浅谈流态冰蓄冷系统设计
建筑节能——冰蓄冷系统的设计与施工
建筑节能——冰蓄冷系统的设计与施工建筑节能——冰蓄冷系统的设计与施工建筑节能是当前社会面临的重要问题之一。
传统空调系统用电量大,耗能高,不仅对环境造成污染,也给用户带来了较大的经济负担。
随着科技的不断进步和创新,建筑行业逐渐采用高效的冰蓄冷系统,用冷媒液蓄冷,从而在炎热的夏季节约节能。
下面从冰蓄冷系统的设计和施工两个方面进行阐述。
一、冰蓄冷系统的设计1. 系统配置冰蓄冷系统的基本构造包括冷媒系统、储冰系统、换热器系统。
冷媒系统作为系统的核心部分,是指冷却剂在冷热介质之间循环运行,通过制冷剂蒸发和冷凝而实现制冷目的。
而储冰系统则是为了在夜间低谷时段进行储存,冰锥、冰塞等可以储存冷能的设备为储冰系统的核心部分。
同时,换热器系统是为了通过冷冻水与室内需要冷却的空气、水进行换热,为整个冷却系统提供热交换。
2. 系统管线的设计对于冰蓄冷系统管线布置的设计,不仅需要满足整个系统的高效稳定运行,还要考虑系统的安全性和可靠性。
故而,在设计过程中需要考虑管道的直径、材质、安全装置的配置,同时对于高耗能部分要进行特别设计,以提高系统的可靠性和安全性。
二、冰蓄冷系统的施工1. 施工前期准备在施工前期,需要根据设计方案,购买施工材料和设备。
在材料和设备的购买时要格外注意其质量,购买替代品和保修期较短的材料和设备肯定是不可取的。
和其他施工项目一样,冰蓄冷系统的施工前期准备也同样重要。
2. 施工细节在施工过程中要注意以下几个点:(1)在进行储冰坑施工时,要严密注意立体交叉面的协调大大提升建筑蓄冰块的密度。
(2)在冷水机组的制作、交插时必须使用电焊进行连接,绝不能使用螺栓连杆。
(3)在冰蓄冷系统的管道施工和焊接时,电焊的零部件和电缆都要检查一遍,避免出现各种各样的问题。
在焊接时也需注意防火,以免引起安全事故。
(4)在验收过程中,要检查每一个节点,以保证系统的可靠性和安全性。
综上所述,冰蓄冷系统的设计和施工需要详细的专业知识和工程技巧。
冰蓄冷设计手册
冰蓄冷设计手册冰蓄冷技术是一种利用低温蓄冷媒质(如冰或冷冻液)在低峰时段积累冷量,然后在高峰时段释放冷量,以达到节能降耗的目的。
它广泛应用在空调、制冷设备、冷藏冷冻等领域,成为了一种重要的节能技术。
一、冰蓄冷原理冰蓄冷是利用水在0℃结冰和融化过程中的相变潜热来实现蓄冷。
当水在常压下温度降至0℃时,其温度在一定时间内将保持不变,而在此过程中,水会释放或吸收大约4186焦耳的热量。
利用这一特性,可以在低负荷时段制冷、蓄冷,在高负荷时段释放蓄冷量,以平衡耗能,降低单位时间内电能的需求,从而达到节能目的。
二、冰蓄冷设计要点1. 系统封闭性冰蓄冷系统采用密封方式进行设计,防止环境空气与蓄冷介质接触,避免蓄冷介质污染或损坏,确保系统长期运行稳定。
2. 散热设计冰蓄冷系统的散热设计至关重要,散热效果的好坏直接影响冷量的蓄积和释放效率。
合理的散热设计能够有效地提高系统的工作效率,延长系统的使用寿命。
3. 控制系统设计冰蓄冷系统的控制系统设计需要精准可靠,能够实时监测温度、压力等参数,并做出相应的调整,保证系统运行在最佳状态,满足不同负荷条件下的需求。
4. 安全保护设计在冰蓄冷系统设计中,必须考虑到安全因素,设置相应的安全保护措施,例如温度、压力、水位等监测报警系统,以及紧急切断系统,确保在异常情况下系统能够及时做出反应,避免事故发生。
5. 环境友好设计在冰蓄冷系统的设计中,应该考虑到环境友好性,选择符合环保标准的制冷剂和材料,并尽可能减少对环境的影响。
三、冰蓄冷系统应用冰蓄冷技术广泛应用在以下领域:1. 中央空调系统通过利用冰蓄冷技术,可以对中央空调系统进行蓄冷,以满足高峰时段的制冷需求,减少对电力资源的浪费,降低能耗。
2. 冷藏冷冻设备冰蓄冷技术也可用于冷藏冷冻设备中,通过蓄冷实现低峰时段的制冷,提高系统的效率,降低运行成本。
3. 太阳能利用将冰蓄冷技术与太阳能利用相结合,可以实现在太阳能供热系统的余热时段蓄积冷量,提高太阳能利用效率。
日照某商场冰蓄冷空调系统设计探讨
日照某商场冰蓄冷空调系统设计探讨冷空调系统设计的核心是以制冷为目标,保证商场内的温度和湿度在舒适范围内,让顾客有良好的购物体验。
1.制冷量计算:商场的制冷负荷与场地面积、顾客数量、照明设备、电子设备、货物散热等因素有关。
首先要测量商场内的面积,并根据实际情况考虑其朝向、外墙的材料和绝热性能。
然后根据商场的用途和活动类型,确定最大人数和最大负荷。
再结合商场内的设备和电子设备,计算出总的制冷量。
2.制冷设备选择:商场冷空调系统通常采用蓄冷系统,这种系统能在夜间低峰期充分利用电力进行制冷,然后在白天高峰期释放冷量。
蓄冷系统一般采用冷水机组或制冷压缩机组。
对于中大型商场,通常选择多台冷水机组进行配备,以便在不同负荷情况下实现灵活调度。
3.管道布置设计:商场冷水系统的管道布置需要考虑多个因素,如管道路径、长度、直径和摩擦损失,以及防冻措施等。
管道布置要尽量减少风阻和热损失,确保冷水能够顺利地通过管道流向商场各个区域。
4.冷却塔设计:商场冷却塔是冷水机组系统中的重要组成部分,其设计应考虑商场周围环境的温度和湿度,以及商场内的负荷需求。
冷却塔的选型要根据商场的制冷负荷和供水温度等因素进行合理的选择,并确保冷却塔能够实现高效的冷却效果。
5.控制系统设计:商场冷空调系统的控制系统应能实现自动调节,确保商场内的温度和湿度在舒适范围内。
控制系统应具备温度和湿度传感器,以及能够控制制冷设备、风机和泵等关键设备的控制器。
此外,还应考虑到商场内的不同区域和楼层的负荷差异,实现分区域和分时段的控制。
6.能耗优化设计:商场冷空调系统在设计过程中应注重能耗的优化,通过合理使用节能设备和技术,如高效压缩机、变频调速设备、换热器等,来降低系统运行的能耗。
此外,还可以采用余冷利用技术,对废热进行回收利用,提高能源利用率。
总之,商场冷空调系统的设计需要综合考虑商场的实际情况和需求,采用合适的设备和控制系统,以实现舒适环境和低能耗的目标。
冰蓄冷系统设计
