五年级逻辑推理
五年级奥数逻辑推理练习题及答案【三篇】
五年级奥数逻辑推理练习题及答案【三篇】海阔凭你跃,天高任你飞。
愿你信心满满,尽展聪明才智;妙笔生花,谱下锦绣第几篇。
学习的敌人是自己的知足,要使自己学一点东西,必需从不自满开始。
以下是小编为大家整理的《五年级奥数逻辑推理练习题及答案【三篇】》供您查阅。
【第一篇】数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:“小明得金牌;小华不得金牌;小强不得铜牌.”结果王老师只猜对了一个.那么小明得()牌,小华得()牌,小强得()牌.分析:这里以小明所得奖牌分三种情况进行分析:(1)若小明得金牌时;(2)若小明得银牌时;(3)若小明得铜牌时;然后根据题意,讨论所有可能出现的情况,舍弃不合理的情形,进而得出答案.解:①若“小明得金牌”时,小华一定“不得金牌”,这与“王老师只猜对了一个”相矛盾,不合题意;②若小明得银牌时,再以小华得奖情况分别讨论:如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意;③若小明得铜牌时,仍以小华得奖情况分别讨论:如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意;综上所述,小明、小华、小强分别获铜牌、金牌、银牌;答:小明得铜牌,小华得金牌,小强得银牌;故答案为:铜,金,银.点评:逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.【第二篇】1.找规律用循环小数表示1÷7,2÷7,3÷7的商,比较一下它们的循环节中的数字有什么特点,从中可以找出什么规律?应用找出的规律,写出4÷7,5÷7,6÷7的循环节后,再除一下,看看找到的规律对不对?分析与解答通过计算知,用7分别去除1,2,3后所得到循环节的位数相同,所出现的数字也相同虽然排列顺序不同,但只要找到十分位上的数字后,再依次排列即可。
五年级数学技巧如何解决逻辑推理问题
五年级数学技巧如何解决逻辑推理问题五年级是学习数学的重要时期,学生需要逐渐提升他们的逻辑推理能力。
逻辑推理问题是数学中的一个重要部分,它有助于培养学生的思考能力和问题解决能力。
在本文中,我们将介绍一些五年级学生可以使用的数学技巧来解决逻辑推理问题。
一、穷举法穷举法是解决逻辑推理问题的一种有效策略。
学生可以通过列举所有可能的情况,逐个尝试来找到正确答案。
例如,假设有一个问题是:“小明有8支红笔和4支蓝笔,他需要选择一支红笔和一支蓝笔,那么他有多少种可能的选择?”学生可以穷举红笔和蓝笔的组合,找到所有可能的情况,并计算总数。
通过穷举法,学生可以得出正确答案。
二、图表法图表法是另一种解决逻辑推理问题的有效技巧。
学生可以使用图表或表格来整理和归纳问题中的信息,以便更清晰地理解和分析问题。
例如,假设有一个问题是:“小明、小红和小华比赛玩猜数字游戏,分别猜了3次、4次和5次,他们每次猜的数字都不一样,那么他们一共猜了多少个不同的数字?”学生可以使用一个表格来记录每个孩子的猜测数字并进行整理,然后计算唯一数字的总数。
通过图表法,学生可以更好地组织信息并解决问题。
三、逻辑推理法逻辑推理法是解决逻辑推理问题的核心技巧。
学生需要学会借助已知条件进行推理和推断,从而得出答案。
例如,假设有一个问题是:“有三个数字,它们的和是12,它们的积是36,这三个数字分别是多少?”学生可以先根据已知条件列出方程式,然后通过分析和计算,找到正确的解决方案。
逻辑推理法是培养学生逻辑思维和解决问题能力的重要方法。
四、排除法排除法是一种能够缩小答案范围的有效技巧。
学生可以通过排除那些不符合已知条件的选项,从而找到正确答案。
例如,假设有一个问题是:“某个数除以6余2,除以7余3,除以9余5,那么这个数是多少?”学生可以通过分析,列举可能的选项,并逐个排除不符合条件的数值,最终找到正确的答案。
通过排除法,学生可以更快地解决逻辑推理问题。
综上所述,五年级数学技巧是解决逻辑推理问题的重要工具。
五年级数学推理练习题
五年级数学推理练习题1. 逻辑推理题:小华、小明和小刚是三个好朋友,他们分别住在不同的楼层。
小华住在比小明高的楼层,小刚住在比小华低的楼层。
如果小华不住在最高层,那么小明住在哪一层?2. 数列推理题:观察数列:2, 5, 9, 14, ...(a) 请找出数列的下一个数字。
(b) 如果数列的第10项是100,那么第11项是多少?3. 几何推理题:一个正方形的边长是10厘米,现在有一个圆与正方形的一边相切,并且圆心位于正方形的中心。
求圆的半径。
4. 应用题:一个班级有40名学生,其中1/4的学生喜欢数学,1/6的学生喜欢英语,剩下的学生喜欢科学。
喜欢科学的有多少人?5. 代数推理题:如果x+y=10,且2x-y=4,求x和y的值。
6. 概率推理题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?7. 组合推理题:有5本书,其中2本是数学书,3本是语文书。
