人教版高中数学必修一习题基础综合拔高摘录汇集
人教版高中数学必修1同步章节训练题及答案全册汇编
![人教版高中数学必修1同步章节训练题及答案全册汇编](https://img.taocdn.com/s3/m/f3cf04f8524de518964b7d2a.png)
高中数学必修1全册同步练习题目录1.1.1集合的含义与表示同步练习1.1.2集合间的基本关系同步练习1.1.3集合的基本运算同步练习1.2.1函数的概念同步练习1.3.1单调性与最大(小)值同步练习1.3.2奇偶性同步练习2.0基本初等函数同步练习2.1.1指数与指数幂的运算同步练习2.1.2指数函数及其性质同步练习2.2.1对数与对数的运算同步练习2.3幂函数同步练习3.1.1方程的根与函数的零点同步练习3.1.2用二分法求方程的近似解同步练习3.2.1几类不同增长的函数模型同步练习3.2.2函数模型的应用实例同步练习1.1.1集合的含义与表示 同步练习一、选择题1、给出下列表述:1)联合国常任理事国2的实数的全体;3)方程210x x +-= 的实数根4)全国著名的高等院校。
以上能构成集合的是( )A 、1)3)B 、1)2)C 、1)3)4)D 、1)2)3)4)2、集合{21,1,2x x --}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、53、下列集合中表示同一集合的是( ) A 、{(3,2)},{(2,3)}M N == B 、{1,2},{(1,2)}M N ==C 、{(,)|1},{|1}M x y x y N y x y =+==+=D 、{3,2},{2,3}M N ==4、下列语句:(1)0与{0}表示同一个集合(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2};(4)集合}54{<<x x 是有限集,正确的是( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对5、如果3x y ==+,集合{|,}M m m a a b Q ==+∈,则有( )A 、x M y M ∈∈且B 、x M y M ∉∈且C 、x M y M ∈∉且D 、x M y M ∉∉且 6、集合A={xZk k x ∈=,2} B={Zk k x x ∈+=,12} C={Zk k x x ∈+=,14}又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、(a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个 7、下列各式中,正确的是( ) A 、-2{2}x x ∈≤ B 、{12<>x x x 且}C 、{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠ D 、{Zk k x x ∈+=,13}={Zk k x x ∈-=,23}二、填空题8、由小于10的所有质数组成的集合是 。
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)
![(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)](https://img.taocdn.com/s3/m/5e90b04ea21614791611280f.png)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
人教版高一数学必修一知识点总结与练习题
![人教版高一数学必修一知识点总结与练习题](https://img.taocdn.com/s3/m/1b0ee6d7846a561252d380eb6294dd88d0d23d36.png)
人教版高一数学必修一知识点总结与练习题最新的人教版高一上学期数学提高模拟测验一、集合与逻辑1.理解集合的概念,如什么是集合、集合的元素、集合的表示方法等。
2.理解集合之间的关系,如包含、相等、子集、真子集等。
3.掌握集合的基本运算,如并集、交集、补集等。
4.理解逻辑连接词的概念,如或、且、非等,并能运用它们组成复合命题。
二、函数与映射1.理解函数的概念,如为什么需要函数、函数的定义、函数的表示方法等。
2.理解函数之间的关系,如函数的相等、函数的单调性等。
3.掌握函数的简单应用,如求函数的值域、最值等。
4.理解映射的概念,如映射的定义、映射的表示方法等。
三、幂函数与指数函数1.理解幂函数的概念,如幂函数的定义、幂函数的性质等。
2.掌握幂函数的图像与性质,如图像的分布、单调性等。
3.理解指数函数的概念,如指数函数的定义、底数与指数的关系等。
4.掌握指数函数的图像与性质,如图像的分布、单调性等。
四、对数与对数函数1.理解对数的概念,如对数的定义、对数表等。
2.掌握对数的性质,如对数的运算性质等。
3.理解对数函数的概念,如对数函数的定义、性质等。
4.掌握对数函数的图像与性质,如图像的分布、单调性等。
五、三角函数概念1.理解三角函数的定义,如正弦、余弦、正切等。
2.掌握三角函数的基本关系,如和角公式、倍角公式等。
3.能运用三角函数解决一些实际问题,如测量、计数等。
4.掌握三角函数的变换,如平移、伸缩等。
六、三角恒等变换1.理解三角恒等变换的概念,如什么是三角恒等变换、三角恒等变换的作用等。
2.能运用三角恒等变换的基本方法进行证明和化简,如和差化积、积化和差等。
3.能运用三角恒等变换解决一些实际问题,如测量、计数等。
4.掌握三角函数的图像与性质,如图像的分布、单调性等。
了解三角函数的应用,如三角函数在电路分析中的应用等。
七、数列概念与表示1.理解数列的概念,如什么是数列、数列的项、数列的表示方法等。
2.理解等差数列的概念,如等差数列的定义、通项公式等。
2021新教材人教版高中数学A版必修第一册模块练习题--1.4~1.5综合拔高练
![2021新教材人教版高中数学A版必修第一册模块练习题--1.4~1.5综合拔高练](https://img.taocdn.com/s3/m/9600a04ef524ccbff0218404.png)
1.4~1.5综合拔高练三年模拟练应用实践1.(2020吉林延边长白山第一高级中学高二上期中,)“x=y”是“|x|=|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件2.(2020海南海口第四中学高一上月考,)数“x+y”为无理数的一个充分不必要条件是()A.x-y为无理数B.x为无理数,y为有理数C.x为无理数,y为无理数D.-x-y为无理数3.(2020四川宜宾高二期中,)“a+b∈Z”是“关于x的方程x2+ax+b=0有且仅有整数解”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(2020湖南雅礼中学高一10月月考,)设命题p:∀x∈R,x2-4x+2m≥0(其中m为常数),则“m≥1”是“命题p为真命题”的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件5.(2020辽宁省实验中学高一上期中,)已知M={x|a≤x≤a+1},则下列可作为“∀x∈M,x+1>0”是真命题的一个充分不必要条件的是()A.a>-1B.a>0C.a≥-1D.a≤06.(2020河南洛阳第一高级中学高二月考,)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(多选)(2020山东省实验中学高二上期中,)下列叙述中不正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充要条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.“a<1”是“方程x2+x+a=0有一个正根和一个负根”的必要不充分条件<1”的充分不必要条件D.“a>1”是“1a8.(2020天津耀华中学高一上期中,)已知p:x>1或x<-3,q:x>a(a为实数).若¬q的一个充分不必要条件是¬p,则实数a的取值范围是.9.(2020山东济宁高一10月月考,)已知p:∃x∈R,使mx2-4x+2=0为假命题.(1)求实数m的取值集合B;(2)设A={x|3a<x<a+2}为非空集合,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.10.(2020山东师范大学附属中学高一上期中,)已知命题p:∀x∈{x|0≤x≤4},0≤x<2a,命题q:∃x∈R,x2-2x+a<0.(1)若命题¬p和命题q有且只有一个为真命题,求实数a的取值范围;(2)若命题p和命题q至少有一个为真命题,求实数a的取值范围.深度解析答案全解全析三年模拟练应用实践1.B当x=y时,|x|=|y|,所以充分性成立;当x=1,y=-1时,|x|=|y|,但是x≠y,所以必要性不成立,故选B.2.B对于A选项,当x=3+√5,y=3-√5时,x-y=2√5为无理数,但x+y=6为有理数,充分性不成立,不符合题意.对于B选项,x为无理数,y为有理数,所以x+y为无理数,充分性成立;令x=1,y=√2,则x+y=1+√2为无理数,但不满足x为无理数,y为有理数,所以x为无理数,y为有理数是x+y 为无理数的充分不必要条件,符合题意.对于C选项,当x=1+√2,y=1-√2时,x+y=2为有理数,不满足充分性,不符合题意.对于D选项,-x-y为无理数⇔x+y为无理数,互为充要条件,不符合题意.故选B.3.C当a=1,b=2时,a+b=3∈Z,但Δ=a2-4b=12-4×2=-7<0,方程无解,充分性不成立;若方程x2+ax+b=0有且仅有整数解,设整数解分别为x1,x2,且x1,x2∈Z,则x1+x2=-a∈Z,x1x2=b∈Z,所以a∈Z,b∈Z,所以a+b∈Z,所以“a+b∈Z”是“关于x的方程x2+ax+b=0有且仅有整数解”的必要不充分条件.4.B若p:∀x∈R,x2-4x+2m≥0(其中m为常数)为真命题,则Δ=16-8m≤0,解得m≥2,则“m≥1”是“命题p为真命题”的必要不充分条件,故选B.5.B因为“∀x∈M,x+1>0”是真命题,所以x+1的最小值大于零,即当x=a时,x+1=a+1>0,解得a>-1,因此“∀x∈M,x+1>0”是真命题的充要条件是a>-1.要求“∀x∈M,x+1>0”是真命题的充分不必要条件,只需a的取值对应的集合为{a|a>-1}的真子集即可,故选B.6.C当a>b时,①若a>b>0,则|a|>|b|,得出a|a|>b|b|;②若a>0>b,则a|a|>0,b|b|<0,a|a|>b|b|;③若0>a>b,则a2<b2,于是-a2>-b2,因为a|a|=-a2,b|b|=-b2,所以a|a|>b|b|仍然成立.于是,若a>b,则a|a|>b|b|成立,即充分性成立.当a|a|>b|b|时,①若a>0,b>0,则由a|a|>b|b|得a 2>b 2,于是a>b;②若a>0,b<0,则a|a|>0,b|b|<0,可知a|a|>b|b|显然成立,此时有a>0>b;③若a<0,b>0,则a|a|<0,b|b|>0,所以a|a|>b|b|不可能成立;④若a<0,b<0,由a|a|>b|b|可得-a 2>-b 2,即a 2<b 2,所以0>a>b.因此,当a|a|>b|b|时,必有a>b,即必要性成立. 综上所述,“a>b ”是“a|a|>b|b|”的充要条件.故选C.7.AB 对于A 选项,当a=-1,b=1,c=-1时,b 2-4ac=-3≤0,但ax 2+bx+c=-x 2+x-1=-(x -12)2-34≤-34,不满足ax 2+bx+c ≥0,所以“ax 2+bx+c ≥0”的充要条件不是“b 2-4ac ≤0”,A 中说法不正确;对于B 选项,当a=2,c=1,b=0时,满足a>c,但ab 2=cb 2,不满足ab 2>cb 2,所以“ab 2>cb 2”的充要条件不是“a>c ”,B 中说法不正确;对于C 选项,方程x 2+x+a=0有一个正根和一个负根等价于{Δ=1-4a >0,a <0,即a<0,所以“a<1”是“方程x 2+x+a=0有一个正根和一个负根”的必要不充分条件,C 中说法正确;对于D 选项,当a>1时,1a <1,充分性成立,反之,当a=-2时,满足1a <1,但不满足a>1,必要性不成立,所以D 中说法正确.故选AB. 8.答案 {a|a ≥1}解析 由题意得,¬p:-3≤x ≤1,¬q:x ≤a.因为¬q 的一个充分不必要条件是¬p,所以{x|-3≤x ≤1}⫋{x|x ≤a},所以a ≥1.故答案为{a|a ≥1}.9.解析 (1)p 为假命题等价于关于x 的方程mx 2-4x+2=0无实数根. 当m=0时,mx 2-4x+2=-4x+2=0,解得x=12,有实数根,不符合题意; 当m ≠0时,由题意得Δ=(-4)2-4×m×2<0,得m>2,∴B={m|m>2}.(2)∵A={x|3a<x<a+2}为非空集合,∴a+2>3a,解得a<1.若x ∈A 是x ∈B 的充分不必要条件,则A ⫋B,∴3a ≥2,即a ≥23,∴23≤a<1. 故a 的取值范围为{a|23≤a <1}.10.解析 若命题p:∀x ∈{x|0≤x ≤4},0≤x<2a 为真命题,则2a>4,即a>2.所以若¬p 为真命题,则a ≤2.若命题q:∃x ∈R,x 2-2x+a<0为真命题,则Δ=(-2)2-4×1×a>0,即a<1. 若¬q 为真命题,则a ≥1.(1)①当¬p 为真,q 为假时,¬q 为真,即{a ≤2,a ≥1,所以1≤a ≤2; ②当¬p 为假,q 为真时,p 为真,即{a >2,a <1,无解,舍去. 综上所述,当命题¬p 和命题q 有且只有一个为真命题时,a 的取值范围为{a|1≤a ≤2}.(2)解法一:①当p 真q 假时,¬q 为真,即{a >2,a ≥1,所以a>2; ②当p 假q 真时,¬p 为真,即{a ≤2,a <1,所以a<1;③当p 真q 真时,{a >2,a <1,无解,舍去. 综上所述,a 的取值范围为{a|a<1或a>2}.解法二:考虑p,q 至少有一个为真命题的反面,即p,q 均为假命题, 即¬p 为真,且¬q 为真,则{a ≤2,a ≥1,解得1≤a ≤2,即{a|1≤a ≤2},则p,q 至少有一个为真命题时,a 的取值范围为{a|1≤a ≤2}的补集, 故a 的取值范围为{a|a<1或a>2}.思维拓展 当正面情况较多或较复杂时,从结论的反面入手是简化问题的一种常用手段,也就是正难则反.。
