这两个角互为 余角。例如,如果一个角 是30度,那么与它互为 余角的另一个角就是60 度。

数学课件余角和补角

数学课件余角和补角
详细描述
余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。

《余角和补角》图形认识初步PPT课件 (共7张PPT)

《余角和补角》图形认识初步PPT课件 (共7张PPT)
⑴如果两个角的和等于 ,就说这两个角互 为余角。 ⑵如果两个角的和等于 ,就说这两个角互 为补角。 ⑶如果∠a=61°38',则∠a得余角为 , ∠a的补角为 。 ⑷如果一个角与它的余角之比是1:2,那么 这两个角是 ,这个角与它的补角之比是 。
⑸一个角等于它的补角的3倍,则这个角的补角 的余角是 。 ⑹已知∠1与∠2互为余角,则∠1与∠2的补角 之和是 。 ⑺已知∠1=120°-3m,∠2=3m-30°,则∠1 与∠2得关系是 。 1 ⑻已知一个角的余角是这个角的 ,求这个角 5 的度数 。
课 堂 作 业:
①P140 13题。 ②已知∠1=35°19´,则∠1的余角等于 度。 ③若∠1=30°,则∠1的补角为 度。 ④一个锐角的补角和它的余角之差为 度。 ⑤已知∠A是它补角的4倍,那么∠A为 度。 ⑥已知∠1与∠2互余,且∠1=15°、则∠2的 补角为 度。

第四章 图形认识初步
4.3.3.余角和补角
学习目标
理解余角和补角的定义。 会运用互余、互补P137思考前) 结合图形理解余角、补角的概念。 思考如何求一个角的余角和补角。 4分钟后,比谁能创造性地做出与例题类似 的习题。
检 测 题:
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。

《余角补角对顶角》课件

《余角补角对顶角》课件

补角的实际应用
补角的定义
如果两个角的度数之和为180°,则 这两个角互为补角。
补角的性质
补角的性质包括等大、互补、同旁内 角互补等。
补角的实际应用
在几何学中,补角的应用也非常广泛 ,例如在计算角度、证明定理等方面 都有应用。
补角的应用举例
在航海学中,为了确定船只的位置, 通常需要利用补角的性质来计算船只 与陆地之间的角度。
总结词
对顶角是由两条直线交于一点所形成的相对的两个角。对顶角的度数相等。
详细描述
对顶角是由两条直线交于一点所形成的相对的两个角。根据几何学的基本定理,对顶角的度数相等,即如果两个 角是对顶角,那么它们的度数相等。这一性质在进行几何证明和计算时经常被用到。例如,在三角形中,如果两 个角是对顶角,那么它们的度数相等,可以利用这一性质进行角度的计算和证明。
补角的表示方法
用数学符号表示为∠A + ∠B = 180°。
对顶角的定义
对顶角的定义
两条直线相交时,相对的两个角互为对顶角 。
对顶角的取值范围
对顶角的取值范围是0°到180°之间。
对顶角的性质
对顶角相等,即两个对顶角的角度相等。
对顶角的表示方法
用数学符号表示为∠A = ∠B。
02
余角、补角、对顶角的性 质
对顶角的实际应用
对顶角的定义
如果两条直线相交,相对的两个角就是 对顶角。
对顶角的实际应用
在几何学中,对顶角的应用非常广泛 ,例如在证明定理、计算角度等方面
都有应用。
对顶角的性质
对顶角相等,对顶角是相交直线的交 点所形成的角。
对顶角的应用举例
在机械工程中,为了使机器的零件能 够正确地配合,通常需要利用对顶角 的性质来设计合适的角度。

补角和余角PPT课件.ppt

补角和余角PPT课件.ppt

补角和余角
练习
若∠α+∠β=90°,∠β+∠γ=90°,则
∠α与∠γ的关系是( C )
A.互余 B.互补 C.相等 D.∠α=90°+∠γ
补角和余角
练习
如图,直线AB,CD交于点O,因为∠1 +∠3=180°,∠2+∠3=180°,所以 ∠1=∠2的依据是( C ) A.同角的余角相等 B.等角的余角相等 C.同角的补角相等 D.等角的补角相等
补角和余角
二、互角为余角
1、定义: 如果两个角的和等于一个_直__角__,就说 这两个角互为余角,简称互余,其中一 个角是另一个角的余角.
补角和余角
一、互角为补角
2、数学1= _9_0_°_-_∠__2___ ∠2= _9_0_°_-_∠__1___
补角和余角
回顾
上节课学习了哪些知识? 一、角的大小比较 二、角的和与差 三、角的平分线
补角和余角
一、互角为补角
1、定义: 如果两个角的和等于一个_平__角__,就说 这两个角互为补角,简称互补,其中一 个角是另一个角的补角.
补角和余角
一、互角为补角
2、数学符号语言表达: ∵∠1与∠2互补 ∴ ∠1+ ∠2=180°
补角和余角
课时小结
这节课学习了哪些知识? 一、互为补角的定义 二、互为余角的定义 三、补角和余角的性质
解:∵∠1与∠2互补,∴∠2 = 180°- _∠__1_. ∵∠3与∠4互补,∴∠4 = 180 ° -_∠__3_ . 又因为∠ 1= ∠ 3,所以∠___2_=_∠__4_.
补角和余角
三、补角和角余角的性质
如图,∠1=∠3,∠1与∠2互补,∠3与∠4互补,那 么∠2与∠4有什么关系?
解:∵∠1与∠2互补,∴∠2 = 180°- _∠__1_. ∵∠3与∠4互补,∴∠4 = 180 ° -_∠__3_ . 又因为∠ 1= ∠ 3,所以∠___2_=_∠__4_.