如果随机从这5本书中选2本,有多少种不同的组合方式?8. 比例推理题:如果3千克的苹果的价格是15元,那么1千克苹果的价格是多少?如果购买2千克苹果,需要支付多少元?9. 速度和时间推理题:小明骑自行车以每小时15公里的速度从家到学校,如果路程是30公里,他需要骑行多长时间?10. 面积和体积推理题:一个长方体的长是10厘米,宽是8厘米,高是5厘米。
求这个长方体的表面积和体积。
答案提示:1. 小明住在第二层,因为小华不住在最高层,所以小华至少住在第三层,而小刚住在比小华低的楼层,所以小明只能住在第二层。
2. (a) 下一个数字是20,因为每个数字比前一个多5。
(b) 第11项是105,因为每项比前一项多5。
3. 圆的半径是5厘米,因为圆的直径等于正方形的边长。
4. 喜欢科学的有20人,因为40 * (1 - 1/4 - 1/6) = 20。
5. x=6,y=4,通过解方程组得出。
6. 抽到红球的概率是5/8。
7. 有10种不同的组合方式。
五年级数学逻辑推理练习题
五年级数学逻辑推理练习题题目一:找规律1. 请观察下面的数列,寻找规律,并写出下一个数。
2, 4, 6, 8, 10, ?2. 下面的数字有一个共同的特征,请选出其中不符合规律的数字。
6, 9, 16, 21, 263. 请观察下面的数字组成的图形,找出其中的规律,并写出图形的下一行。
12 34 5 67 8 9 10题目二:数列推理1. 请观察下面的数列,找出其中的规律,并写出数列的下一项。
3, 6, 10, 15, ?2. 请观察下面的数列,找出其中的规律,并写出数列的下一项。
2, 5, 9, 14, 20, ?3. 请观察下面的数列,找出其中的规律,并写出数列的下一项。
1, 4, 9, 16, 25, ?题目三:推理判断1. 今天是星期六,那么6天后是星期几?2. 王明每天运动30分钟,一周总共运动多少分钟?3. 如果所有的狗都会叫,那么所有会叫的动物一定是狗吗?为什么?题目四:逻辑推理阅读下面的故事,请回答问题。
小明、小华和小红住在同一栋楼里,小明住在小华的上面,小红住在小明的下面。
以下四个陈述是否正确?1. 小红住在最上面。
2. 小明住在最下面。
3. 小华住在最上面。
4. 小华住在最下面。
题目五:排序请将下面的数字按照从小到大的顺序排列:7, 2, 10, 3, 5题目六:算术运算1. 36 ÷ 4 × 3 = ?2. 25 ÷ 5 + 7 - 3 × 2 = ?3. (12 - 5) × 4 + 8 ÷ 2 = ?题目七:文字推理阅读下面的文字材料,请回答问题。
小红、小明、小华和小刚四个人参加一次比赛,中奖名次如下:1. 小红比小明和小华都要晚一名。
2. 小明比小华晚一名。
3. 小刚比小红晚一名。
请问,他们四个人的名次是怎样的?题目八:综合题阅读下面的问题,请解答。
甲、乙、丙三个人一起捉迷藏,甲先找,乙和丙是藏的人,甲找了一会儿找到了乙,乙还没来得及躲好,甲就找到了丙。
小学五年级逻辑问题练习及答案【五篇】
小学五年级逻辑问题练习及答案【五篇】问:大儿子戴的帽子是什么颜色?他是如何判断的?答案解析只要前面两个人有人带两个蓝色帽子和一个黄色帽子小儿子就会知道自己的帽子,他不知道代表前面3个至少有一个红帽子,三儿子看见前面也有红帽子所以不知道自己的帽子,二儿子也一样,所以大儿子就知道自己是红帽子【第二篇:帽子是什么颜色?】老师拿来五顶帽子,两顶红的三顶白的。
他让三个聪明的同学甲、乙、丙按甲、乙、丙的顺序排成一路纵队,并闭上眼睛,然后分别给他们各戴上一顶帽子,同时把余下的帽子藏起来。
当他们睁开眼后,每人只能看到站在自己前面的人的帽子,乙和丙都判断不出自己所戴帽子的颜色,而站在最前面的甲却根据此情况判断出了自己所戴帽子的颜色。
甲戴的帽子是什么颜色?他是怎样判断的?答案解析这是一个典型的逻辑推理问题。
甲站在最前面,虽然看不见任何一顶帽子,但他能够想到:如果我和乙戴的都是红帽子,因为一共只有两顶红帽子,那么丙就会判断出自己戴的是白帽子。
丙判断不出自己戴的帽子的颜色,说明我和乙戴的帽子是两白或一白一红。
甲接着想:乙也很聪明,当他看到丙判断不出自己戴的帽子的颜色时,他也能判断出我们两人戴的帽子是两白或一白一红。
此时,如果他看到我戴是红帽子,那么他就会知道自己戴的是白帽子,只有我戴的是白帽子时,他才可能猜不出自己戴的帽子的颜色。
所以,我戴的一定是白帽子。
【第三篇:哪个结论准确】甲说:“乙和丙都说谎。
”乙说:“甲和丙都说谎。
”丙说:“甲和乙都说谎。
”根据三人所说,你判断一下,下面的结论哪一个准确:(1)三人都说谎;(2)三人都不说谎;(3)三人中只有一人说谎;(4)三人中只有一人不说谎。
答案解析解:(1)假设“三人都说谎”是准确的,那么乙和丙确实说谎,所以甲说的是真话,产生矛盾,这个说法是错误的;(2)假设“三个人都不说谎”是准确的,那么与甲乙丙三人的说法都矛盾,所以这个说法是错误的;(3)假设“三人中有一人且只有一人说谎”是准确的,如果甲说谎,那么与乙说的话相矛盾,同理乙说谎与丙的话相矛盾,丙说谎与甲的话相矛盾;这个说法是错误的;(4)假设“三人中有一人且只有一人不说谎”;如果甲说真话,那么乙和丙都说谎,同理乙说真话,甲丙都说谎,丙说真话,甲乙都说谎;没有矛盾;所以只有(4)的说法是准确的。
五年级数学逻辑推理练习题
