抽象函数终极讲义(学生)
高一期中抽象函数知识点
高一期中抽象函数知识点高一期中考试即将来临,作为数学科目的一部分,抽象函数是需要重点掌握的知识点之一。
抽象函数作为高中数学的重要内容,其概念和特点需要认真理解与掌握。
本文将从抽象函数的定义、图象与性质、常见的抽象函数类型等多个方面进行论述,以帮助同学们更好地理解和掌握抽象函数的知识。
一、抽象函数的定义抽象函数是指其中一个函数的自变量包含了另一个函数。
通常,我们把包含有另一个函数的函数称作「外层函数」,而另一个函数称作「内层函数」。
举个例子,f(g(x))中的f(x)就是外层函数,g(x)就是内层函数。
二、抽象函数的图象与性质抽象函数的图象一般来说比较复杂,因为它是内外两个函数共同作用的结果。
要绘制抽象函数的图象,需要先绘制内层函数和外层函数的图象,然后观察两个图象的叠加效果。
在绘制图象时,需要注意变量的定义域和值域范围,以确保图象的正确性。
关于抽象函数的性质,可以通过以下几个方面进行分析:1. 定义域和值域的确定:抽象函数的定义域取决于内外两个函数的定义域,并且需要满足内层函数的值域在外层函数的定义域范围内。
对于值域而言,抽象函数的值域取决于内层函数。
2. 函数的奇偶性:抽象函数的奇偶性取决于外层函数的奇偶性,而与内层函数的奇偶性无关。
具体来说,如果外层函数是奇函数,则抽象函数也是奇函数;如果外层函数是偶函数,则抽象函数也是偶函数。
3. 函数的增减性:抽象函数的增减性取决于内外两个函数的增减性。
一般来说,如果外层函数是递增函数,且内层函数的导数存在且大于0,那么抽象函数是递增函数;如果外层函数是递减函数,且内层函数的导数存在且小于0,那么抽象函数是递减函数。
三、常见的抽象函数类型1. 复合函数:复合函数是抽象函数的一种常见类型,它将两个函数进行组合,其中一个函数作为另一个函数的自变量。
例如,f(g(x))就是一种典型的复合函数。
2. 函数的逆运算:在函数的逆运算中,内层函数和外层函数的关系是倒置的。
抽象函数的讲义
高考中抽象函数的求解策略函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。
一般抽象函数数学题融函数单调性、周期性、奇偶性、定义域、值域、图像以及不等式、方程等知识于一体。
通过赋值整体思考,找出一个具体函数原型等方法去探究该函数的性质,能运用相关性质去解决有关问题。
在高考中加大对学生理性思维能力的考查以及主体创新能力的考查是新时期的一个重要特点。
解决这类问题就要求我们解题时思维灵活、深刻,而且要联想到我们学习过的模型函数以及它的有关性质,探索这类问题的解题方法。
下面我们就来专门探讨这类函数及其求解策略。
抽象函数是指没有给出具体的函数解析式或图象,只给出一些特殊条件或特征的函数;所以在解决抽象函数问题常用的方法是赋值法及借助模型函数分析法.同时我们可以看出这两种方法是化抽象函数为形象函数、具体函数的两种常用的手段.面对抽象函数数学题,我们的解题思路一般不外乎一下三种:①合理赋值,化抽象为具体;②作恒等变形,找出该函数规律性、特征性特点;③分类讨论,归纳出抽象函数的实质问题。
一般来说抽象函数常在高考中的考查的以下的几个具体问题:1、求函数在某些特殊点的函数值。
(赋值法)2、求函数的图象和性质(单调性、周期性、奇偶性、对称性)。
3、利用函数的性质解不等式或者方程。
高考中常见的函数模型有以下几种:1、一次函数型:f (x )=kx )()()(y f x f y x f +=+-bf (x )=kx+b)()()(y f x f y x f +=+2、指数函数型:)()()(y f x f y x f ∙=+()()/()f x y f x f y -=3、对数函数型:)()()(y f x f y x f +=∙()()()x f f x f y y=-4、正切函数型:()()()1()()f x f y f x y f x f y ++=-5、余弦函数型:()()2()()f x y f x y f x f y ++-=高考中常见的函数的周期性有以下几种:例1、已知函数的定义域为,对任意实数、,满足,且)(x f R m n 221(=f ,当时,1)()()(-+=+n f m f n m f 21->x 0)(>x f (1)求的值;21(-f (2)求证:在定义域上是单调递增函数。
抽象函数和复合函数的应用 学生版-高中数学
抽象函数与复合函数的应用①抽象函数的性质(定义域、单调性、奇偶性、周期性、对称性)②常见抽象函数模型①-一次函数、二次函数、反比例函数③常见抽象函数模型②-指对幂函数、三角函数④复合函数的应用一、必备知识整合一、抽象函数的性质1.周期性:f x +a =f x ⇒T =a ;f x +a =−f x ⇒T =2a ;f x +a =kf x⇒T =2a ;(k 为常数);f x +a =f x +b ⇒T =a −b 2.对称性:对称轴:f a −x =f a +x 或者f 2a −x =f x ⇒f x 关于x =a 对称;对称中心:f a −x +f a +x =2b 或者f 2a −x +f x =2b ⇒f x 关于a ,b 对称;3.如果f x 同时关于x =a 对称,又关于b ,c 对称,则f x 的周期T =a −b 4.单调性与对称性(或奇偶性)结合解不等式问题①f x 在R 上是奇函数,且f x 单调递增⇒若解不等式f x 1 +f x 2 >0,则有x 1+x 2>0;f x 在R 上是奇函数,且f x 单调递减⇒若解不等式f x 1 +f x 2 >0,则有x 1+x 2<0;②f x 在R 上是偶函数,且f x 在0,+∞ 单调递增⇒若解不等式f x 1 >f x 2 ,则有x 1 >x 2 (不变号加绝对值);f x 在R 上是偶函数,且f x 在0,+∞ 单调递减⇒若解不等式f x 1 >f x 2 ,则有x 1 <x 2 (变号加绝对值);③f x 关于a ,b 对称,且f x 单调递增⇒若解不等式f x 1 +f x 2 >2b ,则有x 1+x 2>2a ;f x 关于a ,b 对称,且f x 单调递减⇒若解不等式f x 1 +f x 2 >2b ,则有x 1+x 2<2a ;④f x 关于x =a 对称,且f x 在a ,+∞ 单调递增⇒若解不等式f x 1 >f x 2 ,则有x 1−a >x 2−a (不变号加绝对值);f x 关于x =a 对称,且f x 在a ,+∞ 单调递减⇒若解不等式f x 1 >f x 2 ,则有x 1−a <x 2−a (不变号加绝对值);5.常见的特殊函数性质一览①f x =log a 1+mx 2±mx 是奇函数②f x =log ak −x k +x f x =log a k +xk −x(k 为常数)是奇函数③f x =1−a x 1+a x 或者f x =1+a x 1−a x 或者f x =a x +1a x −1或者f x =a x −1a x +1是奇函数④f x =m a x+1关于0,m2 对称⑤f g x 复合函数的奇偶性:有偶为偶,全奇为奇二、抽象函数的模型【反比例函数模型】反比例函数:f (x +y )=f (x )f (y )f (x )+f (y ),则f (x )=f (1)x ,x ,f (x ),f (y ),f (x +y )均不为0【一次函数模型】模型1:若f (x ±y )=f (x )±f (y ),则f (x )=f (1)x ;模型2:若f (x ±y )=f (x )±f (y ),则f (x )为奇函数;模型3:若f (x +y )=f (x )+f (y )+m ,则f (x )=f 1 +m x -m ;模型4:若f (x -y )=f (x )-f (y )+m ,则f (x )=f 1 -m x +m ;【指数函数模型】模型1:若f (x +y )=f (x )f (y ),则f (x )=[f (1)]x ;f (x )>0模型2:若f (x -y )=f (x )f (y ),则f (x )=[f (1)]x ;f (x )>0模型3:若f (x +y )=f (x )f (y )m ,则f (x )=f 1 mxm;模型4:若f (x -y )=m f (x )f (y ),则f (x )=m f 1 m x ;【对数函数模型】模型1:若f (x n )=nf (x ),则f (x )=f a log a x a >0且≠1,x >0模型2:若f (xy )=f (x )+f (y ),则f (x )=f a log a x a >0且≠1,x ,y >0模型3:若fxy=f(x)-f(y),则f(x)=f a log a x a>0且≠1,x,y>0模型4:若f(xy)=f(x)+f(y)+m,则f(x)=f a +mlog a x-m a>0且≠1,x,y>0模型5:若fxy=f(x)-f(y)+m,则f(x)=f a -mlog a x+m a>0且≠1,x,y>0【幂函数模型】模型1:若f(xy)=f(x)f(y),则f x =f a log a x a>0且≠1模型2:若fxy=f(x)f(y),则f x =f a log a x a>0且≠1,y≠0,f y ≠0代入f a 则可化简为幂函数;【余弦函数模型】模型1:若f(x+y)+f(x-y)=2f(x)f(y)f(x)不恒为0,则f(x)=cos wx模型2:若f(x)+f(y)=2fx+y2f x-y2f(x)不恒为0,则f(x)=cos wx【正切函数模型】模型:若f(x±y)=f(x)±f(y)1∓f(x)f(y)f(x)f(y)≠1,则f(x)=tan wx模型3:若f(x+y)+f(x-y)=kf(x)f(y)f(x)不恒为0,则f(x)=2kcos wx三、复合函数1.复合函数定义:两个或两个以上的基本初等函数经过嵌套式复合成一个函数叫做复合函数。
2024年高三培优讲义5-抽象函数赋值与构造
专题1-5 抽象函数赋值与构造一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过的变换判定单调性;3、令式子中出现及判定抽象函数的奇偶性;4、换为确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. ①若给出的是“和型”抽象函数,判断符号时要变形为:或;()()12−f x f x ()f x ()−f x x +x T () =+y x f ()()()()111212)(x f x x x f x f x f −+−=−()()()()221212)(x x x f x f x f x f +−−=−②若给出的是“积型”抽象函数,判断符号时要变形为:或. 三、常见的抽象函数模型1、可看做的抽象表达式;2、可看做的抽象表达式(且);3、可看做的抽象表达式(且);4、可看做的抽象表达式.2022新高考2卷T8 1.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .12023新高考1卷T112.(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点2023·山东青岛·统考三模() =xy f ()()()112112x f x x x f x f x f −⎪⎪⎭⎫ ⎝⎛⋅=−()()()⎪⎪⎭⎫⎝⎛⋅−=−212212x x x f x f x f x f ()()()+=+f x y f x f y ()=f x kx ()()()+=f x y f x f y ()=xf x a 0>a 1≠a ()()()=+f xy f x f y ()log =a f x x 0>a 1≠a ()()()=f xy f x f y ()=af x x 重点题型·归类精讲1.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f =______.2023·山东滨州·三模2.(多选)已知连续函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,(1)2f =-,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x −<+的解集为213xx ⎧⎫<<⎨⎬⎩⎭安徽省皖江名校联盟2024届高三上学期10月第二次联考3.已知函数不是常数函数,且满足以下条件:①,其中;②,则( )A .0B .1C .2D .4.(多选)已知定义在R 上的函数()f x 满足()()()()()()()()2,02,01f xy f x f y f x f y f f f =−−+<≠,且()0f x >,则( ) A .()01f =B .()12f −=C .()()2f x f x −=D .()()f x f x −=5.已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的个数是( )①;②必为奇函数;③;④若,则.A .1B .2C .3D .42023·浙江嘉兴·统考模拟6.已知函数的定义域为,且,,则的值是( )A .9B .10C .11D .12(),y f x x =∈R ()()()()f a b f a b f a f b ++−=,a b ∈R ()10f =()2026f −=2−()f x ()f x 'R ,R x y ∈()()()()2f x y f x y f x f y ++−=()00f =()f x '()()00f x f +≥1(1)2f =202311()2n f n ==∑()f x R ()()()()31,00,f x x f x x ⎛⎫=∈−∞+∞ ⎪⎝⎭()()()2f x f y xy f x y ++=+()3f2023届江苏连云港校考7.已知函数,任意,满足,且,则的值为( )A .B .0C .2D .48.已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则2023绍兴·高二期末9.已知函数的定义域为R ,且,为奇函数,,则( ) A . B . C .0 D .10.(多选)已知函数()f x 的定义域为R ,()()()f x y f x f y +=+,则( )A .()00f =B .()f x 是奇函数 C .0x =为()f x 的极小值点D .若()11f =,则()20232023f =11.(多选)设()f x 是定义在R 上的函数,对,x y ∀∈R ,有()()()()22f x y f x y f x f y +−−=++,且()00f ≠,则( )A .()()0f x f x −−=B .()()40f x f x +−=C .()()()()02420242f f f f ++++=−()f x x y R ∈,()()()()22f x y f x y f x f y +−=−()()1220f f ==,()()()1290f f f +++2−()f x ()g x R ()()()()()f x y f x g y g x f y −=−()()210f f −=≠()01f =()21g x +()1,0()()110g g +−=()11f =()202311n f n ==∑()f x ()()()28f x f x f ++=()21f x +1122f ⎛⎫= ⎪⎝⎭22112k kf k =⎛⎫−= ⎪⎝⎭∑11−12−212D .()()()()222212320244048f f f f ++++=12.(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的,R x y ∈,恒有()()()()2f x y f x y f x f y ++−=,则下列说法正确的有( )A .()00f =B .()f x '必为奇函数C .()()00f x f +≥D .若1(1)2f =,则202311()2n f x ==∑13.已知函数()f x 的定义域为R ,满足()()()()f x y f x y f x f y ++−=⋅,且12f ,则( )A .()02f =B .()f x 为奇函数C .()()()()12320232f f f f +++⋅⋅⋅⋅⋅⋅+=−D .()22f x −≤≤14.(多选)已知定义域为R 的函数()f x 对任意实数,x y 都有()()()()2f x y f x y f x f y ++−=,且102f ⎛⎫= ⎪⎝⎭,则以下结论一定正确的有( )A .()01f =−B .()f x 是偶函数C .()f x 关于1,02⎛⎫⎪⎝⎭中心对称D .()()()1220230f f f +++=15.函数()f x 的定义域为R ,且()()()21f x f x f x +=−+−,()()2f x f x =−,()3651f =−,则()20231k f k ==∑ .16.已知函数()f x 满足:1(1),4()()()()(,R)4f f x f y f x y f x y x y ==++−∈,则()2023f = .17.已知函数()f x 定义域为R ,满足()()()()()11,f f x y f x y f x f y =++−=,则()8f = .18.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f = .19.(2024届厦门一中校考)若定义域为R 的奇函数()f x 满足()(1)(1)f x f x f x =++−,且(1)2f =,则(2024)f = .20.