人教版版高中数学必修1全册课后习题及答案整理汇总
![人教版版高中数学必修1全册课后习题及答案整理汇总](https://img.taocdn.com/s3/m/dbe40ec86529647d26285237.png)
人教版高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <, 所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ; (3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B == ,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B == .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}A B A B =-=- .3.解:{|}A B x x = 是等腰直角三角形,{|}A B x x = 是等腰三角形或直角三角形.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð,则(){2,4}U A B = ð,()(){6}U U A B = ðð.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 25=是个自然数.2.(1)5A ∈;(2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠;(3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.(1)4B -∉; 3A -∉; {2}B ; B A ; 2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形; 菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥ ,{|34}A B x x =≤< .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B = ,{3,4,5,6}A C = ,而{1,2,3,4,5,6}B C = ,{3}B C = ,则(){1,2,3,4,5,6}A B C = ,(){1,2,3,4,5,6,7,8}A B C = .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅ .(1){|}A B x x = 是参加一百米跑或参加二百米跑的同学; (2){|}A C x x = 是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x = 是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.解:{|210}A B x x =<< ,{|37}A B x x =≤< ,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð,得(){|2,10}R A B x x x =≤≥ 或ð,(){|3,7}R A B x x x =<≥ 或ð,(){|23,710}R A B x x x =<<≤< 或ð, (){|2,3710}R A B x x x x =≤≤<≥ 或或ð.B 组1.4 集合B 满足A B A = ,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅ ;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B == ;当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B == ; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅ .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B = ,得U B A ⊆ð,即()U U A B B = ðð,而(){1,3,5,7}U A B = ð,得{1,3,5,7}U B =ð,而()U U B B =ðð,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤, 得该函数的定义域为{|31}x x -≤≤.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1,y ==,且050x <<,即(050)y x =<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零; 图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.解:因为sin 60= ,所以与A 中元素60 相对应的B;因为sin 45=B 相对应的A 中元素是45 .1.2函数及其表示习题1.2(第23页)1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =都有意义, 即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠,即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞;-∞+∞,值域是(,)(2)定义域是(,0)(0,);-∞+∞,值域是(,0)(0,)-∞+∞(3)定义域是(,)-∞+∞;-∞+∞,值域是(,)(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+.5.解:(1)当3x =时,325(3)14363f +==-≠-,即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--,即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x =>,10(0)x y y=>,由对角线为d ,即d =,得(0)d x =>,由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.解:依题意,有2(2d x vt π=,即24v x t d π=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t vπ≤≤, 得函数的定义域为2[0,]4h d v π和值域为[0,]h .10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)- ;(2)函数()r f p =的值域是[0,)+∞; (3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1,步行的路程为12x -,得125x t -=+,(012)x ≤≤,即125x t -=,(012)x ≤≤.(2)当4x =时,12483()55t h -=+=≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞ ,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->, 即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<, 即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元),即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数, 所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =, 即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线; (2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线, 得{|}{|}P PA PB P PA PC == 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=,得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭ ,即{(0,0)}A B = ; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅ ; 集合3039(,)|{(,2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭ ; 则39()(){(0,0),(,)}55A B B C =- .6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠, 得函数的定义域为[4,5)(5,)+∞ .7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++,即(1)2a f a a +=-+.8.证明:(1)因为221()1x f x x +=-, 所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=; (2)因为221()1x f x x +=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k ≤,得160k ≥,或40k ≤,即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人), 即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}U A B = ð,得{2,4,5,6,7,8,9}A B = ,集合A B 里除去()U A B ð,得集合B , 所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212(()222x x x x a f a b x x b ++=+=++,121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()(22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)(242x x x x g x x x x a b ++=++++,22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()(22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+,所以1212()()(22x x g x g x g ++≤.6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I )2.1指数函数练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32,(2)43)(b a +=(a +b )43,(3)32n)-(m =(m -n )32,(4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121+=2×3=6;(3)a 21a 41a 81-=a 814121-+=a 85;(4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1.