抽象函数经典综合题33例(含详细解答)

合集下载

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

高中数学抽象函数经典综合题33例

高中数学抽象函数经典综合题33例

抽象函数经典综合题抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查能力的较好途径;抽象函数问题既是难点,又是近几年来高考的热点;1.定义在R 上的函数)(x f y =,0)0(≠f ,当0>x 时,1)(>x f ,且对任意的R b a ∈、,有)()()(b f a f b a f ⋅=+;I .求证1)0(=f ; Ⅱ.求证:R x ∈∀,0)(>∃x f ;Ⅲ.证明:)(x f 是R 上的增函数;Ⅳ.若1)2()(2>-⋅x x f x f ,求x 的取值范围;2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=-且0)1(≠f ;I .求证:()f x 为奇函数;II .若(1)(2)f f =,求(1)(1)g g +-的值;3.已知函数)(x f 对任意实数x ,y 恒有)()()(y f x f y x f +=+且当0>x ,0)(<x f ,又2)1(-=f .I .判断)(x f 的奇偶性;Ⅱ.求)(x f 在区间]3,3[-上的最大值;4.已知)(x f 在)1,1(-上有定义,1)21(-=f ,且满足x ,)1,1(-∈y 有)1()()(xyyx f y f x f ++=+; I .证明:)(x f 在)1,1(-上为奇函数;II .对数列211=x ,2112nn n x x x +=+,求)(n x f ;III .求证+)(11x f +)(12x f +)(13x f 252)(1++->+n n x f n ;5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;I .试证明:)(x f 为N 上的单调增函数;II .n N ∀∈,且(0)1f =,求证:()1f n n ≥+;Ⅲ.若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12.6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥;(2)(1)3f =;(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-.I .求(0)f 的值;II .求()f x 的最大值;III .设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.7. 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数. I .若函数()f x 为理想函数,求(0)f 的值;Ⅱ.判断函数()21xg x =-])1,0[(∈x 是否为理想函数,并予以证明; Ⅲ. 若函数()f x 为理想函数,假定∃[]00,1x ∈,使得[]0()0,1f x ∈,且00(())f f x x =,求证00()f x x =.8.已知定义在R 上的单调函数()f x ,存在实数0x ,使得对于任意实数12,x x ,总有0102012()()()()f x x x x f x f x f x +=++恒成立;I .求0x 的值;Ⅱ.若0()1f x =,且对任意正整数n ,有1()12n n a f =+,求数列{}n a 的通项公式;Ⅲ.若数列{}n b 满足1221n n b log a =+,将数列{}n b 的项重新组合成新数列{}n c ,具体法则如下:112233456,,,c b c b b c b b b ==+=++478910,c b b b b =+++……,求证:12311112924n c c c c ++++<; 9.设函数)(x f 是定义域在),0(+∞上的单调函数,且对于任意正数y x ,有)()()(y f x f y x f +=⋅,已知1)2(=f .I .求)21(f 的值;II .一个各项均为正数的数列}{n a 满足:)(1)1()()(*∈-++=N n a f a f S f n n n ,其中n S 是数列}{n a 的前n 项的和,求数列}{n a 的通项公式; Ⅲ.在II的条件下,是否存在正数M,使)12()12()12(12221321--⋅-+≥n n na a a n M a a a a ,对一切*∈Nn 成立?若存在,求出M 的取值范围;若不存在,说明理由.10.定义在R 上的函数f (x )满足fxy fx fy f ()()()()++=+=1120,,且x >12时,0)(<x f ; I .设a fnn N n=∈()()*,求数列的前n 项和S n ; II .判断)(x f 的单调性,并证明;11.设函数)(x f 定义在R 上,对于任意实数m ,n ,恒有fm n fm fn ()()()+=·,且当0>x 时,1)(0<<x f ; I .求证:1)0(=f ,且当0<x 时,1)(>x f ;II .求证:)(x f 在R 上单调递减; Ⅲ.设集合{}A x y f xf y f =>(,)|()()()221·,{}B x y f a x y a R =-+=∈(,)|()21,,若A B ∩=∅,求a 的取值范围;12.定义在R 上的函数)(x f 对任意实数a .b 都有)()(2)()(b f a f b a f b a f ⋅=-++成立,且f ()00≠; I .求)0(f 的值;II .试判断)(x f 的奇偶性;Ⅲ.若存在常数0>c 使f c()20=,试问)(x f 是否为周期函数?若是,指出它的一个周期;若不是,请说明理由;13.已知函数)(x f 的定义域关于原点对称,且满足:①f x x f x f x f x f x ()()()()()1212211-=+-·②存在正常数a ,使1)(=a f , 求证:I .)(x f 是奇函数;II .)(x f 是周期函数,并且有一个周期为a 4;14.已知f x ()对一切x y ,,满足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:I .x >0时,01<<f x ();II .f x ()在R 上为减函数;即f x ()为减函数; 15.已知函数f x ()是定义在(]-∞,1上的减函数,且对一切实数x ,不等式fk x fk x (s i n )(s i n)-≥-22恒成立,求k 的值;16.设定义在R 上的函数()f x 对于任意,x y 都有()()()f x y f x f y +=+成立,且(1)2f =-,当0x >时,()0f x <; I .判断)(x f 的奇偶性,并加以证明;II .试问:当20032003≤≤-x 时,()f x 是否有最值?如果有,求出最值;如果没有,说明理由; III .解关于x 的不等式2211()()()()22f bx f x f b x f b ->-,其中22b ≥. 17.已知定义在R 上的函数()f x 满足:(1)值域为()1,1-,且当0x >时,()10f x -<<;(2)对于定义域内任意的实数,x y ,均满足:)()(1)()()(n f m f n f m f n m f ++=+,试回答下列问题:I .试求)0(f 的值;Ⅱ.判断并证明函数)(x f 的单调性;Ⅲ.若函数)(x f 存在反函数)(x g ,求证:+)51(g +)111(g )21()131(2g n n g >+++.18.已知函数)(x f 对任意实数x .y 都有)()()(y f x f xy f ⋅=,且1)1(-=-f ,9)27(=f ,当10<≤x 时,)1,0[)(∈x f ;I .判断)(x f 的奇偶性;II .判断)(x f 在),0[+∞上的单调性,并给出证明;Ⅲ.若0≥a 且39)1(≤+a f ,求a 的取值范围;19.设函数)(x f y =的定义域为全体R ,当0<x 时,1)(>x f ,且对任意的实数x ,R y ∈,有)()()(y f x f y x f =+成立,数列}{n a 满足)0(1f a =,且)12(1)(1+-=+n n n a a f a f (*∈N n )I .求证:)(x f y =是R 上的减函数; Ⅱ.求数列}{n a 的通项公式;Ⅲ.若不等式0121)1()1)(1(21≤+-+++n a a a k n 对一切*∈N n 均成立,求k 的最大值.20.函数)(x f 的定义域为D {}0x x =>, 满足: 对于任意,m n D ∈,都有()()()f mn f m f n =+,且1)2(=f .I .求)4(f 的值;II .如果3)62(≤-x f ,且)(x f 在),0(+∞上是单调增函数,求x 的取值范围.21.函数)(x f 的定义域为R ,并满足以下条件:①对任意R x ∈,有0)(>x f ;②对任意x .R y ∈,有yx f xy f )]([)(=;③1)31(>f ;I .求)0(f 的值;II .求证:)(x f 在R 上是单调增函数; Ⅲ.若ac b c b a =>>>2,0且,求证:).(2)()(b f c f a f >+22.定义在区间),0(∞上的函)(x f 满足:(1).)(x f 不恒为零;(2).对任何实数x .q ,都有)()(x qf x f q =.I .求证:方程0)(=x f 有且只有一个实根;II .若1>>>c b a ,且a .b .c 成等差数列,求证:)()()(2b fc f a f <⋅; Ⅲ.若)(x f 单调递增,且0>>n m 时,有)2(2)()(nm f n f m f +==,求证:32m << 23. 设)(x f 是定义域在]1,1[-上的奇函数,且其图象上任意两点连线的斜率均小于零.I .求证)(x f 在]1,1[-上是减函数;Ⅱ.如果)(c x f -,)(2c x f -的定义域的交集为空集,求实数c 的取值范围;Ⅲ.证明若21≤≤-c ,则)(c x f -,)(2c x f -存在公共的定义域,并求这个公共的空义域.24.已知函数1)(1)()(+-=x g x g x f ,且)(x f ,)(x g 定义域都是r ,且0)(>x g ,2)1(=g ,)(x g 是增函数,)()()(n m g n g m g +=⋅(m .R n ∈) ;求证:)(x f 是R 上的增函数25.定义在+R 上的函数)(x f 满足: ①对任意实数m ,)()(x mf x f m =;②1)2(=f .求证:I .)()()(y f x f xy f +=对任意正数x ,y 都成立;II .证明)(x f 是*R 上的单调增函数;Ⅲ.若2)3()(≤-+x f x f ,求x 的取值范围.26.已知)(x f 是定义在R 上的函数,1)1(=f ,且对任意R x ∈都有5)()5(+≥+x f x f ,1)()1(+≤+x f x f ,若x x f x g -+=1)()(,求)2002(g ;27.设定义在R 上的函数)(x f ,满足当0>x 时,1)(>x f ,且对任意x ,R y ∈,有)()()(y f x f y x f =+,2)1(=f ;I .解不等式4)3(2>-x x f ;Ⅱ.解方程组1)2()3(21)]([2+=++f x f x f ;28、定义域为R 的函数)(x f 满足:对于任意的实数x ,y 都有)()()(y f x f y x f +=+成立,且当0>x 时0)(<x f 恒成立. I .判断函数)(x f 的奇偶性,并证明你的结论;Ⅱ.证明)(x f 为减函数;若函数)(x f 在)3,3[-上总有6)(≤x f 成立,试确定)1(f 应满足的条件;Ⅲ.解关于x 的不等式)()(1)()(122a f x a f nx f ax f n ->-,n 是一个给定的自然数,0<a ; 29.已知)(x f 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈都满足:()()()f a b af b bf a ⋅=+I .求()()0,1f f 的值;Ⅱ.判断)(x f 的奇偶性,并证明你的结论;Ⅲ.若2)2(=f ,nf u n n )2(-=)(*∈N n ,求数列{}n u 的前n 项的和n S .30.设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=+,(7)(7)f x f x -=+,且在闭区间]7,0[上,只有(1)(3)0f f ==. I .试判断函数()y f x =的奇偶性;Ⅱ.试求方程()0f x =在闭区间]2005,2005[-上的根的个数,并证明你的结论.31.设f x ()定义在R 上且对任意的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期;32.设f x ()是定义在R 上的偶函数,其图象关于直线x =1对称;对任意x x 12012,,∈[]都有f x x f x f x ()()()1212+=⋅; I .设f ()12=,求f f ()()1214,;II .证明)(x f 是周期函数;33.已知函数)(x f 的定义域关于原点对称,且满足: ①当1x ,2x 是定义域中的数时,有)()(1)()()(122121x f x f x f x f x x f -+=-;②1)(-=a f (0>a ,a 是定义域中的一个数); ③当a x 20<<时,0)(<x f ;试问:I .)(x f 的奇偶性如何?说明理由;II .在)4,0(a 上,)(x f 的单调性如何?说明理由;。