人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件

人教版七年级数学上  4.3.3《余角和补角》课件(共18张PPT)课件

理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m

人教版数学七年级上册 4.余角与补角课件(24张)

人教版数学七年级上册 4.余角与补角课件(24张)
解得: x =60 答:这个角的度数是60 °。
已知一个角的补角是它的3倍,这个角是多度?
解:设这个角为x°, 则这个角的补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角的度数为45°
变式训练: 已知一个角的补角是这个角的余角的4倍,求这个 角的度数
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
注意点
1 互余、互补是两角之间的数量关系,只与他们的 度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是 90 ,补角是 180 ,
同一个锐角的补角比90余。角大 90 。
4 只有锐角才有余角。 5 同角的余角(补角)相等;

2.对于这种能力,人们普遍存在一种 疑问, 即为什 么只有 一部分 人会发 生联觉 现象。 一些人 用基因 来解释 这个问 题。有 研究者 已经注 意到, 如果一 个家族 中有一 人具有 联觉能 力,那 么很可 能会出 现更多 这样的 人。

3.科学研究指出,联觉现象大多出现 在数学 较差的 人身上 ,此外 ,左撇 子、方 向感较 差以及 有过预 知经历 的人也 通常会 出现联 觉现象 。也有 人认为 ,联觉 能力与 一个人 的创造 力有关 ,许多 著名的 科学家 和艺术 家都具 备联觉 能力。
DC
E
1
23 4
A
O
B
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
小结
互余
互补
两角间 1 2 90 1 2 180

人教版七年级数学上册《余角和补角》课件(共21张PPT)

人教版七年级数学上册《余角和补角》课件(共21张PPT)
=27°28′
∠ 的补角=180o -∠ ∠ 的补角=180o - 62°32′
=117°28′ 答:这个角的余角为27°28′,补角117°28′。
2、余角和补角的性质。
(1)余角的基本性质:
∠ 的余角=90°- ∠
∠ 的余角=90°- ∠
若∠ = ∠
则90°- ∠ =90°- ∠
AC
解:∠BOC=∠AOB -∠AOC =90°- ∠AOC
D
∠AOD= ∠AOB -∠BOD
B
=90°- ∠AOC
O
例4、如图∠AOC= ∠BOC=∠DOE=90°,则 图中与∠3互余的角是__∠__2_, _∠__4_, 图中与∠4互余的角是_∠__3_, __∠__1_, 图中有与∠3互补的角吗?_∠__B_O__D___.
答:这个角是60°.
练习2、(1)如果∠的余角是∠的2
倍,求 ∠的度数。
(2)如果∠1的补角是∠1的3 倍,求∠1的度数。
练习2、(1)如果∠的余角是∠的2 倍, 求 ∠的度数。
解:设∠的度数为x度,则 ∠的余
角为(90-x)度。 由题意,得: 90-x=2 x -3x=-90
x=30(度)
答:∠ 的度数为30度。
即∠ 的余角= ∠ 的余角
同角或等角的余角相等。
图形一
(2)补角的基本性质:
∠ 的补角= 180o -∠
∠ 的补角= 180o -∠
若∠=∠
则 180o -∠=180o -∠
即∠ 的补角= ∠的补角
同角或等角的补角相等。
图形2
例1、如图,∠AOC=∠BOD=Rt∠, 问有哪两个锐角相等?
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7

