12圆周运动的常见模型
物理圆周运动圆锥模型结论-概述说明以及解释
物理圆周运动圆锥模型结论-概述说明以及解释1.引言1.1 概述物理圆周运动是指物体在一个平面上绕着一个固定点做连续运动的现象。
它是物理学中一个重要的研究领域,涉及到许多重要的概念和定律,对于我们理解物体运动的规律和性质具有重要意义。
物理圆周运动的特点可以表述为以下几个方面:首先,物理圆周运动的轨迹呈圆形或近似为圆形,这是因为物体在运动时受到一个向心的力作用,导致其运动轨迹局限在一个固定的半径范围内。
其次,物理圆周运动的速度大小是不断变化的,但方向始终垂直于圆的切线方向,并指向圆心。
这是因为物体受到向心力的作用,导致其方向不断改变,但始终指向圆心。
另外,物理圆周运动的加速度大小也是不断变化的,但方向始终指向圆心。
加速度的大小取决于物体的质量和向心力的大小,而方向始终指向圆心是由于向心力始终朝向圆心。
圆锥模型是一种常用的物理模型,它可以有效地解释物理圆周运动的性质和规律。
圆锥模型假设物体在圆周运动过程中,其运动轨迹可以看作是一个圆锥的侧面。
这个模型可以帮助我们更好地理解物体在圆周运动中的加速度变化和速度方向的变化。
本文将重点介绍物理圆周运动的定义、特点以及圆锥模型在解释物理圆周运动中的应用。
同时,我们还将总结物理圆周运动的特点,评价圆锥模型在解释物理圆周运动中的有效性,并展望物理圆周运动研究的未来。
通过对物理圆周运动和圆锥模型的深入探讨,我们可以更好地理解和应用这一重要的物理现象,为相关领域的研究提供有价值的参考。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分主要介绍整篇文章的组织架构和内容安排,为读者提供一个清晰的脉络,帮助读者更好地理解和把握文章的主旨。
首先,本文将分为三个主要部分:引言、正文和结论。
引言部分主要对本文的主题进行概述,介绍物理圆周运动圆锥模型的研究背景和重要性。
同时,引言还会介绍本文的结构和目的,为读者提供一个对全文内容的预期和概览。
接下来是正文部分,分为三个小节。
圆周运动的三种模型
圆周运动的三种模型一、圆锥摆模型:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力分析,正交分法解得:竖直方向:水平方向:F X=最终得F合=。
用力的合成法得F合=。
半径r=,圆周运动F向==,由F合=F向可得V=,ω=圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
分析方法同样适用自行车,摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。
共同点是由重力和弹力的合力提供向心力,向心力方向水平。
1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。
(小球的半径远小于R)2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。
求(取g=10m/s2,结果可用根式表示):(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?二.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 =2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力)3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道)练习:质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( )A . 0 B. mg C .3mg D 5mg三.轻杆模型:(一)轻杆模型的特点:1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力)2. 当 =R v m 2临界( 轻杆对小球的作用力N= 0 ),gR v 临界3 当 (即0<v< v 临界)时,有 =Rv m 2( 轻杆对小球的作用力N 为 力) 4 当(即v>v 临界)时,有 =R v m 2(轻杆对小球的作用力N 为 力) 练习:半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( )A. 外轨道受到24N 的压力B. 外轨道受到6N 的压力C. 内轨道受到24N 的压力D. 内轨道受到 6N 的压力一.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:2. 小球能通过最高点的条件:(当时,绳子对球产生拉力)3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是()A . 0 B. mg C .3mg D 5mg分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型当小球经过最高点的临界速度为v ,则当小球以2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则因为所以根据牛顿第三定律,小球对轨道压力的大小也是,故选c.1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的临界条件:v=0 ,N=mg (N为支持力)2. 当时,有(N为支持力)3 当时,有(N=0 )4 当时,有(N 为拉力)例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则()A. 外轨道受到24N的压力B. 外轨道受到6N的压力C. 内轨道受到24N 的压力D. 内轨道受到6N的压力分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:当小球到最高点轨道对其作用力为零时:有则, =>2m/s所以,内轨道对小球有向上的支持力,则有代入数值得:N=6N根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选D三.圆锥摆模型:圆锥摆模型在圆周运动中的应用:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆线与竖直方向成θ角,则分析:摆球在水平面上做匀速圆周运动,加速度必定指向圆心,依据牛顿第二定律,对摆球受力分析,得:圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