(2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m ∙∙∙=4165413121mm m m m ∙∙=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0;对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0;对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a 127=a1274331++=a 35;(2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r ts -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts =6393652----rt s =36964125s r r ;(6)(-2x 41y 31-)(3x 21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y21-;(8)4x 41 (-3x 41y 31-)÷(-6x21-y32-)=3231214141643-++-⨯-y x =2xy 31.点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R .(2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R .(4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ).点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值;因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值;因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值;因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1,所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n .(3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1,所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n .(4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1,所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002.答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰,因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3.综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用.解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口.3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2,3期后的本利和为y 3=a (1+r )3,…x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1000×1.02255≈1118.答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元.4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-.(2)因为y 1>y 2,所以a 3x +1>a -2x .所以当a >1时,3x +1>-2x .所以x >51-.当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=;(2)35125=;(3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-;(3)设lg1000x =,则310100010x ==,所以3x =;(4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)3311lg()lg lg lg lg 3lg lg 22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z =-=-+=--.2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg 5lg 2lg101+==;(3)555511log 3log log (3log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0)不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞ ;(3)1(,3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74)1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x= (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x =(4)173x =(5) 100.3x = (6) x e =3. (1)0;(2) 2;(3) 2-;(4)2;(5) 14-; (6) 2.4. (1)lg 6lg 2lg 3a b =+=+;(2) 3lg 42lg 22log 4lg 3lg 3ab===;(3) 2lg122lg 2lg 3lg 3log 1222lg 2lg 2lg 2ba+===+=+; (4)3lg lg 3lg 22b a=-=-5. (1)x ab =; (2) mx n=;(3) 3n x m=;(4)x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x += 解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <;(2) m n <;(3) m n >;(4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(161402MM M M e m m m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =.(2)略. (3)与原函数关于x 轴对称.11. (1)235lg 25lg 4lg 92lg 52lg 22lg 3log 25log 4log 98lg 2lg 3lg 5lg 2lg 3lg 5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯=12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒.(2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43x x -==,于是11044333x x -+=+=2. ①当1a >时,3log 14a <恒成立;②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3x y =,0.1x y =.习题2.3 A 组(P79)1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4;(2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ),即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259.2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=ba b b a a b b a a -++++-2121212122=b a b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2∙=3lg 2lg 22lg 1+-,所以log 125=b a a +-21.(2)因为2log 3a =,3log 7b=37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab .4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76.(2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y .又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1),所以f (a )+f (b )=lgb b a a +-++-11lg 11=lg )1)(1()1)(1(b a b a ++--,f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--.所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x .(2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时.(3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22),所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1.3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2,所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数.(2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x =1,即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=22)(22(xx x x x x x x e e e e e e e e -----++++=e x ·e -x =e x -x =e 0=1,即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2x x e e -+,所以g (2x )=222xx e e -+,[g (x )]2+[f (x )]2=(2xx e e -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物.(2)当P=50%P 0时,有50%P 0=P 0e t )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h .(3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用3.1函数与方程练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.因为f(0.875)·f(0.75)<0,所以x0∈(0.75,0.875).同理,可得x0∈(0.812 5,0.875),x0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f(2)≈-0.31<0,f(3)≈0.43>0,于是f(2)·f(3)<0,所以函数f(x)在区间(2,3)内有一个零点.。
高中数学必修一专题复习--详细整理附带习题【人教版】
![高中数学必修一专题复习--详细整理附带习题【人教版】](https://img.taocdn.com/s3/m/03eaa3d06aec0975f46527d3240c844769eaa0bc.png)
高中数学必修一专题复习--详细整理附带
习题【人教版】
本文档是针对高中数学必修一的专题复,详细整理了各个知识点,并附带了相应的题。
以下是各个专题的内容概要:
1. 函数
- 函数及其表示方法
- 常用函数的性质和图像
- 函数的运算与初等函数的复合
- 函数的单调性和奇偶性
- 函数的解析式及其应用
2. 三角函数
- 三角函数的概念和基本性质
- 三角函数的图像和性质
- 三角函数的和差化积公式
- 三角函数的倍角公式和半角公式
- 三角函数的解析式及其应用
3. 数列与数学归纳法
- 等差数列和等差数列的前n项和
- 等比数列和等比数列的前n项和
- 数学归纳法的基本原理和应用
4. 平面向量
- 平面向量的定义和运算
- 平面向量的数量积和向量积
- 平面向量的坐标表示和平面向量的夹角