五年级数学逻辑推理练习题综合所有要求,以下是一份关于五年级数学逻辑推理的练习题:练习1:逻辑推理1. 有一个三角形,其中两条边长度分别是5 cm和8 cm,那么第三条边的长度可能是:a) 2 cmb) 6 cmc) 10 cmd) 12 cm2. 根据以下数列,推断下一个数字是什么?2, 4, 6, 8, _____3. 某个数与36的差是12,这个数是多少?4. 今天是星期一,那么再过5天是星期几?5. 有5个苹果,小明拿走了3个,小华拿走了1个,请问还剩下几个苹果?练习2:图形关系根据以下图形,回答问题:⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛6. 以上是一个多少行多少列的长方形?⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛7. 以上是一个多少行多少列的长方形?练习3:问题解决8. 1页书有10张纸,100页书有多少张纸?9. 如果今天是星期四,那么10天后是星期几?10. 某天早上,小明从家里骑自行车到学校用了15分钟,放学回家用了30分钟。
那么小明上学和回家用了多长时间?练习4:推理思维根据以下信息,回答问题:11. 今天是星期三。
明天是星期几?12. 小明每天骑自行车上学,他的自行车每分钟骑行的里程是300米。
如果小明上学花了10分钟,那么他骑行了多少米?13. 桌子上有5个苹果和2个橙子,小明要和小华一人拿走一个水果,他们有多少种选择?答案:1. b) 6 cm2. 103. 244. 六日5. 1个苹果6. 3行5列7. 2行5列8. 200张纸9. 星期日10. 45分钟11. 星期四12. 3000米13. 14种选择。
逻辑推理
1、五年级逻辑推理问题:难度:中难度在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?答:2、五年级逻辑推理问题:难度:中难度甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l 号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?答:3、五年级逻辑推理问题:难度:中难度共有4人进行跳远、百米、铅球、跳高4项比赛,规定每个单项中,第一名记5分,第二名记3分,第三名记2分,第四名记1分.已知在每一单项比赛中都没有并列名次,并且总分第一名共获17分,其中跳高得分低于其他项得分;总分第三名共获11分,其中跳高得分高于其他项得分.问总分第二名在铅球项目中的得分是多少?答:4、 六年级逻辑推理问题:难度:高难度答:5、 六年级逻辑推理问题:难度:中难度答:甲、乙、丙、丁4个队参加足球循环赛,即每两队之间都比赛一场.现在甲、乙、丙的比赛情况如下表,请由此确定甲与丁的比分,丙与丁的比分.甲、乙、丙、丁与小强5位同学一起比赛象棋,每两人都要比赛一盘.到现在止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘.问小强已经赛了几盘? . .1、五年级逻辑推理问题答案:【分析与解】可以枚举,一一尝试.当从贴有“一黑一白”的盒子中取出一个球,如果是白球,那么这只盒子一定装有两个白球,于是贴有“两个黑球”的盒子一定装有一个白球和一个黑球,最后贴有“两个白球”的盒子一定装有两个黑球.对应的,如果从贴有“一黑一白”的盒子中取出一个球,如果是黑球,那么这只盒子一定装有两个黑球,剩下的两只盒子可以同上分析出.所以,只要从贴有“一黑一白”的盒子中取球即可.2、五年级逻辑推理习题答案:【分析与解】如下表,先假设赵的前半句话正确,判断一次;再假设赵的后半句正确,再判断一次.即甲是1号,乙是3号,丙是4号,丁是2号.所以丙的号码是4号.3、五年级逻辑推理问题答案:【分析与解】每个单项的4人共得分5+3+2+1=11分,所以4个单项的总分为11×4=44分,而第一,三名得分为17、11分,所以第二、四名得分之和为44(1711)16-+=分其中第四名得分最少为4分,此时第二名得分最高,为16-4=12分;又因为第三名为11分,那么第二名最低为12分;那么第二名只能为12分,此时第四名4分.于是,第一、二、三、四名的得分依次为17、12、1l、4分,而17只能是5+5+5+2,4只能是1+1+1+1.不难得到下表:4、六年级逻辑推理问题答案:【分析与解】先看乙队,共进2球,胜2场平1场.因此,乙队胜的两场都是l:0,平的一场是0:0,甲队也平一场,并且甲胜的一场不可能是甲、乙间比赛,所以甲队与乙队是0:0,进而乙队与丙队,乙队与丁队都是1:O.而丙队赛2场共失5球,其中与乙队赛失1球,因此与另一队赛失4球;因为甲队共进3球,所以甲队与丙队未赛.于是,甲队的所有进球与失球都来自于与丁队的比赛,所以甲队与丁队是3:2.丙队与丁队是3:4.5、六年级逻辑推理问题答案:【分析与解】“甲已经赛了4盘”,说明甲与乙、丙、丁、小强各赛了1盘(小强与甲赛了1盘).“丁赛了1盘”,肯定丁只与甲比赛.“乙赛了3盘”,说明乙与甲、丙、小强各赛了1盘(小强与乙赛了1盘).现在已经知道,丙赛的2盘是与甲、乙各赛了1盘.所以,小强赛了2盘。
五年级 逻辑推理
逻辑推理例1、有三只盒子,一只金的,一只银的,一只铜的。