圆周运动绳杆模型
悬索桥的吊索通过绳杆模型将主梁与主缆连接,使主梁能够 悬挂在主缆上并保持平衡。
卫星轨道的设计与运行
人造卫星轨道
人造卫星的轨道通过绳杆模型与地球 连接,通过地球引力与绳杆模型的拉 力平衡,使卫星能够绕地球做圆周运 动。
月球探测器轨道
月球探测器的轨道通过绳杆模型与月 球连接,通过月球引力与绳杆模型的 拉力平衡,使探测器能够绕月球做圆 周运动。
05
绳杆模型在现实生活中的应用
游乐场的旋转设施
旋转木马
绳杆模型在旋转木马中起到支撑和传动的作用,通过绳索与木马连接,实现木马 的旋转运动。
摩天轮
摩天轮的旋转臂通过绳索与座舱连接,使座舱在旋转臂上做圆周运动,同时绳索 也起到安全保护的作用。
桥梁的拉索设计
斜拉桥
斜拉桥的拉索通过绳杆模型将主梁与桥墩连接,使主梁能够 承受载荷并保持稳定。
双摆运动
总结词
双摆运动是指两个单摆同时进行摆动,其运动轨迹为两个圆弧或椭圆弧的组合,适用于分析具有两个 固定圆心和摆长的双摆系统。
详细描述
双摆运动是两个单摆同时进行摆动的组合运动,其运动轨迹为两个圆弧或椭圆弧的组合。在双摆运动 中,两个单摆的摆线长度和初始角度都可以不同,但它们都受到重力的作用。在摆动过程中,双摆系 统的角速度、角加速度、回复力、动能和势能等物理量都随时间变化。
运动。
向心力的方向始终指向圆心,与 速度方向垂直。
绳杆模型中的离心力分析
离心力:当物体做圆周运动时, 若没有向心力作用,物体将沿 切线方向飞出。
在圆周运动绳杆模型中,离心 力与向心力大小相等、方向相 反。
离心力的大小与物体的质量、 速度和圆周半径有关。
04
圆周运动绳杆模型的实例分析
圆周运动绳杆模型(最新整理)
圆周运动中的临界问题一.两种模型:(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m ,这时的速度是做圆周运动的最小速rv 2度v min = . (绳只能提供拉力不能提供支持力).类此模型:竖直平面内的内轨道(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.)①当v =0 时,杆对小球的支持力 小球的重力;②当0<v <时,杆对小球的支持力 于小球的重力;gr ③当v =时,杆对小球的支持力 于零;gr ④当v > 时,杆对小球提供 力.gr类此模型:竖直平面内的管轨道.1、圆周运动中绳模型的应用【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?【训练1】游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点B 时恰好对轨道无压力。
求在圆形轨道最高点B 时的速度大小。
【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.2、圆周运动中的杆模型的应用【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度可能为0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力【训练4】如图所示,在竖直平面内有一内径为d 的光滑圆管弯曲而成的环形轨道,环形轨道半径R 远远大于d ,有一质量为m 的小球,直径略小于d ,可在圆管中做圆周运动。
高中物理圆周运动模型_概述及解释说明
高中物理圆周运动模型概述及解释说明1. 引言1.1 概述在高中物理学习中,圆周运动是一个非常重要的概念。
它涉及到物体在环形轨道上运动过程中所受到的力和速度的变化,以及与之相关的各种数学描述和公式推导。
通过深入理解圆周运动模型,我们可以更好地理解自然界中许多现象和实际问题,并能够应用这些知识来解决相应的物理问题。
本文将对高中物理课程中关于圆周运动模型的基本概念进行概述和解释说明,旨在帮助读者更加全面和深入地理解圆周运动这一重要物理概念,并能够应用相关知识解决实际问题。
1.2 文章结构本文分为五个主要部分。
首先是引言部分,简要介绍了本文的主题和目标。
其次是圆周运动模型的基本概念部分,包括对圆周运动简介、特点以及在圆周运动中物体受力分析等内容进行阐述。
第三部分涉及到圆周运动的数学描述与公式推导,具体包括角度与弧长关系、角速度与线速度关系以及加速度与半径、角速度之间的关系的推导过程。
第四部分是实例解析,通过求解常见的圆周运动问题,演示不同类型问题的解题方法和思路。
最后一部分是结论与总结,对圆周运动模型进行认识与理解、应用与意义以及局限性和未来研究方向进行讨论。
1.3 目的本文旨在向读者介绍并详细解释高中物理课程中涉及到的圆周运动模型,帮助读者全面理解圆周运动概念的含义和特点,并且能够应用相应知识解决实际问题。
通过本文内容的学习,读者可以更好地把握物体在圆周运动中所受到力和速度变化规律,并能够利用这些知识来分析和解决相关问题。
同时,对于未来进一步研究圆周运动模型以及其在现实生活中应用领域的读者来说,本文还可以为其提供一定的参考和启发。
2. 圆周运动模型的基本概念:2.1 圆周运动简介:圆周运动是物体围绕某一固定点以圆形轨迹进行的运动。
这种运动常见于日常生活中,如旋转的车轮、风扇叶片的转动等。
2.2 圆周运动的特点:在圆周运动中,物体围绕固定点做匀速或变速旋转,具有以下特点:首先,圆周运动中物体离心加速度恒定,大小与距离固定点的距离成正比。
第1讲圆周运动中常见的模型及应用(hua)
竖直平面内的变速圆周运动1.无支撑模型——绳球或内轨道模型如图所示,没有物体支撑的小球,在竖直平面内做变速圆周运动过最高点的情况.(1)分析小球在最低点和最高点的受力情况最低点: 最高点:表达式 表达式(2)当小球在最高点的速度为多少时,细绳的拉力为零?解:最高点小球受重力mg 和细绳拉力T 的作用,它们的提供向心力,有2v mg T mR+=细绳拉力为零时,有2v mg m R =解得v gR =【小结归纳】(1)通过最高点临界条件:绳子的拉力(或轨道的压力)刚好为零,小球的重力提供其圆周运动的向心力,即mg =m v 2临界r.上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=gr . (2)通过最高点的条件:v ≥v 临界,当v >v 临界时,绳、轨道对球分别产生拉力F 、压力N . (3)不能通过最高点的条件:v <v 临界(实际上球还没有到最高点就脱离了轨道).典型例题:1.如图4所示,细杆的一端与一小球相连,可绕过O 的水平轴自由转动。