抽象函数经典习题

抽象函数经典习题

抽象函数问题有关解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、解析式问题:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1()()1f x g x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5、方程组法:通过变量代换,构造方程组,再通过加减消元法消去无关的部分。

2019年抽象函数含答案.doc

2019年抽象函数含答案.doc

抽象函数专练1、已知函数()(,0)y f x x R x =∈≠对任意的非零实数1,2x x ,恒有1212()()()f x x f x f x =+,试判断()f x 的奇偶性。

解:令121,x x x =-=,得()(1)()f x f f x -=-+;为了求(1)f -的值,令121,1x x =-=,则(1)(1)f f f -=-+,即(1)0f =,再令121x x ==-得(1)(1)(1)2(1)f f f f =-+-=-∴(1)0f -=代入()(1)()f x f f x -=-+得 ()()f x f x -=,可得()f x 是一个偶函数。

2、 已知定义在[-2,2]上的偶函数,()f x 在区间[0,2]上单调递减,(1)()f m f m -<,求实数m 的取值范围分析:根据函数的定义域,[]2,2m m -∈-,,但是1m -和m 分别在[20][02]-,和,的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f (x )有性质f (-x )= f (x )=f ( |x | ),就可避免一场大规模讨论。

解:∵f (x )是偶函数, f (1-m )<f (m ) 可得)()1(m f m f <-,∴f (x )在[0,2]上是单调递减的,于是 ⎪⎩⎪⎨⎧≤≤≤-≤>-202101m m m m ,即⎪⎩⎪⎨⎧≤≤-≤-≤->+-222122122m m m m m 化简得-1≤m <21。

3、设f(x)是R 上的奇函数,且f(x+3) =-f(x),求f(1998)的值。

解:因为f(x+3) =-f(x),所以f(x+6)=f((x+3)+3) =-f(x+3)=f(x), 故6是函数f(x)的一个周期。

又f(x)是奇函数,且在x =0处有定义,所以f(x)=0从而f(1998)=f(6×333)=f(0)=0。

必修一数学抽象函数习题精选含答案

必修一数学抽象函数习题精选含答案

必修一数学抽象函数习题精选含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修一数学抽象函数习题精选含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为必修一数学抽象函数习题精选含答案(word版可编辑修改)的全部内容。

抽象函数单调性和奇偶性1. 抽象函数的图像判断单调性例1.如果奇函数在区间上是增函数且有最小值为5,那么在f x ()[]37,f x ()区间上是( )[]--73,A. 增函数且最小值为B 。

增函数且最大值-5为-5C. 减函数且最小值为D 。

减函数且最大值-5为-5分析:画出满足题意的示意图,易知选B 。

2、抽象函数的图像求不等式的解集例2、已知定义在上的偶函数满足,并且在上为增函数。

R f (x)f (2)0=f (x)(,0)-∞若,则实数的取值范围 。

(1)(a)0a f ->a 二、抽象函数的单调性和奇偶性1。

证明单调性例3.已知函数f(x)= ,且f(x),g(x )定义域都是R,且g(x )〉0, 1)(1)(+-x g x g g(1) =2,g(x) 是增函数。

.(m)(n)(m n)(m,n )g g g R =+∈求证: f (x)是R 上的增函数.解:设x 1〉x 2因为,g(x )是R 上的增函数, 且g (x)>0。

故g(x 1) > g(x 2) 〉0。

g (x 1)+1 > g(x 2)+1 〉0,〉 〉0⇒1)(22+x g 1)(21+x g — 〉0。

⇒1)(22+x g 1)(21+x gf(x 1)- f(x 2)=- =1-—(1-)1)(1)(11+-x g x g 1)(1)(22+-x g x g 1)(21+x g 1)(22+x g =-〉0。

2019年抽象函数含答案.doc

2019年抽象函数含答案.doc

抽象函数专练1、已知函数()(,0)y f x x R x =∈≠对任意的非零实数1,2x x ,恒有1212()()()f x x f x f x =+,试判断()f x 的奇偶性。

解:令121,x x x =-=,得()(1)()f x f f x -=-+;为了求(1)f -的值,令121,1x x =-=,则(1)(1)f f f -=-+,即(1)0f =,再令121x x ==-得(1)(1)(1)2(1)f f f f =-+-=-∴(1)0f -=代入()(1)()f x f f x -=-+得 ()()f x f x -=,可得()f x 是一个偶函数。

2、 已知定义在[-2,2]上的偶函数,()f x 在区间[0,2]上单调递减,(1)()f m f m -<,求实数m 的取值范围分析:根据函数的定义域,[]2,2m m -∈-,,但是1m -和m 分别在[20][02]-,和,的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f (x )有性质f (-x )= f (x )=f ( |x | ),就可避免一场大规模讨论。

解:∵f (x )是偶函数, f (1-m )<f (m ) 可得)()1(m f m f <-,∴f (x )在[0,2]上是单调递减的,于是 ⎪⎩⎪⎨⎧≤≤≤-≤>-202101m m m m ,即⎪⎩⎪⎨⎧≤≤-≤-≤->+-222122122m m m m m 化简得-1≤m <21。

3、设f(x)是R 上的奇函数,且f(x+3) =-f(x),求f(1998)的值。

解:因为f(x+3) =-f(x),所以f(x+6)=f((x+3)+3) =-f(x+3)=f(x), 故6是函数f(x)的一个周期。

又f(x)是奇函数,且在x =0处有定义,所以f(x)=0从而f(1998)=f(6×333)=f(0)=0。

抽象函数的性质及其经典例题

抽象函数的性质及其经典例题

抽象函数的性质及其金典例题函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x),则y=f(x)是周期为2|a|的周期函数;7、若在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。

