长春XX中学八年级上期末数学模拟试卷(1)含解析
2019—2020年最新吉林省长春市初中八年级上学期期末数学模拟试卷(1)含解析.doc
八年级(上)期末数学模拟试卷(1)一.选择题(共6小题,每题3分,共18分)1.若分式的值为零,则x的取值为()A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣32.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.93.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.多项式4a2+ma+25是完全平方式,那么m的值是()A.10 B.20 C.±10 D.±205.已知等腰三角形的一个角为75°,则其顶角为()A.30° B.75° C.105°D.30°或75°6.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65° C.()n﹣1•75° D.()n•85°二.填空题(共6小题,每题3分,共18分)7.(8a3b﹣5a2b2)÷4ab= .8.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是.9.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.10.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是.11.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.12.如图,在△ABC中,AB=AC,DE垂直平分AB交AC于E,BC=10cm,△BCE的周长是24cm,且∠A=40°,则∠EBC= ;AB= .三、解答题(本大题5小题,每小题6分,共30分)13.解方程:﹣=0.14.若关于x的方程=无解,则m的值是多少?15.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,求∠BPC 的大小.16.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).17.如图,求证:∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.四、(本大题共4小题,每小题8分,共32分)18.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.19.如图1所示,AB=AD,AC=AE,∠1=∠2.(1)求证:BC=DE.(2)如图2,若M、N分别为BC、DE的中点,试确定AM与AN的关系,并说明理由.20.若+|b﹣2|=0,求以a、b为边长的等腰三角形的周长.21.如图,在△ABC中,∠A=2∠C,D是AC上的一点,且BD⊥BC,P在AC上移动.(1)当P移动到什么位置时,BP=AB.(2)求∠C的取值范围.五、(本大题10分)22.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.六、(本大题12分)23.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?参考答案与试题解析一.选择题(共6小题,每题3分,共18分)1.若分式的值为零,则x的取值为()A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣3【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣9=0,x﹣3≠0,解可得答案.【解答】解:由题意得:x2﹣9=0,x﹣3≠0,解得:x=﹣3,故选:D.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【考点】三角形三边关系.【分析】首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.3.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.4.多项式4a2+ma+25是完全平方式,那么m的值是()A.10 B.20 C.±10 D.±20【考点】完全平方式.【分析】由4a2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m的值.【解答】解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选D.5.已知等腰三角形的一个角为75°,则其顶角为()A.30° B.75° C.105°D.30°或75°【考点】等腰三角形的性质.【分析】因为等腰三角形的一个角为75°,没有明确说明是底角还是顶角,所以要分两种情况进行分析.【解答】解:当75°角为底角时,顶角为180°﹣75°×2=30°;75°角为顶角时,其底角==52.5°,所以其顶角为30°或75°.故选D.6.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65° C.()n﹣1•75° D.()n•85°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.二.填空题(共6小题,每题3分,共18分)7.(8a3b﹣5a2b2)÷4ab= 2a2﹣ab .【考点】整式的除法.【分析】根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加进行计算.【解答】解:(8a3b﹣5a2b2)÷4ab,=8a3b÷4ab﹣5a2b2÷4ab,=2a2﹣ab.故答案为:2a2﹣ab.8.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32 .【考点】平方差公式.【分析】由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.9.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形的外角性质;直角三角形的性质.【分析】先根据直角三角形两锐角互余求出∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,∴∠α=30°+45°=75°.故答案为:75°.10.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是AC=AE .【考点】全等三角形的判定.【分析】先根据∠BAE=∠DAC,等号两边都加上∠EAC,得到∠BAC=∠DAE,由已知AB=AD,要使△ABC≌△ADE,根据全等三角形的判定定理ASA:添上AC=AE.【解答】解:补充的条件是:AC=AE.理由如下:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE.∵在△ABC与△ADE中,,∴△ABC≌△ADE(SAS).故答案是:AC=AE.11.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 5 .【考点】角平分线的性质.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.12.如图,在△ABC中,AB=AC,DE垂直平分AB交AC于E,BC=10cm,△BCE的周长是24cm,且∠A=40°,则∠EBC= 30°;AB= 14cm .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形性质求出∠ABC,求出AE=BE,求出∠ABE=∠A=40°,即可求出∠EBC,求出AC+BC=24cm,即可求出AB.【解答】解:∵∠A=40°,AB=AC,∴∠ABC=∠C==70°,∵DE垂直平分AB交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠EBC=∠ABC=∠ABE=70°﹣40°=30°,∵BC=10cm,△BCE的周长是24cm,∴BE+EC+BC=24cm,∴AE+EC+BC=24cm,∴AC+BC=24cm,∴AC=14cm,即AB=14cm,故答案为:30°,14cm三、解答题(本大题5小题,每小题6分,共30分)13.解方程:﹣=0.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣6﹣2x=0,解得:x=6,经检验x=6是分式方程的解.14.若关于x的方程=无解,则m的值是多少?【考点】分式方程的解.【分析】把已知分式方程转化为整式方程,通过解方程求得x=1﹣,再根据原分式方程无解可求出m的值.【解答】解:由原方程的,得2(x﹣1)=﹣m,解得x=1﹣,当x=1﹣时,关于x的方程=无解,∴(x﹣5)(10﹣2x)=0,即(﹣﹣4)(8+m)=0,解得,m=﹣8.答:m的值是﹣8.15.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,求∠BPC 的大小.【考点】三角形内角和定理.【分析】根据角平分线的定义得到∠PBC=25°,∠PCB=40°,根据三角形内角和定理计算即可.【解答】解:∵∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=180°﹣∠PBC﹣∠PCB=115°.16.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【考点】提公因式法与公式法的综合运用;多项式乘多项式;平方差公式.【分析】(1)先去括号,然后合并同类项即可;(2)先提公因式(x﹣y),然后用平方差公式分解因式.【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).17.如图,求证:∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和把这六个角转化为一个三角形的内角,再根据三角形的内角和等于180°解答.【解答】解:如图所示,∠A+∠B=∠1,∠C+∠D=∠2,∠E+∠2=∠3,∠F+∠G=∠4,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠1+∠3+∠4,∵三角形的内角和等于180°,∴∠1+∠3+∠4=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.四、(本大题共4小题,每小题8分,共32分)18.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【考点】全等三角形的判定与性质.【分析】(1)欲证两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF 可以得出∠ACB=∠F,条件找到,全等可证.(2)根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.