冰蓄冷系统设计引言:改革开放以来,社会生产力、综合国力和人民生活水平都有较大的提高。
电力工业作为国民经济的基础产业之一,也取得了长足的进展。
1996年发电装机容量已居世界第二位。
但电力供应高峰不足而低谷过剩的矛盾随着经济和社会的发展而更显突出,城市中空调的应用加大了这个矛盾。
冰蓄冷空调技术是利用电网负荷低谷时(夜间)相对廉价的电,通过制冷系统将冷量以显热(如冷水)与潜热(如冰)的形式储存起来;当电网负荷高峰(白天)、电价相对昂贵时,将储存的冷量(如冷水、冰)释放出来向空调系统供冷。
从而减少电网高峰负荷的电力需求,实现移峰填谷的目的。
蓄冷技术是一种投资少、见效快(与蓄水电站比)的调峰措施,目前已成为许多经济发达国家所积极推广的一项促进能源、经济和环境协调发展的实用系统节能技术。
本文主要针对北京某一冰蓄冷项目进行经济性分析。
一、项目概况本项目位于北京市昌平区,由3栋楼及一个独立的地下锅炉房组成,总建筑面积19.56万平方米,其中地上建筑面积13.6万平方米,地下建筑面积5.95万平方米,建筑高度最高为45米;4、5号楼为生产研发、网管中心,6号楼为综合配套楼,包括娱乐、餐饮、酒店、公寓等。
冰蓄冷设备机房设置在4号楼地下一层。
二、冰蓄冷系统应用1、本工程采用部分负荷蓄冰系统,制冷主机和蓄冰设备采用串联、且主机为上游的连接方式。
经过逐时负荷计算,设计日峰值冷负荷为15333kW,设计日总冷量214683kW.h,设计日蓄冷量44400kWh。
2、冰蓄冷系统由基载制冷机、三工况制冷机、乙二醇循环泵、蓄冰槽、板式换热器及控制阀门等组成。
示意图如下:3、设计日负荷平衡表4、设备选型四、结论对单个项目来说,冰蓄冷系统较常规制冷系统初投资较高,全年耗电量较大;但由于有峰谷电价差,其运行费用较低,运行3年左右可以收回增加的初投资;但是在实际项目中,冰蓄冷项目的投资回收期的长短与峰谷电价差的大小有很大关系。
2、从社会效益层面来看,采用冰蓄冷技术可以实现电负荷的移峰填谷,提高了现有电网的利用率,减少了电廠的能源消耗和污染物排放。
探讨蓄冷系统的设计及运行优化控制技术
探讨蓄冷系统的设计及运行优化控制技术摘要:随着我国经济的不断发展,人们对居住及生活的舒适程度的要求也越为越高,而空调蓄冷系统的设计使得人们在享受舒适环境的同时,也降低了电力的使用成本。
本文就通过空调蓄冷系统的设计及运行时的优化控制技术两个方面对空调的蓄冷系统进行了分析。
关键词:蓄冷系统;设计;运行;优化控制空调蓄冷技术,是在电力负荷很低的夜间用电低谷,采用电动制冷机制冷,使蓄冰介质结成冰,利用蓄冷介质的显热及潜热特性,将冷量储存起来。
在电力负荷较高的白天,也是用电高峰期,使蓄冷介质融冰,把储存的冷量释放出来以满足建筑物空调或生产工艺的需要。
这样不仅实现了电力的“移峰填谷”,加强了电网负荷侧的管理,同时也大大提高了空调的制冷效果。
以下我们就对蓄冷系统的设计及运行时的优化控制技术进行分析。
1 蓄冷系统的设计1.1 空调负荷的计算采用“冷负荷系数法”,计算出围护设备、照明、结构及补充新风的逐时冷负荷(每天24小时的逐时冷负荷),并提供准确的设计典型日负荷曲线。
1.2 蓄冰流程的选择蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。
在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。
融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液温度降低,再送回负荷端满足空调冷负荷的需要。
乙二醇溶液系统的流程有两种:并联流程和串联流程。
并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。
同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。
串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套循环泵维持系统内的流量与压力,供应空调所需的基本负荷。
串联流程配置适当自控,也可实现各种工况的切换。
其中并联流程在发挥制冷机与蓄冰罐的放冷能力方面均衡性较好,夜间蓄冷时只需开启功率较小的初级泵运行,蓄冷时更节能,运行灵活。
冰蓄冷空调的系统设计及节能优化措施(全文)
冰蓄冷空调的系统设计及节能优化措施(全文)模板一:冰蓄冷空调的系统设计及节能优化措施一:引言冰蓄冷空调系统是一种先进的节能环保技术,广泛应用于建筑物的空调系统中。
本文将详细介绍冰蓄冷空调系统的系统设计和节能优化措施。
二:冰蓄冷空调系统的原理1. 概述冰蓄冷空调系统利用夜间电力溢价时段,通过将低温蓄冷剂储存为冰块,然后在白天高峰用电时段,利用冰块的蓄冷效果制冷,从而实现节能的目的。
2. 系统组成冰蓄冷空调系统主要由以下组成部分组成:- 蓄冷装置:用于储存冰块的蓄冷装置,包括冰蓄冷槽、冷却设备等。
- 制冷蒸发器:用于吸收室内热量并进行制冷的设备。
- 冷凝器:用于将制冷剂释放出去,使其重新循环的设备。
- 制冷剂循环系统:负责将制冷剂在各个设备之间循环运行的系统。
- 控制系统:负责控制冰蓄冷空调系统的运行和节能优化的系统。
三:冰蓄冷空调系统的设计要点1. 冰蓄冷槽的设计- 冰蓄冷槽的尺寸和容量应根据建筑物的需求和制冷负荷进行合理设计。
- 冰蓄冷槽的材料应选用具有良好保温性能和强度的材料,以减少冷量的损失。
2. 制冷蒸发器的设计- 制冷蒸发器的选型应根据建筑物的使用场所和制冷需求进行选择。
- 制冷蒸发器的数量和布置应根据建筑物的结构和建筑物内部气流的要求进行合理设计。
3. 冷凝器的设计- 冷凝器的选型应考虑制冷剂的特性和建筑物的冷却需求。
- 冷凝器的热交换面积应根据制冷负荷和建筑物冷却需求进行合理计算和设计。
4. 控制系统的设计- 控制系统应具备实时监测和控制的功能,以实现冰蓄冷空调系统的智能化和自动化控制。
- 控制系统的算法应考虑建筑物的使用情况和能耗数据,优化冰蓄冷空调系统的节能效果。