现给小球一初速度,使它做圆周运动。
图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球作用力可能是 ( ) A .a 处为拉力,b 处为拉力 B .a 处为拉力,b 处为推力 C .a 处为推力,b 处为拉力 D .a 处为推力,b 处为推力R 绳 R 绳T mgT mg2.汽车以恒定的速率v 通过半径为r 的凹型桥面,如图6-8-4 所示,求汽车在最低点时对桥面的压力是多大?3.如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m ,小杯通过最高点的速度为4m/s ,g 取10m/s 2,求: (1) 在最高点时,绳的拉力? (2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点 时最小速率是多少?4.如图5-4-6所示,细绳一端系着质量为M=0.6kg 的物体,静止在水平面上. 另一端通过光滑的小孔吊着质量为m=0.3kg 的物体,M 的中点与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N.现使此平面绕中心轴转动.问角速度ω在什么范围内M 处于静止状态?(g 取10m/s 2)OMmr 图(5-4-6)针对性练习:1.长度为L =0.5m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如图5所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m /s ,g 取10m /s 2,则此时细杆OA 受到 ( ) A .6.0N 的拉力 B .6.0N 的压力 C .24N 的拉力D .24N 的压力2.一质量为m 的物体,沿半径为R 的向下凹的圆形轨行,如图6-8-7所示,经过最低点的速度为v ,物体与轨道之间的动摩檫因数为μ,则它在最低点时受到的摩檫力为:( ) A .μmg B .μmv 2/R C .μm(g+v 2/R) D .μm(g -v 2/R)3.一辆质量m=2.0t 的小轿车,驶过半径R=90m 的一段圆弧形桥面,重力加速度g=10m /s 2.求: (1)若桥面为凹形,汽车以20m /s 的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以l0m /s 的速度通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力4.一辆载重汽车的质量为4m,通过半径为R 的拱形桥,若桥顶能承受的最大压力为F=3mg ,为了安全行驶,汽车应以多大的速度通过桥顶?AL Om图 55.如图所示,小球沿光滑的水平面冲上一人光滑的半圆形轨道,轨道半公式为R,小球在轨道的最高点对轨道压力等于小球的重力,问(1)小球到达轨道最高点时的速度为多大?6.A、B两球质量分别为m1与m2,用一劲度系数为K的弹簧相连,一长为l1的细线与m1相连,置于水平光滑桌面上,细线的另一端拴在竖直轴OO`上,如图所示,当m1与m2均以角速度w绕OO`做匀速圆周运动时,弹簧长度为l2。
专题12 圆周运动模型(原卷版)-2021届高考物理热点题型归纳与变式演练
2021届高考物理一轮复习热点题型归纳与变式演练专题12 圆周运动模型【专题导航】目录热点题型一圆周运动的运动学问题 (1)热点题型二圆周运动中的动力学问题 (3)模型一车辆转弯问题 (4)模型二圆锥摆模型 (5)热点题型三竖直面内圆周运动中的临界问题的分析方法 (6)模型一汽车过拱桥模型 (7)模型二轻绳模型 (8)模型三轻杆模型 (9)热点题型四圆周运动中的两类临界问题 (10)热点题型五实验:验证向心力的影响因素 (12)【题型归纳】热点题型一圆周运动的运动学问题【题型要点】1.运动参量当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 3.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 4.常见的传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A=v B.(3)同轴转动:如图甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA=ωB,由v=ωr知v与r成正比.【例1】(多选)(2020·辽宁丹东质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,小齿轮边缘的A点和大齿轮边缘的B点()A.A点和B点的线速度大小之比为1∶1 B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1 D.以上三个选项只有一个是正确的【变式1】(多选)(2019·福建漳州市第二次教学质量监测)明代出版的《天工开物》一书中记载:“其湖池不流水,或以牛力转盘,或聚数人踏转.”并附有牛力齿轮翻车的图画如图5所示,翻车通过齿轮传动,将湖水翻入农田.已知A、B齿轮啮合且齿轮之间不打滑,B、C齿轮同轴,若A、B、C三齿轮半径的大小关系为r A>r B>r C,则()A.齿轮A、B的角速度相等B.齿轮A的角速度比齿轮C的角速度小C.齿轮B、C的角速度相等D.齿轮A边缘的线速度比齿轮C边缘的线速度小【变式2】如图所示,轮O1、O3固定在同一转轴上,轮O1、O2用皮带连接且不打滑.在O1、O2、O3三个轮的边缘各取一点A、B、C,已知三个轮的半径之比r1∶r2∶r3=2∶1∶1,求:(1)A、B、C三点的线速度大小之比v A∶v B∶v C;(2)A、B、C三点的角速度之比ωA∶ωB∶ωC;(3)A、B、C三点的向心加速度大小之比a A∶a B∶a C.热点题型二圆周运动中的动力学问题【题型要点】1.向心力的来源向心力是按力的作用效果命名的,不是物体又受到的一个力,它可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力.2.