随机抽样(必修3)(三种抽样方法)

合集下载

必修3概率与统计复习导学(文)

必修3概率与统计复习导学(文)

概率与统计复习一、典型问题与方法(一)随机抽样:简单随机抽样、系统抽样、分层抽样简单随机抽样:各个个体被抽中的机会都相等,不放回抽取,常有抽签法、随机数法。

系统抽样:用简单随机抽样确定一个个体,再按一定规则(加间隔)抽取。

分层抽样的比较:已知总体内部组成结构,各层按比例抽取。

例1.1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()A.1000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是1002.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是3.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②. 则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法基础训练1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( ).A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样2.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会()A. 不全相等B. 均不相等C. 都相等D. 无法确定3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

高中数学必修3概率统计常考题型:简单随机抽样

高中数学必修3概率统计常考题型:简单随机抽样

【知识梳理】1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.3.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.【常考题型】题型一、简单随机抽样的概念【例1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【类题通法】简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.【对点训练】下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.题型二、抽签法及其应用【例2】(1)下列抽样实验中,适合用抽签法的有()A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[解析]A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.[答案] B(2)某大学为了选拔世博会志愿者,现从报告的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解]第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.【类题通法】1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.【对点训练】现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.题型三、随机数表法的应用【例3】(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30[解析]从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.[答案]227,665,650,267(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解]第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)【类题通法】利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同?需先调整到一致两再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.【对点训练】现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.【练习反馈】1.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量解析:选C200个零件的长度是从总体中抽出的个体所组成的集合,所以是总体的一个样本.故选C.2.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2.答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.。

必修3统计知识点复习

必修3统计知识点复习

必修3统计知识点复习一、本章知识结构二、知识点复习1、统计的的基本思想是:用样本的某个量去估计总体的某个量总体:在统计中,所有考察对象的全体。

个体:总体中的每一个考察对象。

样本:从总体中抽取的一部分个体叫做这个总体的一个样本。

样本容量:样本中个体的数目。

2、抽样方法:要求:总体中每个个体被抽取的机会相等(1)简单随机抽样:抽签法和随机数表法简单随机抽样的特点是:不放回、等可能.抽签法步骤(1)先将总体中的所有个体(共有N个)编号(号码可从1到N)(2)把号码写在形状、大小相同的号签上,号签可用小球、卡片、纸条等制作(3)将这些号签放在同一个箱子里,进行均匀搅拌(4)抽签时,每次从中抽出一个号签,连续抽取n次(5)抽出样本随机数表法步骤(1)将总体中的个体编号(编号时位数要统一);(2)选定开始的数字;(3)按照一定的规则读取号码;(4)取出样本(2)系统抽样系统抽样特点:容量大、等距、等可能.步骤:1.编号,随机剔除多余个体,重新编号2.分段 (段数等于样本容量),确定间隔长度 k=N/n3.抽取第一个个体编号为i4.依预定的规则抽取余下的个体编号为i+k, i+2k, …(3)分层抽样分层抽样特点:总体差异明显、按所占比例抽取、等可能.步骤:1.将总体按一定标准分层;2.计算各层的个体数与总体的个体数的比;3.按比例确定各层应抽取的样本数目4.在每一层进行抽样 (可用简单随机抽样或系统抽样)三种抽样方法的比较:3、用样本估计总体1)用样本的频率分布估计总体的分布作样本频率分布直方图的步骤:(1)求极差;(2)决定组距与组数; (组数=极差/组距)(3)将数据分组;(4)列频率分布表(分组,频数,频率);(5)画频率分布直方图。

茎叶图作图步骤:1.将每个数据分为茎(高位)和叶(低位)两部分.2.将最小茎和最大茎之间的数按大小顺序排成一列,写在左(右)侧;3.将各个数据的叶按大小次序写在其右(左)侧. 直方图的优点是:任何情况都能用; 直方图的缺点是:有信息丢失.茎叶图的优点是:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。

随机抽样方法

随机抽样方法

随机抽样方法
随机抽样方法是一种常用的统计学方法,它通过随机抽取样本来代表整体总体,从而进行统计分析和推断。

在实际应用中,随机抽样方法被广泛运用于调查研究、市场调研、医学实验等领域。

本文将介绍随机抽样方法的定义、特点、常见类型以及应用注意事项。

首先,随机抽样方法是指在总体中,每个个体被抽取为样本的概率是相等的,
且相互独立。

这意味着每个个体都有被抽取为样本的机会,从而能够代表整体总体。

随机抽样方法的特点是能够减小抽样误差,提高样本的代表性和可靠性。

随机抽样方法有多种类型,常见的包括简单随机抽样、分层随机抽样、整群随
机抽样等。

简单随机抽样是指从总体中随机抽取样本,每个个体被抽到的概率相等,相互独立。

分层随机抽样是将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样。

整群随机抽样是将总体按照某种特征分成若干群,然后随机抽取若干群作为样本。

不同类型的随机抽样方法适用于不同的研究对象和目的,研究者需要根据实际情况选择合适的抽样方法。

在应用随机抽样方法时,需要注意一些事项。

首先,抽样前需要对总体进行充
分的了解,包括总体特征、分布规律等。

其次,抽样时需要保证样本的代表性和随机性,避免抽样偏差。

最后,对于不同类型的随机抽样方法,需要根据实际情况进行灵活运用,选择最适合的抽样方法。

总之,随机抽样方法是一种重要的统计学方法,它能够有效地代表总体,提高
统计分析的准确性和可靠性。

在实际应用中,研究者需要根据实际情况选择合适的抽样方法,并注意抽样过程中的各项细节,以确保研究结果的科学性和可信度。

三种抽样方法(全)