函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点成中心对称图形;4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0;5、形如的图像是双曲线,由常数分离法知:对称中心是点;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技能总结因为函数概念比较抽象,学生对解有关函数记号()f x 的问题觉得艰苦,学好这部分常识,能加深学生对函数概念的懂得,更好地控制函数的性质,造就灵巧性;进步解题才能,优化学生数学思维本质.现将罕有解法及意义总结如下:一.求表达式:1.换元法:即用中央变量暗示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式经常运用的办法,此法解造就学生的灵巧性及变形才能.例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x-=- 2.凑正当:在已知(())()f g x h x =的前提下,把()h x 并凑成以()g u 暗示的代数式,再运用代换即可求()f x .此解法简练,还能进一步温习代换法.例2:已知3311()f x x xx +=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x xx x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先肯定函数类型,设定函数关系式,再由已知前提,定出关系式中的未知系数.例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.运用函数性质法:重要运用函数的奇偶性,求分段函数的解析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的界说域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.赋值法:给自变量取特别值,从而发明纪律,求出()f x 的表达式例6:设()f x 的界说域为天然数集,且知足前提(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解:∵()f x 的界说域为N,取y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈ 二.运用函数性质,解()f x 的有关问题 1.断定函数的奇偶性:例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x .y 都成立,且(0)0f ≠,求证()f x 为偶函数.证实:令x =0, 则已知等式变成()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数.例8:奇函数()f x 在界说域(-1,1)内递减,求知足2(1)(1)0f m f m -+-<的实数m 的取值规模.解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式的有关标题例9:假如()f x =2ax bx c ++对随意率性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对随意率性t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其启齿向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数∴f (3)<f (4),∴f (2)<f (1)<f (4) 五类抽象函数解法 1.线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1.已知函数f(x)对随意率性实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.剖析:由题设可知,函数f(x)是的抽象函数,是以求函数f(x)的值域,症结在于研讨它的单调性.解:设,∵当,∴,∵,∴,即,∴f(x)为增函数.在前提中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f (0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2].例2.已知函数f(x)对随意率性,知足前提f(x)+f(y)=2 + f (x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解. 剖析:由题设前提可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,假如这一猜测准确,也就可以脱去不等式中的函数符号,从而可求得不等式的解. 解:设,∵当,∴,则, 即,∴f(x)为单调增函数.∵,又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2.指数函数型抽象函数例3.设函数f(x)的界说域是(-∞,+∞),知足前提:消失,使得,对任何x和y,成立.求:(1)f(0); (2)对随意率性值x,断定f(x)值的正负.剖析:由题设可猜测f(x)是指数函数的抽象函数,从而猜测f(0)=1且f(x)>0.解:(1)令y=0代入,则,∴.若f(x)=0,则对随意率性,有,这与题设抵触,∴f(x)≠0,∴f(0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f (2x)>0,即f(x)>0,故对随意率性x,f(x)>0恒成立.例4.是否消失函数f(x),使下列三个前提:①f(x)>0,x∈N;②;③f(2)=4.同时成立?若消失,求出f(x)的解析式,如不消失,解释来由.剖析:由题设可猜测消失,又由f(2)=4可得a=2.故猜测消失函数,用数学归纳法证实如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论准确.(2)假设时有,则x=k+1时,,∴x=k+1时,结论准确.综上所述,x为一切天然数时.3.对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数.例5.设f(x)是界说在(0,+∞)上的单调增函数,知足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值规模.剖析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9.例6.设函数y=f(x)的反函数是y=g(x).假如f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否准确,试解释来由.剖析: 由题设前提可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜测g(a +b)=g(a)·g(b)准确.解:设f(a)=m,f(b)=n,因为g(x)是f(x)的反函数,∴g(m)=a,g (n)=b,从而,∴g(m)·g(n)=g(m +n),以a.b分离代替上式中的m.n即得g(a+b)=g(a)·g(b).4.三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7.己知函数f(x)的界说域关于原点对称,且知足以下三前提:①当是界说域中的数时,有;②f(a)=-1(a>0,a是界说域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇偶性若何?解释来由.(2)在(0,4a)上,f(x)的单调性若何?解释来由.剖析: 由题设知f(x)是的抽象函数,从而由及题设前提猜测:f(x)是奇函数且在(0,4a)上是增函数(这里把a算作进行猜测).解:(1)∵f(x)的界说域关于原点对称,且是界说域中的数时有,∴在界说域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)< f(x2),∴在(0,2a)上f(x)是增函数.又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数.综上所述,f(x)在(0,4a)上是增函数.5.幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8.已知函数f(x)对随意率性实数x.y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)断定f(x)的奇偶性;(2)断定f(x)在[0,+∞)上的单调性,并给出证实;(3)若,求a的取值规模.剖析:由题设可知f(x)是幂函数的抽象函数,从而可猜测f(x)是偶函数,且在[0,+∞)上是增函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为偶函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕有题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些表现函数特点的式子的一类函数.因为抽象函数表示情势的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数罕有题型及解法评析如下:一.界说域问题例1. 已知函数的界说域是[1,2],求f(x)的界说域.解:的界说域是[1,2],是指,所以中的知足从而函数f(x)的界说域是[1,4]评析:一般地,已知函数的界说域是A,求f(x)的界说域问题,相当于已知中x的取值规模为A,据此求的值域问题.例2. 已知函数的界说域是,求函数的界说域.解:的界说域是,意思是凡被f感化的对象都在中,由此可得所以函数的界说域是评析:这类问题的一般情势是:已知函数f(x)的界说域是A,求函数的界说域.准确懂得函数符号及其界说域的寄义是求解此类问题的症结.这类问题本质上相当于已知的值域B,且,据此求x的取值规模.例2和例1情势上正相反.二.求值问题例3. 已知界说域为的函数f(x),同时知足下列前提:①;②,求f(3),f(9)的值.解:取,得因为,所以又取得评析:经由过程不雅察已知与未知的接洽,奇妙地赋值,取,如许便把已知前提与欲求的f(3)沟通了起来.赋值法是解此类问题的经常运用技能.三.值域问题例4. 设函数f(x)界说于实数集上,对于随意率性实数x.y,总成立,且消失,使得,求函数的值域.解:令,得,即有或.若,则,对随意率性均成立,这与消失实数,使得成立抵触,故,必有.因为对随意率性均成立,是以,对随意率性,有下面来证实,对随意率性设消失,使得,则这与上面已证的抵触,是以,对随意率性所以评析:在处理抽象函数的问题时,往往须要对某些变量进行恰当的赋值,这是一般向特别转化的须要手腕.四.解析式问题例5. 设对知足的所有实数x,函数知足,求f(x)的解析式.解:在中以代换个中x,得:再在(1)中以代换x,得化简得:评析:假如把x和分离看作两个变量,如何实现由两个变量向一个变量的转化是解题症结.平日情形下,给某些变量恰当赋值,使之在关系中“消掉”,进而保存一个变量,是实现这种转化的重要计谋.五.单调性问题例6. 设f(x)界说于实数集上,当时,,且对于随意率性实数x.y,有,求证:在R上为增函数.证实:在中取,得若,令,则,与抵触所以,即有当时,;当时,而所以又当时,所以对随意率性,恒有设,则所以所以在R上为增函数.评析:一般地,抽象函数所知足的关系式,应看作给定的运算轨则,则变量的赋值或变量及数值的分化与组合都应尽量与已知式或所给关系式及所求的成果相接洽关系.六.奇偶性问题例7. 已知函数对随意率性不等于零的实数都有,试断定函数f(x)的奇偶性.解:取得:,所以又取得:,所以再取则,即因为为非零函数,所认为偶函数.七.对称性问题例8. 已知函数知足,求的值.解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.依据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x用代换,得评析:这是统一个函数图象关于点成中间对称问题,在解题中运用了下述命题:设a.b均为常数,函数对一切实数x都知足,则函数的图象关于点(a,b)成中间对称图形.八.收集分解问题例9. 界说在R上的函数f(x)知足:对随意率性实数m,n,总有,且当x>0时,0<f(x)<1.(1)断定f(x)的单调性;(2)设,,若,试肯定a的取值规模.解:(1)在中,令,得,因为,所以.在中,令因为当时,所以当时而所以又当x=0时,,所以,综上可知,对于随意率性,均有.设,则所以所以在R上为减函数.(2)因为函数y=f(x)在R上为减函数,所以即有又,依据函数的单调性,有由,所以直线与圆面无公共点.是以有,解得. 评析:(1)要评论辩论函数的单调性必定涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论.这是解题的症结性步调,完成这些要在抽象函数式中进行.由特别到一般的解题思惟,联想类比思维都有助于问题的思虑息争决.界说在R 上的函数f x ()知足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44故f x ()是周期为8的周期函数,例2 已知函数f x ()对随意率性实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由前提当x >0时,f x ()>0 又f x f x x x ()[()]2211=-+∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 求参数规模这类参数隐含在抽象函数给出的运算式中,症结是运用函数的奇偶性和它在界说域内的增减性,去掉落“f ”符号,转化为代数不等式组求解,但要特别留意函数界说域的感化.例3 已知f x ()是界说在(-11,)上的偶函数,且在(0,1)上为增函数,知足f a f a ()()---<2402,试肯定a 的取值规模.解: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立.(2)当32<<a 时, (3)当25<<a 时,综上所述,所求a 的取值规模是()()3225,, .例 4 已知f x ()是界说在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值规模. 解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对x R ∈恒成立⇔ 对x R ∈恒成立, 三. 解不等式这类不等式一般须要将常数暗示为函数在某点处的函数值,再经由过程函数的单调性去掉落函数符号“f ”,转化为代数不等式求解.例 5 已知函数f x ()对随意率性x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集. 解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->, 故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=是以不等式f a a ()2223--<的解集为{}a a |-<<13. 四. 证实某些问题例6 设f x ()界说在R 上且对随意率性的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期.剖析:这同样是没有给出函数表达式的抽象函数,其一般解法是依据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T.证实: f x f x f x ()()()()=+-+121()()12+得f x f x ()()()=-+33由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6.上式对随意率性x R ∈都成立,是以f x ()是周期函数,且周期为6.例7 已知f x ()对一切x y ,,知足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:(1)x >0时,01<<f x ();(2)f x ()在R 上为减函数. 证实: 对一切x y R ,∈有f x y f x f y ()()()+=⋅. 且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴<<01f x (),设x x R 12,∈且x x 12<, 则0121<-<f x x (),∴>f x f x ()()12,即f x ()为减函数. 五. 分解问题求解抽象函数的分解问题一般难度较大,常涉及到多个常识点,抽象思维程度请求较高,解题时需掌控好如下三点:一是留意函数界说域的运用,二是运用函数的奇偶性去掉落函数符号“f ”前的“负号”,三是运用函数单调性去掉落函数符号“f ”.例8 设函数y f x =()界说在R 上,当x >0时,f x ()>1,且对随意率性m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)证实f ()01=;(2)证实:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,知足的前提.解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00或f ()01=.若f ()00=,当m ≠0时,有fm fm f ()()()+=⋅00,这与当m n ≠时,f m f n ()()≠抵触, ∴=f ()01. (2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f fx f x ()()()011=⋅- (3)由f x f y f ()()()221⋅<得x y 2211+<()由f a x b y c ()++=1得a x b y c ++=0(2) 从(1).(2)中消去y 得()a b x a c x c b 2222220+++-<,因为AB =∅ ∴=-+-<∆()()()24022222a c ab cb , 即a b c222+< 例9 界说在(-11,)上的函数f x ()知足(1),对随意率性x y ,,∈-()11都有f x f y f x yx y()()()+=++1, (2)当x ∈-()10,时,有f x ()>0,(1)试断定f x ()的奇偶性;(2)断定f x ()的单调性;(3)求证ff f n nf ()()()()15111131122+++++>….剖析:这是一道以抽象函数为载体,研讨函数的单调性与奇偶性,再以这些性质为基本去研讨数列乞降的分解题.解:(1)对前提中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所所以f x ()奇函数. (2)设-<<<1012x x ,则fx fx fx f x f x x x x ()()()()()121212121-=+-=-- x x x x 1212001-<<<,, ∴--<x x x x 121210,由前提(2)知f x xx x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数性质可知,f x ()在(0,1)上仍是单调减函数.(3) f n n ()1312++抽象函数问题分类解析我们将没有明白给出解析式的函数称为抽象函数.近年来抽象函数问题一再消失于各类测验题中,因为这类问题抽象性强,灵巧性大,多半同窗觉得迷惑,求解无从下手.本文试图经由过程实例作分类解析,供进修参考. 1. 求界说域这类问题只要紧紧抓住:将函数f g x [()]中的g x ()看作一个整体,相当于f x ()中的x这一特点,问题就会水到渠成.例 1. 函数y f x =()的界说域为(]-∞,1,则函数y f x =-[l o g ()]222的界说域是___.剖析:因为l o g()22x 2-相当于f x ()中的x,所以l o g()2221x -≤,解得 22<≤x 或-≤<-22x .例 2. 已知f x ()的界说域为(0),1,则y f x a f x a a =++-≤()()(||)12的界说域是______.剖析:因为x a +及x a-均相当于f x ()中的x,所以(1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),1 2. 断定奇偶性依据已知前提,经由过程恰当的赋值代换,追求f x ()与f x ()-的关系. 例3. 已知f x ()的界说域为R,且对随意率性实数x,y 知足fx y fx f y ()()()=+,求证:f x ()是偶函数.剖析:在fx y fx f y ()()()=+中,令x y ==1, 得f f f f ()()()()11110=+⇒= 令x y ==-1,得f f f f ()()()()11110=-+-⇒-= 于是fx f x f f x f x ()()()()()-=-⋅=-+=11 故f x ()是偶函数.例4. 若函数y f xf x =≠()(())0与y f x =-()的图象关于原点对称,求证:函数 y f x =()是偶函数.证实:设y f x =()图象上随意率性一点为P (x y 00,)y f x =()与y f x=-()的图象关于原点对称, ∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上, 又y f x 00=() 即对于函数界说域上的随意率性x 都有f x f x ()()-=,所所以y f x =()偶函数.3. 