几种典型运动模型模型一车辆转弯问题【例1】(多选)(2020·安徽合肥市第二次质检)如图所示为运动员在水平道路上转弯的情景,转弯轨迹可看成一段半径为R的圆弧,运动员始终与自行车在同一平面内.转弯时,只有当地面对车的作用力通过车(包括人)的重心时,车才不会倾倒.设自行车和人的总质量为M,轮胎与路面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g.下列说法正确的是()A.车受到地面的支持力方向与车所在平面平行B.转弯时车不发生侧滑的最大速度为μgRC.转弯时车与地面间的静摩擦力一定为μMg D.转弯速度越大,车所在平面与地面的夹角越小【变式1】.(2020·四川遂宁三诊)如图所示,图1是甲汽车在水平路面转弯行驶,图2是乙汽车在倾斜路面上转弯行驶.关于两辆汽车的受力情况,以下说法正确的是()A.两车都受到路面竖直向上的支持力作用B.两车都一定受平行路面指向弯道内侧的摩擦力C.甲车可能不受平行路面指向弯道内侧的摩擦力D.乙车可能受平行路面指向弯道外侧的摩擦力【变式2】(多选)(2020·天津市南开区下学期二模)飞机飞行时除受到发动机的推力和空气阻力外,还受到重力和机翼的升力,机翼的升力垂直于机翼所在平面向上,当飞机在空中盘旋时机翼倾斜(如图9所示),以保证重力和机翼升力的合力提供向心力.设飞机以速率v在水平面内做半径为R的匀速圆周运动时机翼与水平面成θ角,飞行周期为T.则下列说法正确的是()A.若飞行速率v不变,θ增大,则半径R增大B.若飞行速率v不变,θ增大,则周期T增大C.若θ不变,飞行速率v增大,则半径R增大D.若飞行速率v增大,θ增大,则周期T可能不变模型二圆锥摆模型【例2】(多选)(2020·四川成都七中5月测试)天花板下悬挂的轻质光滑小圆环P可绕过悬挂点的竖直轴无摩擦地旋转.一根轻绳穿过P,两端分别连接质量为m1和m2的小球A、B(m1≠m2).设两球同时做如图6所示的圆锥摆运动,且在任意时刻两球均在同一水平面内,则()A.两球运动的周期相等B.两球的向心加速度大小相等C.球A、B到P的距离之比等于m2∶m1 D.球A、B到P的距离之比等于m1∶m2【变式1】(多选)如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点,设法让两个小球均在水平面上做匀速圆周运动.已知L1跟竖直方向的夹角为60°,L2跟竖直方向的夹角为30°,下列说法正确的是()A.细线L1和细线L2所受的拉力大小之比为3∶1 B.小球m1和m2的角速度大小之比为3∶1C.小球m1和m2的向心力大小之比为3∶1 D.小球m1和m2的线速度大小之比为33∶1【变式2】(2020·河南省八市重点高中联盟第三次模拟)如图所示,用一根细绳一端系一个小球,另一端固定,给小球不同的初速度,使小球在水平面内做角速度不同的圆周运动,则下列细绳拉力F、悬点到轨迹圆心高度h、向心加速度a、线速度v与角速度平方ω2的关系图象正确的是()【变式3】.(2020·黄冈中学模拟)“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,沿表演台的侧壁做匀速圆周运动.简化后的模型如图所示,若表演时杂技演员和摩托车的总质量不变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H,侧壁倾斜角度α不变,则下列说法中正确的是()A.摩托车做圆周运动的H越高,向心力越大B.摩托车做圆周运动的H越高,线速度越大C.摩托车做圆周运动的H越高,向心力做功越多D.摩托车对侧壁的压力随高度H变大而减小热点题型三竖直面内圆周运动中的临界问题的分析方法【题型要点】常见模型【解题技巧】(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同.(2)确定临界点:抓住绳模型中最高点v≥gR及杆模型中v≥0这两个临界条件.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.模型一 汽车过拱桥模型【例1】.一辆汽车匀速率通过一座圆弧形拱形桥后,接着又以相同速率通过一圆弧形凹形桥.设两圆弧半径相等,汽车通过拱形桥桥顶时,对桥面的压力F N1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力为F N2,则F N1与F N2之比为( ) A .3∶1B .3∶2C .1∶3D .1∶2【变式1】如图,在一固定在水平地面上A 点的半径为R 的球体顶端放一质量为m 的物块,现给物块一水平初速度v 0,则( )A .若v 0=gR ,则物块落地点距离A 点为 2RB .若球面是粗糙的,当v 0<gR 时,物块一定会沿球面下滑一段,再斜抛离开球面C .若v 0<gR ,则物块落地点离A 点为RD .若v 0≥gR ,则物块落地点离A 点至少为2R模型二 轻绳模型【例2】.(多选)(2020·黑龙江哈尔滨三中期中)如图所示,长为L 的细绳一端拴一质量为m 的小球,另一端固定在O 点,绳的最大承受能力为11mg ,在O 点正下方O ′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O ′为轴完成竖直面内完整的圆周运动,则钉的位置到O 点的距离为( )A .最小为25LB .最小为35LC .最大为45LD .最大为910L 【例2】如图甲所示,一轻杆一端固定在O 点,另一端固定一小球,在竖直平面内做半径为R 的圆周运动。
圆周运动的几个模型
圆周运动的几个模型一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度时,细绳的拉力。
(2)当转盘的角速度时,细绳的拉力。
图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得。
(1)因为,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即。
(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿的第二定律得:,解得。
2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。
A 的质量为,离轴心,B 的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?角速度为多大?()图2.02 (1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()解析:(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。