【解答】证明:(1)∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.19.如图1所示,AB=AD,AC=AE,∠1=∠2.(1)求证:BC=DE.(2)如图2,若M、N分别为BC、DE的中点,试确定AM与AN的关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据题意证明∠BAC=∠DAE,利用SAS判断△ABC≌△ADE,根据全等三角形的性质证明;(2)根据全等三角形的性质得到BM=DN,证明△ABM≌△ADN即可.【解答】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC.即∠BAC=∠DAE.在△ABC与又△ADE中,,∴△ABC≌△ADE.∴BC=DE.(2)AM=AN;理由如下:由(1)△ABC≌△ADE,∴∠B=∠D,∵BC=DE,M、N分别为BC、DE的中点,∴BM=DN,在△ABM和△ADN中,,∴△ABM≌△ADN,∴AM=AN.20.若+|b﹣2|=0,求以a、b为边长的等腰三角形的周长.【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.【分析】先根据非负数的性质列式求出a、b,再分两种情况讨论求解即可.【解答】解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.21.如图,在△ABC中,∠A=2∠C,D是AC上的一点,且BD⊥BC,P在AC上移动.(1)当P移动到什么位置时,BP=AB.(2)求∠C的取值范围.【考点】等腰三角形的判定与性质.【分析】(1)先判断出点P移动的位置为DC的中点.根据直角三角形斜边上的中线等于斜边的一半可得DP=PC=BP,根据等边对等角求出∠C=∠PBC,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠APB=2∠C,然后求出∠A=∠APB,再根据等角对等边求解即可;(2)根据三角形的一个外角大于任何一个与它不相邻的内角可得∠BDC>∠A,再根据直角三角形两锐角互余列出不等式,然后求解即可.【解答】解:(1)∵BD⊥BC,∴△DBC是直角三角形,当P移动到DC的中点时,DP=PC=BP,∴∠C=∠PBC,∠APB=∠C+∠PBC=2∠C,又∵∠A=2∠C,∴∠A=∠APB,∴△ABP是等腰三角形,∴BP=AB;(2)根据三角形的外角性质,在△ABD中,∠BDC>∠A,∵∠BDC+∠C=90°,∴∠A+∠C<90°,即2∠C+∠C<90°,解得0°<∠C<30°.五、(本大题10分)22.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.【考点】分式方程的应用.【分析】设出七年级捐款的人数,则可表示出八年级捐款的人数,根据两个年级人均捐款数相等列分式方程求解即可.【解答】解:设七年级捐款的人数为x人,则八年级捐款的人数为(x+20)人由题意得:解这个方程,得x=480经检验,x=480是原方程的解∴x+20=500(人)答:七年级捐款的人数为480人,则八年级捐款的人数为500人.六、(本大题12分)23.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?【考点】分式方程的应用.【分析】(1)等量关系为:4月份营业数量=5月份营业数量﹣20;(2)算出4月份的数量,进而求得成本及每件的盈利,进而算出5月份的售价及每件的盈利,乘以5月份的数量即为5月份的获利.【解答】解:(1)设该种纪念品4月份的销售价格为x元.根据题意得,20x=1000解之得x=50,经检验x=50是原分式方程的解,且符合实际意义,∴该种纪念品4月份的销售价格是50元;(2)由(1)知4月份销售件数为(件),∴四月份每件盈利(元),5月份销售件数为40+20=60件,且每件售价为50×0.9=45(元),每件比4月份少盈利5元,为20﹣5=15(元),所以5月份销售这种纪念品获利60×15=900(元).2017年4月16日。
吉林省长春市东北师大附中(明珠校区)2025届数学八上期末学业质量监测模拟试题含解析
吉林省长春市东北师大附中(明珠校区)2025届数学八上期末学业质量监测模拟试题业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.三个正方形的位置如图所示,若330∠=︒,则12∠+∠= ( )A .60︒B .80︒C .90︒D .120︒2.如图,ABC ∆中,BO 平分ABC ∠,CO 平分ACB ∠,M N ,经过点O ,且//BC MN ,若5AB =,AMN ∆的周长等于12,则AC 的长为( )A .7B .6C .5D .43.如图,已知△ABC 是等腰直角三角形,∠A =90°,BD 是∠ABC 的平分线,DE ⊥BC 于E ,若BC =10cm ,则△DEC 的周长为( )A .8cmB .10cmC .12cmD .14cm4.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例5.若()()221x y x ky +--的结果中不含xy 项,则k 的值为( )A .2B .-4C .0D .46.一个多边形内角和是720,则这个多边形的边数为( )A .8B .7C .6D .57.若一个三角形的两边长分别为5和8,则第三边长可能是( )A .13B .10C .3D .28.运用乘法公式计算(23)(23)x y x y +--+,下列结果正确的是( )A .22469x y y --+B .22469x y y -+-C .22469x y y +-+ D .22469x y y ---9.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112lB .116lC .516lD .118l 10.在二次根式56,22x y +,0.5,23x 中,最简二次根式的个数是( ) A .1个 B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.已知,点(,)A a b 在第二象限,则点(,)B a b --在第_________象限.12.如图,ABCD 是长方形地面,长AB =10m ,宽AD =5m ,中间竖有一堵砖墙高MN =1m .一只蚂蚱从点A 爬到点C ,它必须翻过中间那堵墙,则它至少要走______m .13.若(x -1)x +1=1,则x =______.14.如图,在Rt ABC △中,90C ∠=︒,点D 为边AC 上的一点,3CD CB ==,//DE BC ,BF CE ⊥交AC 于点F ,交CE 于点G .若1DE =,图中阴影部分的面积为4,229+=BG OG ,则BCG 的周长为______.15.分解因式:(1)3a 2-6a+3=________;(2)x 2+7x+10 = _______.16.如图,AD 是ABC ∆的中线,E 、F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF 、CE ,下列说法:①ABD ∆和ACD ∆的面积相等,②BAD CAD ∠=∠,③BDF CDE ∆≅∆,④//BF CE ,⑤CE BF =,其中一定正确的答案有______________.(只填写正确的序号)17.如图,ABM ∆与CDM ∆是两个全等的等边三角形,MA MD ⊥.有下列四个结论:①025MBC ∠=;②0180ADC ABC ∠+∠=;③直线MB 垂直平分线段CD ;④四边形ABCD 是轴对称图形.其中正确的结论有_____.(把正确结论的序号填在横线上)18.如图矩形ABCD 中,对角线AC BD ,相交于点O ,若60AOB ∠=,4AB =cm , 则AC 的长为__________cm .三、解答题(共66分)19.(10分)(1)解方程:242111x x x ++=--- (2)计算:()()()2316226---+ 20.(6分)如图,ABC ∆是等边三角形,P 是ABC ∆的角平分线BD 上一点,PE AB ⊥于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .(1)若2BQ =,求PE 的长.(2)连接PF ,EF ,试判断EFP ∆的形状,并说明理由.21.(6分)平面直角坐标系中,ABC ∆三个顶点的坐标为(3,4),(1,2),(5,1)A B C . (1)直接写出,,A B C 关于y 轴对称的点111,,A B C 的坐标:1A ;1B ;1C ;(2)若ABC ∆各顶点的横坐标不变,纵坐标都乘以1-,请直接写出对应点2A ,2B ,2C 的坐标,并在坐标系中画出222A B C ∆.22.(8分)在实数的计算过程中去发现规律.(1)5>2,而15<12,规律:若a >b >0,那么1a 与1b 的大小关系是:1a 1b . (2)对于很小的数0.1、0.001、0.00001,它们的倒数10.1= ;10.001= ;10.00001= .规律:当正实数x 无限小(无限接近于0),那么它的倒数1x. (3)填空:若实数x 的范围是0<x <2,写出1x 的范围. 23.(8分)如图,ABC ∆和ECD ∆都是等腰直角三角形90ACB ECD ︒∠=∠=,D 为AB 上一点.(1)求证:ACE BCD ∆≅∆(2)若12BD =,13DE =,求AD 的值.24.(8分)爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款的自行车单价相同,书包单价也相同,自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元.(1)求自行车和书包单价各为多少元;(2)新年来临赶上商家促销,乙商场所有商品打八五折(即8.5折)销售,甲全场购物每满100元返购物券30元(即不足100元不返券,满100元送30元购物券,满200元送60元购物券),并可当场用于购物,购物券全场通用.但爸爸只带了400元钱,如果他只在同一家商场购买看中的两样物品,在哪一家买更省钱?25.(10分)先化简,再求值:2112111x x x x +⎛⎫-÷ ⎪-+-⎝⎭,其中x 满足240x -=. 26.(10分)已知a ,b 分别是6-5的整数部分和小数部分.(1)求a ,b 的值;(2)求3a -b 2的值.参考答案一、选择题(每小题3分,共30分)1、A【分析】如图,根据正方形的性质可得,∠4、∠5、∠6的度数,根据六个角的和等于360°,可得答案.【详解】如图:∵三个图形都是正方形∴∠4=∠5=∠6=90°∵∠3=30°∠1+∠2+∠3+∠4+∠5+∠6=360°∴∠1+∠2=360°-∠3-∠4-∠5-∠6=360°-30°-90°-90°-90°=60°故选:A【点睛】本题主要考查正方形的性质和三角形外角和定理:三角形外角和等于360°,掌握正方形性质和三角形外角和定理是解题的关键.2、AMN得到BM=OM,CN=ON,得到三角形AMN的周【分析】根据角平分线及//BC长=AB+AC,再利用AB=5即可求出AC的长.