- 平面向量的共线与垂直
5. 解析几何基础
- 直线和线段的表示和性质
- 平面和面积的表示和性质
- 二次曲线和椭圆、双曲线的表示和性质
为了帮助同学们更好地复习,本文档附带了大量的习题。
复习时,可以先阅读相关知识点的介绍,然后尝试做相应的习题巩固所学内容。
希望本文档能对同学们的高中数学必修一复习有所帮助!。
人教A版高中数学必修1全册练习题
![人教A版高中数学必修1全册练习题](https://img.taocdn.com/s3/m/09881f260740be1e650e9aa8.png)
人教A版高中数学必修1全册练习题高中数学必修1练习题集第一章、集合与函数概念1.1.1集合的含义与表示例1.用符号和填空。
⑴设集合A是正整数的集合,则0_______A,________A,______A;⑵设集合B是小于的所有实数的集合,则2______B,1+______B;⑶设A为所有亚洲国家组成的集合,则中国_____A,美国_____A,印度_____A,英国____A例2.判断下列说法是否正确,并说明理由。
⑴某个单位里的年轻人组成一个集合;⑵1,,,,这些数组成的集合有五个元素;⑶由a,b,c组成的集合与b,a,c组成的集合是同一个集合。
例3.用列举法表示下列集合:⑴小于10的所有自然数组成的集合A;⑵方程x=x的所有实根组成的集合B;⑶由1~20中的所有质数组成的集合C。
例4.用列举法和描述法表示方程组的解集。
典型例题精析题型一集合中元素的确定性例1.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤的近似值得全体,其中能构成集合的组数是()A.2B.3C.4D.5题型二集合中元素的互异性与无序性例2.已知x{1,0,x},求实数x的值。
题型三元素与集合的关系问题1.判断某个元素是否在集合内例3.设集合A={x∣x=2k,kZ},B={x∣x=2k+1,kZ}。
若aA,bB,试判断a+b与A,B的关系。
2.求集合中的元素例4.数集A满足条件,若aA,则A,(a≠1),若A,求集合中的其他元素。
3.利用元素个数求参数取值问题例5.已知集合A={x∣ax+2x+1=0,aR},⑴若A中只有一个元素,求a的取值。
⑵若A中至多有一个元素,求a的取值范围。
题型四列举法表示集合例6.用列举法表示下列集合⑴A={x∣≤2,xZ};⑵B={x∣=0}⑶M={x+y=4,xN,yN}.题型五描述法表示集合例7.⑴已知集合M={xN∣Z},求M;⑵已知集合C={Z∣xN},求C.例8.用描述发表示图(图-8)中阴影部分(含边界)的点的坐标的集合。
2021新教材人教版高中数学A版必修第一册模块练习题--4.1~4.4综合拔高练
![2021新教材人教版高中数学A版必修第一册模块练习题--4.1~4.4综合拔高练](https://img.taocdn.com/s3/m/0ca2d8cb2f60ddccdb38a0d9.png)
4.1~4.4综合拔高练五年高考练考点1 指数式与对数式的恒等变形 1.(2019北京,6,5分,)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳的亮度与天狼星的亮度的比值为( ) A.1010.1 B.10.1 C.lg 10.1 D.10-10.1 2.(2017北京,8,5分,)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)( ) A.1033 B.1053 C.1073 D.1093 3.(2018课标全国Ⅲ,12,5分,)设a=log 0.20.3,b=log 20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b 4.(2016浙江,12,6分,)已知a>b>1.若log a b+log b a=52,a b =b a ,则a= ,b= .考点2 指数函数、对数函数和幂函数的综合运用 5.(2019课标全国Ⅰ,3,5分,)已知a=log 20.2,b=20.2,c=0.20.3,则( )A.a<b<cB.a<c<bC.c<a<bD.b<c<a 6.(2019天津,6,5分,)已知a=log 52,b=log 0.50.2,c=0.50.2,则a,b,c 的大小关系为( )A.a<c<bB.a<b<cC.b<c<aD.c<a<b7.(2019浙江,6,5分,)在同一直角坐标系中,函数y=1a x,y=log a(x+ 12)(a>0,且a≠1)的图象可能是()ABCD8.(2019课标全国Ⅲ,7,5分,)函数y=2x 32x+2-x在[-6,6]上的图象大致为()ABCD9.(2018课标全国Ⅲ文,7,5分,)下列函数中,其图象与函数y=ln x 的图象关于直线x=1对称的是( ) A.y=ln(1-x) B.y=ln(2-x) C.y=ln(1+x) D.y=ln(2+x) 10.(2018课标全国Ⅰ文,12,5分,)设函数f(x)={2-x ,x ≤0,1,x >0,则满足f(x+1)<f(2x)的x 的取值范围是( ) A.(-∞,-1] B.(0,+∞) C.(-1,0) D.(-∞,0) 11.(2018江苏,5,5分,)函数f(x)=√log 2x -1的定义域为 .考点3含参数的指数函数、对数函数问题的解法12.(2019课标全国Ⅱ,14,5分,)已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln2)=8,则a=.13.(2018课标全国Ⅰ文,13,5分,)已知函数f(x)=log2(x2+a).若f(3)=1,则a=.14.(2016天津,13,5分,)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-√2),则a的取值范围是.强基计划的两15.(2018年复旦大学自主招生试题,)设方程log3x3+log273x=-43个根为a和b,则a+b的值为.三年模拟练应用实践1.(2020北京丰台高一上期中,)函数f(x)=√2x-1的定义域为()A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)2.(2020福建莆田一中高一上期末,)已知a=0.5-1.5,b=log615,c=log516,则()A.b<c<aB.c<b<aC.a<b<cD.a<c<b3.(2020山东师大附中高一上第一次学分认定考试,)设0<a<1,函数f(x)=log a (a 2x -2a x -2),使f(x)<0的x 的取值范围是( ) A.(-∞,0) B.(log a 3,+∞) C.(-∞,log a 3) D.(0,+∞)4.(2019四川成都外国语学校高一上期中,)若直角坐标平面内的两点P,Q 满足条件:①P,Q 都在函数y=f(x)的图象上;②P,Q 关于原点对称,则对称点[P,Q]是函数y=f(x)的一对“好友点对”(注:点对[P,Q]与[Q,P]看作同一对“好友点对”).已知函数f(x)={log 2x(x >0),-x 2-4x(x ≤0),则此函数的“好友点对”有( )A.0对B.1对C.2对D.3对5.(多选)(2020山东枣庄高一上期末,) 具有性质f (1x)=-f(x)的函数,我们称之为满足“倒负”变换的T 函数.下列函数中是T 函数的有(深度解析)A.f(x)=x-1xB.f(x)=x+1xC.f(x)={x,0<x <10,x =1-1x,x >1D.f(x)=ln 1-x1+x (x ≠0)6.(多选)(2020山东菏泽高一上期末,)对数函数y=log a x(a>0且a ≠1)与二次函数y=(a-1)x 2-x 在同一坐标系内的图象不可能是(深度解析)7.(2020河北唐山一中高一上期中,)已知定义域为R的函数f(x)=-2x+b2x+1+2是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当x∈[12,3]时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.迁移创新8.(2020河南省实验中学高一上期中,)已知函数f(x)=log a(a x+t)(a>0,且a≠1).(1)若函数f(x)的定义域为R,求实数t的取值范围;(2)若函数f(x)的定义域为D,且满足如下两个条件:①f(x)在D内是单调递增函数;②存在[m2,n2]⊆D,使得f(x)在[m2,n2]上的值域为[m,n],那么就称函数f(x)为“希望函数”,若函数f(x)=log a(a x+t)(a>0,且a≠1)是“希望函数”,求实数t的取值范围.答案全解全析 五年高考练1.A 依题意,m 1=-26.7,m 2=-1.45,所以52lg E1E 2=-1.45-(-26.7)=25.25,所以lg E 1E 2=25.25×25=10.1,所以E1E 2=1010.1.故选A.2.D 设MN=33611080=t(t>0),∴3361=t ·1080,∴361lg 3=lg t+80, ∴361×0.48≈lg t+80,∴lg t ≈173.28-80=93.28,∴t ≈1093.28. 故选D.3.B ∵a=log 0.20.3,b=log 20.3,∴1a=log 0.30.2,1b=log 0.32,∴1a +1b=log 0.30.4,∴0<1a +1b<1,即0<a+b ab<1.又∵a>0,b<0,∴ab<0,∴ab<a+b<0. 故选B. 4.答案 4;2解析 令log a b=t,∵a>b>1,∴0<t<1,由log a b+log b a=52得,t+1t =52,解得t=12或t=2(舍去),即log a b=12,∴b=√a ,又a b =ba,∴a √a =(√a )a,即a √a =a a2,∴√a =a2,解得a=4,∴b=2.5.B ∵a=log 20.2<log 21=0,b=20.2>20=1,c=0.20.3∈(0,0.20),即c ∈(0,1),∴a<c<b,故选B.6.A 因为a=log 52<log 5√5=12,b=log 0.50.2>log 0.50.5=1,c=0.50.2=(12)15>12,0.50.2<1,所以a<c<b,故选A.7.D 对于函数y=log a (x +12),当y=0时,有x+12=1,得x=12,即y=log a (x +12)的图象恒过定点(12,0),排除选项A 、C;函数y=1a x 与y=log a (x +12)在各自定义域上单调性相反,排除选项B,故选D.8.B 设f(x)=2x 32x +2-x(x ∈[-6,6]),则f(-x)=2(-x)32-x +2x=-f(x),∴f(x)为奇函数,排除选项C;当x=-1时, f(-1)=-45<0,排除选项D;当x=4时, f(4)=12816+116≈7.97,排除选项A.故选B.9.B 解法一:y=ln x 图象上的点P(1,0)关于直线x=1的对称点是它本身,则点P 在y=ln x 图象关于直线x=1对称的图象上,结合选项可知,B 正确.故选B.解法二:设Q(x,y)是所求函数图象上任一点,则其关于直线x=1的对称点P(2-x,y)在函数y=ln x 图象上, ∴y=ln(2-x).故选B.10.D 函数f(x)={2-x ,x ≤0,1,x >0的图象如图所示:由f(x+1)<f(2x)得{2x <0,2x <x +1,得{x <0,x <1.∴x<0,故选D. 11.答案 [2,+∞)解析 由题意可得log 2x-1≥0,即log 2x ≥1,∴x ≥2. ∴函数的定义域为[2,+∞). 12.答案 -3解析 由x>0可得-x<0,由f(x)是奇函数可知f(-x)=-f(x), ∴x>0时, f(x)=-f(-x)=-[-e a(-x)]=e -ax ,则f(ln 2)=e -aln 2=8, ∴-aln 2=ln 8=3ln 2, ∴a=-3. 13.答案 -7解析 ∵f(x)=log 2(x 2+a)且f(3)=1, ∴f(3)=log 2(9+a)=1, ∴a+9=2,∴a=-7. 14.答案 (12,32)解析 由题意知函数f(x)在(0,+∞)上单调递减. 因为f(2|a-1|)>f(-√2),f(-√2)=f(√2),所以f(2|a-1|)>f(√2),所以2|a-1|<212,解之得12<a<32.15.答案1081解析 利用对数的换底公式把方程log 3x 3+log 273x=-43化为11+log 3x+1+log 3x3=-43.化简得(1+log 3x)2+4(1+log 3x)+3=0, 解得1+log 3x=-1或1+log 3x=-3, ∴log 3x=-2或log 3x=-4,因此x=19或x=181,从而a+b=19+181=1081,故答案为1081.三年模拟练应用实践1.D 依题意得2x -1≥0,即2x ≥1=20,因此x ≥0,从而函数f(x)的定义域为[0,+∞),故选D.2.A a=0.5-1.5=21.5=2√2>2,b=log 615<log 636=2,c=log 516<log 525=2,因此a>b,a>c.