函数()f x 的定义域为R ,对任意,x y ∈R ,恒有()()222x y x y f x f y f f +−⎛⎫⎛⎫+=⋅⎪ ⎪⎝⎭⎝⎭,若()112f =,则()1f −= ,()20221n f n ==∑ .深圳市宝安区2024届高三上学期10月调研数学试题21.已知函数()f x 的定义域为R ,且()()()()22f x y f x y f x f y +−=−,()13f =,322f x ⎛⎫+ ⎪⎝⎭为偶函数,则( ) A .()f x 为偶函数 B .()23f = C .()()33f x f x +=−−D .()202313k f k ==∑专题1-5 抽象函数赋值与构造一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过的变换判定单调性;3、令式子中出现及判定抽象函数的奇偶性;4、换为确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. ①若给出的是“和型”抽象函数,判断符号时要变形为:或;()()12−f x f x ()f x ()−f x x +x T () =+y x f ()()()()111212)(x f x x x f x f x f −+−=−()()()()221212)(x x x f x f x f x f +−−=−②若给出的是“积型”抽象函数,判断符号时要变形为:或. 三、常见的抽象函数模型1、可看做的抽象表达式;2、可看做的抽象表达式(且);3、可看做的抽象表达式(且);4、可看做的抽象表达式.2022新高考2卷T8 1.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++−=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +−=,即()()f y f y =−,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++−==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=−−,()()14f x f x −=−−,故()()24f x f x +=−,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =−=−=−,()()()321112f f f =−=−−=−,()()()4221f f f =−==−,()()()5111f f f =−==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,() =xy f ()()()112112x f x x x f x f x f −⎪⎪⎭⎫ ⎝⎛⋅=−()()()⎪⎪⎭⎫⎝⎛⋅−=−212212x x x f x f x f x f ()()()+=+f x y f x f y ()=f x kx ()()()+=f x y f x f y ()=xf x a 0>a 1≠a ()()()=+f xy f x f y ()log =a f x x 0>a 1≠a ()()()=f xyf x f y ()=af x x所以()()()()()221123411213k f k f f f f ==+++=−−−=−∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++−=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++−=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++−=++−== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =−=−=−==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=−−−=−∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2023新高考1卷T112.(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点【答案】ABC【分析】方法一:利用赋值法,结合函数奇遇性的判断方法可判断选项ABC ,举反例()0f x =即可排除选项D.方法二:选项ABC 的判断与方法一同,对于D ,可构造特殊函数2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩进行判断即可.【详解】方法一:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==−,(1)(1)(1)2(1)f f f f =−+−=−,则(1)0f −=,令21,()()(1)()y f x f x x f f x =−−=+−=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误. 方法二:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==−,(1)(1)(1)2(1)f f f f =−+−=−,则(1)0f −=, 令21,()()(1)()y f x f x x f f x =−−=+−=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,当220x y ≠时,对22()()()f xy y f x x f y =+两边同时除以22x y ,得到2222()()()f xy f x f y x y x y=+, 故可以设2()ln (0)f x x x x =≠,则2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩,当0x >肘,2()ln f x x x =,则()212ln (2ln 1)x x x x xf x x =+⋅=+', 令()0f x '<,得120e x −<<;令0fx,得12e x −>;故()f x 在120,e −⎛⎫ ⎪⎝⎭上单调递减,在12e ,−⎛⎫+∞ ⎪⎝⎭上单调递增,因为()f x 为偶函数,所以()f x 在12,0e −⎛⎫− ⎪⎝⎭上单调递增,在12,e −⎛⎫ ⎪⎝∞⎭−上单调递减,显然,此时0x =是()f x 的极大值,故D 错误.故选:ABC .2023·山东青岛·统考三模1.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f =______.重点题型·归类精讲【答案】1−【分析】采用赋值的方式可求得()()0,1f f −,令1y =和y x =−可证得()f x 的对称轴和奇偶性,由此可推导得到()f x 的周期性,利用周期性可求得函数值.【详解】令1x y ==,则()()()()()()21001200f f f f f f =+==,()00f ∴=;令2x =,1y =−,则()()()()22212111f f f f =+−=−=,又()10f −<,()11f ∴−=−;令1y =,则()()()()()()10111f x f x f f x f f x +=+−=−,f x 关于直线1x =对称;令y x =−,则()()()()()()()()01110f f x f x f x f x f x f x f x =++−−=+−+=⎡⎤⎣⎦, ()10f x +=不恒成立,()()0f x f x ∴+−=恒成立,f x 为奇函数,()()()2f x f x f x +=−=−,()()()42f x f x f x ∴+=−+=,f x 是周期为4的周期函数,()()()55414111f f f ∴=⨯−=−=−.故答案为:1−.2023·山东滨州·三模2.(多选)已知连续函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,(1)2f =-,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x −<+的解集为213xx ⎧⎫<<⎨⎬⎩⎭【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =−,可得(0)()()0f f x f x =+−=,所以()()f x f x =−−,所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x −=+−=−, 因为当x >0时,f (x )<0,所以()0f y x −<,即()()0f y f x −<, 所以()f x 在()()0,,,0+∞−∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f −=;令1y =,可得()()12f x f x +=− ()24f =−,()36f =−;()3(3)6f f =−−=,()f x ∴在[3−,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x −<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =−,2(3)(23)(2)f x f x x f ∴<++−,则2(3)(52)f x f x <−,2352x x ∴>−,解得:23x <或1x >; D 不对;故选:ABC . 安徽省皖江名校联盟2024届高三上学期10月第二次联考3.已知函数不是常数函数,且满足以下条件:①,其中;②,则( )A .0B .1C .2D .【答案】D(),y f x x =∈R ()()()()f a b f a b f a f b ++−=,a b ∈R ()10f =()2026f −=2−【分析】先令,得到,再令,得到,根据函数的周期性得到函数的周期为,即可求解.【详解】由题意令,得,又不是常数函数, 所以,再令,得, 即,则, 即,故, 所以函数的周期为,所以, 故选:D.4.(多选)已知定义在R 上的函数()f x 满足()()()()()()()()2,02,01f xy f x f y f x f y f f f =−−+<≠,且()0f x >,则( ) A .()01f = B .()12f −= C .()()2f x f x −= D .()()f x f x −=【答案】ABD【分析】由已知,利用赋值法计算判断得解.【详解】定义在R 上的函数()f x 满足()()()()()2f xy f x f y f x f y =−−+,令0x y ==,得()()()20[0]202f f f =−+,而()02f <,则()01f =,A 正确;令x y ==1,得()()()21[1]212f f f =−+,而()()01f f ≠,则()12f =, 令1x y ==−,得()()()21[1]212f f f =−−−+,即()()2[1]21f f −=−,而()0f x >,即()10f −>,则()12f −=,B 正确;令1y =−,得()()()()()112f x f f x f f x −=−−−−+,即有()()()222f x f x f x −=−−+,因此()()f x f x −=,C 错误,D 正确. 故选:ABD5.已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的个数是( )0b =()02f =1b =()()2f a f a +=−()y f x =40b =()()()20f a f a f =()y f x =()02f =1b =()()()()111f a f a f a f ++−=()()110f a f a ++−=()()2f a f a +=−()()2f a f a −=−()()4f a f a =+()y f x =4()()()()202624506202f f f f −=+⨯==−=−()f x ()f x 'R ,R x y ∈()()()()2f x y f x y f x f y ++−=①;②必为奇函数;③;④若,则.A .1B .2C .3D .4【答案】C【分析】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令,得出,变量代换可判断③;利用赋值法求出部分函数值,推出其值具有周期性,由此可计算,判断④,即可得答案.【详解】令,则由可得,故或,故①错误;当时,令,则,则,故,函数既是奇函数又是偶函数;当时,令,则,所以,则,即,则为奇函数,综合以上可知必为奇函数,②正确;令,则,故.由于,令,即,即有,故③正确; 对于D ,若,令 ,则,则, 令,则,即,令,则,即, 令,则,即, 令,则,即,令,则,即, 令,则,即, 令,则,即,,()00f =()f x '()()00f x f +≥1(1)2f =202311()2n f n ==∑y x =()()200f x f +≥()f n 20231()n f n =∑0x y ==()()()()2f x y f x y f x f y ++−=()()22020f f =(0)0f =()01f =(0)0f =0y =()()2()(0)0f x f x f x f +==()0f x =()0f x '=()f x '(0)1f =0x =()()2(0)()f y f y f f y +−=()()−=f y f y ()()f y f y −''−=()()f y f y −='−'()f x '()f x 'y x =()()()2202f x f f x +=()()200f x f +≥x ∈R 2,R t x t =∈()()00f t f +≥()()00f x f +≥()112f =1,0x y ==()()()()11210+=f f f f (0)1f =1x y ==()()()22021f f f +=()()1121,222f f +=∴=−2,1x y ==()()()()31212f f f f =+()113,(3)122f f +=−∴=−3,1x y ==()()()()42231f f f f +=()1141,(4)22f f −=−∴=−4,1x y ==()()()()53241f f f f +=()1151,(5)22f f −=−∴=5,1x y ==()()()()64251f f f f +=()116,(6)122f f −=∴=6,1x y ==()()()()75261f f f f +=()1171,(7)22f f +=∴=7,1x y ==()()()()86271f f f f +=()1181,(8)22f f +=∴=−由此可得的值有周期性,且6个为一周期,且 ,故,故④正确, 即正确的是②③④, 故选:C.2023·浙江嘉兴·统考模拟6.已知函数的定义域为,且,,则的值是( )A .9B .10C .11D .12【答案】D【分析】由赋值法先得,再由与关系列式求解. 【详解】中令,则,中令,,则,又中令,则,所以,中,令,则,再令,,则. 故选:D2023届江苏连云港校考7.已知函数,任意,满足,且,则的值为( )A .B .0C .2D .4【答案】C【分析】抽象函数利用特殊值的思路可以得到函数在取奇数和偶数的时候的规律,然后可以得到函数值的和.【详解】令,,则,所以;令,,则,所以;令,则,所以,(),N f n n *∈(1)(2)(3)(4)(5)(6)0f f f f f f +++++=()202311337[(1)(2)(3)(4)(5)(6)](1)2n f n f f f f f f f ==⨯++++++=∑()f x R ()()()()31,00,f x x f x x ⎛⎫=∈−∞+∞ ⎪⎝⎭()()()2f x f y xy f x y ++=+()3f ()00f =()1f ()1f −()()()2f x f y xy f x y ++=+0x y ==()00f =()()()2f x f y xy f x y ++=+1x =1y =−()()()11200f f f +−−==()31f x x f x ⎛⎫= ⎪⎝⎭=1x −()10f −=()12f =()()()2f x f y xy f x y ++=+1x y ==()()22126f f =+=1x =2y =()()()312426412f f f =++=++=()f x x y R ∈,()()()()22f x y f x y f x f y +−=−()()1220f f ==,()()()1290f f f +++2−()f x 2x =1y =()()()()223121f f f f =−()32f =−3x =2y =()()()()2251324f f f f =−=()52f =2y =()()()222f x f x f x +−=()72f =−()92f =.令,,则①,令,,则②,令,,则③,假设,那么由③可知,将,代入②式发现与矛盾,所以不成立,.同理可得当x 为偶数时,. 所以原式=.故选:C.8.