小明把自己的肖像装在其中的一只盒子里,并在每只盒子上写了一句话。
金盒:肖像在这里银盒:肖像不在这里铜盒:肖像不在金盒中。
这三句话,只有一句是真的。
不许打开盒子,你能判断出肖像在哪只盒子里吗?同步练习:1、有三个盒子,一个盒子里放了一只乒乓球,另外两个盒子全是空的,每个盒子盖子上都写了一句话:红盒子上写着:乒乓球不在这里;黄盒子上写着:乒乓球不在这里;蓝盒子上写着:乒乓球在红盒子里。
不过,其中只有一句话是真的。
想一想,乒乓球究竟在哪个盒子里?2、有A、B、C三个盒子,一个盒子中装着糖,另外两个盒子中装着石子,每个盒子上写着一句话。
A盒子:这里装着石子;B盒上:这里装着糖;C盒上:B盒里装着石子。
只有一个盒子上写的话是正确的,糖装在哪个盒子中?3、有一家珠宝店发生了一起盗窃案,被盗走了许多珍贵的珠宝,经过几个月的侦查,查出作案的人肯定是A,B,C,D中的一个,把这四个人当做重大嫌犯进行审讯。
四个人口供如下:A:我不可能作案B、D是罪犯C、B是盗窃犯D、B与我有仇,陷害我经过调查,这四个人中,只有一人说的是真话,你知道罪犯是谁吗?例2、一只猴重4千克,从下面你能推断出一只小兔和一只小猫共重多少千克吗?一只猴等于2只兔;两只兔等于四只猫。
同步练习:1、一头象的重量等于4头牛的重量,1头牛的重量等于3匹小马的重量,1匹小马的重量等于3只小羊的重量,1头象的重量等于几头小羊的重量?2、甲乙丙三人称了体重之后,所得的结果是:(1)甲不是最重的(2)丙不是最轻的(3)甲比乙要重一些。
这三人的重量从轻到重的顺序是什么?3、ABCD四位同学参加60米跑决赛。
赛前,四位同学对比赛结果作了以下预测:A、我会的第一名B、A、C都不会得第一C、A或B会得第一名D、B会得第一名结果只有两位同学说对了。
问:谁得到这次比赛的第一名?例3、在甲乙丙丁四个人中,一个人是教师,一个人是警察,一个是学生,另一个是工人。
五年级逻辑推理
逻辑推理1、有三个小朋友们在谈论谁做的好事多。
冬冬说:“兰兰做的比静静多。
”兰兰说:“冬冬做的比静静多。
”静静说:“兰兰做的比冬冬少。
”这三位小朋友中,谁做的好事最多?谁做的好事最少?2、有一个正方体,每个面分别写上汉字:数学奥林匹克。
三个人从不同角度观察的结果如下图所示。
问这个正方体的每个汉字的对面各是什么字?3、甲、乙、丙三个孩子踢足球打碎了玻璃窗,甲说:“是丙打碎的”。
乙说:“我没有打碎玻璃窗。
”丙说:“是乙打碎的。
”他们当中只有一个人说了谎话,到底是谁打碎了玻璃窗?4、已知甲、乙、丙三个中,只有一个人会开汽车。
甲说:“我会开汽车。
”乙说:“我不会开。
”丙说:“甲不会开汽车。
”如果三个人中有一个人讲的是真话,那么谁会开汽车?5、小李、小徐、小张是同学,大学毕业后分别当了教师,数学家和工程师。
小张年龄比工程师大,小李和平共处数学家不同岁,数学家比小徐年龄小。
想一想,谁是教师,谁是数学家,谁是工程师。
6、甲、乙、丙、丁四个人同时参加数学竞赛。
赛后,甲说:“丙是第一名,我是第三名。
”乙说:“我是第一名,丁是第四名。
”丙说:“丁是第二名,我第三名。
”丁没有说话。
成绩揭晓时,大家发现甲乙丙三个人各说对了一半。
你能说出他们的名次吗?7、A、B、C、D与小强五个同学一起参加象棋比赛,每两人都赛一盘,比赛一段时间后统计,A赛了4盘,B赛了3盘,C赛了2盘,D赛了1盘,问小强已经赛了几盘?8、甲、乙、丙、丁比赛乒乓球,每两人要赛一场。
结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?林奥奥匹林数数学克。
五年级数学思维训练——逻辑推理
逻辑推理知识导航1.在近年来的许多竞赛试题中,常常会见到这样的一类题目,没有或很少给出什么数量关系;他们的解决方法主要不是依靠数学概念、法则、公式进行运算,较少用到专门的数学知识,而是根据条件和结论之间的逻辑关系,进行合理的推理,做出正确的判断,最终找到问题的答案,这就是逻辑推理问题。
2。
逻辑推理问题的条件一般说来都具有一定的隐蔽性和迷惑性命且没有一定的解题模式。
因此,要正确解决这类问题,不仅需要始终抱地灵活的头脑,更需要遵循逻辑思维的基本规律—————-同一律、矛盾律和排中律。
(1)“矛盾律"指的是在逻辑推理过程中,对同一结论的推理不能自相矛盾.(2)“排中律”值的是在逻辑推理过程中,一个思想或为真或为假,不能既不真或为假,不能既不真也不假。
(3)“同一律”指的是在逻辑推理过程中,同一对象的内涵必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用,不许偷换。
3。
逻辑推理问题解题的方法一般有:(1)列表画图法(2)假设推理法(3)枚举筛选法精典例题例1:一次网球邀请赛,来自湖北,广西,江苏,北京,上海的五名运动员相遇在一起,据了解:(1)王平仅与另外两名运动员比赛过;(2)上海运动员和另外三名运动员比赛过;(3)李兵没有和广西运动员比赛过;(4)江苏运动员和凌华比赛过;(5)广西,江苏,北京的三名运动员相互之间都比赛过;(6)赵林仅与一名运动员比赛过.问:张俊是哪个省市的运动员?思路点拨“赵林仅与一名运动员比赛过”,说明赵林只比赛过1场,由(2)、此题可用列表画图法来解答。