三种抽样方法(全)
(3)系统抽样比简单随机抽样的应用范围更广.
8
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号. 25
二、分层抽样的步骤: (1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。 练习:分层抽样又称类型抽样,即将相似的个 体归入一类(层),然后每层抽取若干个体构 成样本,所以分层抽样为保证每个个体等可能 入样,必须进行 (c ) A、每层等可能抽样 B、每层不等可能抽样 16 C、所有层按同一抽样比等可能抽样

高二数学必修3 简单随机抽样 ppt

高二数学必修3 简单随机抽样 ppt

抽签法的步骤: 抽签法的步骤 1、把总体中的N个个体编号; 、把总体中的 个个体编号 个个体编号; 2、 把号码写在号签上,将号签放在一个容器中 、 把号码写在号签上, 搅拌均匀; 搅拌均匀; 3、每次从中抽取一个号签,连续抽取n次,就得到 、每次从中抽取一个号签,连续抽取 次 一个容量为n的样本 的样本。 一个容量为 的样本。
问题 2006年春节联欢晚会结束后,中央电视台想在较短时间内 年春节联欢晚会结束后, 年春节联欢晚会结束后 得到节目的收视率,请问如何调查得出合理的结果呢? 得到节目的收视率,请问如何调查得出合理的结果呢? 一个水库养了某种鱼10万条 ,如何调查它们的体重情况 一个水库养了某种鱼10万条 10 从中捕捞了20条 称得它们的体重(单位: )如下: 从中捕捞了 条,称得它们的体重(单位:kg)如下: 2.3 2.1 2.2 2.1 2.2 2.6 2.5 2.4 2.3 2.4 2.4 2.3 2.2 2.5 2.4 2.6 2.3 2.5 2.2 2.3
思考2、 思考 、你设计的方法,个体抽取的机会均等吗?
抽样方法:当总体个数较多时,可将总体均匀地分成n个 抽样方法: 部分,然后按照预先给定的规则,从每一部分 中抽取一个个体,得到所需的样本,—— 称 系统抽样. 为系统抽样 系统抽样 讨论1、怎样均分? 讨论 、 讨论2、 讨论 、怎样定规则? 讨论3、 讨论 、第一个个体怎样选取?
问题1: 问题
疾病的预防与个人的身体素质有关,为此学校 决定在高二(3)班77位同学中抽取20个同学进行抗 病原情况调查,假如你是一位学校防疫中心的领导, 你将如何抽取样本?
的特征:(1)逐个抽取; (2)每个个体机会均等; (3)样本个体间没有联系。
为了扩大调查面,使调查结果更符合学校实际, 问题2: 问题 : 学校要求将调查面扩大到全校学生,学校现有 学生3387名,要求从中抽取114人进行抗病原调 查,你将如何抽取样本? 你不觉得太累了吗? —— 与疾病的预防不利! 思考1、 思考 、能否设计一个方案,使得抽取方法简化?

高一数学必修3 抽样方法(3)——分层抽样 教案

高一数学必修3 抽样方法(3)——分层抽样 教案
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分。
(2)确定比例:计算各层的个体数与总体的个体数的比。
(3)确定各层应抽取的样本容量。
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。
注:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.实际抽样多采用不放回抽样,我们介绍的三种抽样都是不放回抽样,而放回抽样则在理论研究中用得较多.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
由于样本的容量与总体的个体以在各年级抽取的个体数依次是 , , ,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便。
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。
解:(略)
2.练习:课本第42页第2、3题、第47页第1、2、3题.
1.复习简单随机抽样、系统抽样的概念、特征以及适用X围.