再增大,AB间绳子开始受到拉力。
由,得:(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。
如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。
设此时角速度为,绳中张力为,对A、B受力分析:对A有对B有联立解得:3.如图2.03所示,两个相同材料制成的靠摩擦传动的轮A和轮B水平放置,两轮半径,当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。
人教版2020届高考物理考点--点对点专题强化--圆周运动的经典常考模型
人教版2020年高考物理考点---点对点专题强化-----圆周运动的经典常考模型知识点:r Tm r mw r v m ma F F n n 22224π=====合常见圆周运动模型的特点:一、水平面内圆盘模型的临界问题: 1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m =mv 2r ,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心. 2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力. 二、竖直面内圆周运动的临界极值问题: 1.竖直面内圆周运动两类模型一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“轻绳模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“轻杆模型”. 2.竖直平面内圆周运动的两种模型特点及求解方法三、斜面上圆周运动的临界问题:在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、轻绳控制、轻杆控制,物体的受力情况和所遵循的规律也不相同.四、圆周运动的动力学问题:1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型 (一)圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。
2.受力特点:摆球质量为m ,只受两个力即竖直向下的重力mg 和沿摆线方向的拉力T F 。
六种圆周运动模型
m v2 FN G R
五、轻绳模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
v2 gR :绳子或外轨道对物体的弹力: F m R G
方向竖直向下
v = gR :绳子或外轨道对物体的弹力:F=0
:物体不能过最高点!!! v< gR
v = gR 是物体所受弹力方向变化的临界速度。
m v2 F心 m w2 r r
解得:
v
w
gr tan
g tan r
规律:稳定状态下,小球所处的位置越高,半径r越 大,角速度越小,线速度越大,而小球受到的支持 力和向心力并不随位置的变化而变化。
三、火车转弯模型:
四、汽车过桥模型:
m v2 F向 m a R
m v2 F向 m a R
六、轻杆模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v> gR :绳子或轨道对物体的弹力:
v2 F m G R
方向竖直向下
v = gR :轻杆或管道对物体的弹力:F=0
:轻杆或管道对物体的弹力: v< gR
v2 FN G m R
方向竖直向上
v = gR
是物体所受弹力方向变化的临界速度。
六种圆周运动模型分析
一、圆盘模型:
m v2 F合 f F心 m w2 r r
当f最大值时:
f m g
线速度有最大值:v
grHale Waihona Puke 角速度有最大值:w
g
r
二、圆锥摆模型:
由拉力F和重力G的合力提供向心力
倒置圆锥摆模型:
1.如果内壁光滑,由重力和支持力的合力提供向心力
圆周运动的模型
圆周运动的模型课文中的圆周运动只有汽车过桥和火车转弯两个实例,而从这两个实例可以变化出很多模型。
(一)汽车过桥原型:汽车过凸桥 如图所示,汽车受到重力G 和支持力F N ,合力提供汽车过桥所需的向心力。
假设汽车过桥的速度为v ,质量为m ,桥的半径为r ,rmv F G N 2=-。
分析:当支持力为零时,只有重力提供汽车所需的向心力,即rmv G 20=,gr v =01. 当汽车的速度0v v >,汽车所受的重力G 小于过桥所需的向心力,汽车过桥时就会离开桥面飞起来。
2. 当汽车的速度0v v =,汽车所受的重力G 恰好等于过桥需要的向心力,汽车恰好通过桥面的最高点。
),(020gr v rmv G == 3. 当汽车的速度0v v <,汽车所受的重力G 大于所需的向心力,此时需要的向心力要由重力和支持力的合力共同来提供。
)(2rmv F G N =- 因此,汽车过凸桥的最大速度为gr 。
模型一:绳拉小球在竖直平面内过最高点的运动。
绳对小球只能产生沿绳收缩方向的拉力如图2所示,小球所受的重力和绳的拉力的合力提供小球所需的向心力,即rv m F mg T 2=+。
分析:当绳的拉力为零时,只有重力提供小球所需的向心力,即rmv G 20=,gr v =0(2)临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度)1. 当小球的速度0v v >,物体所受的重力G 已不足以提供物体所需的向心力。
不足的部F NGv G F T分将由小球所受的绳的拉力来提供,只要不超过绳的承受力,已知物体的速度,就可求出对应的拉力。
)(2rv m F mg T =+2. 当小球的速度0v v =,物体所受的重力G 刚好提供物体所需的向心力。
),(020gr v rmv G ==3. 当小球的速度0v v <,物体所受的重力G 大于所需的向心力,此时小球将上不到最高点。
六种圆周运动模型公开课获奖课件
五、轻绳模型
1、安全通过最高点临界条件:
v临 = gR
2、对最高点分析:
v> gR :绳子或外轨道对物体弹力:
v2 F m G
R
方向竖直向下
v= gR :绳子或外轨道对物体弹力:F=0
v< gR:物体不能过最高点!!!