(5)可得知上海、广西、江苏、北京运动员至少都比赛过2场或以上,赵林只能是湖北运动员;由(3)、(5)知李兵不是广西运动员,也不是江苏、北京运动员,李兵只能是上海运动员;又由(2)、(3)、(6)知,赵林(湖北)与李兵(上海)比赛过,李兵(上海)与赵林(湖北)、江苏、北京运动员比赛过,可以知道王平肯定是广西运动员;由(4)知凌华不是江苏运动员,只能是北京运动员(如下表);据此采用列表法如下(用“×”表示否定,用“√”表示肯定).模仿练习红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。
人教版五年级数学上册【详解】5年级第13讲_逻辑推理二
第十三讲逻辑推理二例题1.答案:阿弗洛狄忒详解:假设法.如果雅典娜是最美的,则阿弗洛狄忒说的也是真话,矛盾;如果赫拉是最美的,则雅典娜说的也是真话,矛盾;所以只能是阿弗洛狄忒说真话.例题2.答案:三人去了爱丁堡、湖泊区和北威尔士详解:用假设法,因为艾游只说了两句话,所以依次假设他说的第一句话是谎话、第二句话是谎话即可.例题3.答案:赵甲、钱乙、孙丙、吴己详解:首先根据第四个条件来假设,如果钱乙和孙丙不去,根据第一个条件,赵甲必须去.根据第二个条件,李丁不能去.那么孙丙和李丁都不去,不满足第五个条件,所以钱乙和孙丙都去了,继续推理就可知去的是赵甲、钱乙、孙丙和吴己.例题4.答案:110:104,雷霆胜详解:综合条件,可以得到雷霆队得分组成的等差数列的公差只能是4分,队员分别得分为30、26、22、18、14,而热火队得分为22、22、21、20、19.例题5.答案:由大到小依次为:雷婷、王萍、鹿哼和贺纯,鹿哼的搭档是贺纯详解:根据第二个条件可知,王萍的年龄可能排第一或者第二,又根据第一个条件,可知鹿哼的年龄一定比王萍小.结合第一个和第三个条件,可知鹿哼排第三,他的搭档是贺纯.再根据第四个条件,可知不可能王萍第一,雷婷第二.例题6.答案:红色的详解:张三在最后面,不知道自己帽子颜色,说明前面人的帽子不都是蓝色的,否则张三就知道自己戴红帽子了.此时李四听到张三的话,已经知道了这个事实,但仍然不知道自己的帽子,说明第一个人的帽子是红色的.否则李四就知道自己戴的是红帽子了.所以迟哼听了李四的话就知道自己戴的是红帽子.练习1.答案:笨笨简答:若懒懒说的真话,则母猪说谎,懒懒是公猪,笨笨是母猪;若笨笨说的是真话,则说谎的是公猪,笨笨是母猪,懒懒是公猪.综上所述,懒懒是公猪,笨笨是母猪.练习2.答案:90美元简答:由于鸡窝是三角形,三角形的三条边满足:两边之和大于第三边.只能是第一个条件是错的,并且只能为40美元.因此农夫一共花了90美元.练习3.答案:C和D简答:如果A得优,那么四人都得优,不满足条件,所以A不得优.类似方法可知B 不得优,C、D都得优.练习4.答案:分别姓孙、李、赵和钱简答:第一把赢钱的人一共输了600元,第二把赢钱的人一共输了200元,第三把赢钱的人一共赢了200元,第四把赢钱的人一共赢了600元.第四把赢钱的人不姓孙,不姓钱,只能姓赵和李.但是李先生打牌前钱最多,如果他是第四把赢钱的人,打牌后他也会是钱最多的人,这与打牌后丁的钱最多矛盾.所以可知第四把赢钱的人姓赵.类似的也可以推断出第一把赢的人是甲.那么乙只能姓李,钱先生是丁.作业1.答案:乙简答:只有骗子才会说“我不是骗子”.作业2.答案:乙简答:用假设法逐个排除即可.作业3.答案:乙>甲>丙>丁简答:用假设法即可.作业4.答案:丙简答:有一个全对,一个全错,这两个人没有相同的结果.一定是乙和丙,那么甲就是猜对两个的.乙是全对的,丙是全错的.作业5.答案:胖小姐简答:分别假设现在是上午和下午,发现不管现在是上午还是下午,姐姐一定是胖小姐.。
五年级英语逻辑推理单选题40题(带答案)
五年级英语逻辑推理单选题40题(带答案)1.There is a mystery animal. It has four legs and a long tail. It is not black. It is not white. It could be brown or gray. What color is the animal?A.blackB.whiteC.brownD.gray答案:C 或D。
本题考查对动物特征和颜色的推理。
题干中说动物有四条腿和一条长尾巴,且不是黑色和白色,可能是棕色或灰色。
所以答案是棕色或灰色。
涉及的知识点是动物特征描述和颜色词汇。
2.Animals are having a party. The cat is not wearing red. The dog is not wearing blue. The rabbit is wearing green. What color is the cat wearing?A.redB.blueC.greenD.we don't know答案:D。
本题考查逻辑推理。
题干中只明确了兔子穿绿色,猫不穿红色,狗不穿蓝色,但没有给出猫穿什么颜色的线索,所以我们不知道猫穿什么颜色。
涉及知识点是对已知信息的分析和推理。