∠,【详解】∵BO平分ABC∴∠MBO=∠OBC,MN,∵//BC∴∠OBC=∠MOB,∴∠MBO=∠MOB,∴BM=OM,同理CN=ON,∆的周长=AM+AN+MN=AM+AN+OM+ON=AB+AC=12,∴AMN∵AB=5,∴AC=7,故选:A.【点睛】此题考查平行线的性质:两直线平行内错角相等,角平分线的定义,三角形周长的推导是解题的关键.3、B【解析】根据“AAS”证明ΔABD≌ΔEBD.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴ ∠ABD=∠EBD.又∵ ∠A=∠DEB=90°,BD是公共边,∴ △ABD≌△EBD (AAS),∴AD=ED,AB=BE,∴ △DEC的周长是DE+EC+DC=AD+DC+EC=AC +EC =AB +EC=BE +EC =BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.4、B【详解】解:设该直角三角形的两直角边是a 、b ,面积为S .则S =12ab . ∵S 为定值,∴ab =2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例.故选B .5、D【分析】由()()221x y x ky +--的结果中不含xy 项,可知,结果中的xy 项系数为0,进而即可求出答案.【详解】∵()()221x y x ky +--=222422x kxy x xy ky y --+--=222(4)22x k xy ky x y +----,又∵()()221x y x ky +--的结果中不含xy 项,∴1-k=0,解得:k=1.故选D .【点睛】本题主要考查多项式与多项式的乘法法则,利用法则求出结果,是解题的关键. 6、C【分析】n 边形的内角和为(n−2)180 ︒,由此列方程求n 的值.【详解】设这个多边形的边数是n ,则:(n−2)×180 ︒=720 ︒,解得n =6,故选:C .【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7、B【分析】根据三角形的三边关系,求出第三边的长的取值范围,即可得出结论.【详解】解:∵三角形两边的长分别是5和8,∴8-5<第三边的长<8+5解得:3<第三边的长<13由各选项可知,符合此范围的选项只有B故选B .【点睛】此题考查的是根据三角形两边的长,求第三边的长的取值范围,掌握三角形的三边关系是解决此题的关键.8、B【分析】利用添括号法则将y-3看成一个整体,然后利用平方差公式和完全平方公式计算即可.【详解】解:()()2323x y x y +--+=()()2323x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦=()()2223x y --=()22469x y y --+=22469x y y -+-故选B .【点睛】此题考查的是平方差公式和完全平方公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.9、B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形, ∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系. 10、A【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式进行解答.=2==x =都不是最简二次根式;综上,最简二次根式的个数是1个,故选:A .【点睛】本题考查了最简二次根式,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.二、填空题(每小题3分,共24分)11、四【分析】首先根据点A 所在的象限可判定0,0a b <>,然后即可判定点B 所在的象限.【详解】∵点(,)A a b 在第二象限,∴0,0a b <>∴0,0a b --><∴点B 在第四象限故答案为四.【点睛】此题主要考查根据坐标判定点所在的象限,熟练掌握,即可解题.12、1【解析】连接AC ,利用勾股定理求出AC 的长,再把中间的墙平面展开,使原来的矩形长度增加而宽度不变,求出新矩形的对角线长即可. 【详解】解:如图所示,将图展开,图形长度增加2MN ,原图长度增加2米,则AB =10+2=12m ,连接AC ,∵四边形ABCD 是长方形,AB =12m ,宽AD =5m ,∴AC =m ,∴蚂蚱从A 点爬到C 点,它至少要走1m 的路程.故答案为:1.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.13、2或-1【解析】当x+1=0,即x=-1时,原式=(-2) 0 =1;当x-1=1,x=2时,原式=1 3 =1;当x-1=-1时,x=0,(-1) 1 =-1,舍去.故答案为2或-1.143+【分析】设CG x =,=GB y ,结合题意得90CDE ∠=,90ACE BCE ∠+∠=,再根据BF CE ⊥交AC 于点F ,交CE 于点G ,从而得到ACE CBF ∠=∠;通过证明≌CDE BCF △△;得=CDE CBF S S △△,从而得四边形DFGE 面积12CGB S xy ==△;根据勾股定理,得x y +,即可完成求解.【详解】设CG x =,=GB y∵//DE BC , 90C ∠=︒∴90CDE ∠=,90ACE BCE ∠+∠=∵BF CE ⊥交AC 于点F ,交CE 于点G∴90BGC ∠=∴90BCE CBF ∠+∠=∴ACE CBF ∠=∠ ∵90CDE BCF CD CB ACE CBF ⎧∠=∠=⎪=⎨⎪∠=∠⎩∴≌CDE BCF △△∴=CDE CBF S S △△∴四边形DFGE 面积12CGB S xy ==△ ∵阴影面积4= ∴()113132422⨯+-⨯=xy ∴2xy =∵229+=CG GB∴229x y +=∴()222213+=++=x y x y xy∵0x y +>∴+=x y ∴CGB △3+3.【点睛】本题考查了全等三角形、勾股定理、算术平方根的知识;解题的关键是熟练掌握全等三角形、勾股定理、算术平方根的性质,从而完成求解.15、3(a-1)2 (x+2)(x+5)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用十字相乘法分解即可.【详解】解:(1)3a 2-6a+3=3(a 2-2a+1)=3(a-1)2(2)x 2+7x+10 =(x+2)(x+5)故答案为:3(a-1)2;(x+2)(x+5)【点睛】此题考查了提公因式法,公式法及十字相乘法分解因式,熟练掌握因式分解的方法是解本题的关键.16、①③④⑤【分析】根据三角形中线的定义可得BD=CD ,根据等底等高的三角形的面积相等判断出①正确;利用“SAS”证明③△BDF ≌△CDE 正确,根据全等三角形对应边相等,证明⑤正确,根据全等三角形对应角相等得∠F=∠DEF ,再根据内错角相等,两直线平行可得④正确.【详解】解:由题意得 BD=CD,点A 到BD,CD 的距离相等∴△ABD 和△ACD 的面积相等,故①正确;虽然已知AD 为△ABC 的中线,但是推不出来∠BAD 和∠CAD 一定相等,故②不正确; 在△BDF 和△CDE 中BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△CDE,故③正确;∴CE=BF ,故⑤正确;∴∠F=∠DEF∴BF∥CE,故④正确;故答案为①③④⑤.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形面积相等,熟练掌握三角形判定的方法并准确识图是解题的关键.全等三角形的判定:SSS;SAS;ASA;AAS;H.L;全等三角形的性质:全等三角形对应边相等,对应角相等.17、②③④【分析】①通过全等和等边三角形的性质解出答案即可判断;②根据题意推出即可判断;③延长BM交CD于N,利用外角定理推出即可判断;④只需证明四边形ABCD是等腰梯形即可判断.【详解】①∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM= DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°﹣60°﹣60°﹣90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;②∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;③延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM 所在的直线是△CDM 的角平分线,又∵CM=DM,∴BM 所在的直线垂直平分CD ;④根据②同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD ∥BC,又∵AB=CD,∴四边形ABCD 是等腰梯形,∴四边形ABCD 是轴对称图形.故答案为:②③④.【点睛】本题考查等边三角形的性质、三角形内角和定理、三角形外角性质、平行线的判定,关键在于熟练掌握相关基础知识.18、2【解析】根据矩形对角线的性质可推出△ABO 为等边三角形.已知AB=1,易求AC .解:已知∠AOB=60°,根据矩形的性质可得AO=BO ,所以∠OAB=∠ABO=60度.因为AB=1,所以AO=BO=AB=1.故AC=2.本题考查的是矩形的性质以及等边三角形的有关知识.三、解答题(共66分)19、(1)13x =;(2)﹣. 【分析】(1)方程两边同乘21x -,化为整式方程求解,然后检验即可;(2)先根据完全平方公式和平方差公式计算,然后算加减即可.【详解】(1) 242111x x x++=---, 方程两边同乘21x -,得24(2)(1)(1)x x x -++=--,解得 13x =, 检验:当13x =时,210x -≠,所以13x =是原分式方程的解;(2) 解:原式=3﹣﹣(6﹣2)=4﹣﹣4=﹣.【点睛】本题考查了分式方程的解法,以及实数的混合运算,熟练掌握分式方程的求解步骤、乘法公式是解答本题的关键.20、(1)2PE =;(2)EFP ∆是直角三角形,理由见解析.【分析】(1)由ABC ∆是等边三角形,BP 是ABC ∠的平分线,得30EBP ∠=︒,结合90BEP ∠=︒,4BP =,即可得到答案;(2)由30ABP CBD ∠=∠=︒,90PEB ∠=︒得60BPE ∠=︒,由FQ 垂直平分线段BP ,得30FBQ FPQ ∠=∠=︒,进而即可得到结论.【详解】(1)∵ABC ∆是等边三角形,BP 是ABC ∠的平分线,∴30EBP PBC ∠=∠=︒,∵PE AB ⊥于点E ,∴90BEP ∠=︒, ∴12PE BP =, ∵QF 为线段BP 的垂直平分线,∴2224BP BQ ==⨯=, ∴1422PE =⨯=; (2)EFP ∆是直角三角形.理由如下:连接PF 、EF ,∵ABC ∆是等边三角形,BD 平分ABC ∠,∴60ABC ∠=︒,30ABP CBD ∠=∠=︒,∵PE AB ⊥,∴90PEB ∠=︒,∴60BPE ∠=︒,∵FQ 垂直平分线段BP ,∴FB FP =,∴30FBQ FPQ ∠=∠=︒,∴90EPF EPB BPF ∠=∠+∠=︒,∴EFP ∆是直角三角形.