邵武市一中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邵武市一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )
A .
B .﹣
C .2
D .﹣2
2. 在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线
EF 相交
的是( )
A .直线1AA
B .直线11A B C. 直线11A D D .直线11B C
3. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )
A .
B .
C .2015
D .
4. 下列关系式中,正确的是( ) A .∅∈{0} B .0⊆{0}
C .0∈{0}
D .∅={0}
5. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )
①f (x )=
,②f (x )=
,③f (x )=
,④f (x )=
.
A .4
B .3
C .2
D .1
6. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( ) A .1
B .2
C .3
D .4
7. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )
A .2
B .1
C .
D .
8. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6
A π
∠=
,则
B ∠=( )111]
A .
4π B .4π或34π C .3π或23π D .3
π
9.下列语句所表示的事件不具有相关关系的是()
A.瑞雪兆丰年B.名师出高徒C.吸烟有害健康D.喜鹊叫喜
10.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,﹣1)
C.D.
11.设集合A={x|2x≤4},集合B={x|y=lg(x﹣1)},则A∩B等于()
A.(1,2) B.[1,2] C.[1,2)D.(1,2]
12.底面为矩形的四棱锥P-ABCD的顶点都在球O的表面上,且O在底面ABCD内,PO⊥平面ABCD,当四棱锥P-ABCD的体积的最大值为18时,球O的表面积为()
A.36πB.48π
C.60πD.72π
二、填空题
13.若命题“∀x∈R,|x﹣2|>kx+1”为真,则k的取值范围是.
14.设函数,其中[x]表示不超过x的最大整数.若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是.
15.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=.
16.已知数列{a n}中,2a n,a n+1是方程x2﹣3x+b n=0的两根,a1=2,则b5=.
17.设函数f(x)=则函数y=f(x)与y=的交点个数是.
18.若实数,,,
a b c d满足24ln220
b a a
c d
+-+-+=,则()()
22
a c
b d
-+-的最小值为▲.
三、解答题
19.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.
(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB∥平面EFG;
(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.
①点H到点F的距离与点H到直线AB的距离之差大于4;
②GH⊥PD.
20.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).
(Ⅰ)求点A的坐标;
(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.21.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图
1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积V;111]
(2)求该几何体的表面积S.
22.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.
23.已知函数
3
()
1
x
f x
x
=
+
,[]2,5
x∈.
(1)判断()
f x的单调性并且证明;
(2)求()
f x在区间[]2,5上的最大值和最小值.
24.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;
(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2
x ∈.
邵武市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】A
【解析】解:设幂函数y=f (x )=x α
,把点(,
)代入可得=
α
,
∴α=,即f (x )=,
故f (2)=
=
,
故选:A .
2. 【答案】D 【解析】
试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线
EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断. 3. 【答案】D
【解析】解:∵2S n =a n +,∴
,解得a 1=1.
当n=2时,2(1+a 2)=,化为
=0,又a 2>0,解得
,
同理可得.
猜想.
验证:2S
n =…+
=
,
=
=
,
因此满足2S n =a n +,
∴.
∴S n =.
∴S 2015=.
故选:D .
【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.
4. 【答案】C
【解析】解:对于A∅⊆{0},用“∈”不对,
对于B和C,元素0与集合{0}用“∈”连接,故C正确;
对于D,空集没有任何元素,{0}有一个元素,故不正确.
5.【答案】C
【解析】解:由区间G上的任意两点x1,x2和任意实数λ(0,1),
总有f(λx1+(1﹣λ)x2)≤λf(x1)+(1﹣λ)f(x2),
等价为对任意x∈G,有f″(x)>0成立(f″(x)是函数f(x)导函数的导函数),
①f(x)=的导数f′(x)=,f″(x)=,故在(2,3)上大于0恒成立,故①为“上进”函数;
②f(x)=的导数f′(x)=,f″(x)=﹣•<0恒成立,故②不为“上进”函数;
③f(x)=的导数f′(x)=,f″(x)=
<0恒成立,
故③不为“上进”函数;
④f(x)=的导数f′(x)=,f″(x)=,当x∈(2,3)时,f″(x)>0恒成立.