四:冰蓄冷空调系统的节能优化措施1. 蓄冷装置的优化- 进一步提高蓄冷装置的保温性能,减少冷量的损失。
- 优化冷却设备的设计和运行方式,提高能效和性能。
2. 制冷蒸发器的优化- 优化制冷蒸发器的传热效果,提高制冷效率。
- 选择高效制冷剂,减少制冷剂的损失和能耗。
冰蓄冷系统的设计与施工方案
冰蓄冷系统的设计与施工方案9.在系统设计中还应考虑到:乙二醇溶液受球内介质相变时的影响而体积膨胀,在系统中他的相变膨胀量是2%~9%。
为此系统应设置膨胀水箱,而且还设置了溶液补给箱作为膨胀水箱外的溢流箱。
在系统亏液或浓度降低时进行补液。
设置溶液补给箱有以下作用: ①既可方便地给系统补充乙二醇溶液,又便于检查乙二醇溶液浓度。
②当蓄冰球相变时,体积膨胀使膨胀箱中的溶液容纳不下而溢流至补给箱③在系统检修或维护中的补液及乙二醇液体的回收再利用,有利于减少运营成本,以环保要求。
10.蓄冷系统的水处理:乙二醇水溶液系统管路为防止腐蚀,需加防腐剂使钢管内形成保护膜,防腐剂须符合环保要求。
11.阀门的选择上应注意的问题①电动调节阀、开关阀门的密闭性能应严格要求;在整个系统冻冰及融冰的过程中,乙二醇侧在一定阶段内会运行在-2.19℃/-5.56℃温度范围内,在板换的另一侧的冷冻水通常在7℃/12℃运行;如果板换的乙二醇侧关闭不严有泄漏,会造成板换冷冻水一侧结冰,冻裂设备。
本工程采用KEYSTONE和SIEMENS 的电动蝶阀。
②电动阀门的两侧应设置检修阀、旁通阀;以便系统检修,和人工手动运行。
③电动阀门必须有方便的手动调节装置。
12.设备投资及运行比较:(见表) 比较结果: ①冰蓄冷系统冷冻站房初投资1531万元,常规空调工况冷冻站房初投资1300万元; ②采用冰蓄冷空调系统可以节约运行费用136万元/年; ③以空调设备运行年限20年计,蓄冰系统共可节约2720万元;经济效益非常可观; ④系统的工作压力和温度较低,安全可靠。
机组采用智能控制,实行远程监控,无须专人值守,便于管理; ⑤采用蓄冰系统削峰填谷,可避免变压器夜间空载运行,减少不必要的损失; ⑥随着国家电力政策对削峰填谷的进一步倾斜,鼓励用户使用蓄冷空调技术,电力部门将采取一系列的优惠政策,用户将获得更大的投资收益; ⑦蓄冰系统作为相对独立的冷源,增加了集中空调系统的可靠性。
流态化动态冰蓄冷技术
流态化动态冰蓄冷技术流态化动态冰蓄冷技术的先进之处在于改进了传统制冰的中过程主要缺点,而且制出的冰以流态化冰浆制做的形式存在。
传统静态制冰原核细胞中,水通过大自然对流换热,冰层外壁首先在换热壁面上形成,然后逐渐变厚。
这样就导致形成新的冰层所需的热量传递必须以导热的形式穿过越积越厚的原有冰层,从而严重的恶化了传热效率,致使结冰愈加困难,制冷剂提供的温度也必须越来越低。
流态化动态冰蓄冷技术制冰过程的最大特点在于首先在传热壁面附近制取过冷水,然后把过水银转移到远离传热壁面梁柱的空间里解除过冷、生成冰浆。
这样就彻底避免了在传热壁面上形成的可能性,既消除了固相冰层导热牵涉到热阻的存在,同时在液体和传热壁面之间又始终保持着强制对流的高效率换热模式,因此整个制冰环节的传热系数大幅度提高。
另一方面,制冰操作过程中的换热温差、流量等参数都保持稳态,并不因微秒而变化,从而保证了出冰速度的恒定,也便于系统的控制。
六种流态化动态冰蓄冷主要包括两种形式,即以高砂热学为代表的温水过凉水式和以Sunwell(日本)为代表的筒扰动式。
两种二种技术在基本原理上才是一致的,但形式差别较大,下面分别说明。
(1)过水银式动态制冰技术过热水式动态制冰技术的式基本原理是:首先把水在过冷却热交换器中冷却至低于0℃的过冷状态,然后把过冷水输送至特殊的过冷却解除器中解除过冷,生成大量细小的冰晶基质,与剩余的液态水一起形成0℃下的冰浆。
这种制冰投资过程中确保关键的技术在于最流过过冷却热交换器的液态水具有尽可能大的过冷度,但同时之前需要保证过冷水不能在流出热交换器又生成冰晶,否则换热器将被堵塞甚至破坏。
此外,还应有高效率的过关键技术冷却解除技术,以确保过冷水能够连续快速结晶。
过冷却蛋壳热交换器可以采用壳管式、套管式、板式等多种形式的换热器。
为了防止过冷水在换热器内结冰,换热器内表面需要或进行特殊涂层处理,同时对换热器内部的流场特性也有很高的要求,否则很难获得足够大的过冷度,以及避免堵塞。
冰蓄冷系统设计
l
减少制冷机组容量,大大提高空调设备利用率
冰蓄冷系统可以减少制冷主机装机容量和功率达 30-50%,相应地,也可以减少冷却塔和水泵等的装机 容量和功率,且制冷设备满负荷运行比例增大,提高 设备利用率。
l
技术成熟、系统运行稳定可靠
采用人工制冷的空调蓄冷大约出现在1930年前后,20世 纪70年代美国、加拿大和欧洲一些国家积极开发蓄冰设 备,实施的工程项目也逐年增加,日本冰蓄冷的实用化大 约只有10余年,但已有上万个项目成功实施并运行。 在国内,最早采用冰蓄冷空调在20世纪80年代,至今为 止,在国内采用冰蓄冷的中央空调系统已达几千例,这些 系统都正常运行,成功率极高。
冰蓄冷系统技术交流
PDF 文件使用 "pdfFactory Pro" 试用版本创建
第一部分 冰蓄冷系统介绍
PDF 文件使用 "pdfFactory Pro" 试用版本创建
一、冰蓄冷系统原理与特点
1、冰蓄冷系统的原理 所谓冰蓄冷,即在夜间电网低谷电费低价时制冷 机制冷,并由蓄冷设备以冰的形式将冷量储存起来, 待白天电网高峰电费高价时,再通过融冰的方式将 冷量释放出来,满足高峰空调负荷需要的空调系统。 因此,冰蓄冷空调就是通过转移制冷设备的运行时 间,利用低谷时的廉价电,减少峰值电负荷,达到 移峰填谷、使用户节省大量运行费用的目的。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
冷却塔
接楼上末端空调系统
基载主机 板式换 热器 双工况主机
蓄冰装 置
PDF 文件使用 "pdfFactory Pro" 试用版本创建
冰蓄冷空调系统的优化设计与实践