又lg 16>lg 15>0,lg 6>lg 5>0,∴lg15lg6<lg16lg5,即log 615<log 516,从而b<c<a,故选A.3.C f(x)<0⇔log a (a 2x -2a x -2)<log a 1.∵0<a<1,∴a 2x -2a x -2>1,即(a x )2-2a x -3>0⇔(a x -3)(a x +1)>0. 又a x +1>0,∴a x -3>0, 因此a x >3=a log a 3,由0<a<1得x<log a 3.故选C.4.C 根据题意得,当x ≥0时,-x ≤0, 则f(-x)=-(-x)2-4(-x)=-x 2+4x,可知,若函数为奇函数,可有f(x)=x 2-4x,则函数y=-x 2-4x(x ≤0)的图象关于原点对称的图象对应的函数是y=x 2-4x(x ≥0),作出函数y=x 2-4x(x ≥0)的图象,看它与函数f(x)=log 2x(x>0)的交点个数即可得到“好友点对”的个数. 如图所示,观察图象可得它们的交点个数是2, 即f(x)的“好友点对”有2对,故选C.5.AC 选项A 中, f (1x )=1x -11x =1x -x=-f(x),A 项符合T 函数的定义; 选项B 中,f (1x )=1x +11x =1x +x=f(x),B 项不符合T 函数的定义; 选项C 中,当0<x<1时,1x >1, f(x)=x, f (1x )=-11x =-x=-f(x), 当x>1时,0<1x <1, f(x)=-1x , f (1x )=1x=-f(x), 又f(1)=-f(1)=0,故C 项符合T 函数的定义;选项D 中,函数的定义域为(-1,0)∪(0,1),此时,1x 不在函数的定义域内,D 项不符合T 函数的定义.故选AC.解题模板 解决新定义问题时,利用新定义逐一验证是解题的常见手段,分段函数中每一段不同函数都要单独进行验证.6.BCD 选项A,B 中,由对数函数图象得a>1,则二次函数中二次项系数a-1>0,其对应方程的两个根为0,1a -1,选项A 中,由图象得1a -1>1,从而1<a<2,选项A 可能;选项B 中,由图象得1a -1<0,与a>1相矛盾,选项B 不可能;选项C,D 中,由对数函数的图象得0<a<1,则a-1<0,二次函数图象开口向下,D 不可能;选项C 中,由图象与x 轴的交点的位置得1a -1>1,与0<a<1相矛盾,选项C 不可能.故选BCD.解题模板 确定含参数的函数的图象,要分析函数中参数的几何意义.特别是二次函数中,要从图象的开口方向、对称轴、与x 轴的交点位置等方面进行分析,对各个选项逐一进行判断.7.解析 (1)因为f(x)是定义在R 上的奇函数,所以f(0)=0,即-1+b 2+2=0,则b=1,经检验,当b=1时, f(x)=-2x +12x+1+2是奇函数,所以b=1. (2)f(x)=1-2x2x+1+2=-12+12x +1,f(x)在R 上是减函数. 证明如下:在R 上任取x 1,x 2,且x 1<x 2, 则f(x 2)-f(x 1)=12x 2+1-12x 1+1=2x 1-2x 2(2x 1+1)(2x 2+1),因为y=2x 在R 上单调递增,且x 1<x 2,则2x 1-2x 2<0.又因为(2x 1+1)(2x 2+1)>0,所以f(x 2)-f(x 1)<0, 即f(x 2)<f(x 1),所以f(x)在R 上是减函数.(3)因为f(kx 2)+f(2x-1)>0,所以f(kx 2)>-f(2x-1), 而f(x)是奇函数,则f(kx 2)>f(1-2x),又f(x)在R 上是减函数,所以kx 2<1-2x,即k<1-2x x 2=(1x )2-2x 在[12,3]上恒成立, 令t=1x ,则t ∈[13,2],g(t)=t 2-2t,t ∈[13,2]. 因为g(t)min =g(1)=-1,则k<-1. 所以k 的取值范围为(-∞,-1).迁移创新 8.解析 (1)因为f(x)的定义域为R,所以a x +t>0恒成立,所以t>-a x 恒成立.因为-a x <0,所以t ≥0,所以t 的取值范围是[0,+∞).(2)因为函数f(x)=log a (a x +t)(a>0,且a ≠1)是“希望函数”, 所以f(x)在[m 2,n 2]上的值域为[m,n],且函数是单调递增的. 所以{log a (a m 2+t)=m,log a (a n 2+t)=n,即{a m 2+t =a m ,a n 2+t =a n ,所以m,n 是关于x 的方程a x -a x 2-t=0的两个根,设u=a x 2(u>0), 因为m<n,所以u 2-u-t=0有2个不相等的正实数根,所以Δ=1+4t>0且两根之积等于-t>0,解得-14<t<0, 所以实数t 的取值范围是(-14,0).。
人教版高一数学必修一集合知识点和习题
![人教版高一数学必修一集合知识点和习题](https://img.taocdn.com/s3/m/72ebdd4abf23482fb4daa58da0116c175f0e1e12.png)
高一数学必修 1第一章集合一、集合有关概念1.集合的含义:必然范围的、肯定的、可区别的事物,看成一个整体来看待,就叫作集合,简称集,其中各事物叫作集合的元素或简称元。
2.集合的中元素的三个特性:(1)元素的肯定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方式:列举法与描述法。
注意:常常利用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方式。
{x∈R| x-3>2} ,{x|x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无穷集含有无穷个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的大体关系1.“包括”关系—子集A⊆有两种可能(1)A是B的一部份,;(2)A与注意:BB是同一集合。
反之: 集合A不包括于集合B,或集合B不包括集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:若是A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③若是 A⊆B, B⊆C ,那么 A⊆C④若是A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即CSA=},|{AxSxx∉∈且韦恩图示A B图1A B图2性质A A=AA Φ=ΦA B=B AA B⊆AA B⊆BA A=AA Φ=AA B=B AA B⊇AA B⊇B(CuA) (CuB)= Cu(A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.SA例题1.下列四组对象,能组成集合的是( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
完整)高中数学必修1基础练习题
![完整)高中数学必修1基础练习题](https://img.taocdn.com/s3/m/8fced120876fb84ae45c3b3567ec102de2bddfa2.png)
完整)高中数学必修1基础练习题1.下面的结论正确的是()A。
a∈Q,则a∈ND。
以上结论均不正确重写:哪个结论是正确的?A。
如果a是有理数,则a是自然数。
D。
没有任何结论是正确的。
2.下列说法正确的是()A。
某班中年龄较小的同学能够形成一个集合B。
由1,2,3和9,1,4组成的集合不相等C。
不超过20的非负数组成一个集合D。
方程x2-4=和方程|x-1|=1的解构成了一个四元集重写:哪个说法是正确的?A。
每个年龄较小的同学都可以形成一个集合。
B。
由1,2,3和1,4,9组成的集合不相等。
C。
非负整数不超过20组成一个集合。
D。
方程x2-4和|x-1|=1的解构成一个四元组。
3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A。
{(1,3),(3,1)}B。
{(2,2)}C。
{(1,3),(3,1),(2,2)}D。
{(4,0),(0,4)}重写:用列举法表示{(x,y)|x是正整数,y是正整数,x+y=4}应该是哪一个?A。
{(1,3),(3,1)} B。
{(2,2)} C。
{(1,3),(3,1),(2,2)} D。
{(4,0),(0,4)}4.下列命题:1)方程x-2+|y+2|=的解集为{2,-2};2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};3)集合{x|x-1a,a∈R}没有公共元素.其中正确的个数为()A。
0B。
1C。
2D。
3重写:有多少命题是正确的?A。
0 B。
1 C。
2 D。
35.对于集合A={2,4,6,8},若a∈A,则8-a∈A,则a的取值构成的集合是________.重写:集合A={2,4,6,8},如果a是A的元素,那么8-a也是A的元素。
a的可能值是什么?6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.重写:定义集合A*B={x|x=a-b,a是A的元素,b是B的元素},如果A={1,2},B={0,2},那么A*B中所有元素的总和是多少?7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.重写:如果集合A={-1,2},集合B={x|x2+ax+b=0},并且A=B,那么a和b是多少?8.已知集合A={a-3,2a-1,a2+1},a∈R.1)若-3∈A,求实数a的值;2)当a为何值时,集合A的表示不正确.重写:已知集合A={a-3,2a-1,a2+1},其中a是实数。
高中数学必修一拔高试题
![高中数学必修一拔高试题](https://img.taocdn.com/s3/m/e7ed8b3da300a6c30c229fa2.png)
目录第一讲集合概念及其基本运算第二讲函数的概念及解析式第三讲函数的定义域及值域第四讲函数的值域第五讲函数的单调性第六讲函数的奇偶性与周期性第七讲函数的最值第八讲指数运算及指数函数第九讲对数运算及对数函数第十讲幂函数及函数性质综合运用第一讲 集合的概念及其基本运算知识点一 元素与集合的关系1.已知A ={a +2,(a +1)2,a 2+3a +3},若1∈A,则实数a 构成的集合B 的元素个数是( ) A .0 B .1 C .2 D .3知识点二 集合与集合的关系1.已知集合A ={x|x 2-3x +2=0,x∈R },B ={x|0<x<5,x∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4【变式探究】 (1)数集X ={x|x =(2n +1)π,n∈Z }与Y ={y|y =(4k±1)π,k∈Z }之间的关系是( )A .X ⊂YB .Y ⊂XC .X =YD .X≠Y(2)设U ={1,2,3,4},M ={x∈U|x 2-5x +p =0},若∁U M ={2,3},则实数p 的值是( ) A .-4 B .4 C .-6 D .6 知识点三 集合的运算1.若全集U ={x∈R |x 2≤4},则集合A ={x∈R ||x +1|≤1}的补集A C U 为( )A .{x∈R |0<x<2}B .{x∈R |0≤x<2}C.{x∈R |0<x≤2} D.{x∈R |0≤x≤2} 2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(AC U )∩(B C U )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}【变式探究1】若全集U ={a ,b ,c ,d ,e ,f},A ={b ,d},B ={a ,c},则集合{e ,f}=( ) A .A∪B B.A∩B C.(A C U )∩(B C U ) D .(A C U )∪(B C U ) 典型例题:例1:满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1 ,a 2, a 3}={a 1,a 2}的集合M 的个数是 ( )A.1B.2C.3D.4例2:设A={x|1<x<2},B={x|x >a},若A B ,则a 的取值范围是______变式练习:1.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ∩N ≠,则k 的取值范围是 2.已知全集}{R x x I∈=,集合}31{≥≤=x x x A 或,集合}1{+<<=k x k x B ,且=B AC I )(,则实数k 的取值范围是3.若集合},012{2R x x ax x M ∈=++=只有一个元素,则实数的范围是4.集合A = {x | –1<x <1},B = {x | x <a }, (1)若A ∩B =,求a 的取值范围; (2)若A ∪B = {x | x <1},求a 的取值范围.例3:设A = {x | x 2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若,求实数a 组成的集合,并写出它的所有非空真子集.例4:定义集合A B 、的一种运算:121*{|A B x x x x x A ==+∈,, 2}x B ∈,若{123}A =,,,{12}B =,,则B A *中所有元素的和为 .例5:设A 为实数集,满足,, (1)若,求A;(2)A 能否为单元素集?若能把它求出来,若不能,说明理由;(3)求证:若,则基础练习:1. 由实数x,-x,|x |,所组成的集合,最多含( ) (A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素2. 下列结论中,不正确的是( )A.若a ∈N ,则-a NB.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R ,则3. 已知A ,B 均为集合U={1,3,5,7,9}子集,且A∩B={3},C U B∩A={9},则A=( ) (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}4. 设集合A={1, 3, a}, B={1, a 2-a+1},若B ⊆A, 则A ∪B=__________5. 满足的集合A 的个数是_____个。