已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取可判断B ,对于D ,通过观察选项可以推断很可能是周期函数,结合的特殊性及一些已经证明的结论,想到令和时可构建出两个式子,两式相加即可得出,进一步得出是周期函数,从而可求的值.【详解】解:对于A ,令,代入已知等式得,得,故A 错误;对于B ,取,满足及, 因为,所以的图象不关于点对称, 所以函数的图象不关于点对称,故B 错误;对于C ,令,,代入已知等式得, 可得,结合得,,()()()2112kf k k Z +=−⋅∈3x =1y =()()420f f =4x =2y =()()()2624f f f =5x =1y =()()640f f =()40f ≠()60f =()20f =()60f =()40f ≠()40f ≠()40f =()0f x =()()()()138925f f f f ++++=()f x ()g x R ()()()()()f x y f x g y g x f y −=−()()210f f −=≠()01f =()21g x +()1,0()()110g g +−=()11f =()202311n f n ==∑()()2π2πsin,cos 33f x xg x x ==()f x ()()()(),f x g y g x f y 1y =−1y =()()()11f x f x f x ++−=−()f x ()20231n f n =∑0x y ==()()()()()000000f f g g f =−=()00f =()()2π2πsin,cos 33f x xg x x ==()()()()()f x y f x g y g x f y −=−()()210f f −=≠()3cos 2π10g ==≠()g x ()3,0()21g x +()1,00y =1x =()()()()()11010f f g g f =−()()()()110100f g g f ⎡⎤−=−=⎣⎦()10f ≠()100g −=()01g =再令,代入已知等式得,将,代入上式,得,所以函数为奇函数. 令,,代入已知等式,得, 因为,所以,又因为,所以, 因为,所以,故C 错误;对于D ,分别令和,代入已知等式,得以下两个等式:,,两式相加易得,所以有, 即:,有:, 即:,所以为周期函数,且周期为3,因为,所以,所以,, 所以, 所以,故D 正确.故选:D.【点评】:对于含有的抽象函数的一般解题思路是:观察函数关系,发现可利用的点,以及利用证明了的条件或者选项;抽象函数一般通过赋值法来确定、判断某些关系,特别是有双变量,需要双赋值,可以得到一个或多个关系式,进而得到所需的关系,此过程中的难点是赋予哪些合适的值,这就需要观察题设条件以及选项来决定.2023绍兴·高二期末9.已知函数的定义域为R ,且,为奇函数,,则( ) 0x =()()()()()00f y f g y g f y −=−()00f =()01g =()()f y f y −=−()f x 1x =1y =−()()()()()21111f f g g f =−−−()()11f f −=−()()()()2111f f g g =−+⎡⎤⎣⎦()()()221f f f =−−=−()()()()1111f f g g −=−+⎡⎤⎣⎦()10f ≠()()111g g +−=−1y =−1y =()()()()()111f x f x g g x f +=−−−()()()()()111f x f x g g x f −=−()()()11f x f x f x ++−=−()()()21f x f x f x ++=−+()()()12f x f x f x =−+−+()()()()()()11120f x f x f x f x f x f x −+=++−−+−+=()()12f x f x −=+()f x ()11f =()21f −=()()221f f =−−=−()()300f f ==()()()1230f f f ++=()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑,x y ,x y ()f x ()()()28f x f x f ++=()21f x +1122f ⎛⎫= ⎪⎝⎭22112k kf k =⎛⎫−= ⎪⎝⎭∑A .B .C .0D .【答案】B【分析】根据即可得出周期为4,赋值可求出.进而由为奇函数,可推得函数关于点对称,由已知可求出,,,然后即可求得,.进而即可根据周期性得出函数值,求出,即可得出,代入数值,即可得出答案.【详解】由,则, 所以,,周期为4,所以.由,令,则有,所以,. 因为为奇函数,所以,所以,,所以函数关于点对称, 所以,. 令,则.令可得,,所以,所以, 所以,有,即有.令,则有;令,则.综上,,,,. 所以,,所以,. 11−12−212()()()28f x f x f ++=()f x ()20f =()21f x +()y f x =()1,03122f ⎛⎫=− ⎪⎝⎭()00f =()80f =5122f ⎛⎫=− ⎪⎝⎭2721f ⎛⎫=⎪⎝⎭()()()()135741442443444402222m f m m f m m f m m f m ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2211132122222k kf k f f =⎛⎫⎛⎫⎛⎫−=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑()()()28f x f x f ++=()()()428f x f x f +++=()()4f x f x +=()f x ()()()840f f f ==()()()28f x f x f ++=0x =()()()()2080f f f f +==()20f =()21f x +()()2121f x f x −+=−+()()11f x f x −+=−+()y f x =()1,0()()2f x f x −=−12x =311222f f ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭0x =()()200f f =−=()00f =()80f =()()()280f x f x f ++==()()2f x f x +=−12x =511222f f ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭32x =731222f f ⎛⎫⎛⎫=−= ⎪ ⎪⎝⎭⎝⎭1114222f m f ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭3314222fm f ⎛⎫⎛⎫+==− ⎪ ⎪⎝⎭⎝⎭5514222f m f ⎛⎫⎛⎫+==− ⎪ ⎪⎝⎭⎝⎭7714222f m f ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭()()()()13574144244344442222m f m m f m m f m m f m ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()11114142434402222m m m m ⎛⎫⎛⎫=+⨯++⨯−++⨯−++⨯= ⎪ ⎪⎝⎭⎝⎭2211111321212222212222222k kf k fff f =⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−=−+−=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑1112122222⎛⎫=⨯+⨯−=− ⎪⎝⎭故选:B.10.(多选)已知函数()f x 的定义域为R ,()()()f x y f x f y +=+,则( )A .()00f =B .()f x 是奇函数 C .0x =为()f x 的极小值点 D .若()11f =,则()20232023f =【答案】ABD【分析】利用赋值法,令0x y ==判断A 得正误;令y x =−,结合奇函数的定义判断B 的正误;举例判断C 的正误;令1y =,则()()11f x f x +=+,再利用累加法即可判断D 的正误. 【详解】令0x y ==,则()()()000f f f =+,所以()00f =,故A 正确; 令y x =−,则()()()0f x x f x f x −=+−=,所以()f x 是奇函数,故B 正确;令()f x x =,其定义域为R ,且()()()f x y f x f y +=+满足题意,因为函数()f x x =为R 上的增函数,所以0x =不是()f x 的极小值点,故C 错误;令1y =,则()()11f x f x +=+,即()()11f x f x +−=,()()()()()()()2023202320222022202120212020f f f f f f f ⎡⎤⎡⎤⎡⎤=−+−+−⎣⎦⎣⎦⎣⎦ ()()()21111112023f f f ++−+=++++=⎡⎤⎣⎦,故D 正确.故选:ABD.11.(多选)设()f x 是定义在R 上的函数,对,x y ∀∈R ,有()()()()22f x y f x y f x f y +−−=++,且()00f ≠,则( )A .()()0f x f x −−=B .()()40f x f x +−=C .()()()()02420242f f f f ++++=− D .()()()()222212320244048f f f f ++++=【答案】ACD【分析】利用赋值法判断函数的奇偶性和周期性,再结合假设法、函数的周期性逐一判断即可. 【详解】A :在()()()()22f x y f x y f x f y +−−=++中,令0x y ==,则有()()20220f f =⇒=,在()()()()22f x y f x y f x f y +−−=++中,令0x =,则有()()()()()()2200f y f y f f y f x f x −−=+=⇒−−=, 因此本选项正确;B :若()()40f x f x +−=成立,即有()()04f f =, 在()()()()22f x y f x y f x f y +−−=++中,令2x y ==,则有()()()()()24044000f f f f f −=⇒=⇒=,这与()00f ≠相矛盾,所以假设不成立,因此本选项不正确; C :在()()()()22f x y f x y f x f y +−−=++中, 以x −代y ,得()()()()0222f f x f x f x −=+−+,以x 代y ,得()()()2202f x f f x −=+,上面两个等式相加,得()()()()()()222202220f x f x f x f x f x f x ⎡⎤+++−+=⇒+++−+=⎣⎦()20f x ⇒+=,或()()220f x f x ++−+=,当()20f x +=时,则有()00f =,显然与()00f ≠矛盾,因此()()220f x f x ++−+=,于是有()()()()()()44()8f x f x f x f x f x f x f x =−−⇒+=−−=−⇒+=, 因此函数()f x 的周期为8,由()()()202060f f f =⇒−=⇒=, 由()()()()440f x f x f f =−−⇒=−, 在()()()()22f x y f x y f x f y +−−=++中,令2,1x y ==,得()()()()()()()()31433103f f f f f f f f −=⇒−=−,令1x y ==,得()()()()()2220330f f f f f −=⇒=−,由()()()()22031f x f x f f ++−+=⇒=−,于是有()()()()()()()()()()2331033023331f f f f f f f f f f ⎧−=−⎪=−⇒=⎨⎪=−⎩, 因为()()2300f f =−≠,所以由()()()3223332f f f =⇒=,于是()02f =−,因此()()()()02460f f f f +++=,()()()()()()02420242530202402f f f f f f ++++=⨯+==−,因此本选项正确;D :在()()()()22f x y f x y f x f y +−−=++中,令()2N x y n n *==−∈,所以有()()()2240f n f f n −−=,因此有:()()()()22221232024f f f f ++++()()()()()()()()()()2000204040440f f f f f f f f f f =−−+−+−+−++−⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦因为()02f =−,()()220f f −==,()()()()02460f f f f +++=, 函数()f x 的周期为8,所以()()()()22221232024f f f f ++++()050620240f ⎡⎤=⨯+⋅−⎣⎦020*******=+⨯=,因此本选项正确, 故选:ACD.12.(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的,R x y ∈,恒有()()()()2f x y f x y f x f y ++−=,则下列说法正确的有( )A .()00f =B .()f x '必为奇函数C .()()00f x f +≥D .若1(1)2f =,则202311()2n f x ==∑【答案】BCD【分析】赋值法求()0f 的值,判断A ;赋值法结合导数以及函数奇偶性的定义,判断B ;赋值法结合换元法判断C ;利用赋值法求得(),N f n n *∈的值有周期性,即可求得()20231n f n =∑的值,判断D.【详解】对于A ,令0x y ==,则由()()()()2f x y f x y f x f y ++−=可得()()22020f f =,故(0)0f =或()01f =,故A 错误;对于B ,当(0)0f =时,令0y =,则()()2()(0)0f x f x f x f +==,则()0f x =, 故()0f x '=,函数()f x '既是奇函数又是偶函数;当(0)1f =时,令0x =,则()()2(0)()f y f y f f y +−=,所以()()−=f y f y , 则()()f y f y −''−=,即()()f y f y −='−',则()f x '为奇函数, 综合以上可知()f x '必为奇函数,B 正确;对于C ,令y x = ,则()()()2202f x f f x +=,故()()200f x f +≥.由于x ∈R ,令2,R t x t =∈,即()()00f t f +≥,即有()()00f x f +≥,故C 正确;对于D ,若()112f =,令1,0x y == ,则()()()()11210+=f f f f ,则(0)1f = ,令1x y ==,则()()()22021f f f +=,即()()1121,222f f +=∴=−,令2,1x y ==,则()()()()31212f f f f =+,即()113,(3)122f f +=−∴=−, 令3,1x y ==,则()()()()42231f f f f +=,即()1141,(4)22f f −=−∴=−, 令4,1x y ==,则()()()()53241f f f f +=,即()1151,(5)22f f −=−∴=,令5,1x y ==,则()()()()64251f f f f +=,即()116,(6)122f f −=∴=, 令6,1x y ==,则()()()()75261f f f f +=,即()1171,(7)22f f +=∴=,由此可得(),N f n n *∈的值有周期性,且6个为一周期,且(1)(2)(3)(4)(5)(6)0f f f f f f +++++= , 故()202311337[(1)(2)(3)(4)(5)(6)](1)2n f n f f f f f f f ==⨯++++++=∑,故D 正确, 故选:BCD.13.已知函数()f x 的定义域为R ,满足()()()()f x y f x y f x f y ++−=⋅,且12f ,则( )A .()02f =B .()f x 为奇函数C .()()()()12320232f f f f +++⋅⋅⋅⋅⋅⋅+=−D .()22f x −≤≤【答案】ACD【分析】A.通过赋值,求()0f 的值;B.赋值0x =,即可判断函数的奇偶性;C.赋值1y =,利用函数()()()1f x f x g x −+=的周期性,即可求和;D.通过多次赋值,可证明()24f x ≤,即可判断.【详解】A.令1,0x y ==,有()()()()1110f f f f +=⋅,得()02f =,A 正确;B.令0x =,得()()()()0f y f y f f y +−=⋅,()02f =,则()()−=f y f y ,函数的定义域为R ,所以函数为偶函数,故B 错误;C.