冰蓄冷空调系统的优化设计与实践冰蓄冷空调系统的优化设计与实践冰蓄冷空调系统是一种以蓄冷剂制冷的空调系统,它可以通过在夜间利用电力较为廉价的时段制冷并将冷量储存到冰蓄冷剂中,然后在白天高峰时段释放冷量,提供舒适的室内温度。
为了实现冰蓄冷空调系统的优化设计与实践,我们可以按照以下步骤进行:第一步:需求分析在开始设计冰蓄冷空调系统之前,我们需要对目标使用场所的需求进行全面的分析。
这包括室内温度要求、制冷负荷峰值等信息。
通过了解需求,我们可以确定系统所需的制冷量、制热量以及每天储存和释放的冷量。
第二步:设计系统根据需求分析的结果,我们可以开始设计冰蓄冷空调系统。
这需要考虑到以下几个方面:1. 冰蓄冷剂的选择:选择适合的冰蓄冷剂,可以储能效果更好。
一般而言,常见的冰蓄冷剂有水和盐水混合物等。
2. 蓄冷设备的设计:设计合适的蓄冷设备,包括蓄冷槽、蓄冷罐等,用于储存制冷量。
这些设备需要具备良好的绝热性能,以减少能量的损失。
3. 制冷机组的选型与布置:根据制冷负荷和制冷剂的需求,选择合适的制冷机组,并合理布置在使用场所。
4. 控制系统的设计:设计一个智能化的控制系统,用于监测室内温度、制冷负荷等参数,并根据需求控制制冷机组的运行,实现冷量的储存和释放。
第三步:实施与优化在系统设计完成后,我们需要进行实施和优化。
这包括以下几个方面:1. 安装调试:将设计好的冰蓄冷空调系统进行实施安装,并进行全面的调试,确保系统的各个组成部分正常工作。
2. 运行监测:在实际运行过程中,需要对冰蓄冷空调系统进行监测和评估,收集运行数据并进行分析。
根据实际情况,对系统进行优化调整,提高能源利用率和系统性能。
3. 维护管理:定期对冰蓄冷空调系统进行维护保养,清洁设备、更换零部件等,确保系统的稳定运行。
第四步:经济评估对于冰蓄冷空调系统的优化设计与实践,还需要进行经济评估。
这包括成本投入、节能效果和回报周期等方面的考虑。
通过经济评估,我们可以判断冰蓄冷空调系统是否具有可行性,并根据评估结果做出相应调整。
建筑节能――冰蓄冷系统的设计与施工
建筑节能――冰蓄冷系统的设计与施工【摘要】本文主要对建筑节能中冰蓄冷系统的设计与施工进行了探讨。
首先介绍了冰蓄冷系统在建筑节能中的应用,其设计原理和施工步骤。
然后对冰蓄冷系统的效益进行了分析,并与其他节能技术进行了比较。
结论部分强调了冰蓄冷系统在建筑节能中的重要性,并展望了它的发展前景。
总结了建筑节能中冰蓄冷系统设计与施工的关键点。
通过本文的研究,可以更好地认识冰蓄冷系统在建筑节能中的作用,为推动建筑节能行业的发展提供理论依据和实践指导。
【关键词】建筑节能、冰蓄冷系统、设计原理、施工步骤、效益分析、比较、重要性、发展前景、总结1. 引言1.1 引言冰蓄冷系统利用低峰时段制冷,将大量冷量贮存到蓄冷设备中,然后在高峰时段释放冷量,实现建筑冷热负荷的平衡。
通过这种方式,不仅可以降低建筑的用电成本,还可以减少对环境的污染。
本文将对冰蓄冷系统在建筑节能中的应用进行介绍,分析其设计原理和施工步骤,评估其效益,并与其他节能技术进行比较。
总结冰蓄冷系统在建筑节能中的重要性,展望其发展前景,并对建筑节能――冰蓄冷系统的设计与施工进行总结。
希望通过本文的介绍,读者能更深入地了解冰蓄冷系统在建筑节能中的作用及意义。
2. 正文2.1 冰蓄冷系统在建筑节能中的应用冰蓄冷系统是一种有效的节能技术,在建筑节能领域有着广泛的应用。
通过利用夜间电力低谷时段制冷,然后将冷量储存在蓄冷水箱中,在白天高峰时段使用这些储存的冷量来降低建筑物空调系统的负荷,从而达到节能减排的效果。
冰蓄冷系统在商业建筑中的应用非常广泛。
在商场、办公楼等大型建筑中,冰蓄冷系统可以有效降低空调系统的负荷,节约能源消耗,减少运行成本。
这不仅有利于提高建筑的能源利用效率,还能降低运营成本,提升建筑的竞争力。
冰蓄冷系统也在居住建筑中得到了广泛应用。
通过将冰蓄冷系统与太阳能光伏系统相结合,可以进一步提升建筑的能源利用效率,实现节能减排的目标。
在夏季高温季节,冰蓄冷系统可以有效降低住户的生活成本,提高居住舒适度。
冰蓄冷系统设计
某项目冰蓄冷空调系统设计摘要以实际设计案例介绍了冰蓄冷空调系统的设计方法,运行策略的选择,分析了该技术在实际应用中应注意的问题,并与常规电制冷方式进行了经济性比较。
关键词冰蓄冷;负荷分析;运行策略;经济分析;注意问题一、工程概述该项目位于石家庄,总体布局分为A、B、C三个功能不同的区域。
项目占地55012M2,其中A、B区为44628M2,C区为10384M2。
项目建筑面积约40万M2。
二、空调蓄冷系统简介空调蓄冷技术,即是在电力负荷很低的夜间用电低谷期,采用电动制冷机制冷,利用蓄冷介质的显热或潜热特性,用将冷量储存起来,在电力负荷较高的白天,将储存的冷量释放出来,以满足建筑物空调的需要。
在蓄冷应用技术中,多采用水蓄冷、冰蓄冷的方式。
空调蓄冷系统使用的前提条件:1、合适的电费结构及其它优惠政策。
电力峰、谷差价越大,对蓄冷系统越有利。
其它优惠政策主要体现在少收或免收电力增容费以及移峰电力补贴等。
2、空调冷负荷在用电峰、谷时段有一定的不均衡性。
在电力谷时冷负荷越小或无负荷,制冷机组才有利于在低电价是制冷蓄冷。
三、夏季空调负荷分析本项目设置一个中央机房,为A、B区的商业、办公提供冷源。
经过计算,该项目的设计计算总负荷为:157888.2Kw.h。
该项目冷负荷较大,若采用一次电制冷,冷冻机数量多,用电负荷大,且水循环系统也较为庞大,运行费用很高;由于该项目的性质,夜间几乎没有冷负荷。
因此,在本项目中采用部分负荷冰蓄冷技术,利用夜间电力资源充沛,且价格较低的优势,进行畜冰;在白天峰值时,利用冰的蓄冷量进一步降低冷冻水水温,(可以将一般冷水机组的7℃出水温度降低为5℃左右)这样既可以降低冷水机组的运行费用,又可以减少冷冻水循环系统的一次投资和运行费用,同时系统末端可以节约20%的投资,系统风道、水管尺寸均可以相应减小20%左右,可提高建筑物的有效利用空间。
根据电力系统的统计资料表明:市电供应的高峰值与大部分建筑空调冷量峰值的出现时间是基本一致的,而在夜间负荷较低。
