空间向量与立体几何基础练习题

合集下载

高中数学-空间向量和立体几何练习试题[附答案及解析]

高中数学-空间向量和立体几何练习试题[附答案及解析]

空间向量练习题1. 如下图,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD的中点,P A ⊥底面ABCD ,P A =2. 〔Ⅰ〕证明:平面PBE ⊥平面P AB ;〔Ⅱ〕求平面P AD 和平面PBE 所成二面角〔锐角〕的大小.如下图,以A 为原点,建立空间直角坐标系.那么相关各点的 坐标分别是A 〔0,0,0〕,B 〔1,0,0〕,33(2C 13(2D P 〔0,0,2〕,3E 〔Ⅰ〕证明 因为3BE =, 平面P AB 的一个法向量是0(0,1,0)n =, 所以0BE n 和共线.从而BE ⊥平面P AB . 又因为BE ⊂平面PBE , 故平面PBE ⊥平面P AB .(Ⅱ)解 易知3(1,0,2),(0,02PB BE =-=), 13(0,0,2),(,22PA AD =-= 设1111(,,)n x y z =是平面PBE 的一个法向量,那么由110,n PB n BE ⎧=⎪⎨=⎪⎩得111122020,3000.2x y z x y z +⨯-=⎧⎪⎨⨯++⨯=⎪⎩所以11110,2.(2,0,1).y x z n ===故可取 设2222(,,)n x y z =是平面PAD 的一个法向量,那么由220,0n PA n AD ⎧=⎪⎨=⎪⎩得2222220020,1300.22x y z x y z ⨯+⨯-=⎧⎪⎨++⨯=⎪⎩所以2220,3.z x ==-故可取2(3,1,0).n =-于是,1212122315cos ,52n n n n n n <>===⨯故平面PAD 和平面PBE 所成二面角〔锐角〕的大小是152. 如图,正三棱柱ABC -A 1B 1C 1的所有 棱长都为2,D 为CC 1中点。

〔Ⅰ〕求证:AB 1⊥面A 1BD ;〔Ⅱ〕求二面角A -A 1D -B 的大小; 〔Ⅲ〕求点C 到平面A 1BD 的距离;〔Ⅰ〕证明 取BC 中点O ,连结AO . ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,那么(100)B ,,,(110)D -,,,1(023)A ,,,(003)A ,,,1(120)B ,,, 1(123)AB ∴=-,,,(210)BD =-,,,1(123)BA =-,,.12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .〔Ⅱ〕解 设平面1A AD 的法向量为()x y z =,,n .(113)AD =--,,,1(020)AA =,,.AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,n n 3020x y z y ⎧-+-=⎪∴⎨=⎪⎩,,03y x z =⎧⎪∴⎨=-⎪⎩,.令1z =得(301)=-,,n 为平面1A AD 的一个法向量. 由〔Ⅰ〕知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量.cos <n ,1113364222AB AB AB -->===-n n .∴二面角1A A D B --的大小为6arccos4. xzAB CD1A1C1BO F y〔Ⅲ〕解 由〔Ⅱ〕,1AB 为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD的距离1122BC AB d AB -===. 3.如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD AB AD ======〔1〕求证:AO ⊥平面BCD ;〔2〕求异面直线AB 与CD 所成角的余弦值; 〔3〕求点E 到平面ACD 的距离.⑴ 证明 连结OC,,.BO DO AB AD AO BD ==∴⊥ ,BO DO BC CD ==,CO BD ⊥.在AOC ∆中,由可得1,AO CO == 而2AC =, 222,AO CO AC ∴+=90,o AOC ∴∠=即.AO OC ⊥,BD OC O = ∴AO ⊥平面BCD .(2)解 以O为原点,如图建立空间直角坐标系, 那么(1,0,0),(1,0,0),B D -1(0,0,1),((1,0,1),(1,2C A E BA CD =-=-2cos ,4BA CD BA CD BA CD⋅∴<>==⋅ ∴ 异面直线AB 与CD 所成角的余弦值为4. ⑶解 设平面ACD 的法向量为(,,),n x y z =那么(,,)(1,0,1)0(,,)(0,3,1)0n AD x y z n AC x y z ⎧⋅=⋅--=⎪⎨⋅=⋅-=⎪⎩, ∴030x z y z +=⎧⎪⎨-=⎪⎩,令1,y =得(3,1,3)n =-是平面ACD 的一个法向量. 又13(,,0),22EC =- ∴点E 到平面ACD 的距离 32177EC n h n⋅===. 4.三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=½AB ,N 为AB 上一点,AB=4AN,M,S分别为PB,BC 的中点.〔Ⅰ〕证明:CM ⊥SN ;〔Ⅱ〕求SN 与平面CMN 所成角的大小.证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图。