【点睛】本题主要考查等边三角形的性质定理,中垂线的性质定理以及直角三角形的判定与性质定理,掌握直角三角形中,30°角所对的直角边是斜边的一半,是解题的关键.21、(1)(3,4);(1,2);(5,1)---(2)222(3,4),(1,2),(5,1)A B C ---;图见解析.【分析】(1)根据点坐标关于y 轴对称的规律即可得;(2)根据“横坐标不变,纵坐标都乘以1-”可得点222,,A B C 坐标,再在平面直角坐标系中描出222,,A B C 三点,然后顺次连接即可得222A B C ∆.【详解】(1)在平面直角坐标系中,点坐标关于y 轴对称的规律为:横坐标变为相反数,纵坐标不变(3,4),(1,2),(5,1)A B C111(3,4),(1,2),(5,1)A B C ∴---故答案为:()3,4-;(1,2)-;(5,1)-;(2)横坐标不变,纵坐标都乘以1-222(3,4),(1,2),(5,1)A B C ∴---在平面直角坐标系中,先描出222,,A B C 三点,再顺次连接即可得222A B C ∆,结果如图所示:【点睛】本题考查了点坐标关于y轴对称的规律、在平面直角坐标系中画三角形,熟练掌握平面直角坐标系中,点的坐标变换规律是解题关键.22、(1)<;(2)10;1000;1;无穷大;(3)1x>12【分析】(1)两个正实数,这个数越大,则它的倒数越小,判断出1a与1b的大小关系即可;(2)首先求出0.1、0.001、0.00001的倒数各是多少;然后判断出当正实数x无限小(无限接近于0),那么它的倒数1x无穷大;(3)根据:0<x<2,可得:1x>12.【详解】解:(1)5>2,而15<12,规律:若a>b>0,那么1a与1b的大小关系是:1a<1b,故答案为:<;(2)对于很小的数0.1、0.001、0.00001,它们的倒数10.1=10;10.001=1000;10.00001=1.规律:当正实数x无限小(无限接近于0),那么它的倒数1x无穷大,故答案为:10;1000;1;无穷大;(3)∵0<x<2,∴1x >12. 故答案为:1x >12. 【点睛】本题考查了正实数的倒数的大小比较以及规律,注意探究发现规律是解题的关键.23、(1)见解析;(2)5AD =【分析】(1)由等腰直角三角形的性质可知BC=AC ,CD=CE ,∠ACB=∠ECD=90°,通过等量减等量即可推出∠ACE=∠BCD ,根据全等三角形的判定定理“SAS ”,即可得出结论;(2)根据(1)中所推出的结论可知,BD=AE ,∠CAE=∠B=45°,然后根据等腰直角三角形的性质推出∠CAB=45°,即可推出EA ⊥BA ,即△EAD 为直角三角形,再根据勾股定理即可求得答案.【详解】(1)ABC ∆和ECD ∆都是等腰直角三角形,,,90BC AC CD CE ACB ECD ︒∴==∠=∠=,ACB ACD ECD ACD ∴∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE ∆和BCD ∆中,BC AC ACE BCD CD CE =⎧⎪∴∠=∠⎨⎪=⎩,ACE BCD ∴∆≅∆;(2)ACE BCD ∆≅∆12,45,BD AE CAE B ︒∴==∠=∠=454590DAE BAC EAC ︒︒︒∴∠=∠+∠=+=,在Rt ADE ∆中,222AD AE DE +=,13,12DE BD AE ===,5AD ∴==.【点睛】本题主要考查全等三角形的判定及性质,勾股定理,等腰直角三角形性质,关键在于认真的阅读题目,正确的运用相关的性质定理求证三角形全等.24、(1)自行车的单价为360元/辆,书包的单价为92元/个;(2)在甲商店购买更省钱.【分析】(1)设自行车的单价为x 元/辆,书包的单价为y 元/个,根据“自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据甲、乙两商店的优惠政策分别求出在两商店购买所需费用,比较后即可得出结论.【详解】(1)设自行车的单价为x 元/辆,书包的单价为y 元/个,根据题意得:452{48x y y x +=-=, 解得:360{92x y ==, 答:自行车的单价为360元/辆,书包的单价为92元/个;(2)在甲商店购买所需费用为:360+92﹣30×3=362(元),在乙商店购买所需费用为:452×0.85=384.2(元), ∵362<384.2,∴在甲商店购买更省钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据甲、乙两商店的优惠政策分别求出在两商店购买所需费用. 25、22x ,12. 【分析】根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可. 【详解】原式11(1)(1)()112x x x x x +-=-⨯-++ 1122x x x x +-=-++ 22x =+ 因为:240x -=2x =当2x =时,原式12=.【点睛】本题考查分式的化简求值,熟练掌握计算法则是解题关键.26、(1)【分析】(1范围,再两边都乘以-1,再两边都加上6,即可求出a、b;(2)把a、b的值代入求出即可.【详解】(1)∵23,∴-3<-2,∴3<4,∴a=3,(2)3a-b2=3×3-(2.【点睛】本题考查了估算无理数的大小和有理数的混合运算的应用,主要考查学生的计算能力.。
2022年吉林省长春六中学八年级数学第一学期期末检测模拟试题含解析
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是( ) A . B . C . D .2.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.53.8的立方根是( )A .22B .±2C .±22D .24.如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补,若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM=PN 恒成立;(2)OM+ON 的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .15.下列图形中,不一定是轴对称图形的是( )A .正方形B .等腰三角形C .直角三角形D .圆6.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .6 7.如果分式方程12x x a-=+的解是3x =,则a 的值是( )A .3B .2C .-2D .-3 8.若分式2x x -的值为0,则( ) A .0x = B .1x = C .2x = D .2x =-9.下列变形正确的是( )A .11x y x y y y -+=-+ B .11x y y x y y --=-- C .11x y x y y y ---=--- D .11-x y y x y y --=- 10.若分式325x x --的值为0,则x 的值为( ) A .-3 B .-52 C .52 D .3二、填空题(每小题3分,共24分)11.若112m n +=,则分式332m n mn m n+---的值为____. 12.禽流感病毒H7N9的直径约为0.000 000 03m ,用科学记数法表示该数为__________m .13.如图,在ABC ∆中,AB AC =,点D 、E 在BC 的延长线上,G 是AC 上一点,且CG CD =,F 是GD 上一点,且DF DE =.若100A ∠=︒,则E ∠的大小为__________度.14.如图,已知,BE AE CF AD ⊥⊥,且BE CF =,那么AD 是ABC ∆的________(填“中线”或“角平分线”或“高”) .15.计算(x -a )(x +3)的结果中不含x 的一次项,则a 的值是________.16.一个多边形的内角和比其外角和的2倍多180°,则该多边形的边数是______17.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.18.种菜能手王大叔种植了一批新品种黄瓜,为了了解这种黄瓜的生长情况,他随机抽查了50株黄瓜藤上长出的黄瓜根数,绘制了如图的统计图,则这组数据中黄瓜根数的中位数是__________.三、解答题(共66分)19.(10分)在平面直角坐标系xOy 中,已知一次函数的图象经过点A (5,0),B (1,4).(1)求这个一次函数的表达式;(2)直线AB 、直线y =2x ﹣4与y 轴所围成的三角形的面积为 .20.(6分)先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢的数代入求值.21.(6分)化简 ①1615362②23 23)1222.(8分)如图,已知直线1:23l y x =+,直线2:5l y x =-+,直线1l ,2l 分别交x 轴于B ,C 两点,1l ,2l 相交于点A .(1)求A ,B ,C 三点坐标;(2)求ABC S23.(8分)在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.--+38-24.(8分)计算:(1)计算:(-1)2020 +163(2)求x 的值:4x2-25=025.(10分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC =180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC 于点F,求BF的长.26.(10分)分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式42x+,2334xx x+是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式42xx-+,21xx-是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,4(2)661222x xx x x-+-==-+++.(1)将假分式11xx+-化为一个整式与一个真分式的和是;(2)将假分式211xx-+化为一个整式与一个真分式的和;(3)若分式21xx+的值为整数,求整数x的值.参考答案一、选择题(每小题3分,共30分)1、B【解析】根据轴对称的定义,逐一判断选项,即可得到答案.【详解】A是轴对称图形,不符合题意,B不是轴对称图形,符合题意,C是轴对称图形,不符合题意,D是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.2、A【分析】根据最简二次根式的概念判断即可.【详解】ABC、,不是最简二次根式;D、20.5=2,不是最简二次根式;故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.3、D【详解】解:根据立方根的定义,由23=8,可得8的立方根是2故选:D.