浅谈冰蓄冷空调的设计及应用分析
浅谈冰蓄冷空调的设计及应用分析摘要:目前,社会上使用的中央空调系统形式种类较多,根据选用的供应冷源的形式,主要有如下几种:水蓄冷系统、冰蓄冷系统、常规系统等。
由于不同种类的机组具有其不同的特性,在市场上均有使用,主要是根据建筑及当地的具体情况进行选择。
本文结合参与工程的实践,浅谈冰蓄冷空调的设计及应用分析。
关键词:冰蓄冷,空调系统,移峰填谷一、冰蓄冷中央空调系统原理冰蓄冷中央空调,是指建筑物空调时间所需要冷量的部分或全部在非空调时间利用蓄冰介质的显热及其相变过程的潜热迁移等特性,将能量以冰的形式蓄存起来,然后根据空调负荷要求释放这些冷量,这样在用电高峰时期就可以少开甚至不开主机。
将电网高峰时间的空调用电量转移至电网低谷时使用,达到节约空调运行费用的目的。
在一般大楼中,空调系统用电量占总耗电量的35%--65%,而制冷主机的电耗在空调系统中又占65%--75%。
在常规空调设计中,冷水主机及辅助设备容量均按尖峰负荷来选配,使空调系统的电力容量增大,而且实际运行负荷变化范围大,使得主机等空调设备偏离最佳工况点运行,机组实际运行能效低。
采用冰蓄冷中央空调后,可以选择相对较小的主机,在夜间主机蓄冰,白天主机与蓄冰装置一起工作满足空调负荷,这样全日主机利用率将极大提高,用电负荷将非常平均,相应的配电设施及其他投资效益大幅度提高。
该系统供冷时,乙二醇溶液首先经过冷机在空调工况下降温以保持较高效的工作,再经冰槽的冷却使乙二醇溶液的温度进一步降低,这样板式换热器的进出口处乙二醇溶液有较大的温差,在相同的负荷条件下,串联系统乙二醇溶液的流量较小,因此在相同的条件时串联系统的乙二醇循环泵小于并联系统,从而使串联系统的设备投资和运行费用都优于并联系统,而且串联方式管路更加简单运行可靠。
二、冰蓄冷中央空调系统特点1、平衡电网负荷,延缓电厂建设据统计,空调高峰时用电量达到城市用电负荷的25%-30%,加大了电网的峰谷用电差。
建筑节能――冰蓄冷系统的设计与施工
建筑节能――冰蓄冷系统的设计与施工【摘要】本文介绍了建筑节能领域中一种重要的技术――冰蓄冷系统的设计与施工。
在分析了研究背景和研究意义。
在详细讲解了冰蓄冷系统的原理、设计要点、施工流程、运行效果以及应用领域。
在探讨了建筑节能的重要性,以及冰蓄冷系统在建筑节能中的作用,并展望了未来的发展方向。
通过本文的阐述,读者不仅能够了解冰蓄冷系统在节能领域的重要性和应用价值,还能为相关专业提供一定的参考与指导。
通过冰蓄冷系统的设计与施工,建筑可以有效减少能源消耗,提高能源利用效率,实现节能减排的目标,具有重要的实践意义和推广价值。
【关键词】建筑节能, 冰蓄冷系统, 设计, 施工, 原理, 运行效果, 应用领域, 重要性, 作用, 未来发展展望, 研究背景, 研究意义.1. 引言1.1 研究背景研究冰蓄冷系统的背景主要有以下几个方面:一是随着社会经济的不断发展,建筑能耗逐渐增加,建筑节能问题亟待解决。
二是传统建筑空调系统存在能耗高、耗电多等问题,需要寻找新技术来提高能效。
三是全球气候变暖导致夏季气温不断升高,建筑空调负荷增加,需要采取有效措施来应对高温天气。
研究冰蓄冷系统的设计与施工对于解决建筑节能难题具有重要意义。
通过深入探讨冰蓄冷系统的原理、设计要点、施工流程、运行效果和应用领域,可以为建筑节能提供有效的技术支持和解决方案。
冰蓄冷系统将成为未来建筑节能领域的重要发展方向和研究重点。
1.2 研究意义冰蓄冷系统在建筑节能中具有较高的效益和节能潜力。
通过利用夜间低谷电能,将电力转化为冷量储存在蓄冷罐内,并在白天高峰时段释放冷量,从而降低了建筑空调系统的电力消耗,实现了对能源的高效利用。
这对于减少能源浪费、降低建筑运行成本、改善城市环境质量都具有重要意义。
冰蓄冷系统的采用还可以有效缓解电力供需矛盾,提高电力系统的负荷调峰能力,促进清洁能源的开发和利用。
通过建立完善的冰蓄冷系统设计与施工标准,推动技术创新和产业升级,不仅可以提高建筑能效水平,还可以促进产业结构调整和经济可持续发展。
冰蓄冷空调系统毕业设计论文
1引言1.1 冰蓄冷空调的基本概念空调系统在不需要能量或用能量小的时间内将能量储存起来,在空调系统需求大量的冷量时,就是利用蓄冰设备在这时间内将这部分能量释放出来。
根据使用对象和储存温度的高低,可以分为蓄冷和蓄热。
结合电力系统的分时电价政策,以冰蓄冷系统为例,在夜间用电低谷期,采用电制冷机制冷,将制得冷量以冰(或其它相变材料)的形式储存起来,在白天空调负荷(电价)高峰期将冰融化释放冷量,用以部分或全部满足供冷需求。
每kg水发生1℃的温度变化会向外界吸收或释放1kcal的热量,为显热蓄能;而每kg0℃冰发生相变融化成0℃水需要吸收80kcal的热量,为潜热蓄能。
很明显,同一物质的潜热蓄能量(相变温度)大大高于显热蓄能量(1℃温差),因此采用潜热蓄能方式将大大减少介质的用量和设备的体积。
1.2 冰蓄冷空调的社会背景环境污染和能源危机已成为当今社会的两大难题,如何合理的利用能源为人类创造现代生活已经成为当今社会的共识。
在人类共同警视的时期,蓄能空调应运而生。
随着社会的发展电力工业作为国民经济的基础产业,以取得了长足的发展。
但是,电力的增长仍然满足不了国民经济的快速发展和人民生活用电的急剧增长的需要,全国缺电情况仍未得到根本的改变。
目前电力供应紧张表现在以下两点:第一点电网负荷率低,系统峰谷差加大,高峰电力严重不足致使电网经常拉闸限电。
电网的峰谷差占高峰负荷的比例已高达25%~30%。
随着用电结构的变化,工业用电比重相对减少,城市生活商业用电快速增长,达成电网高峰限电,低谷电用不上的问题也越来越突出。
第二点城市电力消费迅速,而城市电网不能适应,造成有电送不出,配不上的局面。
解决电力不足的问题,一方面是靠增加对电力的投入,加快电力建设的步伐,多装机组;另一方面还要继续坚持开发与节约并重的能源开发的工作方针,加强计划用电和节约用电,通过经济的、技术的、行政的和法律的手段,鼓励用户节约用电,移峰填谷,充分利用电力资源,大力开发低谷用电。