高一数学必修3--第二章:统计复习课导学案

高一数学必修3--第二章:统计复习课导学案

第二章:统计复习课学习目标1.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的问题;2.能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.二.知识梳理本章知识共分为三部分:1.随机抽样:三种方法------简单随机抽样、系统抽样、分层抽样2.用样本估计总体:两种方法------用样本的频率a:分布估计总体分布、用样本的数字特征估计总体的数字特征.①用样本的频率分布估计总体分布:频率分布直方图的特征.画茎叶图的步骤.②用样本的数字特征估计总体的数字特征:利用频率分布直方图估计众数、中位数、平均数.b:标准差,方差.3.变量间的相关关系:①变量之间的相关关系:a、确定性的函数关系.b、带有随机性的变量间的相关关系.②两个变量的线性相关:a、散点图的概念.b、正相关与负相关的概念.c、线性相关关系.d、线性回归方程.※ 典型例题1.在一次有奖明信片的100 000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.2.某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用___________抽样法.3.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是( )A.①用简单随机抽样法,②用系统抽样法B.①用分层抽样法,②用简单随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法4.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆舒畅行检验,这三种型号的轿车依次应抽取______________辆.5.有一个样本容量为50的样本数据分布如下,[)5.15,5.12 3; [)5.18,5.15 8;[)5.21,5.18 9; [)5.24,5.21 11;[)5.27,5.2410; [)5.30,5.27 6;[)5.33,5.30 3.估计小于30的数据大约占有 ( ) A.9400 B.600 C.8800 D.1200※ 动手试试1.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则( ).A .甲班10名学生的成绩比乙班10名学生的成绩整齐B .乙班10名学生的成绩比甲班10名学生的成绩整齐C .甲、乙两班10名学生的成绩一样整齐D .不能比较甲、乙两班10名学生成绩的整齐程度7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ).A .3.5B .-3C .3D .-0.58.如果一组数中每个数减去同一个非零常数,则这一组数的( ).A .平均数不变,方差不变B .平均数改变,方差改变C.平均数不变,方差改变D.平均数改变,方差不变三、总结提升※ 学习小结本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。

(完整word版)高中数学必修3统计与概率

(完整word版)高中数学必修3统计与概率

统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

高中数学必修3_第二章_统计_总结学生版

高中数学必修3_第二章_统计_总结学生版

第二章统计一、随机抽样三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N。

如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

实现简单随机抽样,常用抽签法和随机数表法。

(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n次;成样:对应号签就得到一个容量为n的样本。

抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。

(2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。

在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。

成样:对应号签就得到一个容量为n的样本。

结论:①用简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为1/N;在整个抽样过程中各个个体被抽到的概率为n/N;②基于此,简单随机抽样体现了抽样的客观性与公平性;③简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。

2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。

系统抽样的步骤可概括为:(1)将总体中的个体编号。

采用随机的方式将总体中的个体编号;(2)将整个的编号进行分段。

为将整个的编号进行分段,要确定分段的间隔k .当N/n 是整数时,k=n/N ;当N/n 不是整数时,通过从总体中剔除一些个体使剩下的个体数N ´能被n 整除,这时k=N ’/n ;(3)确定起始的个体编号。

必修3数学抽样方法知识点总结

必修3数学抽样方法知识点总结

必修3数学抽样方法知识点总结
数学抽样方法知识点
一、简单随机抽样
设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,**个体被抽到的概率相等,就称这样的抽样为简单随机抽样.一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N。

常用的简单随机抽样方法有:抽签法、随机数法。

1。

抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

2.随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

二、活用随机抽样
系统抽样的最基本特征是等距性,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,ak=m(k—1)d,如本题中根据第一组的样本号码和组距,可得第k组抽取号码应该为930*(k-1)
三、系统抽样
当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

高中数学必修3:第2章统计 2.1 随机抽样(含高考真题演练)

高中数学必修3:第2章统计 2.1 随机抽样(含高考真题演练)

6. 简单随机抽样的结果( ) A.完全由抽样方式所决定 B.完全由随机性来决定 C.完全由人为因素所决定 D.完全由计算方法所决定 解析:简单随机抽样的结果完全由随机性来决定. 答案:B
7. 为了了解某县中考学生数学成绩的情况,从中抽取20本密封
试卷,每本30份试卷,这个问题中的样本容量是( )
最常用的简单随机抽样方法有两种:
抽签法 随机数法
随机数表法
抽签法
(1)对总体的N个个体进行编号 (2)把N个号码写在同样的号签上 (3)将号签放在一个容器中,搅拌均匀 (4)每次从中抽取一个号签,连续抽取n次 (5)得到一个容量为n的样本 步骤:编号→制签→搅匀→抽签→定样.
例1 某班有50名学生,要从中随机地抽出6人参加一项活动, 请用抽签法进行抽选,并写出过程.
简记为:编号;分段;在第一段确定起始号;加间隔获取样本。
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
第一步,随机剔除2名学生,把余下的320名学生编号为1,2 ,3,…320. 第二步,把总体分成40个部分,每个部分有8个个体.
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
系统抽样的特点:
(1) 总体容量较大 (2) 属于不放回抽样 (3) 每个个体被抽到的可能性相同(公平性)
系统抽样的步骤
(1)对总体的N个个体进行编号; (2)确定分段间隔k,对编号进行分段,当N/n是整数时, 取k=N/n;当N/n不是整数时,从总体中随机剔除一些个体, 使剩下的总体中个体的个数N′能被n整除,并将剩下的总体重 新编号、分段; (3)在第一段中用简单随机抽样确定起始的个体编号l; (4)将编号为l+k, l+2k, …, l+(n-1)k的个体抽出。

三种抽样方法(全)

三种抽样方法(全)