人教版高中数学必修一第一章集合与函数概念精编综合提高测试题
![人教版高中数学必修一第一章集合与函数概念精编综合提高测试题](https://img.taocdn.com/s3/m/83222fd77f1922791688e84d.png)
人教版高中数学必修一第一章集合与函数概念精编综合提高题一、选择题(每小题5分,共计50分)2. 函数2()=f x)A.1[,1]3- B.1(,1)3- C.11(,)33- D.1(,)3-∞-3. 已知{}{}22|1,|1==-==-M x y x N y y x,NM⋂等于()A. N B.M C.R D.∅4. 下列给出函数()f x与()g x的各组中,是同一个关于x的函数的是()A.2()1,()1xf x xg xx=-=- B.()21,()21fx x g x x=-=+C.2(),()f x xg x==.0()1,()f xg x x==5.已知函数()533f x ax bx cx=-+-,()37f-=,则()3f的值为( ) A. 13 B.13- C.7 D.7-6.若函数2(21)1=+-+y x a x在区间(-∞,2]上是减函数,则实数a的取值范围是()A.[-23,+∞)B.(-∞,-23]C.[23,+∞)D.(-∞,23]7.在函数22, 1, 122, 2x xy x xx x+≤-⎧⎪=-<<⎨⎪≥⎩中,若()1f x=,则x的值是()A.1B.312或C.1±D8. 已知函数()=f x的定义域是一切实数,则m的取值范围是()A.0<m≤4B.0≤m≤1C.m≥4D.0≤m≤49. 已知函数)(xf是R上的增函数,(0,2)-A,(3,2)B是其图象上的两点,那么2|)1(|<+xf的解集是()A.(1,4) B.(-1,2) C.),4[)1,(+∞-∞ D.),2[)1,(+∞--∞10.若函数(),()f xg x分别是R上的奇函数、偶函数,且满足()()2xf xg x-=,则有()A.(2)(3)(0)f f g<<B.(0)(3)(2)g f f<<C.(2)(0)(3)f g f<<D.(0)(2)(3)g f f<<10.若*,x R n N∈∈,规定:(1)(2)(1)nxx x x x nH=++⋅⋅⋅⋅⋅+-,例如:()44(4)(3)(2)(1)24H-=-⋅-⋅-⋅-=,则52()xf x x H-=⋅的奇偶性为A.是奇函数不是偶函数B.是偶函数不是奇函数C.既是奇函数又是偶函数D.非奇非偶二、填空题(每小题5分,共计25分)12.若集合{}{}2|60,|10M x x x N x ax=+-==-=,且N M⊆,则实数a的值为_________________13.已知y=f(x)是定义在R上的奇函数,当0x≥时,()2f x x-2x=,则()x f在0<x是______________14.某工厂8年来某产品产量y与时间t年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快;②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.。
【期末复习必备】人教版高中数学必修一知识点与典型习题(含全部四个部分)(知识点+典例+答案))
![【期末复习必备】人教版高中数学必修一知识点与典型习题(含全部四个部分)(知识点+典例+答案))](https://img.taocdn.com/s3/m/848c530c964bcf84b9d57bd3.png)
中山一中2015-2016高一上学期期末复习人教数学必修一第一部分 集合1.集合与元素的关系1.已知集合{}23,,02+-=m m m A 且A ∈2,则实数m 的值为( )A .3B .2C .0或3D .0,2,3均可2.已知实数{}21,3,a a ∈,则实数a 的值为( )A .1B .1或3C .0或3D .0或12.集合与集合的关系1.满足条件{}{},,a A a b c ⊆⊆的所有集合A 的个数是 ( ) A .1个 B .2个 C .3个 D .4个2.【教材12】已知集合{}1,2A =,集合B 满足{}1,2A B = ,则集合B 有_______个. A .1个 B .2个 C .3个 D .4个3.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 4.设集合{}|35A x x =<<,{}|12B x a x a =-≤≤+,且A B ⊆,则实数a 的取值范围是( )A .34a <≤B .34a ≤<C .34a ≤≤D .∅3.集合的交并补运算基本策略:有限集——列举法;无限集——画数轴 1.设集合}7,5,3,1{=U ,}5,1{=M ,则=M C U _________ 2.设全集U ={1,2,3,4},集合S ={1,3},T ={4},则等于( )A .{2,4}B .{4}C .ΦD .{1,3,4}3.已知集合{}|lg(2)A x y x ==-,集合{}|22B x x =-≤≤,则A B = ( )A .{}|2x x ≥-B .{}|22x x -<<C .{}|22x x -≤<D .{}|2x x <4.设集合}421{,,=A ,集合},,|{A b A a b a x xB ∈∈+==,则集合B 中有( )个元素 A .4 B .5C .6D .75.设a ,b 都是非零实数,y =a a +b b +ab ab可能取的值组成的集合是________. 4.不等式的解集 (1)一元二次不等式1.不等式21x >的解集为_________________2.不等式22320x x -->的解集为_________________ (2)分数不等式(除化为乘,注意分母不为0)1.不等式101xx +>-解集为__________________ 2.不等式121xx+>-解集为__________________ (3)指数不等式(利用单调性) 1.不等式3121x +>解集为__________________2.不等式2339x x-+>解集为__________________3.若213211()(),22a a +-<则实数a 的取值范围是____________ (4)对数不等式(利用单调性,注意真数>0)1.已知集合{}|lg(2)A x y x ==-,集合{}|22B x x =-≤≤,则A B = ________2.已知集合{}|10xM x e =-≥,{}3|log (1)1N x x =-≥,则M N = _____________3.已知集合1{2},{lg 0}2x A x B x x =>=>,则()R A B = ð____________ 5.含参数集合问题1.已知集合}012|{2=+-=x ax x A 有且只有一个元素,则a 的值的是 . 2.含有三个实数的集合既可表示成a {,ab ,}1,又可表示成2{a ,b a +,}0,则20162015b a += .3.已知集合}121{+≤≤+=a x a x P ,集合}52{≤≤-=x x Q(1)若3a =,求集合()R C P Q ;(2)若P Q ⊆,求实数a 的取值范围第二部分 函数1.定义域 值域(最值) 1.函数()()3log 32f x x x =++-的定义域为____________________ 2.函数22()log (23)f x x x =+-的定义域是( )(A) [3,1]- (B) (3,1)- (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞ 3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),(f x x g x x==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程 1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得),(1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y = C .1()2x y = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________ 2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞C .)2,0(D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数B .)()(x g x f -是奇函数C .)()(x g x f +是偶函数D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
最新人教版高一数学必修一各章知识点总结+测试题组全套(含答案)优秀名师资料
![最新人教版高一数学必修一各章知识点总结+测试题组全套(含答案)优秀名师资料](https://img.taocdn.com/s3/m/fa6e45f0b14e852458fb57e5.png)
人教版高一数学必修一各章知识点总结+测试题组全套(含答案)高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员}~{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
, 注意:常用数集及其记法:非负整数集,即自然数集, 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1, 列举法:{a,b,c……}2, 描述法:将集合中的元素的公共属性描述出来~写在大括号内表示集合的方法。
{xR| x-3>2} ,{x| x-3>2}3, 语言描述法:例:{不是直角三角形的三角形}4, Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合 2(3) 空集不含任何元素的集合例:{x|x=,5,二、集合间的基本关系1.‚包含?关系—子集注意:有两种可能,1,A是B的一部分~,,2,A与B是同A,B一集合。
,,反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或,,BA2(‚相等?关系:A=B (5?5~且5?5~则5=5) 2实例:设 A={x|x-1=0} B={-1,1} ‚元素相同则两集合相等? 即:? 任何一个集合是它本身的子集。
AA?真子集:如果AB,且A B那就说集合A是集合B的真子集~记作AB(或BA)?如果 AB, BC ,那么 AC? 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集~记为Φ规定: 空集是任何集合的子集~空集是任何非空集合的真子集。
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)
![(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)](https://img.taocdn.com/s3/m/5e90b04ea21614791611280f.png)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};。
高中数学必修一第一章第一节集合的概念拔高题
![高中数学必修一第一章第一节集合的概念拔高题](https://img.taocdn.com/s3/m/d4d4ebe85ff7ba0d4a7302768e9951e79b89691f.png)