浅谈冰蓄冷系统
浅谈冰蓄冷系统最早接触“冰蓄冷”是在金庸小说《天龙八部》中,虚竹小和尚被天山童姥裹挟到西夏国王宫一个冰窖中,冰窖里堆满的是为王公贵族夏天取凉用的冰块,不用说那些冰块肯定是在冬天里用水“蓄”下来的“冷”,但这毕竟是小说,不能轻信。
到后来有机会参观紫禁城,听导游小姐讲皇帝们夏天乘凉的方式竟然也是如小说中讲的一般,可见“冰蓄冷”技术在我国确实是有,而且已经发展了很长时间。
到了现代,我们依然能用到“冰蓄冷系统”,当然现在的技术和形式肯定比古代要先进和复杂的多,通过专业课的学习和查阅相关资料,我对“冰蓄冷技术”有了新的更全面的认识,现总结如下:1. 冰蓄冷技术的原理冰蓄冷技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 如用电高峰) 把冷量取出来进行利用。
由此可以实现对电网的“削峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。
2. 系统的组成及制冰方式分类2.1 系统组成冰蓄冷系统一般由制冷机组、蓄冷设备( 或蓄水池) 、辅助设备及设备之间的连接、调节控制装置等组成。
冰蓄冷空调系统设计种类多种多样, 无论采用哪种形式, 其最终的目的是为建筑物提供一个舒适的环境。
另外, 系统还应达到能源最佳使用效率, 节省运转电费, 为用户提供一个安全可靠的冰蓄冷空调系统。
2.2 制冰方式分类根据制冰方式的不同, 冰蓄冷可以分为静态制冰、动态制冰两大类。
此外还有一些特殊的制冰结冰, 冰本身始终处于相对静止状态, 这一类制冰方式包括冰盘管式、封装式等多种具体形式。
动态制冰方式在制冰过程中有冰晶、冰浆生成, 且处于运动状态。
每一种制冰具体形式都有其自身的特点和适用的场合。
3. 蓄冷技术的发展阶段及应用状况3.1 蓄冷技术的发展阶段蓄冷技术最初开始于20 世纪30 年代,其发展大致经历了3 个阶段。
(1)从20 世纪30 年代至60 年代,是以削减空调制冷设备装机容量为主要目标,以小冷机带动大冷负荷的蓄冷阶段,特别是1950—1960 年间,发展很快,主要采用水蓄冷技术,优点是投资省、技术要求低、维修费用少,可用于一些周期性使用,供冷时间又短的建筑物,如教堂、体育馆、礼堂。
冰蓄冷工程设计经验总结
冰蓄冷工程设计经验总结
在建筑空调系统中,冰蓄冷技术是一种节能环保的方法,通过在夜间低峰期制冷并将冷量储存在冰蓄冷装置中,然后在白天高峰期利用这部分冷量降低建筑物的空调负荷。
经过多年的实践和总结,以下是一些冰蓄冷工程设计经验的总结:
1. 制冷系统设计
在进行冰蓄冷系统的设计时,首先需要充分了解建筑物的热负荷特性,合理确定冰蓄冷装置的容量。
此外,还需要考虑制冷机组的选型、管道布局等因素,确保系统能够稳定高效运行。
2. 蓄冷装置设计
蓄冷装置是冰蓄冷系统的关键部件,其设计需考虑蓄冷罐的容量、材质、保温性能等因素。
合理的蓄冷装置设计能够保证冰的长时间储存和稳定释放,提高系统的整体效率。
3. 控制系统设计
冰蓄冷系统的控制系统设计至关重要,需要实现对制冷机组、冰蓄冷装置等设备的精确控制。
合理的控制系统设计能够提高系统的响应速度和节能效果。
4. 运行维护
冰蓄冷系统的运行维护对系统的长期稳定运行至关重要。
定期检查设备运行状态、清洁设备表面、检查制冷剂循环系统等措施能够延长系统的使用寿命并保证系统性能。
5. 技术更新
随着科技的不断发展,冰蓄冷技术也在不断更新。
设计人员需要保持对新技术的了解,不断提升自己的专业水平,为冰蓄冷工程的设计和应用提供更好的解决方案。
通过对冰蓄冷工程设计经验的总结,可以更好地指导未来的冰蓄冷工程设计和应用实践,提高系统的效率和节能性能,为建筑空调系统的可持续发展做出贡献。
浅谈冰蓄冷空调系统设计和施工管理中的重难点
浅谈冰蓄冷空调系统设计和施工管理中的重难点作者:刘家模来源:《城市建设理论研究》2011年第29期摘要:作为一种新兴的节能环保制冷技术,冰蓄冷空调系统正在全世界范围内迅速崛起并应用。
本文首先简要介绍了冰蓄冷空调系统的基本原理。
着重阐述了冰蓄冷空调系统在方案设计、系统运行和控制、施工管理过程中的重点和难点。
关键词:冰蓄冷空调;方案设计;系统控制;施工管理1引言近年来,随着现代工业规模以及人民生活水平的不断提升,空调使用普遍,尤其是在夏季,空调的使用量急剧增加。
空调使用的高峰期通常与用电高峰期重叠,在夏季电力本就非常紧张的情况下使供电不足的情况越来越严重。
由此,许多城市采取拉闸限电来缓解这一情况。
白天用电的高峰期时,电网的电力供应紧张甚至不足;晚上用电的低峰期时,电网的电力又有剩余。
冰蓄冷空调技术的出现恰好可以解决这一电力供需矛盾,从而实现“削峰填谷”、均衡用电负荷的目的。
2冰蓄冷空调基本原理在结构上,冰蓄冷空调相对于传统的空调系统而言,它只是多了一套蓄冷设备,其他的如制冷系统和空调箱循环风系统等均和传统的空调系统相同。
它在夜间用电低谷期,采用制冷主机制冰,将冷量储存起来;而在用电高峰期的白天,把储存的冷量释放出来,满足用能单位的冷负荷的需要,以此达到用电负荷的“削峰填谷”的目的。
3冰蓄冷空调系统3.1冰蓄冷空调系统方案设计冰蓄冷空调系统的设计不仅要求从国家可获得的宏观效益出发,而且也要让建筑投资者获得直接的经济效益。
设计时以下面5个要素为重点。
(1)当地的电价结构以及优惠政策:冰蓄冷空调系统设计时必须考虑到它的经济适用性。
合理的峰、谷电价以及电价优惠政策是冰蓄冷空调系统被建筑者采用的重要因素。
电网差价越大,采用冰蓄冷空调系统的得益就越大。
近年来,为提高电能利用效率,促进电力资源优化配置,政府鼓励低谷蓄能。
许多城市相继出台了少收或免收电力增容费、移峰电力补贴、低谷蓄能的优惠补贴等政策,这些政策极大提高了冰蓄冷空调系统的应用积极性。
冰蓄冷空调系统的应用与设计分析
冰蓄冷空调系统的应用与设计分析摘要:为解决电力用电紧张问题,减小城市用电峰谷差,确保电力资源可以得到合理运用,业界学者纷纷加大了对调峰技术的研究力度,而蓄冷空调技术作为较为常用且较为有效的调峰技术,自然得到了电力部门的重点关注。