感谢您的观看
THANKS
三种抽样方法(全)
目录
CONTENTS
• 概率抽样 • 分层抽样法 • 非概率抽样
01 概率抽样
简单随机抽样
定义
从总体中随机抽取一定数量的样本,每个样本 被选中的概率相等。
特点
每个样本被选中的概率相同,样本的抽取不受 主观因素的影响。
适用范围
适用于总体数量较小,且总体异质性较小的情况。
等距抽样
详细描述
整群抽样是将总体分成若干个群,然后从每个群中抽取一定数量的样本。这种方法适用于群内差异较小的总体, 能够提高样本的代表性。
03 非概率抽样
任意抽样
定义
01
任意抽样是一种非概率抽样方法,它基于完全随机的
原则从总体中抽取每个样本被选中的概率
相等,但总体中每个单元被抽中的概率无法计算。
适用范围
适用于总体数量较大,且总体异质性较大的 情况。
02 分层抽样法
分层比例抽样
总结词
按照各层的大小,从各层中抽取样本, 样本量与各层的大小成正比。
详细描述
分层比例抽样首先将总体分成不同的 层,然后按照各层的大小比例,从每 一层中抽取样本。这种方法能够保证 各层都有代表被抽取,从而更准确地 反映总体情况。
多阶段抽样
总结词
多阶段抽样是将总体分成若干个阶段,然后分阶段进行抽样,最终得到总体样本。
详细描述
多阶段抽样是一种分步骤的抽样方法,首先将总体分成若干个小的子集,然后从每个子集中抽取样本 ,最终将这些样本合并得到总体样本。这种方法适用于大规模的调查,能够提高抽样的效率和可行性 。
整群抽样
总结词
整群抽样是将总体分成若干个群,然后从每个群中抽取样本。

从样方法谈随机取样

从样方法谈随机取样

从样方法谈随机取样摘要样方法是生态学调查中重要的取样方法,其采用随机取样的核心理念,在人教版高中生物必修3教材中用样方法探究草地中某种双子叶植物的种群密度。

学生在学习中对样方法、抽样检测、取样器取样法与黑光灯诱捕法易出现适用范围的混淆。

本文从样方的设置、随机取样的规则两方面进行讨论,并分析比较教材中出现的4种方法,利用随机取样的核心理念理清了各种取样法之间的关系。

关键词样方法随机取样取样器取样法抽样检测法样方法是估算种群密度的最常用方法之一。

在被调查种群的分布范围内,随机选取若干个样方,通过计数每个样方内的个体数,求得每个样方的种群密度,以所有样方种群密度的平均值作为该种群的种群密度估计值。

取样的关键是要做到随机取样,不能掺入主观因素[1]。

与之相配套的试题训练通常围绕以下关键词:随机取样,五点取样法,等距取样法,计算平均值,估计值。

人教版教材设置了探究实验“用样方法调查草地中某种双子叶植物的种群密度”,该探究实验的开展有利用培养学生的实验探究能力、科学思维等核心素养,还有很多老师对此实验进行了二次开发,如采用5种不同样方法对同一样样地进行种群密度比较[2]、利用样方法和辛普森多样性指数的指导学生进行户外植物物种多样性的调查[3]、探究种群密度动态生成的调查等[4]。

本文将重点讨论如何样方的设置、随机取样的规则,并比较分析人教版教材中出现的各种取样方法,以期为一线教学的老师解释随机取样的核心内涵。

样方的设置1.1 样方的大小样方法是基于无法对研究的全体逐一进行清点,只能抽取一部分作为研究而提出来的取样调查方法,最早是在植被研究中被提出,由H.von Post于1851年创立[5]。

在现代关于植被生态学、物种多样性的研究中多采用样方法,研究者们在使用时常使用样方(quadrat)、样地(site)、样区(样点)(plot)三个从小到大的概念[6-8]。

b.样地设置以课题“南山区骑行绿道两侧入侵植物多样性调查”①为例,在南山区范围内不同层级的绿道设置12个样区(图1a),每个样区设置3个样地,样地之间间隔100m (图1b),每个样地沿绿道两侧用等距取样法设置5个样方(图1c),每个样方之间间隔1m,样方大小为1m×1m。

高二数学必修3简单的随机抽样

高二数学必修3简单的随机抽样
逐个从中抽出10个签 对号码一致的学生检查
结束
抽签法的一般步骤:
(总体个数N,样本容量n)
(1)将总体中的N个个体编号;
(2)将这N个号码写在形状、大小相 同的号签上; (3)将号签放在同一箱中,并搅拌均匀;
开始 编号 制签 搅匀
(4)从箱中每次抽出1个号签,连续 抽出n次;
(5)将总体中与抽到的号签编号一致 的n个个体取出。
候选人Leabharlann 预测结果选举结果Landon
57
38
Roosevelt
43
62
问题一:为什么要抽样? 思 考
问题二:对一个确定的总体其样本唯一吗? 问题三:如何科学地抽取样本?怎样使抽取 的样本充分地反映总体的情况?
合理、公平
1、概念:总体,个体,样本及其样本 容量
一般地,我们要考察的对象的全体叫做总体, 其中每一个考察的对象叫做个体,从总体中被 抽取的考察对象的集体叫做总体的一个样本, 样本中个体的数目叫做样本容量。
巩固练习
3、下面的抽样方法是简单随机抽样吗?为什么? ①某班45名同学,指定个子最高的5名学生参加学 校组织的某项活动; ②从20个零件中一次性抽取3个进行质量检查;
③一儿童从玩具箱中的20件玩具中随意拿出一件来 玩,玩后放回再拿一件,连续玩了5件。
判断的依据:简单随机抽样的特点 ①总体的个数有限;②从总体中逐个进行抽取;
意向,调查者通过电话簿和车辆登记簿上的名单给一大批 人发了调查表(注意在1936年电话和汽车只有少数富人 拥有),通过分析收回的调查表,显示Alf Landon非常受 欢迎。于是此杂志预测Alf Landon将在选举中获胜。
实际选举结果正好相反,最后Franklin Delano Roosevelt在选举中获胜。其数据如下:

必修3课件2.1.2-3.抽样方法

必修3课件2.1.2-3.抽样方法

很喜爱 2400
喜爱 4200
一般 3800
不喜爱 1600
打算从中抽取60人进行详细调查,如何抽取?
系统抽样与简单随机抽样比较, 有何优、缺点?
1、系统抽样比简单随机抽样更容易实施; 2、系统抽样的效果会受个体编号的影 响,而简单随机抽样的效果不受个体编号的 影响; 3、系统抽样比简单随机抽样的应用范围 广。
3.分层抽样
当已知总体由差异明显的几部分组成时,为了使样本 充分地反映总体的情况,常将总体分成几部分,然后按照各 部分所占的比例进行抽样。其中所分成的各部分叫做层。 由于分层抽样的要求不同,各层的抽样的样本容量也不相同, 所以,应当按照实际情况,合理地将样本容量分配到各个层, 以确保抽样的合理性,研究时可以根据不同的要求来分层抽样。 分层抽样适用于总体由差异明显的几部分组成的情况, 每一部分称为层,在每一层中实行简单随机抽样。这种方法较 充分地利用了总体己有信息,是一种实用、操作性强的方法。
第二课时 系统抽样
分层抽样
数理统计是研究如何有效地收集,整理,分析 受随机影响的数据,并对所考虑的问题作出推断或 预测,直至为采取决策和行动提供依据和建议的一 门学科。它是一门应用性很强的学科,凡是有大量 数据出现的地方,都要用到数理统计。现在,数理 统计的内容已异常丰富,成为数学中最活跃的学科 之一。教科书选择了数理统计中最基本问题来介绍 这门学科的思想与方法。
分层抽样的抽取步骤: (1)总体与样本容量确定抽取的比例。 (2)由分层情况,确定各层抽取的样本数。 (3)各层的抽取数之和应等于样本容量。 (4)对于不能取整的数,求其近似值。
4.三种抽样方法的比较
5.课堂练习
一个电视台在因特网上就观众对其某一节目的喜爱 程度进行调查,参加调查的总人数为12000人,其中持各 种态度的人数如下所示:

随机抽样的四种方法

随机抽样的四种方法

随机抽样的四种方法在统计学中,随机抽样是一种常用的数据采集方法,通过随机抽样可以有效地代表总体,从而进行统计推断。

随机抽样的方法有很多种,本文将介绍四种常用的随机抽样方法,分别是简单随机抽样、分层抽样、整群抽样和系统抽样。

首先,我们来介绍简单随机抽样。

简单随机抽样是最基本的抽样方法之一,它要求从总体中随机地抽取若干个样本,且每个样本被抽中的概率相等。

简单随机抽样通常可以通过随机数表或随机数发生器来实现,它的优点是抽样过程简单,结果具有客观性和可比性。

然而,简单随机抽样也存在着一定的局限性,比如在总体分布不均匀的情况下,可能导致样本代表性不足。

其次,是分层抽样。

分层抽样是将总体按照某种特征分成若干个层次,然后从每个层次中分别进行简单随机抽样。

这种抽样方法可以保证各层次的代表性,同时可以根据实际情况对不同层次的样本进行加权处理,从而更好地反映总体特征。

分层抽样的优点是能够减小抽样误差,但是需要对总体有较为准确的了解,才能进行有效的层次划分和抽样。

第三种方法是整群抽样。

整群抽样是将总体按照某种特征分成若干个群体,然后随机地抽取若干个群体作为样本。

整群抽样的优点是能够简化抽样程序,减少调查工作量,同时可以更好地控制样本的代表性。

但是,整群抽样也存在着群体内部差异较大的问题,可能导致样本代表性不足。

最后,是系统抽样。

系统抽样是按照一定的规则从总体中抽取样本,例如每隔若干个单位抽取一个样本。

系统抽样的优点是抽样过程简单,适用于大样本的抽样工作,同时也能够保证样本的随机性。

但是,如果总体的排列规律与抽样规则相吻合,可能会导致样本的偏倚。

综上所述,随机抽样是统计学中常用的数据采集方法,而简单随机抽样、分层抽样、整群抽样和系统抽样是常用的四种抽样方法。

每种抽样方法都有其优点和局限性,需要根据具体的调查对象和调查目的来选择合适的抽样方法。

在实际应用中,可以根据抽样的目的、调查对象的特点和调查条件的限制来灵活选择合适的抽样方法,以确保样本具有代表性和可靠性。

必修3 抽样方法 测试题(包含知识要点)

必修3    抽样方法 测试题(包含知识要点)