3.There are three animals. One is big and brown. One is small and white. One is medium-sized and gray. The big animal is not a dog. The small animal is not a cat. What animal is gray?A.dogB.catC.we don't knowD.maybe a mouse答案:C。
本题考查根据描述推理动物颜色。
题干中只说有三个动物,大的棕色、小的白色、中等大小灰色,且大的不是狗,小的不是猫,但没有给出灰色动物是什么的线索,所以我们不知道灰色动物是什么。
小学五年级逻辑问题练习及答案【五篇】
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是⽆忧考为⼤家整理的《⼩学五年级逻辑问题练习及答案【五篇】》供您查阅。
【第⼀篇:聪明的⼉⼦】有个⽼汉想考考他的四个聪明的⼉⼦,他拿出六顶帽⼦,三顶红的、两顶蓝的和⼀顶黄的。
然后,让四个⼉⼦按⼤的在前⼩的在后的顺序排成⼀路纵队,并让他们闭上眼睛。
接着,给他们每⼈戴上⼀顶帽⼦,藏起其余两顶。
当他们睁开眼睛后,每个⼈都只能看见前边⼈的帽⼦。
这时,⽼汉依次问⼩⼉⼦、三⼉⼦和⼆⼉⼦,“你戴的帽⼦是什么颜⾊?”他们都回答“不知道”。
最后,⽼汉⼜问⼤⼉⼦。
⼤⼉⼦想了⼀会⼉,正确地说出了⾃⼰戴的帽⼦的颜⾊。
问:⼤⼉⼦戴的帽⼦是什么颜⾊?他是如何判断的?答案解析 只要前⾯两个⼈有⼈带两个蓝⾊帽⼦和⼀个黄⾊帽⼦⼩⼉⼦就会知道⾃⼰的帽⼦,他不知道代表前⾯3个⾄少有⼀个红帽⼦,三⼉⼦看见前⾯也有红帽⼦所以不知道⾃⼰的帽⼦,⼆⼉⼦也⼀样,所以⼤⼉⼦就知道⾃⼰是红帽⼦【第⼆篇:帽⼦是什么颜⾊?】⽼师拿来五顶帽⼦,两顶红的三顶⽩的。
他让三个聪明的同学甲、⼄、丙按甲、⼄、丙的顺序排成⼀路纵队,并闭上眼睛,然后分别给他们各戴上⼀顶帽⼦,同时把余下的帽⼦藏起来。
当他们睁开眼后,每⼈只能看到站在⾃⼰前⾯的⼈的帽⼦,⼄和丙都判断不出⾃⼰所戴帽⼦的颜⾊,⽽站在最前⾯的甲却根据此情况判断出了⾃⼰所戴帽⼦的颜⾊。
甲戴的帽⼦是什么颜⾊?他是怎样判断的?答案解析 这是⼀个典型的逻辑推理问题。
甲站在最前⾯,虽然看不见任何⼀顶帽⼦,但他可以想到:如果我和⼄戴的都是红帽⼦,因为⼀共只有两顶红帽⼦,那么丙就会判断出⾃⼰戴的是⽩帽⼦。
丙判断不出⾃⼰戴的帽⼦的颜⾊,说明我和⼄戴的帽⼦是两⽩或⼀⽩⼀红。
甲接着想:⼄也很聪明,当他看到丙判断不出⾃⼰戴的帽⼦的颜⾊时,他也能判断出我们两⼈戴的帽⼦是两⽩或⼀⽩⼀红。
此时,如果他看到我戴是红帽⼦,那么他就会知道⾃⼰戴的是⽩帽⼦,只有我戴的是⽩帽⼦时,他才可能猜不出⾃⼰戴的帽⼦的颜⾊。
五年级逻辑推理练习题
五年级逻辑推理练习题一、选择题:1. 小明的生日是在10月29日。
如果下一个星期六是什么日期?a) 10月26日 b) 10月27日 c) 10月28日 d) 10月30日2. 音乐会将在下个月的第三个星期六举行。
如果下个月的第一个日子是星期一,那么音乐会将在哪一天举行?a) 星期六 b) 星期五 c) 星期四 d) 星期日3. 一辆车以每小时30公里的速度行驶。
如果它行驶了3小时30分钟,那么它行驶了多少公里?a) 95公里 b) 80公里 c) 105公里 d) 130公里4. 一群学生买了30个巧克力,他们准备平分。
如果每个学生得到3个巧克力,还有几个巧克力没有被平分?a) 3个 b) 6个 c) 9个 d) 12个5. 如果一个正方形的周长是20米,那么它的面积是多少平方米?a) 25平方米 b) 20平方米 c) 16平方米 d) 12平方米二、填空题:1. 按照规律填空:2,5,10,17,26,___2. 根据图案填空,下一幅图案是:三、四、五个图案之间的关系是:a) 向顺时针旋转 b) 变换颜色 c) 按顺序排列 d) 以上皆是三、解答题:1. 根据下列图表,回答问题:数字邻居 | 小于9的数字 | 大于9的数字--------------------------------双数 | 2, 4, 6, 8 | _______--------------------------------大数 | _________ | 11, 13, 15, 17--------------------------------那些数字既是偶数又是大于9的数?2. 小明和小红比赛谁能跑得更快。
他们每人跑了5圈。
小明用时18分钟,小红用时21分钟。
谁赢了比赛?他们之间的时间差是多少分钟?四、综合题:1. 壮壮和刚刚发现一张纸,上面写着一段密码:13-4+9×2=?他们各自计算了一遍,结果却不同。
小学数学五年级上册逻辑推理
逻辑推理
1.刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?
2.王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:
⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?
3.张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?
4.甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.