v = gR 是物体所受弹力方向变化临界速度。
第7页
六、轻杆模型
1、安全通过最高点临界条件:
F心
mv 2 r
mw2r
解得:
v gr
tan
w g
tan r
规律:稳定状态下,小球所处位置越高,半径r越大, 角速度越小,线速度越大,而小球受到支持力和向心 力并不随位置变化而变化。
第4页
三、火车转弯模型:Байду номын сангаас
第5页
四、汽车过桥模型:
F向
ma
mv2 R
FN
G
mv2 R
F向
ma
mv2 R
第6页
六种圆周运动模型分析
第1页
一、圆盘模型:
F合
f
F心
mv 2 r
mw2r
当f最大值时: f mg
线速度有最大值:v gr
角速度有最大值:w g
r
第2页
二、圆锥摆模型: 由拉力F和重力G合力提供向心力
第3页
倒置圆锥摆模型:
1.假如内壁光滑,由重力和支持力合力提供向心力
mg
F合 tan F心
v临 = gR
2、对最高点分析:
v> gR :绳子或轨道对物体弹力:
F m v2 G R
方向竖直向下
v= gR :轻杆或管道对物体弹力:F=0
专题12 圆周运动模型(解析版)
2021届高考物理一轮复习热点题型归纳与变式演练专题12 圆周运动模型【专题导航】目录热点题型一圆周运动的运动学问题 (1)热点题型二圆周运动中的动力学问题 (4)模型一车辆转弯问题 (6)模型二圆锥摆模型 (8)热点题型三竖直面内圆周运动中的临界问题的分析方法 (11)模型一汽车过拱桥模型 (12)模型二轻绳模型 (13)模型三轻杆模型 (15)热点题型四圆周运动中的两类临界问题 (17)热点题型五实验:验证向心力的影响因素 (22)【题型归纳】热点题型一圆周运动的运动学问题【题型要点】1.运动参量当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 3.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 4.常见的传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .(3)同轴转动:如图甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA=ωB,由v=ωr知v与r成正比.【例1】(多选)(2020·辽宁丹东质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,小齿轮边缘的A点和大齿轮边缘的B点()A.A点和B点的线速度大小之比为1∶1 B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1 D.以上三个选项只有一个是正确的【答案】AC【解析】:题图中三个齿轮边缘线速度相等,A点和B点的线速度大小之比为1∶1,由v=ωr可得,线速度一定时,角速度与半径成反比,A点和B点角速度之比为3∶1,选项A、C正确,选项B、D错误.【变式1】(多选)(2019·福建漳州市第二次教学质量监测)明代出版的《天工开物》一书中记载:“其湖池不流水,或以牛力转盘,或聚数人踏转.”并附有牛力齿轮翻车的图画如图5所示,翻车通过齿轮传动,将湖水翻入农田.已知A、B齿轮啮合且齿轮之间不打滑,B、C齿轮同轴,若A、B、C三齿轮半径的大小关系为r A>r B>r C,则()A .齿轮A 、B 的角速度相等 B .齿轮A 的角速度比齿轮C 的角速度小C .齿轮B 、C 的角速度相等D .齿轮A 边缘的线速度比齿轮C 边缘的线速度小 【答案】BC【解析】齿轮A 与齿轮B 是齿轮传动,边缘线速度大小相等,根据公式v =ωr 可知,半径比较大的A 的角速度小于B 的角速度.而B 与C 是同轴转动,角速度相等,所以齿轮A 的角速度比齿轮C 的角速度小,故A 错误,B 、C 正确;B 、C 角速度相等,齿轮B 的半径大,边缘线速度大于C 的,又齿轮A 与齿轮B 边缘线速度大小相等,所以齿轮A 边缘的线速度比C 边缘的线速度大,故D 错误.【变式2】如图所示,轮O 1、O 3固定在同一转轴上,轮O 1、O 2用皮带连接且不打滑.在O 1、O 2、O 3三个轮的边缘各取一点A 、B 、C ,已知三个轮的半径之比r 1∶r 2∶r 3=2∶1∶1,求:(1)A 、B 、C 三点的线速度大小之比v A ∶v B ∶v C ; (2)A 、B 、C 三点的角速度之比ωA ∶ωB ∶ωC ; (3)A 、B 、C 三点的向心加速度大小之比a A ∶a B ∶a C . 【答案】(1)2∶2∶1 (2)1∶2∶1 (3)2∶4∶1【解析】(1)令v A =v ,由于皮带传动时不打滑,所以v B =v .因ωA =ωC ,由公式v =ωr 知,当角速度一定时,线速度跟半径成正比,故v C =12v ,所以v A ∶v B ∶v C =2∶2∶1.(2)令ωA =ω,由于轮O 1、O 3同轴转动,所以ωC =ω.因v A =v B ,由公式ω=vr 知,当线速度相等时,角速度跟半径成反比,故ωB =2ω,所以ωA ∶ωB ∶ωC =1∶2∶1.(3)令A 点向心加速度大小为a A =a ,因v A =v B ,由公式a =v 2r 知,当v 一定时,向心加速度大小跟半径成反比,所以a B =2a .又因为ωA =ωC ,由公式a =ω2r 知,当角速度一定时,向心加速度大小跟半径成正比,故a C =12a ,所以a A ∶a B ∶a C =2∶4∶1.热点题型二 圆周运动中的动力学问题【题型要点】1.向心力的来源向心力是按力的作用效果命名的,不是物体又受到的一个力,它可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力.2.几种典型运动模型模型一车辆转弯问题【例1】(多选)(2020·安徽合肥市第二次质检)如图所示为运动员在水平道路上转弯的情景,转弯轨迹可看成一段半径为R的圆弧,运动员始终与自行车在同一平面内.转弯时,只有当地面对车的作用力通过车(包括人)的重心时,车才不会倾倒.设自行车和人的总质量为M,轮胎与路面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g.