故④为“上进”函数.
故选C.
【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.
6.【答案】A
【解析】解:∵向量与的夹角为60°,||=2,||=6,
∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,
∴2﹣在方向上的投影为=.
故选:A.
【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.
7.【答案】C
【解析】解:作出不等式对应的平面区域,(阴影部分)
由z=2x+y,得y=﹣2x+z,
平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.
即2x+y=1,
由
,解得,
即C(1,﹣1),
∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,
解得
a=.
故选:C.
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
8.【答案】B
【解析】
试题分析:由正弦定理可得
()
sin0,,
24
sin
6
B B B
π
π
=∴=∈∴=或
3
4
π
,故选B.
考点:1、正弦定理的应用;2、特殊角的三角函数.
9.【答案】D
【解析】解:根据两个变量之间的相关关系,
可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,
名师出高徒也具有相关关系,
吸烟有害健康也具有相关关系,
故选D.
【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.
10.【答案】C
【解析】解:不等式(m+1)x 2
﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立,
即(m+1)x 2
﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立
若m+1=0,显然不成立
若m+1≠0,则
解得a .
故选C .
【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.
11.【答案】D
【解析】解:A={x|2x
≤4}={x|x ≤2}, 由x ﹣1>0得x >1
∴B={x|y=lg (x ﹣1)}={x|x >1} ∴A ∩B={x|1<x ≤2} 故选D .
12.【答案】
【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,
又V 四棱锥P -ABCD =1
3
S 矩形ABCD ·PO
=13abR ≤23R 3. ∴2
3
R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A.
二、填空题
13.【答案】 [﹣1,﹣) .
【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣
1,﹣).
故答案为:[﹣1,﹣).
【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.
14.【答案】(﹣1,﹣]∪[,).
【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.
当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.
当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.
当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.
当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.
当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.
设g(x)=ax,则g(x)过定点(0,0),
坐标系中作出函数y=f(x)和g(x)的图象如图:
当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,
则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,
故满足条件的斜率k的取值范围是或,
故答案为:(﹣1,﹣]∪[,)
【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.
15.【答案】﹣5.
【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得
x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,
故,解得
故==﹣5
故答案为:﹣5
16.【答案】﹣1054.
【解析】解:∵2a n,a n+1是方程x2﹣3x+b n=0的两根,
∴2a n+a n+1=3,2a n a n+1=b n,
∵a1=2,∴a2=﹣1,同理可得a3=5,a4=﹣7,a5=17,a6=﹣31.
则b5=2×17×(﹣31)=1054.
故答案为:﹣1054.
【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.17.【答案】4.
【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,
由图知两函数y=f(x)与y=的交点个数是4.
故答案为:4.
18.【答案】5
【解析】
考
点:利用导数求最值
【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.
三、解答题
19.【答案】
【解析】(1)证明:依题意,E,F分别为线段BA、DC的三等分点,
取CF的中点为K,连结PK,BK,则GF为△DPK的中位线,
∴PK∥GF,
∵PK ⊄平面EFG ,∴PK ∥平面EFG , ∴四边形EBKF 为平行四边形,∴BK ∥EF , ∵BK ⊄平面EFG ,∴BK ∥平面EFG , ∵PK ∩BK=K ,∴平面EFG ∥平面PKB , 又∵PB ⊂平面PKB ,∴PB ∥平面EFG . (2)解:连结PE ,则PE ⊥AB ,
∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD=AB , PE ⊂平面PAB ,PE ⊥平面ABCD , 分别以EB ,EF ,EP 为x 轴,y 轴,z 轴, 建立空间直角坐标系,
∴P (0,0,
),D (﹣1,4,0),
=(﹣1,4,﹣),∵P (0,0,),
D (﹣1,4,0),=(﹣1,4,﹣
),
∵
=
=(﹣,,﹣
),
∴G (﹣,,
),
设点H (x ,y ,0),且﹣1≤x ≤1,0≤y ≤4,
依题意得:
,
∴x 2
>16y ,(﹣1≤x ≤1),(i )
又=(x+,y ﹣,﹣
),
∵GH ⊥PD ,∴,
∴﹣x ﹣+4y ﹣
,即y=
,(ii )
把(ii )代入(i ),得:3x 2
﹣12x ﹣44>0,
解得x >2+
或x <2﹣
,
∵满足条件的点H 必在矩形ABCD 内,则有﹣1≤x ≤1,
∴矩形ABCD 内不能找到点H ,使之同时满足①点H 到点F 的距离与点H 到直线AB 的距离之差大于4,②GH ⊥PD .