5.小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。
问:谁是工人?谁是农民?谁是教师?。
小学五年级数学逻辑推理
小学五年级数学逻辑推理在小学五年级的数学课程中,数学逻辑推理是一个非常重要的内容。
通过逻辑推理,学生不仅能够培养自己的思维能力,还能够提高解决问题的能力。
本文将从什么是逻辑推理以及逻辑推理在数学中的应用等方面对小学五年级数学逻辑推理进行探讨。
一、什么是逻辑推理逻辑推理是一种基于逻辑原则进行的思维过程,通过分析事物之间的各种关系,从而进行合乎逻辑的推断和判断。
在数学中,逻辑推理的目的是通过已知条件和逻辑关系,推断出未知的结论。
逻辑推理有三个重要的组成部分:前提、条件和结论。
前提是指已知的条件或者事实,条件是指根据前提得出的结论所需要满足的条件,结论是通过前提和条件所推导出的结果。
二、逻辑推理在数学中的应用逻辑推理在数学中有着广泛的应用,它可以帮助我们解决各种数学问题。
下面以几个具体例子来说明逻辑推理在数学中的应用。
1. 数列问题数列是数学中常见的一个概念,我们可以通过逻辑推理来解决相关的数列问题。
例如,已知一个等差数列的前两项是3和7,我们可以通过逻辑推理计算出这个等差数列的通项公式,并进一步计算出数列中的任意一项。
2. 逻辑运算在数学中,逻辑运算也是逻辑推理的一种应用。
逻辑运算包括与、或、非等运算符,通过对这些运算符的灵活运用,我们可以解决一些包含逻辑关系的数学问题。
3. 图形推理图形推理是数学中一个重要的内容,通过观察和推理图形之间的关系,我们可以解决各种和图形相关的问题。
例如,已知一个图形序列中的规律,我们可以通过逻辑推理来找出下一个图形是什么。
三、如何培养逻辑推理能力逻辑推理能力是通过练习和培养逐渐形成的。
下面向大家介绍几种培养逻辑推理能力的方法。
1. 学习逻辑知识首先,我们需要学习逻辑知识,了解逻辑推理的基本原则和方法。
通过学习逻辑知识,我们可以更好地理解和应用逻辑推理。
2. 解决逻辑问题其次,我们需要通过解决各种逻辑问题来提高自己的逻辑推理能力。
可以选择一些逻辑题目进行练习,例如数学竞赛中的逻辑题目,或者一些逻辑推理的游戏等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析法等2. 培养学生的逻辑推理能力,掌握解不同题型的突破口.3. 能够利用所学的数论等知识解复杂的逻辑推理题逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设模块一、列表推理法【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表. 李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动知识精讲 教学目标第三讲:逻辑推理员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【解析】为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,王文张贝李丽跳伞√××田径×游泳√;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
李刚在北京,是农民。
【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【解析】由题意可画出下面三个表:将表3补全为表4.由表4知,工人是辽宁人,而乙不是工人,所以乙不是辽宁人,由此可将表1补全为表5.所以,甲是广西人,职业是教师;乙是山东人,职业是演员;丙是辽宁人,职业是工人.方法二:将能判断的条件先列入图表中,广西人是教师,但是乙不是广西人,所以乙不是教师,乙又不是工人,所以乙为演员。
在对应的地方打上“√”,对应的行列均打“×”。
但是辽宁人不是演员,所以乙不是辽宁人,乙就是山东人,所以甲是广西人,职业是教师;乙是山东人,职业是演员;丙是辽宁人,职业是工人。
【巩固】小明、小芳、小花各爱好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所小学上学。
现知道:(1)小明不在一小;(2)小芳不在二小(3)爱好乒乓球的不在三小;(4)爱好游泳的在一小;(5)爱好游泳的不是小芳。
问:三人上各爱好什么运动?各上哪所小学?【解析】这道题比上例复杂,因为要判断人、学校和爱好三个内容。
先将题目条件中给出的关系用下面的表1、表2、表3表示:因为各表中,每行每列只能有一个“√”,所以表3可补全为表4。
由表4、表2知道,爱好游泳的在一小,小芳不爱游泳,所以小芳不在一小。
于是可将表1补全为表5。
对照表5和表4,得到:小明在二小上学,爱好打乒乓球;小芳在三小上学,爱好打羽毛球;小花在一小上学,爱好游泳。
【例 3】 甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【解析】 律师、教师、警察.由⑶可以知道丙不是律师,但是他见过律师,再由⑸知乙不是律师,又由⑷可知甲是律师.于是由⑴和⑶知丙不是教师,由⑵和⑸知丙不是医生,从而丙是警察.再由⑵知乙是教师,丁是医生.甲说:“我和乙都住在北京,丙住在天津.”乙说:“我和丁都住在上海,丙住在天津.”丙说:“我和甲都不住在北京,何伟住在南京.”丁说:“甲和乙都住在北京,我住在广州.”假定他们每个人都说了两句真话,一句假话.问:不在场的何伟住在哪儿?【解析】 因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾.所以假设不成立,即“丙住在天津”是真话.因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的.由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话.所以,何伟住在南京.【例 4】 甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说.他们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵甲会日语,丁不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日、法两种语言.