高中数学必修一1.1集合的概念拔高题第I 卷(选择题)一、单选题1.对于任意两个正整数m 、n ,定义某种运算“※”,法则如下:当m 、n 都是正奇数时,m ※n =m n +;当m 、n 不全为正奇数时,m ※n =mn .则在此定义下,集合{}**(,)|16,,M a b a b a N b N ※==∈∈中的元素个数是A .7B .11C .13D .142.已知集合2{|210}M x R ax x =∈+-=,若M 中只有一个元素,则a 的值是( ) A .1-B .0或1-C .1D .0或13.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( ) A .3,6,9B .6,9,12C .9,12,15D .6,12,154.若集合()22017*2,10,,2n mn n A m n m Z n Z ⎧⎫++⎪⎪==∈∈⎨⎬⎪⎪⎩⎭,则集合A 的元素个数为A .4038B .4036C .22017D .220185.已知x ,y 均不为0,即||||x y x y -的所有可能取值组成的集合中的元素个数为( ) A .1 B .2 C .3 D .46.若集合且210,,x y x y M --≤∈},则N 中元素的个数为 A .9B .6C .4D .27.已知集合A =3|,2x x Z Z x 且⎧⎫∈∈⎨⎬-⎩⎭,则集合A 中的元素个数为( ) A .2 B .3 C .4D .58.当一个非空数集G 满足“如果,a b G ∈,则,,a b a b ab G +-∈,且0b ≠时,aG b∈”时,我们称G 就是一个数域,以下四个数域的命题; ※0是任何数域的元素;※若数域G 有非零元素,则2020G ∈; ※集合}{2,P x x k k Z ==∈是一个数域 ※有理数集是一个数域 其中假命题的是( ) A .※ B .※ C .※ D .※二、多选题9.设集合{}22,,Z M a a x y x y ==-∈,则下列是集合M 中的元素的有( )A .4n ,Z n ∈B .41n +,Z n ∈C .42n +,Z n ∈D .43n +,Z n ∈10.设P 是一个数集,且至少含有两个数,若对任意a b P ∈、,都有a b +、-a b 、ab 、aP b∈(除数0b ≠)则称数集P 是一个数域.例如有理数集Q 是数域;数集{,}F a a b Q =+∈也是数域.下列命题是真命题的是( )A .整数集是数域B .若有理数集Q M ⊆,则数集M 必为数域C .数域必为无限集D .存在无穷多个数域11.设a ,b ,c 为实数21()()y x a x bx c =+++,22(1)(1)y ax cx bx =+++,记集合{}10,S x y x R ==∈,{}20,T x y x R ==∈,若()Card S 、()Card T 分别表示集合S 、T 的元素的个数,则下列结论能成立的是( ) A .()1Card S =,()0Card T = B .()2Card S =,()3Card T = C .()2Card S =,()2Card T =D .()1Card S =,()1Card T =12.已知集合{}{}1,2,|20P Q x ax ==+=,若P Q P =,则实数a 的值可以是( ) A .2-B .1-C .1D .0第II 卷(非选择题)三、填空题13.已知集合A ={1,2},B ={(x ,y )|x※A ,y※A ,x+y※A},则B 中所含元素的个数为____.14.进才中学1996年建校至今,有一同学选取其中8个年份组成集合{}1996,1997,2000,2002,2008,2010,2011,2014A =,设i j x x A ∈、,i j ≠,若方程i j x x k -=至少有六组不同的解,则实数k 的所有可能取值是_________.15.对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈,若{}2,0,1S T ==-,则S T +=________(用列举法表示)16.若集合7{|||}5x x Z x m ∈-<且中只有一个元素,则实数m 的取值范围是________参考答案:1.C 【解析】 【详解】试题分析:从定义出发,抓住m 、n 的奇偶性对16实行分拆是解决本题的关键,当m 、n 同奇时,根据m ※n m n =+将16分拆两个同奇数的和,有1153135117997115133151+=+=+=+=+=+=+=+,共有8对;当m 、n 不全为奇数时,根据m ※n mn =将16分拆两个不全为奇数的积,再算其组数即可,此时有116284482161⨯=⨯=⨯=⨯=⨯,共5对.※共有8513+=个,故选C.考点:考查分析问题的能力以及集合中元素的性质. 2.B 【解析】 【分析】集合M 只含有一个元素,说明方程2210ax x 只有一个解.0a =时,方程为一元一次方程,只有一个解,符合条件;0a ≠时,方程为一元二次方程,若方程只有一个解,需判别式440a ∆=+=,所以解出a 即可,这样a 的值就都求出来了. 【详解】集合M 中只含有一个元素,也就意味着方程2210ax x 只有一个解; (1)当0a =时,方程化为210x -=,只有一个解12x =; (2)当0a ≠时,若2210ax x 只有一个解,只需440a ∆=+=,即1a =-; 综上所述,可知a 的值为0a =或1a =-. 故选:B 【点睛】本题主要考查了描述法表示集合,一元二次方程只有一个解的充要条件,属于中档题. 3.B 【解析】 【分析】先去掉绝对值,转化为两个方程,针对方程根的情况进行讨论. 【详解】解:关于x 的方程26(0)x x a a -=>等价于260x x a --=※,或者260x x a -+=※.由题意知,P 中元素的和应是方程※和方程※中所有根的和.0a >,对于方程※,()2(6)413640a a ∆=--⨯⨯-=+>.∴方程※必有两不等实根,由根与系数关系,得两根之和为6.而对于方程※,364a ∆=-,当9a =时,0∆=可知方程※有两相等的实根为3, 在集合中应按一个元素来记,故P 中元素的和为9; 当9a >时,∆<0方程※无实根,故P 中元素和为6;当09a <<时,方程※中0∆>,有两不等实根,由根与系数关系,两根之和为6, 故P 中元素的和为12. 故选:B . 4.B 【解析】首先由题意方程变形为两个数相乘,即()201820172125n n m ++=⨯,依次讨论n 为奇数或偶数,得到满足条件的n ,从而得到集合A 的元素个数. 【详解】由题意可知220172210n mn n ++=⨯ 即()201820172125n n m ++=⨯,当n 是偶数时,21n m ++是奇数,当20182n =,此时2017215n m ++=,解得201720185122m Z --=∈,满足条件,依次类推,201825n =⨯,2018225⨯,2018325⨯......2018201725⨯,共2018个n ,每一个n 对应唯一的m ,当n 时奇数时,21n m ++是偶数,此时05n =,15,25…..20175共2018个n , 综上可知满足条件的n 有4036个数,每一个n 对应唯一的m , 所有集合A 的元素个数为4036个. 故选:B 【点睛】本题考查由方程的整数解,确定集合的元素个数,意在考查分析问题和解决问题的能力,本题的关键是根据条件变形为()201820172125n n m ++=⨯,从而讨论n 是奇数或偶数,将2018201725⨯分成不同的两个数相乘,从而确定n 的个数即元素个数.5.C 【解析】 对||||x y x y -由x ,y 的正负分四种情况去绝对值讨论即可. 【详解】当x ,y 同号时,原式的值是0;当x 为正、y 为负时,原式的值是2;当x 为负、y 为正时,原式的值是2-. 综上所述,||||x y x y -的所有可能取值组成的集合中的元素个数为3. 故选:C 【点睛】本题考查绝对值的运算,属于基础题. 6.C 【解析】 【详解】 略 7.C 【解析】 【详解】 试题分析:32Z x∈-,2x -的取值有3-、1-、1、3,又x Z ∈, x ∴值分别为5、3、1、1-,故集合A 中的元素个数为4,故选C.考点:数的整除性 8.C 【解析】 【分析】对于※,根据新定义,a ,b F ∈,当0b ≠时,a F b∈,取0a =,可判断出①,对于※,若数域F 中有非零元素,F 可以取实数域,可取2020a =,1b =,可判断出②,对于※,由P 的元素知,x 是3的倍数,取6a =,3b =时可判断出③,对于※,若F 是有理数,则当a ,b F ∈,则a b +,-a b ,ab F ∈,且当0b ≠时,a F b∈都成立,判断出④.【详解】解:对于※,根据新定义,a ,b F ∈,当0b ≠时,a F b∈,对于0a =,可得0F ∈,故正确,对于※,若数域F 中有非零元素,F 可以取实数域,可取2020a =,1b =,可得2021F ∈,故正确,对于※,由P 的元素知,x 是3的倍数,当6a =,3b =时,623a P b==∉,故错误, 对于※,若F 是有理数,则当a ,b F ∈,则a b +,-a b ,ab F ∈,且当0b ≠时,a F b∈都成立,故正确, 故假命题为③. 故选:C . 9.ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =-可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+-,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+--,Z n ∈,1Z n +∈,1Z n -∈,所以4n M ,故选项A 正确;对于B :因为()()2241212n n n +=+-,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n,则()()42n x y x y +=+-,易知x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数,矛盾;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+-+,22Z n +∈,21Z n +∈,所以43n M ,故选项D正确; 故选:ABD. 10.CD 【解析】利用已知条件中数域的定义判断各命题的真假,关键把握数域是对加减乘除四则运算封闭. 【详解】要满足对四种运算的封闭,逐个检验; A.对除法如12※Z 不满足,所以排除;B.当有理数集Q 增加一个元素i 得M ,而1i +不属于集合M ,所以M 不是一个数域,B 排除;C.域中任取两个元素,由运算可以生成无穷多个元素,所以正确;D.把集合{},F a a b Q =+∈替换成以正确. 故选:CD. 【点睛】本题考查学生对新定义题型的理解和把握能力,理解数域的定义是解决该题的关键. 11.ACD 【解析】方程2()()0x a x bx c +++=的解的个数取决于24b ac ∆=-,至少有一个x a =-;方程()()2110ax cx bx +++=的解得个数取决于0a =及24b ac ∆=-,分情况讨论举例可得答案.【详解】A :当()0Card T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时()1Card S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时()1Card S =;故存在A 成立;B :当()3Card T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,即()()2000110ax cx bx +++=,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根,故()0f x =有三个根,即()3Card T =时,必有()3Card S =,故不可能是()2Card S =,()3Card T =;故B 错;C :当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得1x a =-或2=-x b;只需2b a ≠,即可满足()2Card S =,()2Card T =;故存在C 成立;D :当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即()1Card S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即()1Card T =;故存在D 成立;故选:ACD. 【点睛】本题考查了集合中元素的个数及集合元素的特征,同时考查了二次方程的解,属于中档题. 12.ABD 【解析】 【分析】由题得Q P ⊆,再对a 分两种情况讨论,结合集合的关系得解. 【详解】因为P Q P =,所以Q P ⊆. 由20ax +=得2ax =-,当0a =时,方程无实数解,所以Q =∅,满足已知; 当0a ≠时,2x a =-,令21a-=或2,所以2a =-或1-.综合得0a =或2a =-或1a =-.故选:ABD 【点睛】易错点睛:本题容易漏掉0a =. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解. 13.1 【解析】 【分析】首先根据题中的条件,B ={(x ,y )|x※A ,y※A ,x+y※A},结合A ={1,2},写出集合B ,并且找到集合B 的元素个数. 