令1y =,得()()()()111f x f x f x f ++−=⋅,即()()()()110f x f x f x f x +++−+=⎡⎤⎡⎤⎣⎦⎣⎦, 设()()()1f x f x g x −+=,则()()10g x g x ++=,所以()()()21g x g x g x +=−+=,所以函数()g x 的周期为2,()()()101220g f f =+=−=,()()()3230g f f =+=,…,()()()2023202220230g f f =+=,所以()()()()()0123...20230f f f f f +++++=,()02f =, 所以()()()()123...20232f f f f ++++=−,故C 正确, D.由()()()()f x y f x y f x f y ++−=⋅,()02f =,12f ,令12x y ==,得()()211002f f f ⎛⎫+== ⎪⎝⎭,所以102f ⎛⎫= ⎪⎝⎭, 将y 换成x ,得()()()220f x f f x +=,①,将,x y 换成12x +,得()()212102f x f f x ⎛⎫++=+ ⎪⎝⎭,②,将x 换成122x +,y 换成12,得()()112122022f x f x f x f ⎛⎫⎛⎫++=+⋅= ⎪ ⎪⎝⎭⎝⎭,③, ①+②-③,得()()2212042f f x f x ⎛⎫=++= ⎪⎝⎭,则()24f x ≤,得()22f x −≤≤,故D 正确.故选:ACD【点睛】关键点睛:本题关键的方法是赋值法,尤其是D 选项,通过三次赋值,找到等式间的关系,再可进行判断.14.(多选)已知定义域为R 的函数()f x 对任意实数,x y 都有()()()()2f x y f x y f x f y ++−=,且102f ⎛⎫= ⎪⎝⎭,则以下结论一定正确的有( )A .()01f =−B .()f x 是偶函数C .()f x 关于1,02⎛⎫⎪⎝⎭中心对称D .()()()1220230f f f +++=【答案】BC【分析】根据赋值法,可判断()01f =或()00f =,进而判断A ,根据赋值法结合奇偶性的定义可判断C ,根据偶函数即可判断对称性,根据对称性以及奇偶性可得函数的周期性,进而可判断CD. 【详解】令0x y ==,则()()()()()0020000f f f f f +=⇒=或()01f =,故A 错误, 若()01f =时,令0x =,则=20=f y fy f y f fy f y ,此时()f x 是偶函数,若()00f =时,令0y =,则=20=0f x f x f x f f x ,此时()f x 既是偶函数又是奇函数;因此B 正确,令12x =,则()111112=0=022222f y f y f f y f y f y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++−=⇒++− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以()f x 关于1,02⎛⎫ ⎪⎝⎭中心对称,故C 正确,由()f x 关于1,02⎛⎫⎪⎝⎭中心对称可得=1f x f x,结合()f x 是偶函数,所以=1=1=2=2f x f x f x f x f x ,所以()f x 的周期为2,令12x y ==,则()()11102=022f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,故12=10=0f f f f ,进而()()()()()122022101112=0f f f f f ⎡⎤+++=⨯+⎣⎦,而()2023(1)(0)f f f ==−,由A 选项知()00f =或()01f =,所以()()()1220230f f f +++=或1−,故D 错误.故选:BC15.函数()f x 的定义域为R ,且()()()21f x f x f x +=−+−,()()2f x f x =−,()3651f =−,则()20231k f k ==∑ .【答案】2【分析】根据给定条件,探讨函数()f x 的周期,再结合()()2f x f x =−求出(1),(2),(3)f f f 即可求解作答. 【详解】函数()f x 的定义域为R ,由()()()21f x f x f x +=−+−,得(3)(2)(1)(1)()(1)()f x f x f x f x f x f x f x +=−+−+=++−+=,因此函数()f x 是以3为周期的周期函数,且()(1)(2)0f x f x f x ++++=,即(1)(2)(3)0f f f ++=, 由()3651f =−,得(2)1f =−,又()()2f x f x =−,(3)(0)(2)1f f f ===−,从而(1)(2)(3)2f f f =−−=,所以20231()674(2(1)(2)3[((1]1)))k f f k f f f f =+=⨯=++=∑.故答案为:216.已知函数()f x 满足:1(1),4()()()()(,R)4f f x f y f x y f x y x y ==++−∈,则()2023f = .【答案】14【分析】由已知等式联想到三角公式()()cos cos 2cos cos x y x y x y ++−=,构造函数()1cos 23xf x π=求解. 【详解】由已知等式联想到三角公式()()cos cos 2cos cos x y x y x y ++−=, 注意它们结构相似,通过尝试和调整,构造函数()1cos 23x f x π=,则()111cos 234f π==, ()()()()11cos cos 23323311cos cos 4cos cos 4,332323x y x y f x y f x y x y x y f x f y ππππ⎛⎫⎛⎫++−=++− ⎪ ⎪⎝⎭⎝⎭ππππ==⋅⋅=故函数()1cos 23xf x π=满足题意,而函数()f x 是周期2π6π3T ==的函数,()()()120233376114f f f ∴=⨯+==. 故答案为:14.【点睛】:抽象函数可以选择构造函数(特例构造法),此题主要是联想到三角公式()()cos cos 2cos cos x y x y x y ++−=,并且还要根据1(1)4f =构造出合适的函数()1cos 23x f x π=,再由周期性解决问题,达到富有创造力的解题效果。
专题13 导数运算法则在抽象函数中的应用(学生版) -2025年高考数学压轴大题必杀技系列导数
专题13 导数运算法则在抽象函数中的应用导数与不等式都是高考中的重点与难点,与抽象函数有关的导数问题更是一个难点,求解此类问题的关键是根据导数的运算法则构造合适的函数,再利用导数的运算法则确定所构造函数的性质,最后再利用函数性质求解.(一) 抽象函数的奇偶性及应用若()()f x f x -=两边求导得()()f x f x ¢¢--=,即()()f x f x ¢¢-=-,即若可导函数()f x 是偶函数,则()f x ¢是奇函数,同理可得:若可导函数()f x 是奇函数,则()f x ¢是偶函数.【例1】(2024届上海市奉贤区高三二模)已知定义域为R 的函数()y f x =,其图象是连续的曲线,且存在定义域也为R 的导函数()y f x =¢.(1)求函数()e e x xf x -=+在点()()0,0f 的切线方程;(2)已知()cos sin f x a x b x =+,当a 与b 满足什么条件时,存在非零实数k ,对任意的实数x 使得()()f x kf x -=-¢恒成立?(3)若函数()y f x =是奇函数,且满足()()23f x f x +-=.试判断()()22f x f x +=¢-¢对任意的实数x 是否恒成立,请说明理由.【解析】(1)由题可知,()e e x x f x -¢=-,所以切线的斜率为(0)0f ¢=,且(0)2f =,所以函数在点()()0,0f 的切线方程为()200y x -=-,即2y =;(2)由题可知()sin cos f x a x b x ¢=-+,又因为定义域上对任意的实数x 满足()()f x kf x ¢-=-,所以cos sin sin cos a x b x ak x bk x -=-,即b aka bk -=ìí=-î,当R k Î且0k ¹时,0a b ==,当1k =时,0a b +=,当1k =-时,0a b -=;(3)因为函数()y f x =在定义域R 上是奇函数,所以()()f x f x -=-, 所以()()()f x x f x ¢¢¢-×-=-,所以()()f x f x ¢¢-=,所以()y f x ¢=是偶函数,因为()()23f x f x +-=,所以()()()()223f x f x x ¢¢¢¢+-×-=,即()()20f x f x ¢¢--=,即()()2f x f x ¢¢=-,因为()()f x f x ¢¢-=,所以()()2f x f x ¢¢-=-,即()()2f x f x ¢¢=+,所以()y f x ¢=是周期为2的函数,所以()()()22f x f x f x ¢¢¢=+=-,所以()()()()22f x f x f x f x ¢¢¢¢-=-==+. (二)和差型抽象函数的应用解答此类问题时一般要根据题意构造辅助函数求解,构造时要结合所求的结论进行分析、选择,然后根据所构造的函数的单调性求解.如给出式子()f x k ¢-,可构造函数()()y f x kx b =-+,给出式子()f x kx ¢-,可构造函数()212y f x x b =-+ ,一般地,若给出()()f x g x ¢¢±通常构造函数()()y f x g x c =±+.【例2】已知()()y f x x =ÎR 的导函数()f x ¢满足()3f x ¢>且(1)3f =,求不等式()3f x x >的解集.【解析】令()()3F x f x x =-,则()()30F x f x ¢¢=->,∴()F x 在R 上为单调递增.又∵(1)3f =,∴(1)(1)30F f =-=,则()3f x x >可转化为()0(1)F x F >=,根据()F x 单调性可知不等式()3f x x >的解集为(1,)+∞.(三)积型抽象函数的应用若给出形如()()()()f x g x f x g x ¢¢+的式子通常构造函数()()y f x g x c =+ ,如给出()()xf x nf x ¢+可构造函数()ny x f x =,如给出()()f x nf x ¢+,可构造函数()e nx y f x =,如给出()()tan f x f x x ¢+,可构造函数()sin y f x x =.【例3】(2024年全国高考名校名师联席命制数学押题卷)若函数()f x 在[],a b 上满足()()()0g x f x f x ¢=³且不恒为0,则称函数()f x 为区间[],a b 上的绝对增函数,()g x 称为函数()f x 的特征函数,称任意的实数(),c a b Î为绝对增点(()f x ¢为函数()f x 的导函数).(1)若1为函数()()e xf x a x =-的绝对增点,求a 的取值范围;(2)绝对增函数()f x 的特征函数()g x 的唯一零点为0x .(ⅰ)证明:0x 是()f x ¢的极值点;(ⅱ)证明:()g x 不是绝对增函数.【解析】(1)因为函数()()e x f x a x =-,所以()()1e xf x a x =--¢,则()()()()21e xf x f x x a x a =--+¢.由()()0f x f x ¢³得()()10x a x a --+³,解得1x a £-或x a ³,所以()f x 为区间(],1a -∞-及区间[),a +∞上的绝对增函数.又1为函数()f x 的绝对增点,所以11a <-或1a >,解得2a >或1a <,所以a 的取值范围为()(),12,-∞+∞U .(2)(ⅰ)设()f x 为区间[],a b 上的绝对增函数,由题意知()00g x =,当0x x ¹时,()()00,,g x x a b >Î.①若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上单调递增,则在区间()00Δ,x x x -上,()()0,0f x f x >¢<,则()0g x <,与()0g x >矛盾.若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上单调递减,则在区间()00Δ,x x x -上,()()0,0f x f x ¢<>,则()0g x <,与()0g x >矛盾.若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上不单调,则存在()'000Δ,x x x x Î-,且()00f x ¢¢=,此时()00g x ¢=与()g x 有唯一零点0x 矛盾.所以()00f x ¹.②若()00f x ¹,不妨设()00f x >,则()00f x ¢=,且存在1Δ0x >,使得当()0101Δ,Δx x x x x Î-+时,()0f x >,且当()()010001Δ,,Δx x x x x x x Î-+U 时,()0f x ¢>,即1Δ0x $>,使()f x ¢在()010Δ,x x x -上单调递减,在()001,Δx x x +上单调递增.所以0x 为()f x ¢的极值点.同理,当()00f x <时也成立.(ⅱ)若()g x 为绝对增函数,则()()0g x g x ×¢³在[],a b 上恒成立,又()0g x ³恒成立,所以()0g x ¢³恒成立.令()()e x x g x j =×,所以()0x j ³,且()()()()e 0xx g x g x j ¢¢=×+³,所以()x j 在(),a b 上单调递增.又()00x j =,所以当()0,x a x Î时,()0x j <,则()0g x <,与()0g x ³矛盾,所以假设不成立,所以()g x 不是绝对增函数.【例4】定义在π(0,2上的函数()f x ,其导函数是()f x ¢,且恒有()()tan f x f x x <¢×成立,比较π6æöç÷èø与π3f æöç÷èø的大小.【解析】因为π(0,)2x Î,所以sin 0x >,cos 0x >.由()()tan f x f x x <¢,得()cos ()sin f x x f x x <¢.即()sin ()cos 0f x x f x x ¢->.令()()sin f x g x x =,π(0,2x Î,则2()sin ()cos ()0f x x f x xg x sin x ¢-¢=>.所以函数()()sin f x g x x =在π(0,2xÎ上为增函数,则π()(6g g <π3,即ππ()()63ππsin sin63f f <,所以π()612f <ππ(()63f <.(四)商型抽象函数的应用若给出形如()()()()f x g x f x g x ¢¢-的式子通常构造函数()()f x y cg x =+ ,如给出()()xf x nf x ¢-可构造函数()n f x y x =,给出()()f x nf x ¢-,可构造函数()nx f x y e =,给出()()tan f x f x x ¢-,可构造函数()sin f xy x=.【例5】(2024届湖北省襄阳市第五中学高三第二次适应性测试)柯西中值定理是数学的基本定理之一,在高等数学中有着广泛的应用.定理内容为:设函数f (x ),g (x )满足:①图象在[],a b 上是一条连续不断的曲线;②在(),a b 内可导;③对(),x a b "Î,()0g x ¢¹,则(),a b x $Î,使得()()()()()()f b f a fg b g a g x x --¢¢=.特别的,取()g x x =,则有:(),a b x $Î,使得()()()f b f a f b ax -¢=-,此情形称之为拉格朗日中值定理.(1)设函数()f x 满足()00f =,其导函数()f x ¢在()0,+∞上单调递增,证明:函数()f x y x=在()0,∞+上为增函数.(2)若(),0,e a b "Î且a b >,不等式ln ln 0a b b a m b a a b æö-+-£ç÷èø恒成立,求实数m 的取值范围.【解析】(1)由题()()()00f x f x f xx -=-,由柯西中值定理知:对0x ">,()0,x x $Î,使得()()()()001f x f f f x x x -==¢¢-,()()f x f xx =¢,又()f x ¢在()0,∞+上单调递增,则()()f x f x ¢>¢,则()()f x f x x¢>,即()()0xf x f x ->¢,故()f x y x=在()0,∞+上为增函数;(2)22ln ln ln ln 0a b b a a a b b m m b a a b a b -æö-+-£Û£ç÷-èø,取()ln f x x x =,()2g x x =,因为a b >,所以由柯西中值定理,(),b a x $Î,使得()()()()()()22ln ln 1ln 2f a f b f a a b b g a g b a b g x xx x--+===-¢-¢,由题则有:1ln 2m xx+£,设()()1ln 0e 2x G x x x+=<<,()2ln 2xG x x -¢=,当01x <<时,()0G x ¢>,当1e x <<时,()0G x ¢<,所以()G x 在()0,1上单调递增,在()1,e 上单调递减,所以()()max 112G x G ==,故12m ³,所以实数m 的取值范围是1,2éö+∞÷êëø.