请问:甲、乙、丙、丁各会哪两种语言?【解析】 由⑴⑵⑷可得下表,其中丙不会日语是因为甲会日语,且甲与丙交谈需要翻译.由下表看出,甲会的另一种语言不是中文就是英语.丁丙乙甲日法英中×××√×先假设甲会说中文.由⑵知,丁也会中文;由⑴知丙不会中文,再由每人会两种语言,知丙会英、法语(见左下表:由⑴⑷推知乙会中文和法语;再由⑶及每人会两种语言,推知丁会英语(见右下表).结果符合题意.丁丙乙甲日法英中×√√√××××√√×√√√丁丙乙甲日法英中×√√√××××××√√×再假设甲会说英语.由⑵知,丁也会英语;由⑴知丙不会英语,再由每人会两种语言,知丙会中文和法语(见左下表);由⑴⑷ 推知,乙会中文和日语;再由⑶及每人会两种语言,推知丁会法语(见右下表).右下表与“有一种语言只有一人会说”矛盾.假设不成立.√丁丙乙甲日法英中×√√√××××√×√√√丁丙乙甲日法英中×√√√××××××√√×所以甲会中、日语,乙会中、法语,丙会英、法语,丁会中、英语.【例 5】 (2007年湖北省“创新杯”初赛)六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4 班第四名.小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名.结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的名次是班第一名,班第二名,班第三名,班第四名。
【解析】 方法一:依题意,3班不为第一名也不为第三名,那么3班为第四名.同样,2班不为第二名也不为第一名,那么2班为第三名.1班不为第三名也不为第四名,那么1班为第一名.故第一名到第四名依次为1班,4班,2班,3班.方法二:我们可以将两人的猜测结果列成表格形式,将小明猜想结果用“▲”表示,小华猜测结果用“★”表示,列表如下:4方法二:题目中只有小华猜到4班为第二名是正确的,那么其他的猜想均为错误的。
在其对应的【巩固】 甲、乙、丙、丁、戊五名同学参加推铅球比赛,通过抽签决定出赛顺序.在未公布顺序前每人都对出赛顺序进行了猜测.甲猜:乙第三,丙第五.乙猜:戊第四,丁第五.丙猜:甲第一,戊第四.丁猜:丙第一,乙第二.戊猜:甲第三,丁第四.老师说每人的出赛顺序都至少被一人所猜中,则出赛顺序中,第一是__________;第三是__________.【解析】题中每个人都猜了另外两个人的出场顺序,每个人的出场顺序也都被另外两个人猜过,其中戊被乙和丙猜的都是第四,由于每人的出赛顺序都至少被一人所猜中,所以戊是第四(否则戊的出赛顺序没有人猜中),以此为突破口。
由于戊是第四,则在第四列其余地方均打“×”则丁不能第四,所以丁的出赛顺序被乙猜中,为第五,则丙不能是第五,丙只能是第一,甲不能是第一,故甲是第三,乙是第二,所以答案为:第一是丙,第三是甲.【例 6C、D、E五个人,猜各包珠子的颜色,每人只猜两包.A猜:第二包是紫的,第三包是黄的;B猜:第二包是蓝的,第四包是红的;C猜:第一包是红的,第五包是白的;D猜:第三包是蓝的,第四包是白的;E猜:第二包是黄的,第五包是紫的.猜完后,打开各纸包一看发现每人都只猜对了一包,并且每包只有一人猜对.请你判断他们各猜对了其中的哪一包?【解析】方法一:题目要求A、B、C、D、E五个人在猜每包珠子的颜色时每人只猜两包且每人都只猜对了一包每包只有一人猜对,所以观察五包珠子中第一包只有C猜,所以C猜对了第一包,又根据每人只猜对了一种,所以C猜第五包是白的,猜错了;第五包只有C、E两人猜,所以E猜第五包是紫的,猜对了;那么E猜第二包是黄的,猜错了;紫颜色的珠子,只有A、E两人猜,那么A猜第二包是紫的,猜错了;第二包有A,B,E三人猜,其中A,E都猜错了,所以B猜第二包是蓝的,猜对了;那么B猜第四包是红的,猜错了;所以D猜对的是第四包,是白的.D猜第三包是蓝的,也猜错了;所以A猜对的是第三包,是黄的;总结以上推理判断,A猜对了第三包是黄的,B猜对了第二包是蓝的,C猜对了第一包是红的,D猜对了第四包是白的,E猜对了第五包是紫的.方法二:分析同方法一,第一包只有一人猜对,所以第一包为红色,在第一行的其余地方打上“×”第四包不为红色,第四包为白色,白色不能为第五包,第五包就为紫色,同理可知其余各包A、B:结果,.问:这三张卡片上各写着什么字.【解析】A、B有两张猜的相同,必有一人全对,一人对两张,因此,C全错,推知B全对.【例 7】老师让小新把小胖、小贝、小丸子、小淘气、小马虎的作业本带回去,小新见到这五人后就一人给了一本,结果全发错了.现在知道:⑴小胖拿的不是小贝的,也不是小淘气的;⑵小贝拿的不是小丸子的,也不是小淘气的;⑶小丸子拿的不是小贝的,也不是小马虎的;⑷小淘气拿的不是小丸子的,也不是小马虎的;⑸小马虎拿的不是小淘气的,也不是小胖的.另外,没有两人相互拿错(例如小胖拿小贝的,小贝拿小胖的).问:小丸子拿的是谁的本?小丸子的本被谁拿走了? 【解析】上表知,小胖拿的本不是小丸子的就是小马虎的.先假设小胖拿了小丸子的本.于是得到下表,表中小贝拿小马虎的本,小马虎拿小贝的本.两人模块二、假设推理【例 8】甲、乙、丙三人,一个总说谎,一个从不说谎,一个有时说谎.有一次谈到他们的职业.甲说:“我是油漆匠,乙是钢琴师,丙是建筑师.”乙说:“我是医生,丙是警察,你如果问甲,甲会说他是油漆匠.”丙说:“乙是钢琴师,甲是建筑师,我是警察.”你知道谁总说谎吗?【解析】甲.如果甲从不说谎,那么乙的最后一句、丙的第一句都对,没有总说谎的人,矛盾;同理,如果丙从不说谎,也将推出矛盾.【巩固】在神话王国内,居民不是骑士就是骗子,骑士不说谎,骗子永远说谎,有一天国王遇到该国的居民小白、小黑、小蓝,小白说:“小蓝是骑士,小黑是骗子.”,小蓝说:“小白和我不同,一个是骑士,一个是骗子.”国王很快判断出谁是骑士,谁是骗子.你能判断出吗?【解析】假设小白是骑士(说实话),则小蓝是骑士,小黑是骗子;又因为小蓝是骑士,那么小白、小蓝不同,一个是骑士,一个是骗子,与小白、小蓝均为骑士矛盾.假设小白是骗子(说假话),那么小蓝是骗子,小黑是骑士,又因为小蓝是骗子,所以小白、小蓝不同是假话.因此,小白、小蓝是骗子,小黑是骑士.【巩固】甲说:“乙和丙都说谎。