【点睛】本题考查立方根.4、B【解析】如图,过点P作PC垂直AO于点C,PD垂直BO于点D,根据角平分线的性质可得PC=PD,因∠AOB与∠MPN互补,可得∠MPN=∠CPD,即可得∠MPC=∠DPN,即可判定△CMP≌△NDP,所以PM=PN,(1)正确;由△CMP≌△NDP可得CM=CN,所以OM+ON=2OC,(2)正确;四边形PMON的面积等于四边形PCOD的面积,(3)正确;连结CD,因PC=PD,PM=PN,∠MPN=∠CPD,PM>PC,可得CD≠MN,所以(4)错误,故选B.5、C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C6、B【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m 、n 恰好是等腰△ABC 的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m 、n 的值是解题的关键.7、C【分析】先把3x =代入原方程,可得关于a 的方程,再解方程即得答案. 【详解】解:∵方程12x x a -=+的解是3x =,∴223a=+,解得:a =﹣1. 经检验,a =﹣1符合题意.故选:C .【点睛】本题考查了分式方程的解及其解法,属于基本题型,熟练掌握分式方程的解法是解题关键.8、C【分析】根据分式的值为0的条件:分子=0且分母≠0,即可求出x .【详解】解:∵分式2x x-的值为0 ∴200x x -=⎧⎨≠⎩ 解得: 2x =故选C .【点睛】此题考查的是分式的值为0的条件,掌握分式的值为0的条件:分子=0且分母≠0是解决此题的关键.9、D【分析】根据分式的基本性质,等式的基本性质,分别进行判断,即可得到答案.【详解】解:A 、11x y x y y y -+≠-+,故A 错误; B 、11x y y x y y --=---,故B 错误;C 、11x y x y y y --+=--+,故C 错误; D 、11x y y x y y--=--,正确; 故选:D .【点睛】本题考查了分式的基本性质和等式的基本性质,解题的关键是熟练掌握分式的基本性质进行解题.10、D【分析】根据分式值为0的条件进行列式,再解方程和不等式即可得解. 【详解】解:∵分式325x x --的值为0 ∴30250x x -=⎧⎨-≠⎩∴3x =.故选:D【点睛】本题考查了分式值为0的条件:分子等于零而分母不等于零,熟练掌握分式值为零的条件是解题的关键.二、填空题(每小题3分,共24分)11、-2【分析】根据题意得出m+n=2mn ,并对分式进行变形代入进行计算和约分,即可求得分式的值. 【详解】解:由112m n+=,可得m+n=2mn , 将332m n mn m n+---变形:3323()2()m n mn m n mn m n m n +-+-=---+, 把m+n=2mn ,代入得到3()2622()2m n mn mn mn m n mn+--==--+-. 故答案为:-2.【点睛】本题考查分式的值,能够通过已知条件得到m+n=2mn ,熟练运用整体代入的思想是解题的关键.12、8310-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:80.00000003310m m -=⨯故答案为:8310-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.13、10【解析】根据三角形外角的性质,结合已知DF DE =,得∠E=12∠CDG ,同理, CG CD =,∠CDG=12∠ACB , AB AC =,得出∠ACB=∠B ,利用三角形内角和180°,计算即得.【详解】∵DE=DF ,CG=CD ,∴∠E=∠EFD=12∠CDG , ∠CDG=∠CGD=12∠ACB , 又∵AB=AC ,∴∠ACB=∠B=12(180°-∠A )=12(180°-100°)=40°, ∴∠E=1140=1022⨯⨯︒︒, 故答案为:10°.【点睛】本题考查了等腰三角形的性质以及三角形外角的性质,解题的关键是灵活运用等腰三角形的性质和三角形外角的性质确定各角之间的关系.14、中线【分析】通过证明BDE CDF ≌,可得BD CD =,从而得证AD 是ABC ∆的中线.【详解】∵,BE AE CF AD ⊥⊥∴90E DFC ∠=∠=︒∵BDE CDF ∠=∠,BE CF =∴BDE CDF ≌∴BD CD =∴AD 是ABC ∆的中线故答案为:中线.【点睛】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理是解题的关键. 15、3【分析】先根据多项式乘以多项式法则展开,合并同类项,令x 的一次项系数为0,列出关于a 的方程,求出即可.【详解】解:()2()=(333)x a x a x a x +--+-, ∵不含x 的一次项,∴3-a =0,∴a=3,故答案为:3.【点睛】本题考查了多项式乘以多项式法则,理解多项式中不含x 的一次项即x 的一次项的系数为0是解题的关键.不要忘记合并同类项.16、7【分析】设多边形的边数为n ,根据多边形内角和公式及多边形外角和为360°,利用内角和比其外角和的2倍多180°列方程求出n 值即可得答案.【详解】设多边形的边数为n ,∵多边形的内角和比其外角和的2倍多180°,∴(n-2)×180°=2×360°+180°,解得:n=7,故答案为:7【点睛】此题主要考查了多边形内角和定理和外角和定理,若多边形的边数为n ,则多边形的内角和为(n-2)×180°;多边形的外角和为360°;熟练掌握多边形的内角和公式是解题关键.17、2π 【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=.故答案为2π.18、10【分析】根据直方图和中位数的定义,即可得到答案.【详解】解:∵他随机抽查了50株黄瓜藤上长出的黄瓜根数,∴中位数落在第25株和第26株上,分别为10根、10根;∴中位数为10;故答案为:10.【点睛】本题考查了中位数及条形统计图的知识,解答本题的关键是理解中位数的定义,能看懂统计图.三、解答题(共66分)19、(1)y=﹣x+1;(2)272.【分析】(1)利用待定系数法即可求得;(2)求得直线AB,直线y=2x﹣4与y轴的交点,以及两直线的交点坐标,然后根据三角形面积公式,即可求解.【详解】(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象经过点A(1,0),B(1,4),∴504k bk b+=⎧⎨+=⎩,解得:15kb=-⎧⎨=⎩,∴一次函数的表达式为:y=﹣x+1;(2)联立524y xy x=-+⎧⎨=-⎩,解得:32xy=⎧⎨=⎩,∴两直线的交点坐标为:(3,2),直线y=2x﹣4中,令x=0,则y=﹣4;直线y=﹣x+1中,令x=0,则y=1.∴两直线与y轴的交点分别为:(0,﹣4)和(0,1),∴直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为:127(54)322⨯+⨯=,故答案为:272.【点睛】本题主要考查一次函数的待定系数法以及一次函数图象与坐标轴围成的面积,联立一次函数解析式,求直线的交点坐标,是解题的关键.20、12m m --;当0m =时,原式12= 【分析】根据分式的加法和除法可以化简题目中的式子,然后从22m -≤≤且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题. 【详解】解:3212m m m 223121m m m m 243211m m m 11112m m m m21m m , ∵22m -≤≤且m 为整数, ∴当m=0时,原式011022 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)-(2)1.【分析】(1)先利用二次根式的乘法法则运算,然后合并即可;(2)利用平方差公式计算.【详解】解:(1)原式==-(2)原式=1.【点睛】本题考查二次根式的混合运算,掌握运算法则正确计算是解题关键. 22、(1)A 213,33⎛⎫ ⎪⎝⎭,B 3,02⎛⎫- ⎪⎝⎭,C ()5,0;(2)16912ABC S =△. 【分析】(1)分别将y=0代入23y x =+和5y x =-+中即可求得B ,C 的坐标,联立两个一次函数形成二元一次方程组,方程组的解对应的x 值和y 值就是A 点的横坐标和纵坐标;(2)以BC 为底,根据A 点坐标求出三角形的高,利用三角形的面积计算公式求解即可.【详解】(1)由题意得,令直线1l ,直线2l 中的y 为0,得:132x =-,25x =. 由函数图像可知,点B 的坐标为3,02⎛⎫- ⎪⎝⎭,点C 的坐标为()5,0.∵1l 、2l 相较于点A .∴解23y x =+及5y x =-+得:23x =,133y =. ∴点A 的坐标为213,33⎛⎫ ⎪⎝⎭. (2)由(1)可知:3135()22BC =--=,又由函数图像可知111313169||||222312ABC A S BC y =⨯⨯=⨯⨯=△. 【点睛】本题考查一次函数与一元一次方程,一次函数与二元一次方程组.掌握两个一次函数的交点坐标就是联立它们所形成的二元一次方程组的解是解决此题的关键.23、(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC 是直角三角形.【解析】试题分析:(1)根据A B 、两点的坐标建立平面直角坐标系即可;(2)作出各点关于y 轴的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断出ABC 的形状即可.试题解析:(1)如图所示:(2)如图所示:'''A B C 即为所求:C '的坐标为()55-,;(3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC+=,∴ABC是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.24、(1)0;(2)x1=52,x2=-52.【分析】(1)先化简乘方、根式和绝对值,再利用实数的运算顺序求解即可; (2)利用直接开平方法求解即可.【详解】解:(1)(-1)2020 3-+=1+4-3-2=0;(2)∵4x2-25=0∴4x2=25,∴x2=25 4,∴x=±5 2 ,∴x1=52,x2=-52.【点睛】本题考查了实数是混合运算和解含平方的方程,熟练掌握运算法则及平方根的定义是解题的关键.25、(1)见解析;(2)50;(3)1.【分析】(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,证明△ABF≌△ADE、△ABO≌△DAG,得到D点的坐标为(4,﹣3),根据三角形的面积公式计算;(3)作EH⊥BC于点H,作EG⊥x轴于点G,根据角平分线的性质得到EH=EG,证明△EBH≌△EOG,得到EB=EO,根据等腰三角形的判定定理解答.