下列说法正确的是()A.车受到地面的支持力方向与车所在平面平行B.转弯时车不发生侧滑的最大速度为μgRC.转弯时车与地面间的静摩擦力一定为μMg D.转弯速度越大,车所在平面与地面的夹角越小【答案】BD【解析】车受到的地面的支持力方向不与车所在的平面平行,故A错误;设自行车受到地面的弹力为F N,则有:F fm=μF N,由平衡条件有:F N=Mg,根据牛顿第二定律有:F fm=M v m2R,代入数据解得:v m=μgR,故B正确;对车(包括人)受力分析如图,地面对自行车的弹力F N 与摩擦力F f 的合力过人与车的重心,则:1tan θ=F f Mg ,解得F f =Mgtan θ,转弯时车与地面间的静摩擦力不一定为μMg ,转弯速度越大,车所在平面与地面的夹角越小,C 错误,D 正确. 【变式1】.(2020·四川遂宁三诊)如图所示,图1是甲汽车在水平路面转弯行驶,图2是乙汽车在倾斜路面上转弯行驶.关于两辆汽车的受力情况,以下说法正确的是( )A .两车都受到路面竖直向上的支持力作用B .两车都一定受平行路面指向弯道内侧的摩擦力C .甲车可能不受平行路面指向弯道内侧的摩擦力D .乙车可能受平行路面指向弯道外侧的摩擦力 【答案】D.【解析】:图1中路面对汽车的支持力竖直向上;图2中路面的支持力垂直路面斜向上,A 错误;图1中甲汽车受到平行路面指向弯道内侧的摩擦力作为向心力;图2中若路面的支持力与重力的合力提供向心力,即mg tan θ=m v 2R ,即v =gR tan θ,则此时路面对车没有摩擦力作用;若v <gR tan θ,则乙车受平行路面指向弯道外侧的摩擦力,B 、C 错误,D 正确.【变式2】(多选)(2020·天津市南开区下学期二模)飞机飞行时除受到发动机的推力和空气阻力外,还受到重力和机翼的升力,机翼的升力垂直于机翼所在平面向上,当飞机在空中盘旋时机翼倾斜(如图9所示),以保证重力和机翼升力的合力提供向心力.设飞机以速率v 在水平面内做半径为R 的匀速圆周运动时机翼与水平面成θ角,飞行周期为T .则下列说法正确的是( )A .若飞行速率v 不变,θ增大,则半径R 增大B .若飞行速率v 不变,θ增大,则周期T 增大C .若θ不变,飞行速率v 增大,则半径R 增大D .若飞行速率v 增大,θ增大,则周期T 可能不变【答案】CD【解析】对飞机进行受力分析,如图所示,根据重力和机翼升力的合力提供向心力,得mg tan θ=m v 2R =m 4π2T 2R ,解得:v =gR tan θ,T =2πRg tan θ.若飞行速率v 不变,θ增大,由v =gR tan θ知,R 减小,则再由T =2πRg tan θ知T 减小,故A 、B 错误;若θ不变,飞行速率v 增大,由v =gR tan θ知,R 增大,故C 正确;若飞行速率v 增大,θ增大,R 的变化不能确定,则周期T 可能不变,故D 正确.模型二 圆锥摆模型【例2】(多选)(2020·四川成都七中5月测试)天花板下悬挂的轻质光滑小圆环P 可绕过悬挂点的竖直轴无摩擦地旋转.一根轻绳穿过P ,两端分别连接质量为m 1和m 2的小球A 、B (m 1≠m 2).设两球同时做如图6所示的圆锥摆运动,且在任意时刻两球均在同一水平面内,则( )A .两球运动的周期相等B .两球的向心加速度大小相等C .球A 、B 到P 的距离之比等于m 2∶m 1D .球A 、B 到P 的距离之比等于m 1∶m 2 【答案】AC【解析】对其中一个小球受力分析,其受到重力和绳的拉力F T ,绳的拉力在竖直方向的分力与重力平衡,设轻绳与竖直方向的夹角为θ,则有F T cos θ=mg ,拉力在水平方向上的分力提供向心力,设该小球到P 的距离为l ,则有F T sin θ=mg tan θ=m 4π2T2l sin θ,解得周期为T =2πl cos θg=2πhg,因为任意时刻两球均在同一水平面内,故两球运动的周期相等,选项A 正确;连接两球的绳的张力F T 相等,由于向心力为F n =F T sin θ=mω2l sin θ,故m 与l 成反比,即l 1l 2=m 2m 1,又小球的向心加速度a =ω2h tan θ=(2πT )2h tan θ,故向心加速度大小不相等,选项C 正确,B 、D 错误.【变式1】(多选)如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O 点,设法让两个小球均在水平面上做匀速圆周运动.已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是( )A .细线L 1和细线L 2所受的拉力大小之比为 3∶1B .小球m 1和m 2的角速度大小之比为 3∶1C .小球m 1和m 2的向心力大小之比为3∶1D .小球m 1和m 2的线速度大小之比为33∶1 【答案】AC.【解析】:对任一小球进行研究,设细线与竖直方向的夹角为θ,竖直方向受力平衡,则T cos θ=mg ,解得T =mg cos θ,所以细线L 1和细线L 2所受的拉力大小之比为T 1T 2=cos 30°cos 60°=31,故A 正确;小球所受合力的大小为mg tan θ,根据牛顿第二定律得mg tan θ=mLω2sin θ,得ω2=g L cos θ,故两小球的角速度大小之比为ω1ω2=cos 30°cos 60°=431,故B 错误;小球所受合力提供向心力,则向心力为F =mg tan θ,小球m 1和m 2的向心力大小之比为F 1F 2=tan 60°tan 30°=3,故C 正确;两小球角速度大小之比为43∶1,由v =ωr 得线速度大小之比为33∶1,故D 错误.【变式2】(2020·河南省八市重点高中联盟第三次模拟)如图所示,用一根细绳一端系一个小球,另一端固定,给小球不同的初速度,使小球在水平面内做角速度不同的圆周运动,则下列细绳拉力F 、悬点到轨迹圆心高度h 、向心加速度a 、线速度v 与角速度平方ω2的关系图象正确的是( )【答案】A【解析】设细绳长度为l,小球做匀速圆周运动时细绳与竖直方向的夹角为θ,细绳拉力为F,有F sin θ=mω2l sin θ,得F=mω2l,选项A正确;mg tan θ=mω2l sin θ,得h=l cos θ=gω2,选项B错误;小球的向心加速度a=ω2l sin θ,小球运动的角速度不同时,sin θ不同,选项C错误;小球的线速度v=ωl sin θ,选项D 错误。