高考数学一轮复习《空间向量与立体几何》练习题(含答案)

高考数学一轮复习《空间向量与立体几何》练习题(含答案)

高考数学一轮复习《空间向量与立体几何》练习题(含答案)一、单选题1.已知空间向量()3,4,5AB =-,则AB =( ) A .5B .6C .7D .522.设直线1l 、2l 的方向向量分别为a ,b ,能得到12l l ⊥的是( ) A .(1,2,2)a =-,(2,4,4)b =- B .(2,2,1)a =-,(3,2,10)b =- C .(1,0,0)a =,(3,0,0)b =-D .(2,3,5)a =-,(2,3,5)b =3.已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C .2121D .421214.已知四棱锥P ABCD -的底面ABCD 为平行四边形,M ,N 分别为棱BC ,PD 上的点,12CM BM =,N 是PD 的中点,向量MN AB x AD y AP =-++,则( )A .13x =,12y =-B .16x =-,12y =C .13x,12y =D .16x =,12y =-5.有以下命题:①一个平面的单位法向量是唯一的②一条直线的方向向量和一个平面的法向量平行,则这条直线和这个平面平行 ③若两个平面的法向量不平行,则这两个平面相交④若一条直线的方向向量垂直于一个平面内两条直线的方向向量,则直线和平面垂直 其中真命题的个数有( ) A .1个B .2个C .3个D .4个6.已知(2,2,3)a =--,(2,0,4)=b ,则cos ,a b 〈〉=( ) A .48585B .48585-C .0D .17.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱1111,C D A D 上的动点.给出下面四个命题①直线EF 与直线AC 平行;②若直线AF 与直线CE 共面,则直线AF 与直线CE 相交; ③直线EF 到平面ABCD 的距离为定值; ④直线AF 与直线CE 所成角的最大值是3π.其中,真命题的个数是( ) A .1B .2C .3D .48.在以下命题中:①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--,则P ,A ,B ,C 四点共面④若a ,b 是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠,则{},,a b c 构成空间的一个基底⑤若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底; 其中真命题的个数是( ) A .0B .1C .2D .39.已知向量(4,2,4),(6,3,2)a b =--=-,则下列结论正确的是( ) A .(10,5,2)a b +=- B .(2,1,6)a b -=-C .(24,6,8)a b ⋅=-D .||6a =10.如图,已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别为1BB ,CD 的中点.有下列结论:①三棱锥11A MND -在平面11D DCC 上的正投影图为等腰三角形; ②直线//MN 平面11A DC ;③在棱BC 上存在一点E ,使得平面1AEB ⊥平面MNB ;④若F 为棱AB 的中点,且三棱锥M NFB -的各顶点均在同一求面上,则该球的体积为6π. 其中正确结论的个数是( ) A .0B .1C .2D .311.如图,某圆锥SO 的轴截面SAC ,其中5SA AO =,点B 是底面圆周上的一点,且2cos 3BOC ∠=,点M 是线段SA 的中点,则异面直线SB 与CM 所成角的余弦值是( )A 235B 665C 13D 312.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90BAD ∠=︒,112PA AB BC AD ====,//BC AD ,已知Q 是四边形ABCD 内部一点(包括边界),且二面角Q PD A --的平面角大小为30,则ADQ △面积的取值范围是( )A .2150,15⎛⎤ ⎥ ⎝⎦B .250,5⎛⎤⎥ ⎝⎦C .2100,15⎛⎤ ⎥ ⎝⎦D .3100,5⎛⎤ ⎥ ⎝⎦二、填空题13.