余角和补角-完整版PPT课件

余角和补角-完整版PPT课件

∠α的余角
85° 58° 45° 27°37′ 无
135° α
无 90°-α
∠α的补角
175° 148° 135° 117°37′ 90°
45° 180°-α
练习
判断
1、90度的角叫余角,180度的角叫补角。
×
2、若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为余角 ×
3、如果一个角有补角,那么这个角一定是钝角
1
(1)写出图中所有的直角_____A__O_D_,_____B_O_D_,__ EOC
A
(2)写出图中与 AOE相等的_____3______________
(3)写出图中 DOE所有的余角_____1_,____3_________
(4)写出图中 AOE所有的余角_____2_,____4_________
2画完图后请回答下列问题:
A
(1)图中有哪几对互余的角?
C
∠1∠2=90°, ∠2∠3(2)你能发现哪几个角是相等的(直角除外)?
∠1=∠3 B
(3)你能用一句话概括以上规律吗?
同角的余角相等
互为余角
互为补角
对应图形 数量关系 性质
1 2
21
∠1 ∠2 = 90 ° ∠1 ∠2 = 180 °
2
1
1 2
43
互为余角 如果两个角的和等于90°,那 么这两个角互为余角。(简称 互余)
几何语言:∵∠1∠2=900 ∴∠1与∠2互为余角
互为补角 如果两个角的和等于180°, 那么这两个角互为补角。(简 称互补)
几何语言:∵∠3∠4=1800 ∴∠3与∠4互为补角
帮∠ α 找朋友:
∠α
5° 32° 45° 62°23′ 90°

《余角和补角》教学课件

《余角和补角》教学课件

∵ ∠1+ ∠2= 180° ∴ ∠1、 ∠2互为补角
1
2
1
2
互余和互补的两个角只与它们的数量有关,与位置无关。
例题讲解
例3 已知∠α=50°17′,求∠α的余角和补角。 解:∠α的余角=90°-50°17′= 39°43′,
∠α的补角=180°-50°17′= 129°43′。
根据例题动脑填一填
定义一
互为余角:如果两个角的和等于90°(或直角),就说这两个角互为余角(简称 互余),也可以说其中一个角是另一个角的余角。
∵ ∠1+ ∠2= 90° ∴ ∠1、 ∠2互为余角
1 2
1 2
定义二
互为补角:如果两个角的和等于180°(或平角),就说这两个角互为补角, 简称互补,也可以说其中一个角是另一个角的补角
2 1
4 3
解: ∠2与∠4相等 ∵ ∠1﹢∠2 = 180°, ∠3﹢∠4 = 180° ∴ ∠2 = 180°─∠1, ∠4 = 180°─∠3 ∵ ∠1 =∠3 ∴ ∠2 =∠4
等角的补角相等
性质
1、余角的性质 同角(等角)的余角相等
2、补角的性质 同角(等角)的补角相等
补角具有同样的性质吗?
自我检测
1、判断题:
(1)互余的两个角必定都是锐角。 ( )
(2)一个角的余角必定是钝角。
()
(3)一个角的补角必定是钝角。
()
(4)若 AOB与 BOC互补,则A、O、C同在一直线上. 90 °,
则这三个角叫做互余.
()
课堂小结
本节课我们学习的主要内容是什么?
A
1
解: ∵ ∠1+ ∠BOC = 90 °

课件余角补角的概念与性质.ppt

课件余角补角的概念与性质.ppt

知识抢答
判断:
看谁反应快
1.如果∠1=30°,∠2=25°,∠3=35°,那么∠1、 ∠2、∠3这三个角称为互为余( )
2.两块直角三角板中∠A=90°, C
D
∠D=90°,则∠A与∠D互为补角。 ()
E F
A
B
开动脑筋
1、如图,O为直线AB上一点,
∠AOD=900,则图中哪些角互为
余角?哪些角互为补角?
图中给出的各角,那些互为补角?
10o30o60o80o100o
120o
150o
170o
(1)互为余角数量关系为:
因为∠α+ ∠β=90°, 所以∠α和 ∠β互余.
因为∠α和 ∠β互余, 所以∠α+ ∠β=90°.
(2)互为补角数量关系为:
因为∠α+ ∠β=180°, 因为∠α和 ∠β互补, 所以∠α和 ∠β互补. 所以∠α+ ∠β=180°.
∠1+ ∠ 2=900
如果两个角的和是一个直角(90度) , 这两个角叫做互为余角,简称互余。
其中的一个角叫做另一个角的余角。
图中给出的各角,那些互为余角?
10o
30o
50o
60o
40o
80o
如l 图,将一三角板(尺)的直角顶点放在直线 上 (三角板和直线在同一平面内),随意绕该顶点在 同一平面内转动三角板(三角板总在直线的上方), 问∠1与∠2的和是否会发生变化?
注意:互余、互补是指两个角的数量关系,与位置无关
今天你需要完成的任务是:
1.课本第139页 7题,第140页11题,13题. 2.∠α的余角是它的3倍,∠α是多少度?
3.(选做题)一个角的余角比这个角的补角的 1 还小10°,求这个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档