断定单调性依据函数的奇偶性.单调性等有关性质,画出函数的示意图,以形助数,问题敏捷获解.例5. 假如奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5 剖析:画出知足题意的示意图1,易知选B.图1例6. 已知偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函数照样减函数,并证实你的结论.剖析:如图2所示,易知f x ()在()-∞,0上是增函数,证实如下: 任取xx x x 121200<<⇒->-> 因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是偶函数,所以 f x f xf x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数. 图24. 寻找周期性这类问题较抽象,一般解法是细心剖析题设前提,经由过程相似,联想出函数原型,经由过程对函数原型的剖析或赋值迭代,获得问题的解. 例7. 设函数f x ()的界说域为R,且对随意率性的x,y 有f x y f x y f x f y ()()()()++-=⋅2,并消失正实数c,使f c ()20=.试问f x ()是否为周期函数?若是,求出它的一个周期;若不是,请解释来由.剖析:细心不雅察剖析前提,联想三角公式,就会发明:y x =c o s 知足题设前提,且cos π20=,猜测f x ()是以2c 为周期的周期函数.故f x()是周期函数,2c是它的一个周期.5. 求函数值紧扣已知前提进行迭代变换,经有限次迭代可直接求出成果,或者在迭代进程中发明函数具有周期性,运用周期性使问题奇妙获解.例8. 已知f x()的界说域为R+,且fxy fx fy()()()+=+对一切正实数x,y都成立,若f()84=,则f(2)=_______.剖析:在前提fxy fx fy()()()+=+中,令x y==4,得f f f f()()()()844244=+==,又令x y==2,得f f f(4)(2)(2)=+=2,例9. 已知f x()是界说在R上的函数,且知足:f x f x f x()[()]()+-=+211,f()11997=,求f(2001)的值.剖析:紧扣已知前提,并多次运用,发明f x()是周期函数,显然f x()≠1,于是f x f x f x()() ()+=+ -211,所以f xf x f x()()()+=-+=81 4故f x()是以8为周期的周期函数,从而6. 比较函数值大小运用函数的奇偶性.对称性等性质将自变量转化到函数的单调区间内,然后运用其单调性使问题获解.例10. 已知函数f x()是界说域为R的偶函数,x<0时,f x()是增函数,若x 1<,x20>,且||||x x12<,则f x f x()()--12,的大小关系是_______.剖析: x x 1200<>,且||||x x 12<, 又x <0时,f x ()是增函数,f x ()是偶函数,故f x f x ()()->-127. 评论辩论方程根的问题例11. 已知函数f x ()对一切实数x 都知足f x f x ()()11+=-,并且f x ()=0有三个实根,则这三个实根之和是_______.剖析:由f x f x ()()11+=-知直线x =1是函数f x ()图象的对称轴. 又f x ()=0有三个实根,由对称性知x 11=必是方程的一个根,其余两根x x 23,关于直线x =1对称,所以x x 23212+=⨯=,故x x x 1233++=. 8. 评论辩论不等式的解求解这类问题运用函数的单调性进行转化,脱去函数符号.例12. 已知函数f x ()是界说在(]-∞,1上的减函数,且对一切实数x,不等式fk x fk x(s i n )(s i n)-≥-22恒成立,求k 的值. 剖析:由单调性,脱去函数记号,得由题意知(1)(2)两式对一切x R ∈恒成立,则有 9. 研讨函数的图象这类问题只要运用函数图象变换的有关结论,就可获解.例13. 若函数y f x =+()2是偶函数,则y f x =()的图象关于直线_______对称.剖析:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是偶函数,对称轴是x =0,故y f x =()的对称轴是x =2.例14. 若函数f x ()的图象过点(0,1),则f x ()+4的反函数的图象必过定点______.剖析:f x ()的图象过点(0,1),从而f x ()+4的图象过点()-41,,由原函数与其反函数图象间的关系易知,f x ()+4的反函数的图象必过定点()14,-. 10. 求解析式例15. 设函数f x ()消失反函数,g x f x h x ()()()=-1,与g x ()的图象关于直线x y +=0对称,则函数h x ()=A. -f x ()B. --f x ()C. --f x 1()D. ---f x 1()剖析:请求y h x =()的解析式,本质上就是求y h x =()图象上任一点Px y ()00,的横.纵坐标之间的关系.点Px y ()00,关于直线y x =-的对称点()--y x 00,合适y f x =-1(),即-=-x g y 00(). 又gx f x ()()=-1,即h x f x ()()=--,选B. 抽象函数的周期问题2001年高考数学(文科)第22题:设f x ()是界说在R 上的偶函数,其图象关于直线x =1对称.对随意率性x x 12012,,∈[]都有f xx f xf x ()()()1212+=⋅. (I )设f ()12=,求f f ()()1214,; (II )证实f x ()是周期函数. 解析:(I )解略.(II )证实:依题设y f x =()关于直线x =1对称 故f x f x x R ()()=-∈2, 又由f x ()是偶函数知 将上式中-x以x 代换,得 这标明f x ()是R 上的周期函数,且2是它的一个周期f x ()是偶函数的本质是f x ()的图象关于直线x =0对称 又f x ()的图象关于x =1对称,可得f x ()是周期函数 且2是它的一个周期由此进行一般化推广,我们得到思虑一:设f x ()是界说在R 上的偶函数,其图象关于直线x aa =≠()0对称,证实f x ()是周期函数,且2a 是它的一个周期.证实: f x ()关于直线x a=对称 又由f x ()是偶函数知f x f x x R ()()-=∈, 将上式中-x以x 代换,得 ∴f x ()是R 上的周期函数且2a 是它的一个周期思虑二:设f x ()是界说在R 上的函数,其图象关于直线x a =和x ba b =≠()对称.证实f x ()是周期函数,且2()b a -是它的一个周期. 证实: f x ()关于直线x a x b ==和对称 将上式的-x以x 代换得 ∴f x ()是R 上的周期函数且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,f x ()照样不是周期函数?经由摸索,我们得到思虑三:设f x ()是界说在R 上的奇函数,其图象关于直线x =1对称.证实f x ()是周期函数,且4是它的一个周期.,证实: f x ()关于x =1对称∴=-∈fx f x xR ()()2, 又由f x ()是奇函数知f x f x x R f x f x x R()()()()-=-∈∴-=--∈,,2将上式的-x以x 代换,得 ∴f x ()是R 上的周期函数 且4是它的一个周期f x ()是奇函数的本质是f x ()的图象关于原点(0,0)中间对称,又f x ()的图象关于直线x =1对称,可得f x ()是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思虑四:设f x ()是界说在R 上的函数,其图象关于点M a (),0中间对称,且其图象关于直线x bb a =≠()对称.证实f x ()是周期函数,且4()b a -是它的一个周期.证实: f x ()关于点M a (),0对称 ∴-=-∈f a x f x x R ()()2, f x ()关于直线x b =对称∴=-∈∴-=--∈f x f b x x Rf b x f a x x R()()()()222,,将上式中的-x以x 代换,得 f b x f a x x Rf x b a f b x b a f a x b a f b x a f a x a f x x R()()[()][()][()][()][()]()2242242242222+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数 且4()b a -是它的一个周期由上我们发明,界说在R 上的函数f x (),其图象如有两条对称轴或一个对称中间和一条对称轴,则f x ()是R 上的周期函数.进一步我们想到,界说在R 上的函数f x (),其图象假如有两个对称中间,那么f x ()是否为周期函数呢?经由摸索,我们得到思虑五:设f x ()是界说在R 上的函数,其图象关于点M a (),0和N b a b ()(),0≠对称.证实f x ()是周期函数,且2()b a -是它的一个周期.证实: f x ()关于Ma Nb ()(),,,00对称 ∴-=-∈-=-∈∴-=-∈f a x f x x R f b x f x x R f a x f b x x R()()()()()()2222,,,将上式中的-x 以x 代换,得f a x f b x x Rf x b a f b x a f a x a f x x R()()[()][()][()]()2222222+=+∈∴+-=+-=+-=∈,,∴f x ()是周期函数且2()b a -是它的一个周期抽象函数解法规谈抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其知足的前提的函数,如函数的界说域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高级数学函数部分的一个连接点,因为抽象函数没有具体的解析表达式作为载体,是以懂得研讨起来比较艰苦.但因为此类试题即能考核函数的概念和性质,又能考核学生的思维才能,所以备受命题者的青睐,那么,如何求解抽象函数问题呢,我们可以运用特别模子法,函数性质法,特别化办法,联想类比转化法,等多种办法从多角度,多层面去剖析研讨抽象函数问题, 一:函数性质法函数的特点是经由过程其性质(如奇偶性,单调性周期性,特别点等)反响出来的,抽象函数也是如斯,只有充分发掘和运用题设前提和隐含的性质,灵巧进行等价转化,抽象函数问题才干转化,化难为易,经常运用的解题办法有:1,运用奇偶性整体思虑;2,运用单调性等价转化;3,运用周期性回归已知4;运用对称性数形联合;5,借助特别点,布列方程等. 二:特别化办法1在求解函数解析式或研讨函数性质时,一般用代换的办法,将x 换成-x 或将x 换成等 2在求函数值时,可用特别值代入3研讨抽象函数的具体模子,器具体模子解选择题,填空题,或由具体模子函数对分解题,的解答供给思绪和办法.总之,抽象函数问题求解,用通例办法一般很难凑效,但我们假如能经由过程对标题标信息剖析与研讨,采取特别的办法和手腕求解,往往会收到事半功倍之功能,真有些山穷水复疑无路,柳暗花明又一村的快感. 1. 已知函数f(x)对随意率性x.y ∈R 都有f(x+y)=f(x)+ f(y)+3xy(x+y+2)+3,且f(1)=1 ①若t 为天然数,(t>0)试求f(t)的表达式②知足f(t)=t 的所有整数t 可否组成等差数列?若能求出此数列,若不克不及解释来由 ③若t 为天然数且t≥4时, f(t) ≥mt2+(4m+1)t+3m,恒成立,求m 的最大值. 2. 已知函数f(x)=1)(1)(+-x g x g ,且f(x),g(x)界说域都是R,且g(x)>0, g(1) =2,g(x) 是增函数. g(m) · g(n)=g(m+n)(m.n ∈R)求证:①f(x)是R 上的增函数②当n ∈N,n≥3时,f(n)>1+n n 解: ①设x1>x2g(x)是R 上的增函数, 且g(x)>0 ∴ g(x1) > g(x2) >0 ∴g(x1)+1 > g(x2)+1 >0∴1)(22+x g >1)(21+x g >0∴1)(22+x g -1)(21+x g >0∴f(x1)- f(x2)=1)(1)(11+-x g x g - 1)(1)(22+-x g x g =1-1)(21+x g -(1-1)(22+x g )=1)(22+x g -1)(21+x g >0∴ f(x1) >f(x2)∴ f(x)是R 上的增函数②g(x) 知足g(m) · g(n)= g(m+n)(m.n ∈R) 且g(x)>0 ∴ g(n)=[ g(1)]n=2n 当n ∈N,n≥3时, 2n>n ∴f(n)=1212+-n n=1-122+n ,1+n n =1-11+n2n =(1+1)n =1+n+…+i nC +…+n+1>2n+1 ∴ 2n+1>2n+2∴122+n<11+n ,即1-122+n>1-11+n∴当n ∈N,n≥3时,f(n)>1+n n3. 设f1(x) f2(x)是(0,+∞)上的函数,且f1(x)单增,设f(x)= f1(x) +f2(x) ,且对于(0,+∞)上的随意率性两相异实数x1, x2 恒有| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|①求证:f (x)在(0,+∞)上单增. ②设F(x)=x f (x), a>0.b>0. 求证:F(a+b)> F(a)+F(b) . ①证实:设 x1>x2>0f1(x) 在(0,+∞)上单增f1(x1)- f1(x2)>0∴| f1(x1)- f1(x2)|= f1(x1)- f1(x2)>0| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|∴f1(x2)- f1(x1)<f2(x1)- f2(x2)< f1(x1)- f1(x2) ∴f1(x1)+f2(x1)> f1(x2)+ f2(x2) ∴f(x1)> f(x2)f (x)在(0,+∞)上单增 ②F(x)=x f (x), a>0.b>0a+b>a>0,a+b>b>0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)在(0,+∞)上单增∴F(a+b)>af(a)+bf(b)= F(a)+F(b)4. 函数y =f(x)知足 ①f(a+b)=f (a)·f (b),②f(4)=16, m.n 为互质整数,n≠0 求f(nm)的值 f(0) =f(0+0)=f(0) ·f(0)=f2(0)∴f(0) =0或1.若f(0)=0则f(4)=16=f(0+4)=f(0) ·f(4)=0.(抵触)∴f(1)=1f(4)=f(2) ·f(2)=f(1) ·f(1) ·f(1) ·f(1)=16f(1)=f2(21)≥0 ∴f(1)=2.仿此可证得f(a)≥0.即y=f(x)长短负函数.f(0)=f(a+(-a))=f(a) ·f(-a)∴f(-a)=)(1a f n ∈N*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(n 1+n 1+…+n 1)=fn(n1)=2 ∴f(n 1)= n12∴f(nm )=[f(n1)]m= nm 25. 界说在(-1,1)上的函数f (x)知足 ① 随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),②x ∈(-1,0)时, 有f(x) >01) 剖断f(x)在(-1,1)上的奇偶性,并解释来由 2) 剖断f(x)在(-1,0)上的单调性,并给出证实3) 求证:f (1312++n n )=f (11+n )-f (21+n )或f (51)+f (111)+…+f (1312++n n )> f (21) (n ∈N*) 解:1)界说在(-1,1)上的函数f (x)知足随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),则当y=0时, f(x)+ f(0)=f(x) ∴f(0)=0当-x=y 时, f(x)+ f(-x)=f(0)∴f(x)是(-1,1)上的奇函数2) 设0>x1>x2>-1f(x1)-f(x2)= f(x1)+ f(-x2)=)1(2121x x xx f --0>x1>x2>-1 ,x ∈(-1,0)时,有f(x) >0,1-x1 x2>0, x1-x2>0∴)1(2121x x xx f -->0即f(x)在(-1,0)上单调递增.3)f (1312++n n )=f(12312-++n n ) =f()2)(1(11)2)(1(1++-++n n n n )=f(211112111+•+-+-+n n n n )=f(11+n )-f(21+n ) ∴f (51)+f (111)+…+f (1312++n n ) =f(21)-f(31)+f(31)-f(41)+f(41)+…+f(11+n )-f(21+n )= f(21) -f(21+n )=f(21)+f(-21+n )x ∈(-1,0)时,有f(x) >0∴f(-21+n )>0, f(21)+f(-21+n )>f(21)即f (51)+f (111)+…+f (1312++n n )> f (21)6. 设 f (x)是界说在R 上的偶函数,其图像关于直线x=1对称, 对随意率性x1.x2∈[0,12]都有f (x1+ x2)=f(x1) ·f(x2), 且f(1)=a>0. ①求f (12)及 f (14);②证实f(x)是周期函数③记an=f(2n+12n ), 求lim ∞→n (lnan)解: ①由f (x)= f (x 2 + x2)=[f(x)]2≥0,f(x)a= f(1)=f(2n·12n )=f(12n +12n +…+12n )=[f (12n )]2解得f (12n)=n a 21∴ f (12)=21a,f (14)=41a . ②f(x)是偶函数,其图像关于直线x=1对称, ∴f(x)=f(-x),f(1+x)=f(1-x).∴f(x+2)=f[1+(1+x)]= f[1-(1+x)]= f(x)=f(-x). ∴f(x)是以2为周期的周期函数.③an=f(2n+12n )= f (12n)=n a 21∴lim ∞→n (lnan)= lim ∞→n aa 2ln =07. 设)(x f y =是界说在R 上的恒不为零的函数,且对随意率性x.y ∈R 都有f(x+y)=f(x)f(y)①求f(0),②设当x<0时,都有f(x)>f(0)证实当x>0时0<f(x)<1, ③设a1=21,an=f(n)(n ∈N* ),sn 为数列{an }前n 项和,求lim ∞→n sn.解:①②仿前几例,略. ③an =f(n),∴ a1=f(1)=21an+1=f(n+1)=f(n)f(1)=21an∴数列{an }是首项为21公比为21的等比数列∴sn =1-n⎪⎭⎫ ⎝⎛21∴lim ∞→n sn =18. 设)(x f y =是界说在区间]1,1[-上的函数,且知足前提: (i );0)1()1(==-f f(ii )对随意率性的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证实:对随意率性的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)证实:对随意率性的;1|)()(|],1,1[,≤--∈v f u f v u 都有 (Ⅲ)在区间[-1,1]上是否消失知足题设前提的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当 若消失,请举一例:若不消失,请解释来由.(Ⅰ)证实:由题设前提可知,当]1,1[-∈x 时,有,1|1|)1()(|)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)证法一:对随意率性的 1.|v -u ||f(v)-f(u)|,1||],1,1[,≤≤≤--∈有时当v u v u当0,u ,1|v -u |<⋅>v 时无妨设,0<u 则1,u -0>>v v 且 所以,|1||1||)1()(||)1()(||)()(|-++≤-+--≤-v u f v f f u f v f u f.1)(211<--=-++=u v v u 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f证法二:由(Ⅰ)可得,当.||11)1()(||)(|,]0,1[x,-1f(x),]1,0[x x f x f x f x x -=+≤--=-∈≤∈时时 所以,当.||1)(|,]1,1[x x f x -≤-∈时是以,对随意率性的],1,1[,-∈v u当1||≤-v u 时,.1|||)()(|≤-≤-v u v f u f 当1||>-v u 时,有0<⋅v u 且.2||||||1≤+=-<v u v u所以.1)||(|2||1||1|)(||)(||)()(|≤+-=-+-≤+≤-v u v u v f u f v f u f 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f(Ⅲ)答:知足所述前提的函数不消失.来由如下,假设消失函数)(x f 知足前提,则由],1,21[,|,||)()(|∈-=-v u v u v f u f得.21|121||)1()21(|=-=-f f 又,0)1(=f 所以.21|)21(|=f ①。