已知a =(3,2,-1),b = (2,1,2),则()()2a b a b -⋅+=___________. 14.若空间中有三点()()()1,0,1,0,1,1,1,2,0A B C - ,则点()1,2,3P 到平面ABC 的距离为______.15.正四棱柱1111ABCD A B C D -中,14AA =,3AB =,点N 为侧面11BCC B 上一动点(不含边界),且满足1D N CN ⊥.记直线1D N 与平面11BCC B 所成的角为θ,则tan θ的取值范围为_________.16.如图所示,在平行六面体1111ABCD A B C D -中,1111AC B D F =,若1AF xAB yAD zAA =++,则x y z ++=___________.三、解答题17.如图1,在ABC 中,90C ∠=︒,3BC =3AC =,E 是AB 的中点,D 在AC 上,DE AB ⊥.沿着DE 将ADE 折起,得到几何体A BCDE -,如图2(1)证明:平面ABE ⊥平面BCDE ;(2)若二面角A DE B --的大小为60︒,求直线AD 与平面ABC 所成角的正弦值.18.已知正方体1111ABCD A B C D -中,棱长为2a ,M 是棱1DD 的中点.求证:1DB ∥平面11A MC .19.四棱锥P ABCD -中,//AB CD ,90PDA BAD ∠=∠=︒,12PD DA AB CD ===,S 为PC中点,BS CD ⊥.(1)证明:PD ⊥平面ABCD ;(2)平面SAD 交PB 于Q ,求CQ 与平面PCD 所成角的正弦值.20.如图,在多面体ABCDEF 中,AD ⊥平面ABF ,AD ∥BC ∥4EF AD =,,3,2BC AB BF EF ====,120ABF ︒∠=.(1)证明:AC DE ⊥;(2)求直线AE 与平面CDE 所成角的大小.21.如图(1),在直角梯形ABCD 中,AB CD ∥,AB BC ⊥,22CD AB BC ==,过A 点作AE CD ⊥,垂足为E ,现将ADE ∆沿AE 折叠,使得DE EC ⊥,如图(2).(1)求证:平面DAB ⊥平面DAE ; (2)求二面角D AB E --的大小.22.如图,在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//AB CD ,24CD AB ==,2AD =,PAB 为等腰直角三角形,PA PB =,平面PAB ⊥底面ABCD ,E 为PD 的中点.(1)求证://AE 平面PBC ; (2)求二面角A EB C --的余弦值.23.如图所示,边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且2DE =,//ED AF 且90DAF ∠=︒.(1)求BD 和面BEF 所成的角的正弦; (2)求点C 到直线BD 的距离;(3)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值:若不存在,说明理由.24.如图,在三棱锥A BCD -中,ABD △是等边三角形,2AC =,2BC CD ==,BC CD ⊥,E 为空间内一点,且CDE 为以CD 为斜边的等腰直角三角形.(1)证明:平面ABD ⊥平面BCD ;(2)若2BE =,试求平面ABD 与平面ECD 所成锐二面角的余弦值参考答案1.D2.B3.B4.B5.A6.B7.B8.D9.D10.D11.B12.A 13.21415.13,22⎫⎛⎫+∞⎪ ⎪⎪ ⎪⎝⎭⎝⎭16.2 17.(1)证明:因为在图1中DE AB ⊥,沿着DE 将ADE 折起, 所以在图2中有DE AE ⊥,DE BE ⊥, 又AEBE E =,所以DE ⊥平面ABE , 又因为DE ⊂平面BCDE , 所以平面ABE ⊥平面BCDE ; (2)解:由(1)知,DE AE ⊥,DE BE ⊥, 所以AEB ∠是二面角A DE B --的平面角, 所以60AEB ∠=︒, 又因为AE BE =, 所以ABE 是等边三角形, 连接CE ,在图1中,因为90C ∠=︒,BC =,3AC = 所以60EBC ∠=︒,AB =因为E 是AB 的中点,所以BE BC == 所以BCE 是等边三角形. 