本文将以某医院冰蓄冷空调系统实例为例,通过对冰蓄冷空调系统的介绍,对系统应用与设计展开全面分析,旨在提升冰蓄冷空调系统应用水平,保证整体空调系统运用质量。
关键词:电力负荷;调峰技术;冰蓄冷空调系统;暖通工程作为较为理想且最为经济的电力调峰技术,蓄冷空调技术在电力负荷调峰中有着极为广泛的运用。
运用该项技术进行调峰,可实现对空调尖峰用电负荷的有效转移,平均转移量能够达到36.4%-45%左右,电网负荷平衡效果较为理想。
而冰蓄冷空调技术,作为蓄冷空调重要组成,自然也成为了电力领域研究与分析的重要技术。
为对该项技术应用与设计展开进一步研究,研究人员首先应对冰蓄冷空调系统基本情况展开深入分析。
1.冰蓄冷空调系统该空调系统多用于较大面积集中温度的调节,由制冷机、供冷系统以及蓄冷系统三部分所组成。
在对该空调系统进行使用时,会在夜间用户低谷时期,利用集中电力资源对水资源实施转化,使其成为冰块并存储起来,以在白天用电高峰期对冰块能量进行释放,从而达到合理展开室内温度调节的目标。
此种空调运行方式,不仅可实现对冰块能量的有效运用,同时还可达到降低系统用电量的目的,可降低空调机组出现过负荷运转状况的可能性,能够实现对空调运营成本的有效控制,保证空调应用节能效果。
2.冰蓄冷空调系统设计要点2.1做好电价政策分析各省市以及地区会按照国家相应标准,完成地区冰蓄冷空调或蓄能技术电价政策设置,但因为项目投资人理解误差,导致政策运用质量并未达到预期效果。
例如,可能会因为理解误差,误以为优惠电价只适用于双工况主机,并不适合其他冰蓄冷系统设备,像冷却塔、水泵以及风机等。
这样不仅违背了优惠政策设置的初衷,也会影响投资者投资动力,所以在进行设计时,需要就政策与当地电业局相关人士展开会议探讨,明确政策具体应用细节,消除理解误差,以为电价政策执行质量提供可靠保障,确保蓄冰方案设置质量可以达到最佳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第三代)
1
目录
说 明................................................................................................................3
产品特点...................................................................................................................................................... 3 安装事项...................................................................................................................................................... 3 项目经济性分析表...................................................................................................................................... 4
三、直接接触式设计方案................................................................................... 6
1、贵项目基本情况.................................................................................................................................... 6 2、建设冰蓄冷系统的可行性................................................................................... 错误!未定义书签。 3、设计计算依据........................................................................................................................................ 7 4、冰蓄冷空调系统运行费用表................................................................................................................ 8 5、实施费用................................................................................................................错误!未定义书签。
二、冰蓄冷空调系统简介................................................................................... 5
1、冰蓄冷空调原理.................................................................................................................................... 5 2、 实施目的...............................................................................................................................................6 3、直接接触式的主要特点........................................................................................................................ 6