【例6】已知函数()f x 在()0,1恒有()()2xf x f x ¢>,其中()f x ¢为函数()f x 的导数,若a ,b 为锐角三角形两个内角,比较22cos (sin ),sin (cos )f f b a a b 的大小.【解析】设()()2()01f x g x x x =<<,则()()()()()243220x f x x f x x f x f x g x x x ¢¢×-××-×¢==>所以函数()g x 在()0,1上单调递增.a ,b 为锐角三角形两个内角,则π2a b +>所以ππ022b a <-<<,由正弦函数sin y x =在π0,2æöç÷èø上单调递增.则π0cos sin sin 12b b a æö<=-<<ç÷èø所以()()cos sin g g b a <,即()()22cos sin cos sin f f b a b a<所以()()22sin cos cos sin f f a b b a ×<×.(五)根据()()()f x f x g x ±-=构造函数若给出形如()()()f x f x g x ¢±=的式子通常构造偶函数或奇函数.【例7】设函数()f x 在R 上存在导函数'()f x ,x R "Î,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --³-+-,求实数m 的取值范围.【解析】因为()()3f x f x x --=,所以33()()()22x x f x f x --=-- 令3()()()()2x g x f x g x g x =-\=- 即函数()g x 为偶函数,因为()0,∞+上有()22'30f x x ->,所以23()()02x g x f x ¢¢=-> 即函数()g x 在(0,)+∞单调递增;又因为()()22364f m f m m m --³-+-所以33(2)(2)()(2)()22m m g m g m f m f m ---=---+2(2)()3640f m f m m m =--+-+³即(2)()g m g m -³,所以2m m -³,解得1m £ ,故选B.(六)信息迁移题中的抽象函数求解此类问题关键是如何利用题中的信息.【例8】已知定义在R 上的函数()f x 的导函数为()f x ¢,若()1f x ¢£对任意x ÎR 恒成立,则称函数()f x 为“线性控制函数”.(1)判断函数()sin f x x =和()e xg x =是否为“线性控制函数”,并说明理由;(2)若函数()f x 为“线性控制函数”,且()f x 在R 上严格增,设A B 、为函数()f x 图像上互异的两点,设直线AB 的斜率为k ,判断命题“01k <£”的真假,并说明理由;(3)若函数()f x 为“线性控制函数”,且()f x 是以(0)T T >为周期的周期函数,证明:对任意12,x x 都有()()12f x f x T -£.【解析】(1)()cos 1f x x =£¢,故()sin f x x =是“线性控制函数”;()1e 1g ¢=>,故()e x g x =不是“线性控制函数”.(2)命题为真,理由如下:设()()()()1122,,,A x f x B x f x ,其中12x x <由于()f x 在R 上严格增,故()()12f x f x <,因此()()1212f x f x k x x -=>-由于()f x 为“线性控制函数”,故()1f x ¢£,即()10f x ¢-£令()()F x f x x =-,故()()10F x f x ¢¢=-£,因此()F x 在R 上为减函数()()()()()()()()112212121212121101f x x f x x f x f x F x F x k k x x x x x x ------=-==£Þ£---,综上所述,01k <£,即命题“01k <£”为真命题.(3)根据(2)中证明知,对任意a b <都有()()1f a f b k a b-=£-由于()f x 为“线性控制函数”,故()1f x ¢³-,即()10f x ¢+³令()()G x f x x =+,故()()10G x f x ¢=+³¢,因此()F x 在R 上为增函数()()()()()()()()()()101f a a f b b f a f b G a G b f a f b a b a b a b a b+-+---+==³Þ³-----因此对任意a b <都有()()[]1,1f a f b a b-Î--,即()()1f a f b a b -£-当12x x =时,则()()120f x f x T -=£恒成立当12x x ¹时,若21x x T -£,则()()()()1212121f x f x f x f x x x T--³³-,故()()12f x f x T-£若21x x T ->时,则存在[)311,x x x T Î+使得()()32f x f x =故1()()()()131313f x f x f x f x x x T--³>-,因此()()()()1213f x f x f x f x T-=-<综上所述,对任意12,x x 都有()()12f x f x T -£.(事实上,对任意12,x x 都有()()122Tf x f x -£,此处不再赘述)【例9】定义:若曲线C 1和曲线C 2有公共点P ,且在P 处的切线相同,则称C 1与C 2在点P 处相切.(1)设()()221,8f x x g x x x m =-=-+.若曲线()y f x =与曲线()y g x =在点P 处相切,求m 的值;(2)设()3h x x =,若圆M :()()2220x y b r r +-=>与曲线()y h x =在点Q (Q 在第一象限)处相切,求b 的最小值;(3)若函数()y f x =是定义在R 上的连续可导函数,导函数为()y f x ¢=,且满足()()f x f x ¢³和()f x <都恒成立.是否存在点P ,使得曲线()sin y f x x =和曲线y =1在点P 处相切?证明你的结论.【解析】(1)设点11(,)P x y ,由22()1,()8f x xg x x x m =-=-+,求导得()2,()28f x x g x x ¢¢=-=-,于是11228x x -=-,解得12x =,由11()()f x g x =,得2212282m -=-´+,解得9m =,所以m 的值为9.(2)设切点3222(,),0Q x x x >,由()3h x x =求导得2()3h x x ¢=,则切线的斜率为222()3h x x ¢=,又圆M :222()x y b r +-=的圆心(0,)M b ,直线MQ 的斜率为322x bx -,则由3222213x x x b -×=-,得32213b x x =+,令31(),03x x x x j =+>,求导得221()33x x xj ¢=-,当0x <<()0x j ¢<,当x >()0x j ¢>,即函数()j x 在上递减,在)+∞上递增,因此当x =()x j ,所以当2x min b =(3)假设存在0(,1)P x 满足题意,则有00()sin 1f x x =,对函数()sin y f x x =求导得:()sin ()cos y f x x f x x ¢¢=+,于是0000()sin ()cos 0f x x f x x ¢+=,即0000()sin ()cos f x x f x x ¢=-,平方得222222000000[()]sin [()]cos [()](1sin )f x x f x x f x x ¢==-,即有2222200000[()]sin [()]sin [()]f x x f x x f x ¢+=,因此2200201[()]1[()][()]fx f x f x ¢×+=,整理得224000[()][()][()]f x f x f x ¢+=,而恒有()()f x f x ¢³成立,则有2200[()][()]f x f x ¢³,从而4200[()]2[()]f x f x ³,显然0()0f x ¹,于是20[()]2f x ³,即0|()|f x ³与()f x <所以假设不成立,即不存在点P 满足条件.【例1】(2024年全国统一考试数学押题卷)函数与函数之间存在位置关系.已知函数()f x 与()g x 的图象在它们的公共定义域D 内有且仅有一个交点()()00,x f x ,对于1x D "Î且()10,x x Î-∞,2x D Î且()20,x x Î+∞,若都有()()()()11220f x g x f x g x éùéù-×-<ëûëû,则称()f x 与()g x 关于点()()00,x f x 互穿;若都有()()()()11220f x g x f x g x éùéù-×->ëûëû,则称()f x 与()g x 关于点()()00,x f x 互回.已知函数()f x 与()g x 的定义域均为R ,导函数分别为()f x ¢与()g x ¢,()f x 与()g x 的图象在R 上有且仅有一个交点()(),m f m ,()f x ¢与()g x ¢的图象在R 上有且仅有一个交点()(),m f m ¢.(1)若()e xf x =,()1g x x =+,试判断函数()f x 与()g x 的位置关系.(2)若()f x ¢与()g x ¢关于点()(),m f m ¢互回,证明:()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.(3)研究表明:若()f x ¢与()g x ¢关于点()(),m f m ¢互穿,则()f x 与()g x 关于点()(),m f m 互回且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.根据以上信息,证明:23e 126!ixx x x x i ³++++×××+(i为奇数).【解析】(1)设()()()()e 1e 1x xH x f x g x x x =-=-+=--,则()e 1xH x ¢=-,当0x <时,()0H x ¢<,当0x >时,()0H x ¢>,()H x \在(),0∞-上单调递减,在()0,∞+上单调递增,所以()()00e 10H x H ³=-=,即()()f x g x ³,当且仅当0x =时取等号.又()f x 与()g x 的图象在R 上有且仅有一个交点()0,1,\函数()f x 与()g x 关于点()0,1互回.(2)设1x m <,2x m >,则()()()()11220f x g x f x g x ¢¢¢¢éùéù-×->ëûëû,(互回的定义的应用)设()()()h x f x g x =-,则()()()h x f x g x ¢¢¢=-,故()()120h x h x ¢¢>.①若()()12,h x h x ¢¢均大于零,因为()()()0h m f m g m ¢¢¢=-=,(提示:()f x ¢与()g x ¢的图象交于点()(),m f m ¢.所以()0h x ¢³,所以()h x 单调递增,又()()()0h m f m g m =-=,(提示:()f x 与()g x 的图象交于点()(),m f m )所以()10h x <,()20h x >,所以()()()()()()1211220h x h x f x g x f x g x ×=-×-<éùéùëûëû,()()120h x h x ¢×>,所以()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.②若()()12,h x h x ¢¢均小于零,因为()()()0h m f m g m ¢¢¢=-=,所以()0h x ¢£,所以()h x 单调递减,又()()()0h m f m g m =-=,所以()10h x >,()20h x <,所以()()()()()()1211220h x h x f x g x f x g x ×=-×-<éùéùëûëû,()()120h x h x ¢×>,所以()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.综上,()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.(3)设()e xi f x =,()23126!ii x x x g x x i =+++++L (N *i Î)则()()'1e xi i f x f x -==(2i ³),()()()231'11261!i i i x x x g x x g x i --=+++++=-L (2i ³)(关键:寻找()'i f x 与()1i f x -,()'i g x 与()1i g x -,2i ³之间的关系)易知()1e xf x =,()11g x x =+,由(1)可知()1f x 与()1g x 关于点()0,1互回.因为()()00e 10i i f g ===,所以*N i "Î,()i f x 与()i g x 的图象交于点()0,1.由(2)得()2f x 与()2g x 关于点()0,1互穿,(提示:()()21f x f x ¢=,()()21g x g x ¢=)由(3)得()3f x 与()3g x 关于点()0,1互回,易得当i 为奇数时,()i f x 与()i g x 关于点()0,1互回,所以()1,0x "Î-∞,()20,x Î+∞,有()()()()11220i i i i f x g x f x g x éùéù-×->ëûëû(i 为奇数).(提示:互回的定义的应用)由题意得()()()()2212120i i i i f x g x f x g x --éùéù-×->ëûëû对任意正整数i 恒成立,(提示:由本问信息可得)所以()()()()121222220i i i i f x g x f x g x ----éùéù-×->ëûëû()()()()222232320i i i i f x g x f x g x ----éùéù-×->ëûëû,L ,()()()()222212120f xg x f x g x éùéù-×->ëûëû累乘得()()()()()()222121212120i i i i f x g x f x g x f x g x --éùéùéù-×-->ëûëûëûL 所以()()()()2212120i i f x g x f x g x éùéù-×->ëûëû易知()()12120f x g x ->,(点拨:()()11f x g x ³,当且仅当0x =时等号成立,又()20,x Î+∞,所以()()1212f x g x >.所以()()220i i f x g x ->.因为()()()()11220i i i i f x g x f x g x éùéù-×->ëûëû,(i 为奇数),所以()()110i i f x g x ->(i 为奇数),因为()()00i i f g =,所以()()i i f x g x ³(i 为奇数),即23e 126!ixx x x x i ³++++¼+(i 为奇数),得证.【例2】(2024届上海市普陀区桃浦中学高三上学期期末)对于一个在区间I 上连续的可导函数()y f x =,在I 上任取两点()11(,)x f x ,()22(,)x f x ,如果对于任意的1x 与2x 的算术平均值的函数值大于等于对于任意的1x 与2x 的函数值的算术平均值,则称该函数在I 上具有“M 性质”.如果对于任意的1x 与2x 的几何平均值的函数值大于等于对于任意的1x 与2x 的函数值的几何平均值,则称()y f x =在I 上具有“L 性质”.(1)如果函数log a y x =在定义域内具有“M 性质”,求a 的取值范围.(2)对于函数ln y ax x =-,若该函数的一个驻点是1=x e ,求a ,并且证明该函数在2,x e éùÎ+∞ëû上具有“L 性质”.(3)设存在,m n I Î,使得()()f m f n =.①证明:取(,)m n x Î,则有()()()()f m f n f m n x ¢-=-②若[,]I a b =,设命题p :函数()y f x =具有“M 性质”,命題:()q f x ¢为严格减函数,试证明p 是q 的必要条件.(可用结论:若函数()f x 在区间I 上可导,且在区间I 上连续,若有(,)a b I Í,且()()f a f b =,则()f x 在区间I 上存在驻点)【解析】(1)由函数()log a f x x =在(0,)+∞上具有“M 性质”,可得对任意()1212121,(0,),log log log log 22aa a a x x x x x x +Î+∞³+=又12x x +³1a >;(2)令1()ln ,()g x ax x g x a x ¢=-=-由10e g æö¢=ç÷èø,得ea =则()e ln g x x x =-,在10,e æöç÷èø上严格减:在1,e æö+∞ç÷èø上严格增.要证()g x 在)2e ,é+∞ë上具有“L 性质”.