【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.
20.【答案】
【解析】解:(Ⅰ)设射线y=x(x≥0)的倾斜角为α,则tanα=,α∈(0,).
∴tanθ=tan(α+)==,
∴由解得,
∴点A的坐标为(,).
(Ⅱ)f(x)=•=3sinθ•sin2x+2cosθ•2cos2x=sin2x+cos2x
=sin(2x+)
由x∈[0,],可得2x+∈[,],
∴sin(2x+)∈[﹣,1],
∴函数f(x)的值域为[﹣,].
【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.
21.【答案】(12)6 .
【解析】
(2)由三视图可知,
该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD
C 均为矩形,
2(11112)6S =⨯++⨯=+ 1
考点:几何体的三视图;几何体的表面积与体积.
【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 22.【答案】
【解析】解:(I )由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29. 所以该班在这次数学测试中成绩合格的有29人.
(II )由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2, 设成绩为x 、y
成绩在[90,100]的人数为50×10×0.006=3,设成绩为a 、b 、c , 若m ,n ∈[50,60)时,只有xy 一种情况, 若m ,n ∈[90,100]时,有ab ,bc ,ac 三种情况,
m n [5060[90100]
事件“|m ﹣n|>10”所包含的基本事件个数有6种 ∴
.
【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:
×组距=
频率;即可把所求范围内的频率求出,进而求该范围的人数.
23.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】
试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()
()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]
2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5
(5)2
f =.
试题解析:
在[]2,5上任取两个数12x x <,则有
12121233()()11x x f x f x x x -=
-++12123()
(1)(1)
x x x x -=
++0<, 所以()f x 在[]2,5上是增函数.
所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2
f x f ==. 考点:函数的单调性证明.
【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1
24.【答案】(本小题满分13分)
解:(Ⅰ)2
()363(2)f x ax x x ax '=-=-, (1分)
①当0a >时,解()0f x '>得2x a >
或0x <,解()0f x '<得20x a <<, ∴()f x 的递增区间为(,0)-∞和2(,)a
+∞,()f x 的递减区间为2
(0,)a . (4分)
②当0a =时,()f x 的递增区间为(,0)-∞,递减区间为(0,)+∞. (5分)
③当0a <时,解()0f x '>得20x a
<<,解()0f x '<得0x >或2x a <
∴()f x 的递增区间为2(,0)a ,()f x 的递减区间为2
(,)a
-∞和(0,)+∞. (7分)
(Ⅱ)当2a <-时,由(Ⅰ)知2(,)a -∞上递减,在2
(,0)a
上递增,在(0,)+∞上递减.
∵2
2
240a f a a -⎛⎫=> ⎪⎝⎭
,∴()f x 在(,0)-∞没有零点. (9分) ∵()010f =>,11
(2)028
f a ⎛⎫=+< ⎪⎝⎭,()f x 在(0,)+∞上递减,
∴在(0,)+∞上,存在唯一的0x ,使得()00f x =.且01
(0,)2x ∈ (12分)
综上所述,当2a <-时,()f x 有唯一的零点0x ,且01
(0,)2
x ∈. (13分)。