必修32.1 随机抽样制卷:王小凤学生姓名:______________一.统计的的基本思想是:用样本的某个量去估计总体的某个量总体:在统计中,所有考察对象的全体。

个体:总体中的每一个考察对象。

样本:从总体中抽取的一部分个体叫做这个总体的一个样本。

样本容量:样本中个体的数目。

二.三种抽样方法的比较:(题型训练)一.选择题(本题共10个小题,每小题5分,共50分)1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是1002.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为()A.150 B.200 C.100 D.1203.某总体容量为M,其中带有标记的有N个,现用简单随机抽样的方法从中抽取一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为()A.mNM B.mMN C.MNm D.N4.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中逐个抽取10个正整数分析奇偶性D.运动员从8个跑道中随机抽取一个跑道5.某社区有300户家庭,其中高收入家庭有25户,中等收入家庭有180户,低收入家庭有95户,为了了解社会购买力的某项指标,要从中抽取一个容量为100的样本,(2)从10名职工中抽取3人参加座谈会(i)简单随机抽样(ii)系统抽样(iii)分层抽样,则问题与方法搭配正确的是()A.(1)(iii),(2)(i)B.(1)(i),(2)(ii)C.(1)(ii),(2)(iii)D.(1)(iii),(2)(ii)6.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2 B.4 C.5 D.67.有50件产品,编号从1至50,现从中抽取5件检验,用系统抽样的方法确定所抽取的编号可能是()A.8,18,28,38,48 B.5,15,25,35,45C.5, 8,31,36,41 D.2,14,26,38,508.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从中抽取容量容量为36的样本,最合适的抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样9.某单位有技工18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n的样本;如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果容量增加一个,则在采用系统抽样时,需要从总体中剔除1个个体,则样本容量n为()A.4 B.5 C.6 D.无法确定10.某厂生产A、B、C三种型号的产品,产品数量之比为2:3:5,现用分层抽样的方法抽取一个样本容量为m的样本,样本中A型号的产品有16件,那么m的值是()A.60 B.80 C.100 D.160二.填空题:(本题共10小题,每小题5分,共50分)11.某校有行政人员,教学人员和教辅人员共200人,其中教学人员与教辅人员的比为10:1,行政人员有24人,现采取分层抽样抽取一个容量为50的样本,那么行政人员应抽取的人数为.12.某校高三学生有253名,为了了解他们的身体健康状况,按1:5的比例抽取一个样本,若用系统抽样法抽取,则分段的间隔k=,样本容量为.13.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n=.14.一个总体中共有100个个体,随机编号0,1,2,3,,99,依编号顺序平均分成10个小组,组号依次为1,2,3,,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m k+的个位数字相同.若6m=,则在第7组中抽取的号码是.15.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.16.某学校有高一、高二、高三共三个年级,现采用分层抽样法抽取一个容量为45的样本,已知高一年级被抽到的人数为20,高二年级被抽到的人数为10,高三年级总人数为300,则该校共有学生人.17.某学院的A、B、C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本,已知该学院的A类专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取名学生.18.一个总体分为A、B两层,用分层抽样的方法从总体中抽取一个容量为10的样本,已知B层中每个个体被抽到的可能性为112,则总体中的个体数为.19.某学校有师生2400人,现用分层抽样的方法抽取一个容量为160的样本,已知从学生抽取150人,则该校教师的人数为.20.某单位200名员工的年龄结构如图,抽取40名,用系统抽样的方法将全体职工随机按1—240编号,并按编号顺序平均分为40组,(1-5,6-10……196-200),若第五组抽出的号码为22,则第八组抽出的号码是,若用分层抽样的方法,则40岁—50岁年龄段的应抽取人.。