【详解】因为A ={1,2},B ={(x ,y )|x※A ,y※A ,x+y※A}, 所以{}(1,1)B =,所以集合B 中只有一个元素, 故答案是1. 【点睛】该题考查的是有关集合中元素的个数问题,解题的关键是根据题中所给的集合中元素的特征,将集合中的元素列出来,从而得到结果. 14.{}3,6,14 【解析】 【分析】根据i j x x k -=,用列举法列举出集合A 中,从小到大8个数中(设两数的差为正),相邻两数,间隔一个数,间隔二个数,间隔三个数,间隔四个数,间隔五个数,间隔六个数的两数差,从中找出差数出现次数不低于3的差数即可. 【详解】集合A 中,从小到大8个数中,设两数的差为正: 则相邻两数的差:1,3,2,6,2,1,3; 间隔一个数的两数差:4,5,8,8,3,4; 间隔二个数的两数差:6,11,10,9,6; 间隔三个数的两数差:12,13,11,12; 间隔四个数的两数差:14,14,14;间隔五个数的两数差:15,17;间隔六个数的两数差:18;这28个差数中,3出现3次,6出现3次,14出现3次,其余都不超过2次, 故k 取值为:3,6,14时,方程i j x x k -=至少有六组不同的解,所以k 的可能取值为:{}3,6,14,故答案为:{}3,6,1415.{}4,2,1,0,1,2---【解析】根据集合的新定义,分别求出两个集合中各取一个元素求和的所有可能情况.【详解】由题:对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈,若{}2,0,1S T ==-,各取一个元素,a A b B ∈∈形成有序数对(),a b ,所有可能情况为()()()()()()()()()2,2,2,0,2,1,0,2,0,0,0,1,1,2,1,0,1,1------,所有情况两个数之和构成的集合为:{}4,2,1,0,1,2---故答案为:{}4,2,1,0,1,2---【点睛】此题考查集合的新定义问题,关键在于读懂定义,根据定义找出新集合中的元素即可得解.16.23(,]55【解析】【分析】 解绝对值不等式可得7755m x m -<<+且0m >,由75y x =-图象关于75x =对称可知整数解为1x =或2,分别在两种情况下得到不等式组,解不等式组求得结果.【详解】 由75x m -<得:7755m x m -<<+且0m > 75y x =-图象关于75x =对称∴当整数解为1x=时,7015725mm⎧≤-<⎪⎪⎨⎪+≤⎪⎩,解得:2355m<≤当整数解为2x=时,7157235mm⎧-≥⎪⎪⎨⎪<+≤⎪⎩,无解综上所述:23,55 m⎛⎤∈ ⎥⎝⎦本题正确结果:23, 55⎛⎤ ⎥⎝⎦【点睛】本题考查根据集合中元素的个数求解参数范围问题,关键是能够根据不等式的解,确定整数解的可能的取值,从而构造出不等式组.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.函数210)2()5(--+-=x x y ( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 2.设函数y=lg(x2-5x)的定义域为M ,函数y=lg(x -5)+lgx 的定义域为N ,则( ) A .M ∪N=R B .M=N C .M ⊇N D .M ⊆N 3.函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数4.已知函数)(1)()(x f x f x g -=,其中log2f(x)=2x ,x ∈R ,则g(x)( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数D .是偶函数又是减函数5( )6.函数2422-+=x x y 的单调递减区间是 ( )A .]6,(--∞B .),6[+∞-C .]1,(--∞D .),1[+∞-7.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数的(参考数据:1.14=1.46,1.15=1.61) ( )A .10%B .16.4%C .16.8%D .20%8.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R9.如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<10.已知2)(xx e e x f --=,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 一、 DCCDA ABADA11.幂函数f(x)的图象过点,则f(x)的解析式是.12.计算⎪⎪⎭⎫ ⎝⎛-÷++-33433233421428a b a ab a ab a = . 1α3α4α2α13.将函数xy 2=的图象向左平移一个单位,得到图象C1,再将C1向上平移一个单位得到图象C2,作出C2关于直线y=x 对称的图象C3,则C3的解析式为 . 11、)0()(34≥=x x x f 12、32a 13、1)1(log 2--=x y15.(12分)求函数23log (253)y x x =--的单调区间。
18.(12分)已知函数11)(+-=xx a a x f (a >1).(1)判断函数f (x)的奇偶性; (2)求f (x)的值域;(3)证明f (x)在(-∞,+∞)上是增函数.15.解:由22530x x -->得132x x <->或,令u=2253x x --,因为 u=254912()(,)482x ---∞-在上单调递减,在(3,)+∞上单调递增因为3log y u=为减函数,所以函数23log (253)y x x =--的单调递增区间为(3,)+∞,单调递减区间为1(,)2-∞-。
18、解:(1)是奇函数.(2)值域为(-1,1).(3)设x1<x2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
=)1)(1()1)(1()1)(1(212121++-+-+-x x x x x x a a a a a a ∵a >1,x1<x2,∴a 1x <a 2x . 又∵a 1x +1>0,a2x +1>0,∴f (x1)-f (x2)<0,即f (x1)<f (x2). 函数f(x)在(-∞,+∞)上是增函数.1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .xx y 2=C .)10(log ≠>=a a ay xa 且 D .x a a y log =2.下列函数中是奇函数的有几个( )①11x x a y a +=- ②2l g (1)33x y x -=+- ③x y x = ④1l o g 1ax y x +=- A .1 B .2 C .3 D .43.函数y x=3与y x=--3的图象关于下列那种图形对称( ) A .x 轴 B .y 轴 C .直线y x = D .原点中心对称4.已知13x x -+=,则3322x x -+值为( )A.B.C.D. -5.函数y =)A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]36.三个数60.70.70.76log 6,,的大小关系为( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<<C .0.760.7log 660.7<< D . 60.70.7log 60.76<<7.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3xe D .34xe +DDDBDDD1.985316,8,4,2,2从小到大的排列顺序是 。
2.化简11410104848++的值等于__________。
3.计算:(log )log log 2222545415-++= 。
4.已知x y x y 224250+--+=,则log ()x xy 的值是_____________。
5.方程33131=++-xx的解是_____________。
6.函数1218x y -=的定义域是______;值域是______.7.判断函数2lg(y x x =的奇偶性 。
1.<<<<16;3. 2-;4. 0;5. 1-;6. {}1|,|0,2x x y y ⎧⎫≠>≠⎨⎬⎩⎭且y 1;7. 奇函数1.若a x f xxlg 22)(-+=是奇函数,则实数a =_________。
2.函数()212()log 25f x x x =-+的值域是__________.3.已知1414log 7,log 5,a b ==则用,a b 表示35log 28= 。
4.设(){}1,,lg A y xy =, {}0,,B x y =,且A B =,则x = ;y = 。
5.计算:()()5log 22323-+ 。
6.函数x x e 1e 1y -=+的值域是__________.1.110;2. (],2-∞-;3. 2a a b -+;4. 1,1--;5. 15;6. (1,1)- 4.已知函数()log ()xa f x a a =-(1)a >,求()f x 的定义域和值域;解:0,,1x xa a a a x -><<,即定义域为(,1)-∞;0,0,log ()1x x x a a a a a a a ><-<-<,即值域为(,1)-∞。
3.已知,3234+⋅-=xx y 当其值域为[1,7]时,求x 的取值范围。
解:由已知得143237,xx≤-⋅+≤即43237,43231x x x x ⎧-⋅+≤⎪⎨-⋅+≥⎪⎩得(21)(24)0(21)(22)0x x x x⎧+-≤⎪⎨--≥⎪⎩即021x <≤,或224x≤≤∴0x ≤,或12x ≤≤。
1.若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。
2.若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________。
1. (1,)+∞;2. []0,11.解方程:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++(2)2(lg )lg 1020x x x +=解:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++40.2543213log log log ,1321x x x x x x -++==-++33121x x x x -+=-+,得7x =或0x =,经检验0x =为所求。
(2)2(lg )lg lg lg lg 1020,(10)20x x x x x x x +=+=, lg lg lg 220,10,(lg )1,lg 1,x x x x x x x x +====±10,x =1或10,经检验10,x =1或10为所求。
4.某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售单价每涨1元,销售量就减少1个,为了获得最大利润,则此商品的最佳售价应为多少?解:设最佳售价为(50)x +元,最大利润为y 元,(50)(50)(50)40y x x x =+---⨯240500x x =-++当20x =时,y 取得最大值,所以应定价为70元。
集合6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( C ) A .3个 B .5个 C .7个 D .8个 1.下列各项中,不可以组成集合的是( C )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则ba +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( A )A .0个B .1个C .2个D .3个3.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =_____________.3.{}|210x x <<4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。
4. 1|12k k ⎧⎫-≤≤⎨⎬⎩⎭4.设全集U R =,{}2|10M m mx x =--=方程有实数根,{}()2|0,.U N n x x n C M N =-+=方程有实数根求解:当0m =时,1x =-,即0M ∈;当0m ≠时,140,m ∆=+≥即14m ≥-,且0m ≠ ∴14m ≥-,∴1|4U C M m m ⎧⎫=<-⎨⎬⎩⎭,而对于N ,140,n ∆=-≥即14n ≤,∴1|4N n n ⎧⎫=≤⎨⎬⎩⎭,∴1()|4U C M N x x ⎧⎫=<-⎨⎬⎩⎭3.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人。