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答)-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f 取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x 0)()()(1212<-=-+∴x x f x f x f),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f 而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f 6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x 当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x a x x 当20<<a 时,}12|{<>∈x ax x x 或当a>2时,}12|{><∈x a x x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xy y x ++1)⑴证明:f (x )在(-1,1)⑵对数列x 1=21,x n +1=212nn x x +,求f (x n );⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x ) ∴f (x )为奇函数(Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212nn x x +)=f (nnn nxx xx ⋅++1)=f (x n )+f (x n )=2f (x n )∴)()(1nn x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1(Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数Nx f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12. 证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数.(2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥∙∙∙ ∴f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证 (3)(3)由任意,m n N ∈,有1)())((+=+n f m f n f得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=nn n ni i f6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-.(I)求(0)f 的值;(II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为nS ,且满足*12(3),n nS a n N =--∈.求证:123112332()()()()2nn f a f a f a f a n -⨯++++≤+-.解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max()(1)3f x f ∴== (III)*12(3)()nn S a n N =--∈1112(3)(2)n n S a n --∴=--≥1111133(2),10n nn na a n a a --∴=≥=≠∴=111112113333333()()()()()23()4n n n n n n nn f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即11433())(n nf a f a +≤+。

抽象函数练习题高三复习

抽象函数练习题高三复习

抽象函数练习题高三复习抽象函数是高中数学中的一个重要概念,对于高三学生来说,熟练掌握抽象函数的相关知识是非常关键的。

本文将为大家介绍一些抽象函数的练习题,帮助大家巩固复习,提高解题能力。

题目1:已知函数$f(x)=x^2-2x+1$,求$f(x+1)$的解析式。

解析:首先,将$x+1$代入函数$f(x)$的解析式中,即可求得$f(x+1)$的解析式。

将$x+1$代入$f(x)$中的$x$,得到:$f(x+1)=(x+1)^2-2(x+1)+1$展开括号并化简,得到:$f(x+1)=x^2+2x+1-2x-2+1$合并同类项,得到最终的解析式:$f(x+1)=x^2+1$题目2:已知函数$g(x)=3x-2$,求$g(2x+1)$的解析式。