分层抽样的方法

分层抽样的方法

即25,56,19。
总结归纳: 分层抽样的特点: (1)每个个体被抽取的可能性是相同的; (2)每一层中抽取的样本数与这一层中的个体数的比等于样 本容量与总体中个体数的比; (3)若在按比例计算所得的个体数不是整数,可作适当的近似 处理.
分层抽样的优点: 使样本具有较强的代表性,而且在各层抽样时,又可以使用不 同的方法进行抽样.因此分层抽样应用也比较广泛.
1简单随机抽样2系统抽样当总体的个数较多时采用简单随机抽样太麻烦这时将总体分成均衡的部分然后按照预先定出的规则在每一部分中抽取1个个体得到所需要的样本这种抽样称为系统抽样
分层抽样的方法
高中数学 金冶
知识点: 人教A版 必修三 统计第1节 随机抽样
掌握分层抽样的方法和步骤,学会利用分层抽样抽取 样本,掌握简单随机抽样、系统抽样、分层抽样的区 别。
祝学员们学习进步!
(1)确定样本容量与总体的个体数之比 100:500=1:5 (2) 利用抽样比确定各年龄段应抽取的个体数,依次为 2.确定各层抽取数 3.各层中抽取个体并合并 (3)利用简单随机抽样或系统抽样的方法,在各年龄段分别抽取 25,56,19人, 然后合在一起,就是所要抽取的样本。
125 280 95 , , 5 5 5
知识讲解:
1、 分层抽样概念: • 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定 的比例,从各层独立地抽取一定数量的个体,将各层取出的个 体合在一起作为样本,这种抽样的方法叫分层抽样。
说明:
1、总体个体差异明显,每层的差别比较大,而层内个体间的差别较小. 2、每层可以抽取多少样本,要根据它在总体中占的比例来抽取. 3、在每层中抽取样本时,采用简单随机抽样或系统抽样.
知识回顾:
1、简单随机抽样 一般地,设一个总体的个体数为 N,如果通过逐个不放回地抽取的 方法从中抽取一个样本,且每次抽取时每个个体被抽到的概率相等,就 称这样的抽样为简单随机抽样. 2.系统抽样
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)在第1段用简单随机抽样确定第一个个体编 号m(m≤k)
(4)按照一定的规则抽取样本。通常是将m加上 间隔k得到第二个个体编号(m+k),再加k得 到第3个个体编号,依次进行下去,直到获得整 个样本。
思考:
当N/n不是整数时,如何进行 系统抽样?
当N/n不是整数时,令k=[N/n],那先从总 体中用简单随机抽样的方法剔除N-nk个个体, 再将其余的进行编号并均分成n段(可知每段 间隔数为K)。
1分层抽样
(1)定义一:一般地,在抽样时,将总体分成互不交叉 的层,然后按照一定的比例,从各层独立地抽取一定 数量的个体,将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样。
系统抽样(等距抽样)的概念 将总体分成均衡的几部分,然后按照预先定出的
规则,从每一个部分抽取一个个体,得到所需样本的 抽样方法叫做系统抽样。
系统抽样的特点
(1)适用于总体容量较大的情况;
(2)剔除多余个体及第一段抽样都用简单随机抽样, 因而与简单随机抽样有密切联系;
(3)是等可能抽样,每个个体被抽到的可能性都 是n/N;
(4)是不放回的抽样。
合理选择抽样方法
系统抽样 简单 抽签法 随机 抽样 随机数
表法
总体容量
很大
较小
样本容量 较大
较小
较大
较大
下页
练习:要从1002个学生中选 取一个容量为20的样本,试 用系统抽样的方法给出抽样 过程。
2.1.3分层抽样
情景设置
问题1 :要抽样了解某年参加高考学生的语文成绩,我 们可以有以下两种抽样的方式; (1)从所有考生中用简单随机抽样的方法抽取1000份试 卷做调查; (2) 分文科,理科,艺术,体育等科目类的学生适当比例 抽取样本容量为1000的的样本,再做调查.
B、从某厂生产的2000个电子元件中随机抽取200个 入样
C、从某厂生产的20个电子元件中随机抽取5个入样
3:为了了解一次知识竞赛的1252名学生的成绩, 决定采用系统抽样的方法抽取一个容量为50的样本, 那么总体中应随机剔除的个体数目是( )A
A、2 B、4 C、52 D、252
4、工厂生产的产品,用传送带将成品送入包装车间之 前,检查人员从传送带上每隔5分钟抽一件产品检 查,这种抽样方法为 系统抽样
得到总体的一个样本.
步 骤:编号、选数(起始数)、取数、抽取.
巩固练习
简单随机抽样
1.中央电视台要从春节联欢晚会的60名热心 观众中随机抽出4名幸运观众,试用抽签法为 其设计产生这4名幸运观众的过程.
点评:抽签法—编号、制签、搅拌、抽取, 关键是“搅拌”后的随机性;
2.欲从本校100位教师中随机抽取20位参加党的基本知识竞赛,试用随机表法确 定这20位教师
志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获
胜。其数据如下:
候选人
预测结果 (%) 选举结果 (%)
兰顿
57
38
罗斯福
43
62
简单随机抽样
问题: 如何科学地抽取样本?
使得样本能比较准确地反映总体
思考
搅拌均匀 使得每个个体被抽取的机会均等
合理、公平
简单随机抽样
实例一
现从我校高一(6)班54名同学 中选取10名参加全市文艺汇演,为保 证选取的公平性,你打算如何操作?
随 机 数 表 法
教材103页
为了对某市1130004名高一学生数学期末考试答卷进 行分析,拟从中抽取130名学生的答卷作为样本,
请你设计一个合理的抽取方案。
(1)将13000名高一学生数学期末考试答卷编号为1,2,
3,…, 13000.
13000
(2)由于总体数与样本容量比为 130 =100,将
样本
估计 总体
简单随机抽样
在1936年美国总统选举前,一份颇有名气的杂志
的工作人员做了一次民意测验,调查兰顿 和罗斯福中
谁将当选下一届总统。为了了解公众意向,调查者通
过电话簿和车辆登记簿上的名单给一大批人发了调查
表(在1936年电话和汽车只有少数富人拥有),通过
分析收回的调查表,显示兰顿非常受欢迎。于是此杂
第三步,从选定的数7开始向右读(读数的方向也可以是向 左、向上、向下等),得到一个 三位数 785,由于785< 799,说明号码785在总体内,将它取出;继续向右读,得到 916,由于916>799,将它去掉,按照这种方法继续向右读, 又取出567,199,507,…,依次下去,直到样本的60个号码 全部取出,这样我们就得到一个容量为60的样本.
抽签法(抓阄法)—— 是一种常见的简单随机抽样方法
简单随机抽样
及时检测一:
下列抽取样本的方式是属于简单随机抽样的是( ) C
①从无限多个个体中抽取100个个体作样本;
②盒子里有80个零件,从中选出5个零件进行质量验,
在抽样操作时,从中任意拿出一个零件进行质量检
验后,再把它放回盒子里;
③从8台电脑中不放回的随机抽取2台进行质量检验
总体平均分成130部分,每一部分含100个个体.
. (3)在第1部分中用简单随机抽样抽取一个号码(如6号)
(4)从该号码起,每隔100个号码取一个号码,就得到一个 容量为130的样本. (如6,106,206,…,12906)
系统抽样 也称为:等距抽样
为了对某市13004名高一学生数学期末考试答卷进 行分析,拟从中抽取130名学生的答卷作为样本,
简化制签过程的一个有效方法就是制作一个表 ,其中的每个数都是用随机方法产生的,这样的表 称为随机数表,于是,我们只需要按一定的规则到 随机数表中选取号码就可以了,这种抽样方法叫做 随机数表法
随机数表法
简单随机抽样
随机数表:
制作一个表(由数字0,1,2,...,9组 成),表中各个位置上的数都是随机产生的(随 机数)即每个数字在表中各个位置上出现的机 会都是一样。
问题2
上述两种取样的方法那种方法较好?那一种方法样本 的代表性好?你还能给出其他的取样方式吗?
问题3
一个单位的职工有500人,其中不到35岁的有125人, 35-49岁的有280人,50岁以上的有95人.为了了解这个 单位职工与身体状况有关的某项指标,要从中100名职 工为样本。职工的年龄与这项指标有关,请问该怎么 取样较好?
得分分布情况等,如果将所有考生的每题的得分情况都统计出来,再进行计
算,结果是非常准确的,但也是十分烦琐的,那么如何了解各题的得分情况
系 呢?