【详解】(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD =90°,∴∠BAD =90°,∴∠BAC +∠CAD =90°,∵∠BAC +∠ABO =90°,∴∠ABO =∠CAD ;(2)过点A 作AF ⊥BC 于点F ,作AE ⊥CD 的延长线于点E ,作DG ⊥x 轴于点G ,如图 1∵B (0,1),C (1,0),∴OB =OC ,∴∠BCO =45°,∵BC ⊥CD ,∴∠BCO =∠DCO =45°,∵AF ⊥BC ,AE ⊥CD ,∴AF =AE ,∠FAE =90°,∴∠BAF =∠DAE ,在△ABF 和△ADE 中,BAF DAE AFB AED AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△ADE (AAS ),∴AB =AD ,同理,△ABO ≌△DAG ,∴DG =AO ,BO =AG ,∵A (﹣3,0)B (0,1),∴D (4,﹣3),S 四ABCD =12AC •(BO +DG )=50;(3)过点E 作EH ⊥BC 于点H ,作EG ⊥x 轴于点G ,如图 2∵E 点在∠BCO 的邻补角的平分线上,∴EH =EG ,∵∠BCO =∠BEO =45°,∴∠EBC =∠EOC ,在△EBH 和△EOG 中,EBH EOG EHB EGO EH EG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBH ≌△EOG (AAS ),∴EB =EO ,∵∠BEO =45°,∴∠EBO =∠EOB =61.5°,又∠OBC =45°,∴∠BOE =∠BFO =61.5°,∴BF =BO =1.【点睛】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.26、(1)1+21x -;(2)2﹣31x +;(3)x =﹣2或1. 【分析】逆用同分母分式加减法法则,仿照题例做(1)(2);(3)先把分式化为真分式,根据值为整数,x 的值为整数确定x 的值.【详解】解:(1)11x x +-=(1)21x x -+- =211x +- 故答案为:211x +-(2)211xx-+=(22)31xx+-+=2(1)1xx++﹣31x+=2﹣31 x+;(3)21 x x+=2111 xx-++=21111 xx x-++=x﹣1+11x+,∵分式的值为整数,且x为整数,∴x+1=±1,∴x=﹣2或1.【点睛】本题考查了真分式及分式的加减法.理解题例和题目给出的定义是解决问题的关键.。
长春XX中学八年级上册期末数学模拟试卷(1)含解析【最新】
吉林省长春中学八年级(上)期末数学模拟试卷(1)一.选择题(共6小题,每题3分,共18分)1.若分式的值为零,则的取值为()A.≠3 B.≠﹣3 C.=3 D.=﹣32.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.93.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°4.多项式4a2+ma+25是完全平方式,那么m的值是()A.10 B.20 C.±10 D.±205.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105° D.30°或75°6.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65° C.()n﹣1•75° D.()n•85°二.填空题(共6小题,每题3分,共18分)7.(8a3b﹣5a2b2)÷4ab=.8.如果+y=﹣4,﹣y=8,那么代数式2﹣y2的值是.9.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.10.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是.11.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.12.如图,在△ABC中,AB=AC,DE垂直平分AB交AC于E,BC=10cm,△BCE的周长是24cm,且∠A=40°,则∠EBC=;AB=.三、解答题(本大题5小题,每小题6分,共30分)13.解方程:﹣=0.14.若关于的方程=无解,则m的值是多少?15.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,求∠BPC 的大小.16.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(﹣y)+4b2(y﹣).17.如图,求证:∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.四、(本大题共4小题,每小题8分,共32分)18.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.19.如图1所示,AB=AD,AC=AE,∠1=∠2.(1)求证:BC=DE.(2)如图2,若M、N分别为BC、DE的中点,试确定AM与AN的关系,并说明理由.20.若+|b﹣2|=0,求以a、b为边长的等腰三角形的周长.21.如图,在△ABC中,∠A=2∠C,D是AC上的一点,且BD⊥BC,P在AC上移动.(1)当P移动到什么位置时,BP=AB.(2)求∠C的取值范围.五、(本大题10分)22.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.六、(本大题12分)23.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?吉林省长春中学八年级(上)期末数学模拟试卷(1)参考答案与试题解析一.选择题(共6小题,每题3分,共18分)1.若分式的值为零,则的取值为()A.≠3 B.≠﹣3 C.=3 D.=﹣3【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得2﹣9=0,﹣3≠0,解可得答案.【解答】解:由题意得:2﹣9=0,﹣3≠0,解得:=﹣3,故选:D.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【考点】三角形三边关系.【分析】首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.3.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【考点】全等三角形的性质.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.4.多项式4a2+ma+25是完全平方式,那么m的值是()A.10 B.20 C.±10 D.±20【考点】完全平方式.【分析】由4a2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m的值.【解答】解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选D.5.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105° D.30°或75°【考点】等腰三角形的性质.【分析】因为等腰三角形的一个角为75°,没有明确说明是底角还是顶角,所以要分两种情况进行分析.【解答】解:当75°角为底角时,顶角为180°﹣75°×2=30°;75°角为顶角时,其底角==52.5°,所以其顶角为30°或75°.故选D.6.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65° C.()n﹣1•75° D.()n•85°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.二.填空题(共6小题,每题3分,共18分)7.(8a3b﹣5a2b2)÷4ab=2a2﹣ab.【考点】整式的除法.【分析】根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加进行计算.【解答】解:(8a3b﹣5a2b2)÷4ab,=8a3b÷4ab﹣5a2b2÷4ab,=2a2﹣ab.故答案为:2a2﹣ab.8.如果+y=﹣4,﹣y=8,那么代数式2﹣y2的值是﹣32.【考点】平方差公式.【分析】由题目可发现2﹣y2=(+y)(﹣y),然后用整体代入法进行求解.【解答】解:∵+y=﹣4,﹣y=8,∴2﹣y2=(+y)(﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.9.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形的外角性质;直角三角形的性质.【分析】先根据直角三角形两锐角互余求出∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,∴∠α=30°+45°=75°.故答案为:75°.10.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是AC=AE.【考点】全等三角形的判定.【分析】先根据∠BAE=∠DAC,等号两边都加上∠EAC,得到∠BAC=∠DAE,由已知AB=AD,要使△ABC≌△ADE,根据全等三角形的判定定理ASA:添上AC=AE.【解答】解:补充的条件是:AC=AE.理由如下:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE.∵在△ABC与△ADE中,,∴△ABC≌△ADE(SAS).故答案是:AC=AE.11.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【考点】角平分线的性质.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.12.如图,在△ABC中,AB=AC,DE垂直平分AB交AC于E,BC=10cm,△BCE的周长是24cm,且∠A=40°,则∠EBC=30°;AB=14cm.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形性质求出∠ABC,求出AE=BE,求出∠ABE=∠A=40°,即可求出∠EBC,求出AC+BC=24cm,即可求出AB.【解答】解:∵∠A=40°,AB=AC,∴∠ABC=∠C==70°,∵DE垂直平分AB交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠EBC=∠ABC=∠ABE=70°﹣40°=30°,∵BC=10cm,△BCE的周长是24cm,∴BE+EC+BC=24cm,∴AE+EC+BC=24cm,∴AC+BC=24cm,∴AC=14cm,即AB=14cm,故答案为:30°,14cm三、解答题(本大题5小题,每小题6分,共30分)13.解方程:﹣=0.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣6﹣2=0,解得:=6,经检验=6是分式方程的解.14.若关于的方程=无解,则m的值是多少?【考点】分式方程的解.【分析】把已知分式方程转化为整式方程,通过解方程求得=1﹣,再根据原分式方程无解可求出m的值.【解答】解:由原方程的,得2(﹣1)=﹣m,解得=1﹣,当=1﹣时,关于的方程=无解,∴(﹣5)(10﹣2)=0,即(﹣﹣4)(8+m)=0,解得,m=﹣8.