解析:类似地,将$2x+1$代入函数$g(x)$的解析式中,即可求得$g(2x+1)$的解析式。

将$2x+1$代入$g(x)$中的$x$,得到:$g(2x+1)=3(2x+1)-2$展开并化简,得到:$g(2x+1)=6x+3-2$合并同类项,得到最终的解析式:$g(2x+1)=6x+1$通过这两道题的练习,我们可以加深对于抽象函数的理解。

在解题过程中,将给定的表达式代入函数的解析式中,根据运算规则进行化简求解,最终得到新的解析式。

题目3:已知函数$h(x)=\frac{1}{x}$,求$h\left(\frac{1}{x}\right)$的解析式。

解析:将$\frac{1}{x}$代入函数$h(x)$的解析式中,即可求得$h\left(\frac{1}{x}\right)$的解析式。

将$\frac{1}{x}$代入$h(x)$中的$x$,得到:$h\left(\frac{1}{x}\right)=\frac{1}{\frac{1}{x}}$将分子分母取倒数,得到最终的解析式:$h\left(\frac{1}{x}\right)=x$在这道题中,我们使用了取倒数的运算规则,将原函数中的$x$的倒数代入得到新的解析式。

抽象函数题型全归纳及答案

抽象函数题型全归纳及答案

抽象函数题型全归纳及答案抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数常见题型及解法评析如下:一、定义域问题(一)已知的定义域,求的定义域,解法:若的定义域为,则中,从中解得的取值范围即为的定义域.例题1:设函数的定义域为,则(1)函数的定义域为______;(2)函数的定义域为_______解析:(1)由已知有,解得,故的定义域为(2)由已知,得,解得,故的定义域为(二)已知的定义域,求的定义域.解法:若的定义域为,则由确定的范围即为的定义域.例题2:函数的定义域为,则的定义域为_____. 解析:由,得,所以,故填(三)已知的定义域,求的定义域.解法:先由定义域求定义域,再由定义域求得定义域. 例题3:函数定义域是,则的定义域是_______ 解析:先求的定义域,的定义域是,,即的定义域是再求的定义域,,的定义域是(四)运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集.例题4: 函数的定义域是,求的定义域.解析:由已知,有,即函数的定义域由确定函数的定义域是【巩固1】 已知函数的定义域是[1,2],求f (x )的定义域.解析:的定义域是[1,2],是指,所以中的满足从而函数f (x )的定义域是[1,4] 【巩固2】 已知函数的定义域是,求函数的定义域. 解析:的定义域是,意思是凡被f 作用的对象都在中,由此可得所以函数的定义域是【巩固3】f x ()定义域为(0),1,则y f x a f x a a =++-≤()()(||)12定义域是__.解析:因为x a +及x a -均相当于f x ()中的x ,所以010111<+<<-<⎧⎨⎩⇒-<<-<<+⎧⎨⎩x a x a a x aa x a (1)当-≤≤120a 时,则x a a ∈-+(),1; (2)当012<≤a 时,则x a a ∈-(),1 二、解析式问题1. 换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力.例题5: 已知 ()211xf x x =++,求()f x . 解析:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=-2. 凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法.例题6: 已知3311()f x x xx +=+,求()f x 解析:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥,∴23()(3)3f x x x x x =-=-,(|x |≥1) 3. 待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数.例题7: 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解析:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++4. 利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例题8: 已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解析:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例题9: ()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解析:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5. 赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式 例题10:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解析:∵()f x 的定义域为N ,取y =1,则有(1)()1f x f x x +=++ ∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈【巩固4】 设函数f x ()存在反函数,g x fx h x ()()()=-1,与g x ()的图象关于直线x y +=0对称,则函数h x ()=A. -f x ()B. --f x ()C. --fx 1() D. ---fx 1()解析:要求y h x =()的解析式,实质上就是求y h x =()图象上任一点P x y ()00,的横、纵坐标之间的关系. 点P x y ()00,关于直线y x =-的对称点()--y x 00,适合y f x =-1(),即-=-x g y 00().又g x fx ()()=-1,∴-=-⇒-=-⇒=---x fy y f x y f x 0100000()()(),即h x f x ()()=--,选B.【巩固5】 设对满足的所有实数x ,函数满足,求f(x)的解析式.解析:在中以代换其中x ,得:再在(1)中以代换x ,得化简得:评析:如果把x 和分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键.通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略.三、求值问题这类抽象函数一般给出定义域,某些性质及运算式而求特殊值.其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化.或紧扣已知条件进行迭代变换,经有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解.例题11: 已知定义域为的函数f(x),同时满足下列条件:①;②,求f (3),f (9)的值. 解析:取,得因为,所以又取,得例题12:定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解析:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=,又由f x f x ()[()]+=--44()()(8)(4)()f x f x f x f x f x =-=-∴+=-+=,f x ()是周期为8的周期函数, ∴==f f ()()200000【巩固6】 已知f x ()的定义域为R +,且f x y f x f y ()()()+=+对一切正实数x ,y 都成立,若f ()84=,则f (2)=_______.解析:在条件f x y f x f y ()()()+=+中,令x y ==4,得f f f f ()()()()844244=+==,∴=f ()42又令x y ==2,得f f f (4)(2)(2)=+=2,∴=f (2)1【巩固7】 已知f x ()是定义在R 上的函数,且满足:f x f x f x ()[()]()+-=+211,f ()11997=,求f (2001)的值.解析:紧扣已知条件,并多次使用,发现f x ()是周期函数,显然f x ()≠1,于是f x f x f x ()()()+=+-211,f x f x f x f x f x f x f x f x ()()()()()()()()+=++-+=++--+-=-412121111111所以f x f x f x ()()()+=-+=814,故f x ()是以8为周期的周期函数,从而f f f (2001)()()=⨯+==8250111997 四、值域问题例题13: 设函数f(x)定义于实数集上,对于任意实数x 、y ,总成立,且存在,使得,求函数的值域.解析:令,得,即有或.若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有.由于对任意均成立,因此,对任意,有下面来证明,对任意设存在,使得,则这与上面已证的矛盾,因此,对任意所以评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段.【巩固8】 已知函数f x ()对任意实数x y ,有f x y f x f y ()()()+=+,且当x >0时f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解析:设x x 12<,且x x R 12,∈,则x x 210->,由条件当x >0时,f x ()>0 ,∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111,∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+-又令x y ==0 ,得f ()00= ,∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,五、求参数范围或解不等式这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用.例题14:已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围.解析: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a .(1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立. (2)当32<<a 时,2222120(2)(4)(4)140224a f a f a f a a a a a -<-<⎧⎪-<-=-⇔-<-<⇒<<⎨⎪->-⎩(3)当25<<a 时,2(2)(4)f a f a -<-222021(4)041224a f a a a a a <-<⎧⎪=-⇔<-<⇒<<⎨⎪-<-⎩综上所述,所求a 的取值范围是()()3225,, . 例题15:f x ()是定义在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值范围.解析:: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos对x R ∈恒成立⇔m x m m x x x 2222311254-≤--≥+=--+⎧⎨⎪⎩⎪sin sin cos (sin ) 对x R ∈恒成立,223115214m m m m ⎧-≤-⎪∴≤≤⎨--≥⎪⎩, 【巩固9】 已知函数f x ()是定义在(]-∞,1上的减函数,且对一切实数x ,不等式f k x f k x (sin )(sin )-≥-22恒成立,求k 的值.解析:由单调性,脱去函数记号,得k x k x k xk x k k x 222222221111412-≤-≤-⎧⎨⎪⎩⎪⇔≤+-+≥-⎧⎨⎪⎩⎪sin sin sin sin ()(sin )(2)由题意知(1)(2)两式对一切x R ∈恒成立,则有k x k k x k 2222111412941≤+=-+≥-=⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⇒=-(sin )(sin )min max【巩固10】 已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集.解析:设x x R 12、∈且x x 12<,则x x 210->,∴->f x x ()212,即f x x ()2120-->2211211121()[()]()()2()()()f x f x x x f x x f x f x f x f x ∴=-+=-+->∴>,故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=,22(1)3(22)3(1)22113f f a a f a a a ∴=∴--<=--<∴-<<,,,即因此不等式f a a ()2223--<的解集为{}a a |-<<13.六、单调性问题例题16: 设f(x)定义于实数集上,当时,,且对于任意实数x 、y ,有,求证:在R 上为增函数.证明:在中取,得若,令,则,与矛盾所以,即有当时,;当时,而,所以又当时,,所以对任意,恒有设,则∴,∴在R 上为增函数例题17:已知偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函是减函数,并证明你的结论.证明:如图所示,易知f x ()在()-∞,0上是增函数,证明如下:任取x x x x 121200<<⇒->->因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是偶函数,所以f x f x f x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数.【巩固11】 如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5解析:画出满足题意的示意图1,易知选B.七、 奇偶性问题例题18: 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性. 解析:取得:,所以 又取得:,所以 再取则,即 因为为非零函数,所以为偶函数. 【巩固12】 若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,求证:函数y f x =()是偶函数.证明:设y f x =()图象上任意一点为P (x y 00,)y f x =()与y f x =-()的图象关于原点对称,∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上,0000()()y f x y f x ∴-=--∴=-,又y f x 00=(),∴-=f x f x ()()00即对于函数定义域上的任意x 都有f x f x ()()-=,所以y f x =()是偶函数.八、 周期性问题几种特殊的抽象函数:具有周期性的抽象函数:函数满足对定义域内任一实数(其中为常数),1. ,则是以为周期的周期函数;2. ,则是以为周期的周期函数;()y f x =x a ()()f x f x a =+()y f x =T a =()()f x a f x +=-()x f 2T a =3. ,则是以为周期的周期函数;4. ,则是以为周期的周期函数;5. ,则是以为周期的周期函数.6. ,则是以为周期的周期函数.7. ,则是以为周期的周期函数.8. 函数满足(),若为奇函数,则其周期为,若为偶函数,则其周期为.9.函数的图象关于直线和都对称,则函数是以为周期的周期函数;10.函数的图象关于两点、都对称,则函数是以为周期的周期函数;11.函数的图象关于和直线都对称,则函数是以为周期的周期函数;例题19: 设f x ()定义在R 上且对任意的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期.