需证g³即证()()212gg x g x éù³×ëû,而(222212 e ln gx x éù==-ëû()()()()()2121122121221e ln e ln e e ln l n ln ln g x g x x x x x x x x x x x x x ×=--=-++×则()()2212121lnln 4x x x x =-()121221ln ln n e l ln x x x x x x +-³,需证()()()212121221121ln ln e ln ln ln ln 4x x x x x x x x x x +-++³,由()212121ln ln ln ln 4x x x x+³,()()122112e ln ln x x x xx x +-12ln ln x x éù=××ëû2e==故只需证0³,下面给出证明:设ln ()x h x x =,则21ln ()x h x x -¢=,即在(e,)+∞上()0,()h x h x<¢递减,所以0hh éù-£ëû,即0³.综上,()()()212121221121ln ln e ln ln ln ln 4x x x x x x x x p x x +-++成立,故g³,得证.(3)①令()(()())()()g x f m f n x f x m n =---,()()()()()g x f m f n f x m n ¢¢=---,由可用结论,令x x =为该函数的驻点,则0()()()()()g f m f n f m n x x ¢¢==---,即取(,)m n x Î,则有()()()()f m f n f m n x ¢-=-,得证.②取12,(,)x x a b Î,设12,(0,1),{1,2}k x x u k <ÎÎ,记01220012,x x x h x x x x =+=-=-,则1020,x x h x x h =-=+,由①中的结论,则有:()()()0001f x h f x hf x u h ¢+-=+(1)()()()0002f x h f x hf x u h ¢--=-(2)由(1)-(2),得()()()()()00001022f x h f x h f x h f x u h f x u h ¢¢éù-++-=+--ëû对()f x ¢在区间[]0201,x u h x u h -+使用①中的结论,则:()()()2120102()f u u h h f x u h f x u h x ¢¢¢¢éù+=+--ëû,其中,()0201,x u h x u h x Î-+.由于()f x ¢是严格减函数,则()0f x ¢¢£,即()()()0002f x h f x h f x ++-³,即()()121222f x f x x x f ++æö³ç÷èø.所以p 是q 的必要条件.【例3】已知函数()f x 的定义域为[)0,∞+,导函数为()f x ¢,若()()1f x f x x <¢+恒成立,求证:()()3210f f -<.【解析】设函数()()()01f xg x x x =³+,因为()()1f x f x x <¢+,0x ³,所以()()()10x f x f x ¢+-<,则()'g x ()()()()2101x f x f x x -=+¢+<,所以()g x 在[)0,∞+上单调递减,从而()()13g g >,即()()1324f f >,所以()()3210f f -<.【例4】已知函数()f x 满足()()1'xf x f x e +=,且()01f =,判断函数()()()2132g x f x f x =-éùëû零点的个数.【解析】()()()()1''1x x x f x f x e f x e f x e +=Û+=()'1x e f x éùÛ=ëû,∴()xe f x x c =+,()xx c f x e +=,∵()01f =代入,得1c =,∴()1xx f x e +=.()()()()213002g x f x f x f x =-=Þ=éùëû或()16f x =,()1001xx f x x e +=Þ=Þ=-;()()1116166x x x f x e x e +=Þ=Þ=+,如图所示,函数x y e =与函数()61y x =+的图像交点个数为2个,所以()16f x =的解得个数为2个;综上,零点个数为3个.【例5】已知定义在R 上的函数()f x 的导数为()f x ¢,且满足()()2sin f x f x x +-=,当0x ³时()sin cos f x x x x ¢>-- ,求不等式()π22f x f x æö--ç÷èøsin 2cos x x <+的解集.【解析】设()()sin g x f x x =-,则()()sin g x f x x -=-+,所以()()g x g x --=()()f x f x --2sin 0x -=,所以()g x 是偶函数,设()()sin 0h x x x x =-³,则()1cos 0h x x ¢=-³,所以()()0h x h ¢³,即sin 0x x -³,所以0x ³时()sin cos cos f x x x x x ¢>--³- , 所以0x ³时()()cos 0g x f x x ¢¢=+>,()g x 在[)0,+∞上是增函数,所以()π22f x f x æö--ç÷èøsin 2cos x x<+()2sin 2f x xÛ-ππsin 22f x x æöæö<---ç÷ç÷èøèø()π22g x g x æöÛ<-ç÷èø()π22g x g x æöÛ<-ç÷èøπ22x x Û<-Û()22π22x x æö<-ç÷èøππ3022x x æöæöÛ+-<ç÷ç÷èøèøππ26x Û-<<,故选C.【例6】已知定义域为R 的函数()y f x =,其导函数为()y f x ¢¢=,满足对任意的x ÎR 都有()1f x ¢<.(1)若()sin 4xf x ax =+,求实数a 的取值范围;(2)若存在0M >,对任意x ÎR ,成立()f x M £,试判断函数()y f x x =-的零点个数,并说明理由;(3)若存在a 、()b a b <,使得()()f a f b =,证明:对任意的实数1x 、[]2,x a b Î,都有()()122b af x f x --<.【解析】(1)若()sin 4x f x ax =+,则cos ()4xf x a ¢=+,由题意,对任意的x ÎR 都有()1f x ¢<,则1cos 4x a +<,即1cos 14xa <+<-,所以cos cos 1441x xa <---<,由于1cos 4x -的最小值为34,cos 14x --的最大值为34-,所以3344a -<<,即实数a 的取值范围为33,44æö-ç÷èø;(2)依题意,()10y f x ¢¢=-<,所以,()y f x x =-在R 上为减函数,所以至多一个零点;()f x M £Þ()M f x M -<<,,当1x M =--时,()()110y f x x f M M =-=--++>,当1x M =+时,()()110y f x x f M M =-=+--<,所以()y f x x =-存在零点,综上存在1个零点;(3)因为()1f x ¢<,由导数的定义得()()12121f x f x x x -<-,即()()1212f x f x x x -<-,不妨设12a x x b £££若122b ax x --£,则()()12122b a f x f x x x --<-£若122b a x x -->,则()()()()()()1212f x f x f x f b f a f x -=-+-()()()()12f x f b f a f x <-+-12b x x a<-+-()22b a b ab a --<--=.1.若定义域为D 的函数()y f x =使得()y f x ¢=是定义域为D 的严格增函数,则称()f x 是一个“T 函数”.(1)分别判断()13=x f x ,()32f x x =是否为T 函数,并说明理由;(2)已知常数0a >,若定义在()0,∞+上的函数()y g x =是T 函数,证明:()()()()132g a g a g a g a +-<+-+;(3)已知T 函数()y F x =的定义域为R ,不等式()0F x <的解集为(),0∞-.证明:()F x 在R 上严格增.2.对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”;(2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ¢,且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ÎR ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.3.(2024届江苏省盐城市滨海县高三下学期高考适应性考试)根据多元微分求条件极值理论,要求二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点,首先构造出一个拉格朗日辅助函数(,,)(,)(,)L x y f x y g x y l l =+,其中l 为拉格朗日系数.分别对(,,)L x y l 中的,,x y λ部分求导,并使之为0,得到三个方程组,如下:(,,)(,)(,)0(,,)(,)(,)0(,,)(,)0x x x y y y L x y f x y g x y L x y f x y g x y L x y g x y ll l l l l =+=ìï=+=íï==î,解此方程组,得出解(,)x y ,就是二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点.,x y 的值代入到(,)f x y 中即为极值.补充说明:【例】求函数22(,)f x y x xy y =++关于变量x 的导数.即:将变量y 当做常数,即:(,)2x f x y x y =+,下标加上x ,代表对自变量x 进行求导.即拉格朗日乘数法方程组之中的,,x y L L L l 表示分别对,,x y λ进行求导.(1)求函数222(,)2f x y x y xy xy =++关于变量y 的导数并求当1x =处的导数值.(2)利用拉格朗日乘数法求:设实数,x y 满足22(,)410g x y x y xy =++-=,求(,)2f x y x y =+的最大值.(3)①若,,x y z 为实数,且1x y z ++=,证明:22213x y z ++³.②设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值.4.(2024届浙江省宁波市宁波九校高三上学期期末)我们把底数和指数同时含有自变量的函数称为幂指函数,其一般形式为()()()()()01v x y u x u x u x =>¹,,幂指函数在求导时可以将函数“指数化"再求导.例如,对于幂指函数x y x =,()()()()ln ln ln e e e ln 1x x x x x x x y x x ¢¢¢¢éù====+êúëû.(1)已知()10x xf x xx -=>,,求曲线()y f x =在1x =处的切线方程;(2)若0m >且1m ¹,0x >.研究()112xxm g x æö+=ç÷èø的单调性;(3)已知a b s t ,,,均大于0,且a b ¹,讨论2t s s a b æö+ç÷èø和2st t a b æö+ç÷èø大小关系.5.(湖北省八市高三下学期3月联考)英国数学家泰勒发现的泰勒公式有如下特殊形式:当()f x 在0x =处的()*n n ÎN 阶导数都存在时,()()()()()()()()323000002!3!!n n f f f f x f f x x x x n =++++¢¢×××+¢+×××.注:()f x ¢¢表示()f x 的2阶导数,即为()f x ¢的导数,()()()3n f x n ³表示()f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算1sin 2的值,精确到小数点后两位;(2)由该公式可得:246cos 12!4!6!x x x x =-+-+×××.当0x ³时,试比较cos x 与212x-的大小,并给出证明(不使用泰勒公式);(3)设*n ÎN ,证明:()111142tannk n n n k n k=>-+++å.6. 函数()f x 满足22()(e )(2)ex f x f x -+=(e 为自然数的底数),且当1x £时,都有()()0f x f x ¢+>(()f x ¢为()f x 的导数),比较20202022(2022)(2020),e ef f 的大小 .7.设函数()f x 在R 上可导,其导函数为()f x ¢,且2()()0f x xf x ¢+>.求证: ()0f x ³.8.已知函数()f x 及其导函数()f x ¢的定义域均为R ,()23f x +是偶函数,记()()g x f x ¢=,()2g x +也是偶函数,求()2023f ¢的值.9. 定义在()0,∞+上的函数()y f x =有不等式()()()23f x xf x f x ¢<<恒成立,其中()y f x ¢=为函数()y f x =的导函数,求证:()()2481f f <<.10.已知()f x ¢为定义域R 上函数()f x 的导函数,且()()20f x f x ¢¢+-=,1x ³, ()()()120x f x f x -+>¢且()31f =,求不等式()()241f x x >-的解集11.定义在区间(0,)+∞上函数()f x 使不等式2()'()3()f x xf x f x <<恒成立,('()f x 为()f x 的导数),求(2)(1)f f 的取值范围.12.设()y f x =是定义在R 上的奇函数.若()(0)f x y x x=>是严格减函数,则称()y f x =为“D 函数”.(1)分别判断y x x =-和sin y x =是否为D 函数,并说明理由;(2)若1112xy a =-+是D 函数,求正数a 的取值范围;(3)已知奇函数()y F x =及其导函数()y F x ¢=定义域均为R .判断“()y F x ¢=在()0,∞+上严格减”是“()y F x =为D 函数”的什么条件,并说明理由.13.设M 是定义在R 上且满足下列条件的函数()f x 构成的集合:①方程()0f x x -=有实数解;②函数()f x 的导数()f x ¢满足0()1f x ¢<<.(1)试判断函数sin ()24x x f x =+是否集合M 的元素,并说明理由;(2)若集合M 中的元素()f x 具有下面的性质:对于任意的区间[],m n ,都存在0[,]x m n Î,使得等式()0()()()f n f m n m f x ¢-=-成立,证明:方程()0f x x -=有唯一实数解.(3)设1x 是方程()0f x x -=的实数解,求证:对于函数()f x 任意的23,x x R Î,当211x x -<,311x x -<时,有()()322f x f x -<.14.设定义在R 上的函数()f x 的导函数为()f x ¢,若()()2f x f x ¢+>,()02024f =,求不等式2022()2e xf x >+(其中e 为自然对数的底数)的解集。
新高一抽象函数知识点归纳总结
新高一抽象函数知识点归纳总结高一是学生们接触高等数学的第一年,而在高等数学的学习中,抽象函数是一个非常重要的内容。
抽象函数在高中数学课程中出现的频率相对较高,掌握好这个知识点对于学生们打好数学基础,有着非常大的帮助。
接下来,我们将对新高一抽象函数的知识点进行归纳总结。
一、函数的概念和性质在学习抽象函数之前,首先要掌握函数的概念和基本性质。
函数是一种对应关系,它把一个集合的每个元素都对应到另一个集合的唯一元素上。
函数的性质包括定义域、值域、单调性、奇偶性等。
掌握函数的概念和性质是后续学习抽象函数的基础。
二、抽象函数的定义抽象函数是指函数的定义域和值域都是集合,函数的定义可以用文字、图表、映射等方式表示。
抽象函数可以简化数学问题的表达,使问题的求解更加简单明了。
在高一的数学课程中,学生需要通过实际问题理解抽象函数的定义和意义,建立起抽象函数和具体问题之间的联系。
三、抽象函数的常见类型在高一的数学教学中,常见的抽象函数类型包括线性函数、二次函数、指数函数、对数函数、三角函数等。
线性函数是最简单的抽象函数,可以用一条直线表示;二次函数则是用二次方程表示的函数,图像是一个开口向上或向下的抛物线;指数函数和对数函数则是用指数和对数运算表示的函数,它们在实际中有着广泛的应用;三角函数则是以圆的角度为自变量的函数,它与几何形状、周期性等有着密切的关系。
四、抽象函数的性质和应用抽象函数具有许多重要的性质和应用。
首先,函数的图像可以通过平移、伸缩、翻转等变换得到不同的函数,这些变换对于函数的研究和应用具有重要意义。
其次,抽象函数的性质可以通过函数的解析式、图像等方式进行判断和解答。
另外,抽象函数在实际问题中的应用非常广泛,比如利用抽象函数来解决最优化问题、建模问题等。
五、抽象函数的综合应用抽象函数在高一数学中的学习不仅仅是理论的讲解和应用的演练,更重要的是培养学生的创造性思维和综合应用能力。
通过进行一些抽象函数的实际问题,可以锻炼学生的问题分析和解决能力,提高他们的数学思维能力。
抽象函数专题讲解
解:令 x=y=0,得:f(0)=0,令 x=0,y=1,得 f(0+12)=f(0)+2f[(1)]2,
f ( x) 的定义域.