答:m的值是﹣8.15.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,求∠BPC 的大小.【考点】三角形内角和定理.【分析】根据角平分线的定义得到∠PBC=25°,∠PCB=40°,根据三角形内角和定理计算即可.【解答】解:∵∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=180°﹣∠PBC﹣∠PCB=115°.16.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(﹣y)+4b2(y﹣).【考点】提公因式法与公式法的综合运用;多项式乘多项式;平方差公式.【分析】(1)先去括号,然后合并同类项即可;(2)先提公因式(﹣y),然后用平方差公式分解因式.【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(﹣y)+4b2(y﹣)=(﹣y)(9a2﹣4b2)=(﹣y)(3a+2b)(3a﹣2b).17.如图,求证:∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和把这六个角转化为一个三角形的内角,再根据三角形的内角和等于180°解答.【解答】解:如图所示,∠A+∠B=∠1,∠C+∠D=∠2,∠E+∠2=∠3,∠F+∠G=∠4,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠1+∠3+∠4,∵三角形的内角和等于180°,∴∠1+∠3+∠4=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.四、(本大题共4小题,每小题8分,共32分)18.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【考点】全等三角形的判定与性质.【分析】(1)欲证两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF 可以得出∠ACB=∠F,条件找到,全等可证.(2)根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.【解答】证明:(1)∵AC∥DF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.19.如图1所示,AB=AD,AC=AE,∠1=∠2.(1)求证:BC=DE.(2)如图2,若M、N分别为BC、DE的中点,试确定AM与AN的关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据题意证明∠BAC=∠DAE,利用SAS判断△ABC≌△ADE,根据全等三角形的性质证明;(2)根据全等三角形的性质得到BM=DN,证明△ABM≌△ADN即可.【解答】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC.即∠BAC=∠DAE.在△ABC与又△ADE中,,∴△ABC≌△ADE.∴BC=DE.(2)AM=AN;理由如下:由(1)△ABC≌△ADE,∵BC=DE,M、N分别为BC、DE的中点,∴BM=DN,在△ABM和△ADN中,,∴△ABM≌△ADN,∴AM=AN.20.若+|b﹣2|=0,求以a、b为边长的等腰三角形的周长.【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.【分析】先根据非负数的性质列式求出a、b,再分两种情况讨论求解即可.【解答】解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.21.如图,在△ABC中,∠A=2∠C,D是AC上的一点,且BD⊥BC,P在AC上移动.(1)当P移动到什么位置时,BP=AB.(2)求∠C的取值范围.【考点】等腰三角形的判定与性质.【分析】(1)先判断出点P移动的位置为DC的中点.根据直角三角形斜边上的中线等于斜边的一半可得DP=PC=BP,根据等边对等角求出∠C=∠PBC,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠APB=2∠C,然后求出∠A=∠APB,再根据等角对等边求解即可;(2)根据三角形的一个外角大于任何一个与它不相邻的内角可得∠BDC>∠A,再根据直角三角形两锐角互余列出不等式,然后求解即可.【解答】解:(1)∵BD⊥BC,∴△DBC是直角三角形,当P移动到DC的中点时,DP=PC=BP,∴∠C=∠PBC,∠APB=∠C+∠PBC=2∠C,又∵∠A=2∠C,∴∠A=∠APB,∴△ABP是等腰三角形,∴BP=AB;(2)根据三角形的外角性质,在△ABD中,∠BDC>∠A,∵∠BDC+∠C=90°,∴∠A+∠C<90°,即2∠C+∠C<90°,解得0°<∠C<30°.五、(本大题10分)22.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.【考点】分式方程的应用.【分析】设出七年级捐款的人数,则可表示出八年级捐款的人数,根据两个年级人均捐款数相等列分式方程求解即可.【解答】解:设七年级捐款的人数为人,则八年级捐款的人数为(+20)人由题意得:解这个方程,得=480经检验,=480是原方程的解∴+20=500(人)答:七年级捐款的人数为480人,则八年级捐款的人数为500人.六、(本大题12分)23.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?【考点】分式方程的应用.【分析】(1)等量关系为:4月份营业数量=5月份营业数量﹣20;(2)算出4月份的数量,进而求得成本及每件的盈利,进而算出5月份的售价及每件的盈利,乘以5月份的数量即为5月份的获利.【解答】解:(1)设该种纪念品4月份的销售价格为元.根据题意得,20=1000解之得=50,经检验=50是原分式方程的解,且符合实际意义,∴该种纪念品4月份的销售价格是50元;(2)由(1)知4月份销售件数为(件),∴四月份每件盈利(元),5月份销售件数为40+20=60件,且每件售价为50×0.9=45(元),每件比4月份少盈利5元,为20﹣5=15(元),所以5月份销售这种纪念品获利60×15=900(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省长春XX中学(上)期末模拟试卷(1)八年级数学一.选择题(共6小题,每题3分,共18分)1.若分式的值为零,则x的取值为()A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣32.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.93.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°4.多项式4a2+ma+25是完全平方式,那么m的值是()A.10 B.20 C.±10 D.±205.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°6.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°二.填空题(共6小题,每题3分,共18分)7.(8a3b﹣5a2b2)÷4ab= .8.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是.9.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.10.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是.11.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.12.如图,在△ABC中,AB=AC,DE垂直平分AB交AC于E,BC=10cm,△BCE的周长是24cm,且∠A=40°,则∠EBC= ;AB= .三、解答题(本大题5小题,每小题6分,共30分)13.解方程:﹣=0.14.若关于x的方程=无解,则m的值是多少?15.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,求∠BPC的大小.16.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).17.如图,求证:∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.四、(本大题共4小题,每小题8分,共32分)18.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.19.如图1所示,AB=AD,AC=AE,∠1=∠2.(1)求证:BC=DE.(2)如图2,若M、N分别为BC、DE的中点,试确定AM与AN的关系,并说明理由.20.若+|b﹣2|=0,求以a、b为边长的等腰三角形的周长.21.如图,在△ABC中,∠A=2∠C,D是AC上的一点,且BD⊥BC,P在AC上移动.(1)当P移动到什么位置时,BP=AB.(2)求∠C的取值范围.五、(本大题10分)22.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.六、(本大题12分)23.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?吉林省长春XX中学八年级(上)期末数学模拟试卷(1)参考答案与试题解析一.选择题(共6小题,每题3分,共18分)1.若分式的值为零,则x的取值为()A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣3【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣9=0,x﹣3≠0,解可得答案.【解答】解:由题意得:x2﹣9=0,x﹣3≠0,解得:x=﹣3,故选:D.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【考点】三角形三边关系.【分析】首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.3.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【考点】全等三角形的性质.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.4.多项式4a2+ma+25是完全平方式,那么m的值是()A.10 B.20 C.±10 D.±20【考点】完全平方式.【分析】由4a2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m的值.【解答】解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选D.5.