通常,在考生有这么多的情况下,我们只从中 抽取部分考生 (比如说1000名) ,统计他们的得分情 况,用他们的得分情况去估计所有考生的得分情况。
思 考:样本一定能准确地反应总体吗?
简单随机抽样
随机数表:
表由数字0,1,2,...,9组成,表中各个位
置上的数都是随机产生的(随机数)即每个数字
在表中各个位置上出现的机会都是一样。
随机数表法
第一步、先将总体中的所有个体(共有N个)编号, 第二步、然后在随机数表内任选一个数作为开始, 第三步、再从选定的起始数,沿任意方向取数(不在
号码范围内的数、重复出现的数必须去掉), 第四步、最后根据所得号码抽取总体中相应的个体,
点评:随机数表法—编号、选数、取数、抽取, 其中取号位置与方向具有任意性.
简单随机抽样
课堂小结
1.简单随机抽样的概念
一般地, 设一个总体含有N个个体 ,从中逐个不 放回地抽取n个个体作为样本 (n≤N),如果每次抽取时总 体内的各个个体被抽到的机会都相等,这种抽样方法叫 做简单随机抽样。
2.最常用的简单随机抽样
抽签法
随机数表法
2.1.2 系统抽样
思考
为了对某市13000名高一学生数学期末考试 答卷进行分析,拟从中抽取130名学生的答卷作 为样本,请你设计一个合理的抽取方案。
编号
13000试卷从1到13000编号
制签


搅匀

抽签
取出个体
制作1到13000个号签 将13000个号签搅拌均匀
随机从中抽出130个签 取出对应号码的试卷
(2)将这N个号码写在形状、 大小相 同的号签上;
(3)将号签放在同一箱中,并 搅拌均匀;
(4)从箱中每次抽出1个号签, 连续抽出n次;
制作编号为制0到签53的号签
将54个号搅签匀搅拌均匀
随机从中逐一抽抽签出10个签 让对应号取码出的个学体生参加
(5)将总体中与抽到的号签编 号一致的n个个体取出。
结结束束
(假设8台电脑已编好号,对编号随机抽取)
A.①
B.②
C.③
D.以上都不对
简单随机抽样
及时检测二: 要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取
60袋进行检验,若用抽签法抽取,请写出其过程。
用抽签法抽取样本时,编号的过程有时可 以省略(如果已有编号),但制签的过程就 难以省去了,而且制签也比较麻烦,有简 化制签的方法吗?
简单随机抽样
随 机 数 表
教材103页
简单随机抽样
范例: 要考察某公司生产的500克袋装牛奶的质量
是否达标,现从800袋牛奶中抽取60袋进行检验, 用随机数表法抽取的过程如下
简单随机抽样
第一步,先将800袋牛奶编号,可以编为000,001,…,799 第二步,在随机数表中任选一个数,例如选出第8行第7 列的数7.(为了便于说明,下面摘取了附表1的第6行至第10行)
简单随机抽样
简单随机抽样的概念
设一个总体含有N个个体 ,从中逐个不放 回地抽取n个个体作为样本 (n≤N),如果每次抽 取时总体内的各个个体被抽到的机会都相等,这 种抽样方法叫做简单随机抽样。
相关文档
最新文档