2 例 2 已知函数 f ( x 2 x 2) 的定义域为 0, 3 ,求函数 f ( x) 的定义域.
解:由 0 ≤ x ≤ 3 ,得 1≤ x 2 x 2 ≤ 5 .
2
令 u x 2 x 2 ,则 f ( x2 2x 2) f (u) ,1 ≤ u ≤ 5 .
解: f ( x) 的定义域为 15 , ,1≤ 3x 5 ≤ 5 , 故函数 f (3x 5) 的定义域为 , . 3 3ຫໍສະໝຸດ 4 10 ≤ x≤ . 3 3
4 10
2、已知 f g ( x) 的定义域,求 f ( x ) 的定义域 其解法是: 若 f g ( x) 的定义域为 m ≤ x ≤ n , 则由 m ≤ x ≤ n 确定的 g ( x) 的范围即为
1 1 2 f (1) 0,f (1) .令x n, y 1, 得f (n 1) f (n) 2[f (1)] f (n) , 2 2
1 n 2017 即 f(n 1) - f(n) ,故f(n ) , f(2001) . 2 2 2
三、抽象函数常见模型
抽象函数专题讲解
抽象函数初步
• 抽象函数:没有给出具体解析式的函数。 • 在高考中,常以抽象函数为载体,考查函数的定义域、值域、单 调性、奇偶性、周期性及图象问题。
高考抽象函数知识点
高考抽象函数知识点在高考数学考试中,抽象函数是一个重要的知识点。
抽象函数是指一种基于已知函数或关系的新函数或关系,通过对已知函数或关系进行适当的变换和组合得到。
了解抽象函数的概念和相关性质,能够帮助我们更好地理解函数的运算规律和求解问题的方法。
本文将介绍高考中常见的抽象函数知识点,以帮助同学们复习和备考。
一、抽象函数的定义及性质抽象函数的定义:已知函数f(x),通过对其进行变换得到一个新函数g(x),则我们称g(x)为f的抽象函数。
常见的抽象函数形式包括:f(ax+b),f(g(x)),f(x)+g(x),f(x)g(x)等。
其中,a和b是常数,g(x)是另外一个函数。
抽象函数的性质:1. 抽象函数的定义域和值域:对于抽象函数g(x),如果f(x)的定义域为D,那么g(x)的定义域也是D。
同样地,如果f(x)的值域为R,那么g(x)的值域也是R。
2. 抽象函数的奇偶性:对于抽象函数g(x),如果f(x)是奇函数,那么g(x)也是奇函数;如果f(x)是偶函数,那么g(x)也是偶函数。
3. 抽象函数的图像变换:对于抽象函数g(x),如果f(x)的图像关于y轴对称,那么g(x)的图像关于y轴对称;如果f(x)的图像关于x轴对称,那么g(x)的图像关于x轴对称。
二、抽象函数的应用抽象函数在高考数学中有许多应用,下面列举几个典型例子。
1. 抽象函数与复合函数:已知f(x) = x^2,求g(x) = f(2x+1)的解析式。
根据抽象函数的定义,将f(x) = x^2代入g(x) = f(2x+1)中,得到g(x) = (2x+1)^2。
2. 抽象函数与乘积:已知f(x) = x^2,g(x) = 3x,求h(x) = f(x)g(x)的解析式。
将f(x)和g(x)代入h(x) = f(x)g(x)中,得到h(x) = x^2 * 3x =3x^3。
3. 抽象函数与复合关系式:已知f(x) = x^2,g(x) = 3x,求f(g(2))的值。
抽象函数(讲义)
抽象函数函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。
抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。
此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。
因此备受命题者的青睐,在近几年的高考试题中不断地出现。
然而,由于这类问题本身的抽象性和其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。
下面通过例题来探讨这类问题的求解策略。
例1:()f x 是定义在R 上的奇函数,且满足2个条件:(1)对于任意的x , y ∈R ,都有()()()f x y f x f y +=+;(2)当x>0时, ()0f x <且(1)2f =-,求函数f(x)在[-3,3]上的最大值和最小值分析:利用函数的单调性求函数的最大值和最小值,这是解决抽象函数(没有具体解析式)常见求最大(或最小)值的方法。
利用函数单调性来判断函数是增函数还是减函数。
解:设21x x <则()()()()1121122][x f x x f x x x f x f +-=+-=因为当x>0时,f(x)<0()012<-x x f()()()()()11121122][x f x f x x f x x x f x f <+-=+-=所以函数f(x)在R 上是减函数()()()()6132121)3(min -==+=+==f f f f f f又由函数在R 上是奇函数,所以函数最大值为6例2:已知()f x 的定义域是(0,+∞),当x>1时,()0f x >,且()()()f xy f x f y =+求:(1)求(1)f(2)判定()f x 在定义域上的单调性(3)如果1(13f =-,求满足不等式1()()2f x f x --≥2的x 的范围解:(1)由()()()f xy f x f y =+,得(1)(1)(1)f f f =+所以(1)0f =(2)由1(1)()(0f f x f x =+=得1()(f x f x =- 设0<21x x < 则112>x x ,由于当x>1时,()0f x > 所以012>⎪⎪⎭⎫⎝⎛x x f ()()()22211110x f fx f fx f x x x ⎛⎫⎛⎫=+=-> ⎪ ⎪⎝⎭⎝⎭∴()()12x f x f >所以函数()f x 在定义域上是增函数(3) 由于1()()f x f x =-,1()13f =- ∴(3)1f =∵()()()f xy f x f y =+∴(9)2f = 由1()()2f x f x --≥2 ,得()()()92f x f x f ≥-+即()()9]2[f x x f ≥∙-∴ ()⎪⎩⎪⎨⎧≥->->,92020x x x x 解得101+≥x例3:已知()f x 的定义域是R ,f(0)≠0,当x>0时,()f x >1且()()()f x y f x f y += 求:(1) (0)f 的值(2)判定函数值的正负(3)判断()f x 在R 上的单调性(4)若1)2()(2>-x x f x f ,求x 的取值范围解:(1) )0()0(2f f = 又f(0)≠0则(0)1f =(2)当x<0时 -x>0∴()()(0)()1f f x x f x f x =-=-=∴()1()0f x f x -=>值为正 则()f x >0∴函数()f x 值为正(3) ∵21x x < ,12,x x R ∈则210x x ->∴()21(0)1f x x f ->=∴()()()()()11121122][x f x f x x f x x x f x f >-=+-=∴函数()f x 在R 上是增函数(4) ∵()()()f x y f x f y +=∴222()(2)(2)(3)f x f x x f x x x f x x -=+-=-由于函数在R 上是增函数,要使得1)2()(2>-x x f x f即())0(32f xx f >- 则032>-x x解得30<<x总之,求解抽象函数问题,用常规方法一般很难奏效,但我们若能通过对题目的信息分析与研究,采用特殊的方法和手段求解,往往会收到事半功倍之功效,。
2025高考数学培优25讲2.2抽象函数
由 f x y f x y f x f y ,联想到余弦函数和差化积公式
cos x y cos x y 2cosxcosy ,可设 f x acosx ,则由方法一中 f 0 2, f 1 1知
a
2, acos
1 ,解得 cos
1
,取
f
x y
f f
x y .
指数函数
(6)对于指数函数 f x a x ,与其对应的抽象函数为 f x y f x f y .
(7)对于指数函数
f
x a x ,其抽象函数还可以是
f
x y
f f
x y
.其中
(a
0,
a
1)
对数函数
(8)对于对数函数 f x logax ,与其对应的抽象函数为 f xy f x f y .
4
则 f 2010 =
.
2.(多选题 2024·浙江·模拟预测)已知函数 f x 1 为偶函数,对 x R , f x 0 ,且
f x 1 f x f x 2 ,若 f 1 2 ,则以下结论正确的为( )
A. f 2 2 B. f 3 1
C. f 1 f 5
D.
f
1 2
f
A.幂函数
B.对数函数
C.指数函数
D.余弦函数
2.(2014·陕西·高考真题)下列函数中,满足“ f x y f x f y ”的单调递增函数是( )
1
A. f x x 2
B. f x x3
C.
f
x
1 2
x
D. f x 3x
3.(2024·河南新乡·一模)已知定义在 R 上的函数 f x 满足 x, y R ,
高三抽象函数知识点
高三抽象函数知识点抽象函数是高中数学中的一个重要概念,它是函数概念的一种推广和扩展。
通过对抽象函数的学习和理解,不仅可以帮助学生更好地掌握函数的性质和变化规律,还可以为解决实际问题提供一种有效的数学工具。
本文将从定义、性质、图像及应用等方面介绍高三抽象函数的相关知识点。
一、定义抽象函数是指由一个自变量的集合A到一个因变量的集合B的映射关系。
这里的集合A和集合B可以是实数集、复数集、整数集等。
抽象函数可以用符号表示,如f(x)、g(x)等,其中x为自变量。
二、性质1. 定义域与值域:抽象函数的定义域即自变量的取值范围,可以是一个集合或一个区间。
而值域则表示抽象函数在给定定义域内所有可能的输出值所组成的集合或区间。
2. 单调性:抽象函数可能是递增的、递减的,也可能存在局部最值点。
通过对函数的微分或导数进行研究,可以确定函数的单调性。
3. 零点与极值点:抽象函数在定义域内可能存在零点,即使得f(x) = 0的自变量x的取值。
极值点是指函数在一段区间内的最大值或最小值,可以通过求导和求二阶导数的方法来判断。
4. 对称性:抽象函数可能具有对称性,如奇函数和偶函数。
奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x),可以通过对函数的变换来验证其对称性。
三、图像抽象函数的图像可以通过将自变量的取值代入函数中得到。
可以使用计算器或数学软件绘制抽象函数的图像,以便更直观地观察函数的性质和特点。
图像可以展示函数的增减性、零点、极值点等信息,有助于学生理解和记忆。
四、应用抽象函数广泛应用于数学和实际问题中。
在代数中,可以通过抽象函数来描述两个数的关系,如线性函数、二次函数等。
在几何中,抽象函数可以用来表示曲线、图形的方程,帮助解决与图形相关的问题。
在实际问题中,抽象函数可以用来建模,通过函数的性质和变化规律分析问题,求解最优解。
总结高三抽象函数是数学中重要的知识点,掌握好抽象函数的定义、性质和应用,对学生提高数学水平和解决问题具有重要的意义。
抽象函数讲优秀课件
A.{ x| x > 3 或 -3 < x < 0}
B.{ x|0< x < 3 或 x < -3}
C.{ x| x > 3或 x < -3}
D.{ x|0< x <3或 -3 < x < 0}
【手段4】(图解法2) f (x)为奇函数,作 x > 0时的图象(右) 即可. 不等式 x • f(x)<0的解集关于原点对称,故先解 x > 0. f(x) <0,借助图象得0 < x < 3. 由对称性得x • f(x) <0的解集为 { x|0 < x <3或 -3 < x <0},故选D.
抽象函数讲
抽象函数的求解策略:利用函数模型
抽象函数通常是指没有给出函数的具体解析式, 只给出了其他一些条件(如:定义域、经过的特殊的 点、解析递推式、部分图象特征等),它是高中数学 函数部分的难点,也是与大学的一个衔接点。因无具 体解析式,理解研究起来往往很困难。但利用函数模 型往往能帮我们理清题意,寻找解题思路,从而方便 快捷的解决问题。
指数函数f(x)=ax (a>0,且 a≠1)
对数函数f(x)=logax (a>0且a≠1)
练习:
1、f (x)满足f (m+n)=f (m)·f (n),若f(4)=256,f (k)=0.0625,则k的值为( B )
1
1
A.-4 B.-2 C. 16 D. 2
2、设函数y=f(x)的定义域为(0,+∞),且对任意的正实数 x,y,f(xy)=f(x)+f(y)恒成立。已知f(2)=1,且当x>1时,f(x)>0.