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°【考点】等腰三角形的性质.【分析】因为等腰三角形的一个角为75°,没有明确说明是底角还是顶角,所以要分两种情况进行分析.【解答】解:当75°角为底角时,顶角为180°﹣75°×2=30°;75°角为顶角时,其底角==52.5°,所以其顶角为30°或75°.故选D.6.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是()A .()n •75°B .()n ﹣1•65°C .()n ﹣1•75°D .()n •85°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第n 个三角形中以A n 为顶点的内角度数.【解答】解:∵在△CBA 1中,∠B=30°,A 1B=CB ,∴∠BA 1C==75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=∠BA 1C=×75°; 同理可得,∠EA 3A 2=()2×75°,∠FA 4A 3=()3×75°,∴第n 个三角形中以A n 为顶点的内角度数是()n ﹣1×75°. 故选:C .二.填空题(共6小题,每题3分,共18分)7.(8a 3b ﹣5a 2b 2)÷4ab= 2a 2﹣ab . 【考点】整式的除法.【分析】根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加进行计算.【解答】解:(8a 3b ﹣5a 2b 2)÷4ab , =8a 3b ÷4ab ﹣5a 2b 2÷4ab ,=2a 2﹣ab .故答案为:2a 2﹣ab .8.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32 .【考点】平方差公式.【分析】由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.9.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形的外角性质;直角三角形的性质.【分析】先根据直角三角形两锐角互余求出∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,∴∠α=30°+45°=75°.故答案为:75°.10.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是AC=AE .【考点】全等三角形的判定.【分析】先根据∠BAE=∠DAC,等号两边都加上∠EAC,得到∠BAC=∠DAE,由已知AB=AD,要使△ABC≌△ADE,根据全等三角形的判定定理ASA:添上AC=AE.【解答】解:补充的条件是:AC=AE.理由如下:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE.∵在△ABC与△ADE中,,∴△ABC≌△ADE(SAS).故答案是:AC=AE.11.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 5 .【考点】角平分线的性质.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.12.如图,在△ABC中,AB=AC,DE垂直平分AB交AC于E,BC=10cm,△BCE的周长是24cm,且∠A=40°,则∠EBC= 30°;AB= 14cm .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形性质求出∠ABC,求出AE=BE,求出∠ABE=∠A=40°,即可求出∠EBC,求出AC+BC=24cm,即可求出AB.【解答】解:∵∠A=40°,AB=AC,∴∠ABC=∠C==70°,∵DE垂直平分AB交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠EBC=∠ABC=∠ABE=70°﹣40°=30°,∵BC=10cm,△BCE的周长是24cm,∴BE+EC+BC=24cm,∴AE+EC+BC=24cm,∴AC+BC=24cm,∴AC=14cm,即AB=14cm,故答案为:30°,14cm三、解答题(本大题5小题,每小题6分,共30分)13.解方程:﹣=0.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣6﹣2x=0,解得:x=6,经检验x=6是分式方程的解.14.若关于x的方程=无解,则m的值是多少?【考点】分式方程的解.【分析】把已知分式方程转化为整式方程,通过解方程求得x=1﹣,再根据原分式方程无解可求出m的值.【解答】解:由原方程的,得2(x﹣1)=﹣m,解得x=1﹣,当x=1﹣时,关于x的方程=无解,∴(x﹣5)(10﹣2x)=0,即(﹣﹣4)(8+m)=0,解得,m=﹣8.答:m的值是﹣8.15.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,求∠BPC的大小.【考点】三角形内角和定理.【分析】根据角平分线的定义得到∠PBC=25°,∠PCB=40°,根据三角形内角和定理计算即可.【解答】解:∵∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=180°﹣∠PBC﹣∠PCB=115°.16.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【考点】提公因式法与公式法的综合运用;多项式乘多项式;平方差公式.【分析】(1)先去括号,然后合并同类项即可;(2)先提公因式(x﹣y),然后用平方差公式分解因式.【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).17.如图,求证:∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和把这六个角转化为一个三角形的内角,再根据三角形的内角和等于180°解答.【解答】解:如图所示,∠A+∠B=∠1,∠C+∠D=∠2,∠E+∠2=∠3,∠F+∠G=∠4,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠1+∠3+∠4,∵三角形的内角和等于180°,∴∠1+∠3+∠4=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.四、(本大题共4小题,每小题8分,共32分)18.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【考点】全等三角形的判定与性质.【分析】(1)欲证两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF 可以得出∠ACB=∠F,条件找到,全等可证.(2)根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.【解答】证明:(1)∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.19.如图1所示,AB=AD,AC=AE,∠1=∠2.(1)求证:BC=DE.(2)如图2,若M、N分别为BC、DE的中点,试确定AM与AN的关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据题意证明∠BAC=∠DAE,利用SAS判断△ABC≌△ADE,根据全等三角形的性质证明;(2)根据全等三角形的性质得到BM=DN,证明△ABM≌△ADN即可.【解答】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC.即∠BAC=∠DAE.在△ABC与又△ADE中,,∴△ABC≌△ADE.∴BC=DE.(2)AM=AN;理由如下:由(1)△ABC≌△ADE,∴∠B=∠D,∵BC=DE,M、N分别为BC、DE的中点,∴BM=DN,在△ABM和△ADN中,,∴△ABM≌△ADN,∴AM=AN.20.若+|b﹣2|=0,求以a、b为边长的等腰三角形的周长.【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.【分析】先根据非负数的性质列式求出a、b,再分两种情况讨论求解即可.【解答】解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.21.如图,在△ABC中,∠A=2∠C,D是AC上的一点,且BD⊥BC,P在AC上移动.(1)当P移动到什么位置时,BP=AB.(2)求∠C的取值范围.【考点】等腰三角形的判定与性质.【分析】(1)先判断出点P移动的位置为DC的中点.根据直角三角形斜边上的中线等于斜边的一半可得DP=PC=BP,根据等边对等角求出∠C=∠PBC,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠APB=2∠C,然后求出∠A=∠APB,再根据等角对等边求解即可;(2)根据三角形的一个外角大于任何一个与它不相邻的内角可得∠BDC>∠A,再根据直角三角形两锐角互余列出不等式,然后求解即可.【解答】解:(1)∵BD⊥BC,∴△DBC是直角三角形,当P移动到DC的中点时,DP=PC=BP,∴∠C=∠PBC,∠APB=∠C+∠PBC=2∠C,又∵∠A=2∠C,∴∠A=∠APB,∴△ABP是等腰三角形,∴BP=AB;(2)根据三角形的外角性质,在△ABD中,∠BDC>∠A,∵∠BDC+∠C=90°,∴∠A+∠C<90°,即2∠C+∠C<90°,解得0°<∠C<30°.五、(本大题10分)22.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.【考点】分式方程的应用.【分析】设出七年级捐款的人数,则可表示出八年级捐款的人数,根据两个年级人均捐款数相等列分式方程求解即可.【解答】解:设七年级捐款的人数为x人,则八年级捐款的人数为(x+20)人由题意得:解这个方程,得x=480经检验,x=480是原方程的解∴x+20=500(人)答:七年级捐款的人数为480人,则八年级捐款的人数为500人.六、(本大题12分)23.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?【考点】分式方程的应用.【分析】(1)等量关系为:4月份营业数量=5月份营业数量﹣20;(2)算出4月份的数量,进而求得成本及每件的盈利,进而算出5月份的售价及每件的盈利,乘以5月份的数量即为5月份的获利.【解答】解:(1)设该种纪念品4月份的销售价格为x元.根据题意得,20x=1000解之得x=50,经检验x=50是原分式方程的解,且符合实际意义,∴该种纪念品4月份的销售价格是50元;(2)由(1)知4月份销售件数为(件),∴四月份每件盈利(元),5月份销售件数为40+20=60件,且每件售价为50×0.9=45(元),每件比4月份少盈利5元,为20﹣5=15(元),所以5月份销售这种纪念品获利60×15=900(元).。