解析:这同样是没有给出函数表达式的抽象函数,其一般解法是根据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T.证明: f x f x f x ()()()()=+-+121∴+=+-+f x f x f x ()()()()1232()()12+得f x f x ()()()=-+33()()1f x a f x +=±()x f 2T a =()()f x a f x a +=-()x f 2T a =1()()1()f x f x a f x -+=+()x f 2T a =1()()1()f x f x a f x -+=-+()x f 4T a =1()()1()f x f x a f x ++=-()x f 4T a =()y f x =()()f a x f a x +=-0a >()f x 4T a =()f x 2T a =()y f x =()x R ∈x a =x b =()a b <()f x ()2b a -()y f x =()x R ∈()0,A a y ()0,B b y ()a b <()f x ()2b a -()y f x =()x R ∈()0,A a y x b =()a b <()f x ()4b a -由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6.上式对任意x R ∈都成立,因此f x ()是周期函数,且周期为6.例题20: 设函数f x ()的定义域为R ,且对任意的x ,y 有f x y f x y f x f y ()()()()++-=⋅2,并存在正实数c ,使f c ()20=.试问f x ()是否为周期函数?若是,求出它的一个周期;若不是,请说明理由.解析:仔细观察分析条件,联想三角公式,就会发现:y x =cos 满足题设条件,且cosπ20=,猜测f x ()是以2c 为周期的周期函数. f x c c f x c c f x c f c f x c f x f x c f x c f x [()][()]()()()()()()()++++-=+=∴+=-∴+=-+=222222202故f x ()是周期函数,2c 是它的一个周期.【巩固13】 设f x ()是定义在R 上的偶函数,其图象关于直线x =1对称.对任意x x 12012,,∈[]都有f x x f x f x ()()()1212+=⋅.证明f (x )是周期函数. 证明:依题设y f x =()关于直线x =1对称,故f x f x x R ()()=-∈2,又由f x ()是偶函数知f x f x x R ()()-=∈,∴-=-∈f x f x x R ()()2,,将上式中-x 以x 代换,得f x f x x R ()()=+∈2,这表明f x ()是R 上的周期函数,且2是它的一个周期f x ()是偶函数的实质是f x ()的图象关于直线x =0对称又f x ()的图象关于x =1对称,可得f x ()是周期函数,且2是它的一个周期由此进行一般化推广,我们得到思考一:设f x ()是定义在R 上的偶函数,其图象关于直线x a a =≠()0对称,证明f x ()是周期函数,且2a 是它的一个周期.证明: f x ()关于直线x a =对称.∴=-∈f x f a x x R ()()2,又由f x ()是偶函数知f x f x x R ()()-=∈,,∴-=-∈f x f a x x R ()()2,将上式中-x 以x 代换,得f x f a x x R ()()=+∈2,∴f x ()是R 上的周期函数,且2a 是它的一个周期思考二:设f x ()是定义在R 上的函数,其图象关于直线x a =和x b a b =≠()对称.证明f x ()是周期函数,且2()b a -是它的一个周期.证明: f x ()关于直线x a x b ==和对称()(2)()(2)(2)(2)f x f a x x R f x f b x x R f a x f b x x R ∴=-∈=-∈∴-=-∈,,,,,将上式的-x 以x 代换得f a x f b x x R ()()22+=+∈,∴+-=-+=-+=∈f x b a f x a b f x a a f x x R [()][()][()]()22222,∴f x ()是R 上的周期函数,且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,f x ()还是不是周期函数?我们得到思考三:设f x ()是定义在R 上的奇函数,其图象关于直线x =1对称.证明f x ()是周期函数,且4是它的一个周期.,证明: f x ()关于x =1对称,∴=-∈f x f x x R ()()2,又由f x ()是奇函数知()()(2)()f x f x x R f x f x x R -=-∈∴-=--∈,,,将上式的-x 以x 代换,得(2)()f x f x x R +=-∈,(4)[2(2)](2)[()]()f x f x f x f x f x x R ∴+=++=-+=--=∈,∴f x ()是R 上的周期函数,且4是它的一个周期f x ()是奇函数的实质是f x ()的图象关于原点(0,0)中心对称,又f x ()的图象关于直线x =1对称,可得f x ()是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思考四:设f x ()是定义在R 上的函数,其图象关于点M a (),0中心对称,且其图象关于直线x b b a =≠()对称.证明f x ()是周期函数,且4()b a -是它的一个周期.证明: f x ()关于点M a (),0对称,∴-=-∈f a x f x x R ()()2,f x ()关于直线x b =对称,()(2)(2)(2)f x f b x x R f b x f a x x R ∴=-∈∴-=--∈,,,将上式中的-x 以x 代换,得(2)(2)[4()][2(24)][2(24)][2(2)][2(2)]()f b x f a x x Rf x b a f b x b a f a x b a f b x a f a x a f x x R+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数,且4()b a -是它的一个周期由上我们发现,定义在R 上的函数f x (),其图象若有两条对称轴或一个对称中心和一条对称轴,则f x ()是R 上的周期函数.进一步我们想到,定义在R 上的函数f x (),其图象如果有两个对称中心,那么f x ()是否为周期函数呢?经过探索,我们得到思考五:设f x ()是定义在R 上的函数,其图象关于点M a (),0和N b a b ()(),0≠对称.证明f x ()是周期函数,且2()b a -是它的一个周期.证明: f x ()关于M a N b ()(),,,00对称(2)()(2)()(2)(2)f a x f x x R f b x f x x R f a x f b x x R∴-=-∈-=-∈∴-=-∈,,,, 将上式中的-x 以x 代换,得(2)(2)[2()][2(2)][2(2)]()f a x f b x x R f x b a f b x a f a x a f x x R+=+∈∴+-=+-=+-=∈,, ∴f x ()是周期函数,且2()b a -是它的一个周期九、 对称性问题(1)对称性的概念及常见函数的对称性1、对称性的概念①轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心.2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数;⑨正弦型函数既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数;⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异.⒁绝对值函数:这里主要说的是和两类.前者显然是偶函数,它会关于轴对称;后者是把轴下方的图像对称到轴的上方,是否仍然具备对称性,这也没有一定的结论,例如就没有对称性,而却仍然是轴对称. ⒂形如的图像是双曲线,其两渐近线分别直线 (由分母为零确定)和直线(由分子、分母中的系数确定),对称中心是点.(2)抽像函数的对称性1、函数图像本身的对称性(自对称问题)(1)轴对称①的图像关于直线对称② 的图像关于直线对称. 特别地,函数的图像关于轴对称的充要条件是.sin()y A x ωϕ=+(||)y f x =|()|y f x =y x x |ln |y x =|sin |y x =(0,)ax b y c ad bc cx d+=≠≠+d x c =-a y c =x (,)d a c c-)(x f y =)(x f y =a x =⇔)()(x a f x a f -=+⇔)2()(x a f x f -=⇔)2()(x a f x f +=-)()(x b f x a f -=+⇔)(x f y =22)()(b a x b x a x +=-++=)(x f y =y ()()f x f x =-(2)中心对称①的图像关于点对称.② 的图像关于点对称. 特别地,函数的图像关于原点对称的充要条件是.(3)对称性与周期性之间的联系①若函数既关于直线对称,又关于直线对称,则函数关于无数条直线对称,相邻对称轴的距离为;且函数为周期函数,周期;特别地:若是偶函数,图像又关于直线对称,则是周期为的周期函数;②若函数既关于点对称,又关于点对称,则函数关于无数个点对称,相邻对称中心的距离为;且函数为周期函数,周期; ③若函数既关于直线对称,又关于点对称,则函数关于无数个点和直线对称,相邻对称轴和中心的距离为,相邻对称轴或中心的距离为;且函数为周期函数,周期.特别地:若是奇函数,图像又关于直线对称,则是周期为的周期函数.2、两个函数图像的对称性(互对称问题)(1)函数与图像关于直线对称.(2)函数与图像关于直线对称)(x f y =),(b a ⇔b x a f x a f 2)()(=-++⇔b x a f x f 2)2()(=-+⇔b x a f x f 2)2()(=++-c x b f x a f 2)()(=-++⇔)(x f y =),2(c b a +)(x f y =(0,0)()()0f x f x +-=()f x x a =x b =()a b ≠()f x b a -()f x 2T b a =-)(x f y =x a =()f x 2a ()f x (,0)a (,0)b ()a b ≠()f x b a -()f x 2T b a =-()f x x a =(,0)b ()a b ≠()f x b a -2b a -()f x 4T b a =-)(x f y =x a =()f x a 4)(x a f y +=)(x a f y -=0=x )(x f y =)2(x a f y -=a x =(3)函数与图像关于直线对称(4)函数与图像关于直线对称即直线对称(5)函数与图像关于轴对称. (6)函数与图像关于轴对称.(7)函数与图像关于直线成轴对称.(8)函数与图像关于直线成轴对称.(9)函数与的图像关于直线对称.(10)函数与的图像关于直线对称.(11)函数有反函数,则和的图像关于直线对称.(12)函数与的图像关于点成中心对称.特别地,函数与图像关于原点对称.例题21: 函数满足,求值. 解析:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.根据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x 用代换,得评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a 、b 均为常数,函数对一切实数x 都满足,则函数的图象关于点(a ,b )成中心对称图形.十、 综合问题1) 比较函数值大小利用函数的奇偶性、对称性等性质将自变量转化到函数的单调区间内,然后利用其单调性使问题获解.)(x f y -=)2(x a f y +=a x -=)(x a f y +=)(x b f y -=0)()(=--+x b x a 2a b x -=)(x f y =)(x f y -=x )(x f y =)(x f y -=y )(x f y =()a x f a y -=-x y a +=)(x f y =()x a f y a -=+x y a -=()y f x =()1y f x -=y x =()y f x =()1y f x -=--y x =-()y f x =()y f a x =+()1y f a x -=+y x a =+)(x f y =)2(2x a f b y --=),(b a )(x f y =)(x f y --=例题22: 已知函数f x ()是定义域为R 的偶函数,x <0时,f x ()是增函数,若x 10<,x 20>,且||||x x 12<,则f x f x ()()--12,的大小关系是_______.解析: x x 1200<>,且||||x x 12<,∴<-<⇒-<<001221x x x x又x <0时,f x ()是增函数,∴-<f x f x ()()21f x ()是偶函数,∴-=f x f x ()()11,故f x f x ()()->-122) 讨论方程根的问题例题23: 已知函数f x ()对一切实数x 都满足f x f x ()()11+=-,并且f x ()=0有三个实根,则这三个实根之和是_______.分析:由f x f x ()()11+=-知直线x =1是函数f x ()图象的对称轴.又f x ()=0有三个实根,由对称性知x 11=必是方程的一个根,其余两根x x 23,关于直线x =1对称,所以x x 23212+=⨯=,故x x x 1233++=.3) 研究函数的图象这类问题只要利用函数图象变换的有关结论,就可获解.例题24: 若函数y f x =+()2是偶函数,则y f x =()的图象关于直线_______对称解析:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是偶函数,对称轴是x =0,故y f x =()的对称轴是x =2.例题25: 若函数f x ()的图象过点(0,1),则f x ()+4的反函数图象必过定点__ 解析:f x ()的图象过点(0,1),从而f x ()+4的图象过点()-41,,由原函数与其反函数图象间的关系易知,f x ()+4的反函数的图象必过定点()14,-.【巩固14】 定义在R 上的函数f(x)满足:对任意实数m ,n ,总有,且当x >0时,0<f (x )<1.(1)判断f (x )的单调性;(2)设, ,若,试确定a 的取值范围. 解析:(1)在中,令,得,因为,所以.在中,令因为当时,,所以当时 而,所以又当x =0时,,所以,综上可知,对于任意,均有. 设,则 所以,∴在R 上为减函数.(2)由于函数y =f (x )在R 上为减函数,所以即有,又,由单调性,有由,所以直线与圆面无公共点. 因此有,解得. 【巩固15】 设函数y f x =()定义在R 上,当x >0时,f x ()>1,且对任意m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)证明f ()01=;(2)证明:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,满足的条件.解析:(1)令m n ==0得f f f ()()()000=⋅,∴=f ()00或f ()01=.若f ()00=,当m ≠0时,有f m f m f ()()()+=⋅00,与当m n ≠时,f m f n ()()≠矛盾,∴=f ()01.(2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f f x f x ()()()011=⋅-12211111()0()()()()()()f x f x f x x f x f x f x R f x ∴=>=-⋅>∴-,,在上为增函数。