67.49 81.36 129.83 270.70
62.15 41.87 40.46 224.27
0.33 89.33
0.82 183.91
109.35 32.57% 2186.93
55.59
37.50 38.90
206.98
565.07 0.52
107.63 335.70
34.16 21.68 30.00 133.81
为充分运用电价政策引导电力用户移峰填谷,缓解电力供求矛盾,根据国家有关电价政策, 结合福建省福州地区实际,普通工业类常规空调电价为:高峰段 0.82 元/度,平峰段 0.52 元/ 度,谷峰段 0.33 元/度,蓄冰优惠电价为高峰段 0.52 元/度,平峰段 0.52 元/度,谷峰段 0.33 元/度。
一、峰谷电价政策............................................................................................... 5
1、国家电力现状及电力优惠政策............................................................................................................ 5
二、流态冰蓄冷空调系统简介
1、冰蓄冷空调原理
冰蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时
5
段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰 电价时段空调主机尽量不开机或少开机,为电网“移峰填谷”而节约电费支出。
2、 实施目的
通过实施冰蓄冷空调工程,取得国家电力部门的相关优惠电价政策,在实际的“谷制峰用” 中,节约大量的空调电费,降低企业的生产成本;也为节能环保做出了一定的贡献。
0.33 44.16
4
一、峰谷电价政策
1、国家电力现状及电力优惠政策
我国改革开放以来,社会生产力、综合国力和人民生活水平都有较大的提高。电力工业作 为国民经济的基础产业之一,已取得长足的发展,截止到 2003 年底全国发电装机容量已达 3.56 亿千瓦。进入 2003 年以来,我国经济快速发展,电力消费高速增长,2003 年全国全社会用电 量同比增长 15.4%,高于 2001 年增长 8.7%,2002 年增长 11.6%的增长率,创改革开放以 来的最高水平。电力供需矛盾明显加剧,全国拉限电的地区、范围和电力电量缺口都明显增加。
75% 50% 25% 电量
高峰 9489.62 6808.21 3395.97 440.00
56.94 40.85 20.38 7.92 126.08
0.52 65.56
蓄冷空调 平段
谷段
10852原空调系统 平段
谷段
13298.20 12499.81 7995.24
6778.64 3951.43 440.00
2
说明
通 过 “ 移 峰 填 谷 ” , 可 使 ******* 公 司 整 个 空 调 系 统 每 年 节 省 运 行 电 费
109.35 万元。
不改动系统和空调主机,冰蓄冷与现有空调系统并联运行,安全可靠。
产品特点
冰蓄冷系统是通过制冰方式,以冰的相变潜热为主蓄存冷量的蓄冰系统,利 用夜间电网低价电力运转制冷机制冷并以冰的形式储存起来,在白天用电高峰时 (高峰电价约为低谷电价的 3~5 倍)将冰融化供冷,以达到降低运行费用的目的。 我司自主研发的独特冰蓄冷技术,突破了传统冰蓄冷的概念,效益更高。
空调蓄冷是电力需求侧管理的重要内容,空调电力负荷占据城市电网高峰负荷很大的比 重,空调安装的数量越来越多,中央空调和家用空调的耗电量使整个城市的用电比例上升,有 的城市空调用电负荷占全市总用电负荷的的 40%。空调电力负荷直接加大了电网高峰用电紧 张,而下半夜由于电力消耗不能达到电网最低负荷又造成低谷电能的巨大浪费。为缓解这一矛 盾,我国投入了大量的资金在电源侧来实现电网移峰填谷,如在北京建设十三陵抽水蓄能电站、 在广东清远建设大型抽水蓄能电站等。但从资源配置和节约电能的目的来说,在用户侧实现电 能的“移峰填谷”是最优的,因此“移峰填谷”就成为电力部门和空调界共同关注并携手推进 的重点工作。为了激励用户使用低谷电能的积极性,在国家经贸委、国家发改委和国家电监会、 国家电力公司等部门引导下,各地出台了一系列的低谷电价优惠措施,许多地区逐步实行了分 时电价。目前我国的低谷和高峰电价差价在各地有所不同,例如目前上海市的电力价格的峰谷 比为 3.5:1,江苏省为 3:1,河南省为 2.6:1,福建省为 3:1。
65.11
11249.15 13559.59 7212.52
121.85
10358.65 6979.10 2247.73
79.79
9264.86 6249.91 2160.97
75.00
5693.93 3612.62 1666.79
47.97
40.67
23.71 7.92
137.41
534.20 0.52 71.45 226.35
1﹑冰蓄冷冷站增加设备及工程费用................................................................... 错误!未定义书签。 6、 结论.....................................................................................................................................................15