最全的圆周运动模型
圆周运动模型一、匀速圆周运动模型 1.随盘匀速转动模型1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。
轻绳长度为L 。
现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求:(1)物体运动一周所用的时间T ;(2)绳子对物体的拉力。
3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。
圆盘上的小球A 作匀速圆周运动。
问(1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止?(2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止?4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。
当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑动摩擦力)( )A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12常考圆周模型及解题思路
一、汽车转弯:车与地面之间的静摩擦提供向心力
二、火车转弯:重力和支持力的合力提供向心力
三、汽过过桥:重力与支持力的合力提供向心力
例1.载重汽车以恒定的速率通过丘陵地,轮胎很旧。
如图所示,下列说法中正确的是( )
A.汽车做匀变速运动B.为防止爆胎,车应该在A处减速行驶
C.如果车速足够大,车行驶至A时所受的支持力可能为零
D.当车行驶至B时,向心力等于车所受的重力
四、竖直平面的圆周运动:
1:轻绳模型(无支撑模型):绳子的力只可能是拉力,不可能是推力。
2:轻杆模型(有支撑模型):杆的力可以是拉力也可能是推力。
例2.长度为L=0.5m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小
球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,g取10m/s2,
则此时细杆OA受到()
A.6.0N的拉力B.6.0N的压力C.24N的拉力D.24N的压力
五、圆周运动的解题思路
1.对某一状态进行分析时,列出牛顿第二定律方程(向心力的来源)
2.对某一过程进行分析时,列出动能定理方程(W总=E k2-E k1)
例3.如图所示,一光滑的半径为R的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上
轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,则小球落地点C距A处多
远?求在C点的速度大小.
练习题
l.如图所示,小球在竖直光滑圆环的内槽做圆周运动,关于其加速度说法正确的
是()
A.一定指向圆心B.一定不指向圆心
C.只在最高点和最低点位置指向圆心
D.只在最左端和最右端位置指向圆心
2.如图所示,某轻杆一端固定一质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动,以下说法中不正确的是()
A.小球过最高点时,杆所受的弹力可以为零
B.小球过最高点时,最小速度为(gR)1/2
C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力一定
大于或等于杆对球的作用力
D.小球过最低点时,杆对球的作用力一定与小球所受重力方向相反
3.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发
事故的主要原因是其中一列列车转弯时超速行驶.如图所示是一种新型高速列
车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列
车以360 km/h的速度在水平面内转弯,弯道半径为1.5 km,则质量为75 kg的
乘客在列车转弯过程中所受到的合外力为( )
A.500 N B.1 000 N C.500 2 N D.0
4.司机为了能够控制驾驶的汽车,汽车对桥面的压力一定要大于0,在高速公
路上所建的高架桥的顶部可看作是一个圆弧,若高速公路上汽车设计时速为 40m / s ,则高架桥顶部的圆弧半径至少应为多少?(g 取10m/s 2 )
5.如图所示,一静止于光滑圆弧最高点的小球,受到微小拢动,沿圆弧轨道下滑,设圆弧的半径为R,则小球脱离圆弧面时离水平面的高度?
6.如图是马戏团中上演的飞车节目,在竖直平面内有半径为R 的圆轨道。
表演者骑着摩托车在圆轨道内做圆周运动。
已知人和摩托车的总质量为m ,人以gR v 2=1的速度过轨道最高点B ,并以
123=v v 的速度过最低点A 。
求在A 、B 两点轨道对摩托车的压力大小相差多少?
7.如图所于一轻杆长为l ,球的质量为m ,杆连球在竖直平面内绕轴O 自由转动,已知在最高点时杆对球的弹力大小为F =mg/2,求此时小球的瞬时速度大小。
8.如图所示,两个质量均为m 的小球A 、B ,以不同的速度进入半径为R 、内径很小的光滑半圆管内,圆管竖直放置, A 通过最高点C 时,对管壁上部的压力为3mg ,B 通过最高点时,
对管壁下部的压力为0.75mg ,求A 、B 两球落地点间的距离。
9.如图所示,竖直平面内有一光滑圆弧轨道,其半径为R ,平台与轨道的最高点等高,一小球从平台边缘的A 处水平射出,恰能沿圆弧轨道上的P 点的切线方向进入轨道内侧,轨道半径OP 与竖直线的夹角为60°,试求:
(1)小球从平台上的A 点射出时的速度v 0
(2)小球从平台上射出点A 到圆轨道入射点P 之间的距离l
(3)小球能否沿轨道通过圆弧的最高点?请说明理由.。