抽象函数(学生)
抽象函数(一)基本知识点抽象函数:抽象函数通常是指没有给出函数的具体的解析式,只给出了其它一些条件(如函数的定义域、单调性、奇偶性、解析递推式等)的函数问题。
求解抽象函数问题的常用方法是:1、借鉴模型函数进行类比探究;2、利用函数的性质(如奇偶性、单调性、周期性、对称性等)进行演绎探究;3、利用一些方法(如赋值法(令x =0或1,求出(0)f 或(1)f 、令y x =或y x =-等)、递推法、反证法等)进行逻辑探究。
(二)精典例题1、若函数()f x 的定义域是[2,4],则12(log )f x 的定义域是( )(A ) [12,1] (B ) [4,16] (C )[116,14] (D )[2,4 ]2、设函数)(x f 定义于实数集上,对于任意实数,x y ,()()()f x y f x f y +=总成立,且存在12x x ≠,使得12()()f x f x ≠,求函数)(x f 的值域。
3、(1)设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x(2)已知函数f (x )满足:()()(),(1)3f p q f p f q f +==22222(1)(2)(2)(4)(3)(6)(4)(8)(5)(10)___(1)(3)(5)(7)(9)f f f f f f f f f f f f f f f +++++++++=(3)已知)(x f 是定义在R 上的奇函数,且为周期函数,若它的最小正周期为T ,则=-)2(T f ____;又若)(x f 为连续的函数且0)(=T f ,则)(x f 在[-T ,T]至少有几个根?4、设函数 ()f x 对任意 ,x y R ∈,都有()()()f x y f x f y +=+,且 0x > 时,()0f x <,(1)2f =-.(1)求证:()f x 是奇函数;(2)试问在33x -≤≤ 时,()f x 是否有最值?如果有,求出最值;如果没有,说出理由5、函数()f x 的定义域为{}:|0D x x ≠,且满足对于任意12,x x D ∈,有 1212()()()f x x f x f x ⋅=+.(1)求 (1)f 的值;(2)判断 ()f x 的奇偶性并证明;(3)如果 (4)1,(31)(26)3f f x f x =++-≤,且 ()f x 在()0,+∞上是增函数,求x 的取值范围6、已知函数()f x 对任意实数,x y 都有()()()f xy f x f y =,且(1)1,(27)9f f -==,当01x ≤<时,[)()0,1f x ∈。
2.13-2抽象函数(复合函数)定义域的求法讲义
抽象函数的定义域抽象函数的定义:我们把没有给出具体解析式的函数称为抽象函数。
复合函数的概念:设y=f(u )的定义域为Du ,值域为Mu ,函数u=g(x )的定义域为Dx ,值域为Mx,那么对于Dx 内的任意一个x 经过u ;有唯一确定的y 值与之对应,因此变量x 与y 之间通过变量u 形成的一种函数关系,记为:y=f[g(x)],这种函数称为复合函数(composite function),其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。
总结解题模板1.已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。
3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。
4.已知()f x 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。
例1已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.分析:若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[]()f g x 的定义域.本题该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围.解:()f x 的定义域为[]15-,,1355x ∴--≤≤,41033x ∴≤≤.故函数(35)f x -的定义域为41033⎡⎤⎢⎥⎣⎦,.变式训练:若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。
讲义DIY-抽象函数-第一讲-抽象函数的概念和性质
专题:抽象函数§1.1 抽象函数的概念和性质(部分掌握:注意运用数形结合、换元法)一.概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难.但由于此类试题即能考查函数的概念和性质,又能考查学生的思维能力,所以备受命题者的青睐,那么,怎样求解抽象函数问题呢,我们可以利用特殊模型法,函数性质法,特殊化方法,联想类比转化法,等多种方法从多角度,多层面去分析研究抽象函数问题. 二.抽象函数的性质 1.对称性定理1. 若函数)(x f y = 定义域为R,且满足条件:)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2b a x +=对称.(记忆)推论1. 若函数)(x f y = 定义域为R,且满足条件:)()(x a f x a f -=+或)()2(x f x a f =-,则函数)(x f y = 的图像关于直线a x =对称.(考虑到x a + 和x a -到直线a x =的距离相等,而函数值又相等即可理解)推论2. 若函数)(x f y = 定义域为R,且满足条件:)()(x a f x a f -=+,又若方程0)(=x f 有n 个根,则此n 个根的和为na .(运用数形结合、中点坐标公式不难理解)*定理2. 若函数)(x f y = 定义域为R,且满足条件:c x b f x a f =-++)()(,(a ,b ,c 为常数),则函数)(x f y =的图象关于点)2,2(cb a +对称.*推论1. 若函数)(x f y = 定义域为R,且满足条件:0)()(=-++x b f x a f ,(a ,b 为常数),则函数)(x f y =的图象关于点)0,2(b a +对称.推论2.若函数)(x f y = 定义域为R,且满足条件:0)()(=-++x a f x a f ,(a 为常数),则函数)(x f y =的图象关于点)0,(a 对称. (考虑到两个函数)(x f y =和)(x f y --=的图像关于)0,0(对称,再都向左(或向右)平移a 个单位即可理解).定理3.若函数)(x f y =定义域为R,则函数)(x a f y +=与)(x b f y -=两函数的图象关于直线2a b x -=对称. (考虑到两个函数)(x f y =和)(x f y -=的图像关于直线0=x 对称,再分别向左平移a 个单位和向右平移b 个单位即可理解).推论1. 若函数)(x f y =定义域为R,则函数)(x a f y +=与)(x a f y -=两函数的图象关于直线0=x 对称. (考虑到两个函数)(x f y =和)(x f y -=的图像关于直线0=x 对称,分别向左和向右平移a 个单位即可理解).推论 2. 若函数)(x f y =定义域为R, 则函数)(a x f y -=与)(x a f y -=两函数的图象关于直线a x =对称. (考虑到两个函数)(x f y =和)(x f y -=的图像关于直线0=x 对称,再都向左(或向右)平移a 个单位即可理解).*定理4.若函数)(x f y =定义域为R,则函数)(x a y +=与)(x b f c y --=两函数的图象关于点)2,2(ca b -对称.*推论1. 若函数)(x f y =定义域为R,则函数)(x a y +=与)(x a f c y --=两函数的图象关于点)2,0(c对称.*推论2.若函数)(x f y =定义域为R,则函数)(x a y +=与)(x b f y --=两函数的图象关于点)0,2(a b -对称.注:对定理1和定理2中的a ,b ,c 赋值为0,则可得偶函数(关于0=x 对称), 奇函数(关于点.)0,0(对称).2. 周期性定理5.若函数)(x f y =定义域为R,且满足条件)()(b x f x a f -=+,则)(x f y = 是以b a T +=为周期的周期函数.(换元法:设t b x =-,则)()(t f b a t f =++即知)定理6.若函数)(x f y = 定义域为R,且满足条件0)()(=-++b x f x a f ,则)(x f y = 是以)(2b a T +=为周期的周期函数. (换元法:设t b x =-,则)()(t f b a t f -=++,那么)()()(t f b a t f b a b a t f =++-=++++即知)定理7.若函数)(x f y =的图象关于直线a x =与b x =(b a ≠)对称,则)(x f y = 是以)(2a b T -=为周期的周期函数.(条件意味着)()2(x f x a f =-和)()2(x f x b f =-,那么)2()2(x b f x a f -=-,设t x a =-2,则)22()(a b t f t f -+=)性质1:若函数)(x f 满足)()(x a f x a f -=+及)()(x b f x b f -=+ (b a ≠,0≠ab ),则函数f(x)有周期)(2b a T -=;特别地:若函数f(x)满足)()(x a f x a f -=+, (0≠a )且)(x f 是偶函数,则函数f(x)有周期2a .(理解:)()()2(x f x f x a f -==-即)()2(t f t a f =+)*定理8.若函数)(x f y =的图象关于点)0,(a 与点)0,(b , (b a ≠)对称,则)(x f y = 是以)(2a b T -=为周期的周期函数.*定理9.若函数)(x f y =的图象关于直线a x =与 点)0,(b ,(b a ≠)对称, 则)(x f y =是以)(4a b T -=为周期的周期函数.性质2:若函数)(x f 满足)()(x a f x a f -=+及0)()(=-++x b f x b f , (b a ≠,0≠ab ),则函数有周期)(4a b T -=.特别地:若函数)(x f 满足)()(x a f x a f -=+ ,(0≠a )且)(x f 是奇函数,则函数)(x f 有周期4a .()()()2(x f x f x a f --==-即)()2(t f t a f -=+),那么)()4(t f t a f =+讨论:3. 单调性一般地,设函数)(x f y =的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x ,2x ,当21x x <时都有)()(21x f x f <.那么就说)(x f y =在这个区间上是增函数.如果对于属于I 内某个区间上的任意两个自变量的值1x ,2x ,当21x x <时都有)()(21x f x f >.那么就是)(x f y =)在这个区间上是减函数.如果对于属于I 内某个区间上的任意两个自变量的值1x ,2x 时都有0)()(2121>--x x x f x f ,那么就说)(x f y =在这个区间上是增函数.(联系0)(/>x f )如果对于属于I 内某个区间上的任意两个自变量的值1x ,2x 时都有0)()(2121<--x x x f x f ,那么就说)(x f y =在这个区间上是减函数. (联系0)(/<x f )抽象函数的周期问题——由一道高考题引出的几点思考2001年高考数学(文科)第22题:设f x ()是定义在R 上的偶函数,其图象关于直线x =1对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象函数
教学目标:
1.掌握由具体函数模型来解决抽象函数问题;
2. 掌握用赋值法来解决抽象函数求值与奇偶性问题;
3.掌握抽象函数单调性的常规方法。
知识梳理:
1.抽象函数:没有给出具体解析式,只给出它的一些特征或性质的函数称为抽象函数.
2.常见的抽象函数的性质与对应的特殊函数模型的对照表如下:
基础自测:
1.定义在R的上的函数()
f x满足()()()
f x y f x f y
+=+(,)
x y R
∈,当0
x<时,()0
f x>,则函数()
f x在(,]
a b上()
A. 有最小值()
f a B.有最大值()
f a C.有最小值()
f b D.有最大值()
f b
2.已知函数()
f x满足(1)2,
f=且对任意,x y R
∈都有
()
()
()
f x
f x y
f y
-=,记
12
1
n
i n
i
a a a a
=
=⋅⋅⋅⋅⋅⋅
∏,则10
1
(6)
i
f i
=
-=
∏ .
3.设()
f x是定义在(0,)
+∞上的增函数,且()()()
x
f x f f y
y
=+,若(2)1
f=,则
(8)
f=.
典例剖析:
考点1:正比例型抽象函数
【例1】定义在R的函数()
f x满足()()()
f x y f x f y
+=+(,)
x y R
∈,且当0
x>时,()0
f x>.(1)求证:()
f x为奇函数;(2)求证:()
f x是R上的增函数.
考点2:指数型抽象函数
【例2】定义在R上的函数()
f x满足:对任意实数,m n,总有()
f m n
+=()()
f m f n
⋅,且当0
x>时,0()1
f x
<<.(1)试求(0)
f的值;(2)求证:对任意的x R
∈,恒有()0
f x>;(3)判断()
f x的单调性,并证明你的结论.
【变式】在例2条件下若若f (1) = 21,解不等式f (3x -x 2)>4
1.
考点3:对数型抽象函数
【例3】已知)(x f 是定义在(0,)+∞上的函数,并且对任意的0,0>>y x ,
)()()(y f x f xy f +=总成立,且当1x >时,()0f x >.
(1)求(1)f 的值;(2)求证:()f x 在(0,)+∞上是增函数.
【变式】已知函数()f x 定义域为(0,+∞)且单调递增,满足f (4)=1,()()()f xy f x f y =+(1)证明:f (1)=0;(2)求f (16);(3)若()f x +f (x -3)≤1,求x 的范围;
考点4:幂函数型抽象函数
【例4】已知函数()f x 对于一切正实数x 、
y 都有()()()f xy f x f y = 且x >1时,()f x <1,f (2)=9
1
(1)求证:()f x >0;(2)求证:()f x 在(0,+∞)上为单调减函数
(3)若()f m =9,试求m 的值。
小结:
1.对于选择、填空题可借助抽象函数的特殊模型进行分析.
2.对于抽象函数的单调性的证明要善于挖掘已知条件进行构造,如: ①已知0x >,()f x 的取值情况:需构造21()f x x -,其中210x x ->. ②已知0x <,()f x 的取值情况:需构造12()f x x -,其中120x x -<. ③已知1x >,()f x 的取值情况:需构造21(
)x f x ,其中21
1x
x >. ④常见的构造:1122()[()]f x f x x x =-+,2211()[()]f x f x x x =-+,2
211
()()x f x f x x =⋅.
练习:
1.对任意整数y x ,函数)(x f y =满足:1)()()(+++=+xy y f x f y x f ,若1)1(=f ,则=-)8(f
( )A.-1 B.1 C. 19 D. 43 2.定义在区间[-2,2]上的函数()f x 满足:()()f x f x -=,且()f x 在[0,2]上为增函数,若(2)(31)0f m f m --->恒成立,则实数m 的取值范围是 . 3.已知函数()f x 是定义在(0,+∞)上的增函数,对正实数,x y ,都有
()()
()f x y f x f y =
+成立.则不等式2(log )0f x <的解集是___________ .
4.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
(1)证明:(1)0f =;(2)若()(3)2f x f x +-≥成立,求x 的取值范围。
;
5.已知函数()f x 的定义域为R,对任意实数,m n 都有1
()()()2
f m n f m f n +=++,且
1()02f =,当1
2x >时, ()f x >0.(1)求(1)f ;(2) 判断函数()f x 的单调性,并证明.。