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答)抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。

抽象函数问题既是教学中的难点,又是近几年来高考的热点。

本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。

解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)(1)(x f x f =- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)(1)(>-=x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)()()()()(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3 2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠(1)求证:()f x 为奇函数(2)若(1)(2)f f =, 求(1)(1)g g +-的值解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x)(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x0)()()(1212<-=-+∴x x f x f x f),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f 6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x ax x当20<<a 时, }12|{<>∈x a x x x 或 当a>2时,}12|{><∈x ax x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n n x x +)=f (nn n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12. 证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥ ∙∙∙ ∴ f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证(3)由任意,m n N ∈,有1)())((+=+n f m f n f 得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=n n n ni if6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max ()(1)3f x f ∴==(III)*12(3)()n n S a n N =--∈1112(3)(2)n n S a n --∴=--≥1111133(2),10n n n n a a n a a --∴=≥=≠∴= 111112113333333()()()()()23()4n n n n n n nn f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即11433())(n n f a f a +≤+。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数常见题型解法综述

抽象函数常见题型解法综述

抽象函数常见题型解法综述一、定义域问题例已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x从而函数f (x )的定义域是[1,4]例若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域。

解:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=xf y 而言,有1124x-≤+<,解之得:),21(]31,(+∞--∞∈ x 。

所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞二、求值问题例. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x得58)3()3()9(-=+=f f f 三、值域问题例设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。

解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。

若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。

由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有0)]2([)2()2()22()(2≥==+=xf x f x f x x f x f下面来证明,对任意0)(≠∈x f R x ,设存在R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x ,所以0)(>x f 四、解析式问题例:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u-=+=--∴2()1xf x x-=- 例:设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1()(,求f (x )的解析式。

高中高考数学专题:抽象函数经典题型大全(含答案和解析)

高中高考数学专题:抽象函数经典题型大全(含答案和解析)

抽象函数一、求表达式方法 (2)1.换元法 (2)2.拼凑法 (2)3.待定系数法 (2)4.利用函数性质法 (3)5.方程组法 (3)5.赋值法 (3)二、抽象函数常见考点解法综述 (5)1.定义域问题 (5)2.求值问题 (5)3.值域问题 (5)4.奇偶性问题 (6)5单调性问题 (6)6.对称性问题 (7)7.求参数的取值范围 (7)8.解不定式 (7)9.周期问题 (7)三、抽象函数五类题型及解法 (9)1.线性函数型抽象函数 (9)2.指数函数型抽象函数 (10)3.对数函数型抽象函数 (11)4.幂函数型抽象函数 (12)5.三角函数型抽象函数 (13)四、巩固练习 (15)抽象函数问题综述-----含有函数记号“()f x ”有关问题解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式方法1.换元法例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1ux u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 例2:已知+1)=x +2,则f(x)=____________.解:设t+1=t -1,x =(t -1)2,t≥1,代入原式有f(t)=(t -1)2+2(t -1)=t 2-1,故f(x)=x 2-1(x≥1).2.拼凑法在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例1:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()((3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1) 例2:已知+1)=x +2,则f(x)=____________. 解:+1)=x +2=+1)2-1,故f(x)=x 2-1(x≥1).3.待定系数法先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽象函数经典综合题33例(含详细解答)整理:河南省郸厂城县才源高中 王保社抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。

抽象函数问题既是教学中的难点,又是近几年来高考的热点。

本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。

解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)(1)(x f x f =- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)(1)(>-=x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)()()()()(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3 2.已知函数()f x ,()g x 在R上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠(1)求证:()f x 为奇函数(2)若(1)(2)f f =, 求(1)(1)g g +-的值解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x)(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x)()()(1212<-=-+∴x x f x f x f ),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6 (3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x ax x当20<<a 时, }12|{<>∈x a x x x 或 当a>2时,}12|{><∈x ax x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)上为奇函数; ⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n n x x +)=f (nn n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni i f 141)13(12.证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a , 由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥ ∙∙∙ ∴ f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证(3)(3)由任意,m n N ∈,有1)())((+=+n f m f n f 得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=nn n ni i f6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+- . 解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max ()(1)3f x f ∴==(III)*12(3)()n n S a n N =--∈ 1112(3)(2)n n S a n --∴=--≥ 1111133(2),10n n n n a a n a a --∴=≥=≠∴= 111112113333333()()()()()23()4n n n n n n n n f a f f f f f -∴==+≥+-≥-+111143333()()nn f f -∴≤+,即11433())(n n f a f a+≤+。

22112211414414444112133333333333()()()()2n n n n n n n f a f a f a f a ------∴≤+≤++≤≤+++++=+ 故113()2n n f a -≤+ 1213131()1()()()2n nf a f a f a n --∴+++≤+ 即原式成立。

7. 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数.(1) 若函数()f x 为理想函数,求(0)f 的值;(2)判断函数()21xg x =-])1,0[(∈x 是否为理想函数,并予以证明; (3) 若函数()f x 为理想函数,假∃[]00,1x ∈,使得[]0()0,1f x ∈,且00(())f f x x =,求证00()f x x =.解:(1)取021==x x 可得0)0()0()0()0(≤⇒+≥f f f f .又由条件①0)0(≥f ,故0)0(=f .(2)显然12)(-=x x g 在[0,1]满足条件①0)(≥x g ;-也满足条件②1)1(=g .若01≥x ,02≥x ,121≤+x x ,则)]12()12[(12)]()([)(21212121-+---=+-++x x x x x g x g x x g 0)12)(12(1222122121≥--=+--=+x x x x x x ,即满足条件③,故)(x g 理想函数.(3)由条件③知,任给m 、∈n [0,1],当n m <时,由n m <知∈-m n [0,1],)()()()()(m f m f m n f m m n f n f ≥+-≥+-=∴若)(00x f x <,则000)]([)(x x f f x f =≤,前后矛盾; 若)(00x f x >,则000)]([)(x x f f x f =≥,前后矛盾. 故)(00x f x =8.已知定义在R 上的单调函数()f x ,存在实数0x ,使得对于任意实数12,x x ,总有0102012()()()()f x x x x f x f x f x +=++恒成立。

相关文档
最新文档