取BE 的中点O ,连接AO ,CO , 则AO BE ⊥,CO BE ⊥,因为平面ABE ⊥平面BCDE ,平面ABE ⋂平面BCDE BE =,所以AO ⊥平面BCDE , 所以OB ,OC ,OA 两两垂直,以O 为原点,OB ,OC ,OA 为x ,y ,z 轴建系,如图所示.30,0,2A ⎛⎫ ⎪⎝⎭,3B ⎫⎪⎪⎝⎭,30,,02C ⎛⎫ ⎪⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭ 所以3322AB ⎛⎫=- ⎪ ⎪⎝⎭,330,,22AC ⎛⎫=- ⎪⎝⎭,332AD ⎛⎫=-- ⎪ ⎪⎝⎭设平面ABC 的法向量为(),,n x y z =,则0,0,n AB n AC ⎧⋅=⎨⋅=⎩即330,2330.22z y z ⎧-=⎪⎪⎨⎪-=⎪⎩取1z =,得平面ABC 的一个法向量为()3,1,1n =,所以33311125cos ,52n AD AD n n AD ⎛⎛⎫⨯+-⨯ ⎪⋅⎝⎭===⨯设直线AD 与平面ABC 所成角为θ,则5sin θ=. 18.以点D 为原点,分别以DA 、DC 与1DD 的方向为x 、y 与z 轴的正方向,建立空间直角坐标系.则()0,0,0D 、()2,0,0A a 、()0,2,0C a 、()2,2,0B a a 、()10,0,2D a 、()12,0,2A a a 、()10,2,2C a a 、()12,2,2B a a a ,M 是棱1DD 的中点得()0,0,M a ,()12,2,2DB a a a =.设面11A MC的一个法向量为(),,n x y z =,()12,0,MA a a =,()10,2,MC a a =,则1120,0,20,0,ax az n MA ay az n MC ⎧+=⋅=⎧⎪⇒⎨⎨+=⋅=⎪⎩⎩令1y =,则()1,1,2n =-.又110DB n DB n ⋅=⇒⊥,因为1DB ⊄平面11A MC ,所以1DB ∥平面11A MC .19.(1)取CD 中点为M ,则DM AB =且//DM AB , 所以四边形ABMD 为平行四边形,可得//BM AD , 所以BM CD ⊥,又由BS CD ⊥,BM BS B ⋂=,所以CD ⊥平面BSM ,又因为SM ⊂平面BSM ,所以CD SM ⊥, 又由//SM PD ,所以CD PD ⊥,AD PD ⊥,CDAD D =,所以PD ⊥平面ABCD .(2)延长CB ,DA 交于N ,连SN 与PB 交点即为Q ,因为B 为CN 中点,S 为PC 中点,故Q 为PNC △的重心,故2PQ QB =,以D 为原点,,,DA DC DP 方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,不妨设1AB =,则()1,1,0B ,()0,0.1P ,设(),,Q x y z 且2PQ QB =,可得()()()212112x x y y z z ⎧=-⎪=-⎨⎪-=-⎩,所以221,,333x y z ===,可得241,,333CQ ⎛⎫=- ⎪⎝⎭,因为AD PD ⊥,AD CD ⊥且PD CD D ⋂=,所以AD ⊥平面PCD . 平面PCD 的法向量为()1,0,0DA =,可得2cos ,211CQ DA CQ DA CQ DA⋅===⋅⋅.即CQ 与平面PCD20.(1)因为AD∥BC∥EF,AD⊥平面ABF,所以BC⊥平面ABF,EF⊥平面ABF,所以四边形ABCD与四边形BCEF都是直角梯形,以B为坐标原点,BA BC所在直线分别为x轴、y轴,过点B且垂直于平面ABCD的直线为z轴,建立如图所示的空间直角坐标系,则(2,0,0),(1,0,3),(1,2,3),(0,3,0),(2,4,0)A F E C D--,所以(2,3,0),(3,2,3)AC DE=-=--,所以6600AC DE⋅=-+=,所以AC DE⊥.(2)由(1)知,(3)AE=-,(2,1,0)CD=,(3,23)DE=--,,设平面CDE的法向量为(,,)n x y z=,则CD nDE n⎧⋅=⎨⋅=⎩,即203230x yx y z+=⎧⎪⎨--=⎪⎩,取=1x -,则32,3y z ==,所以31,2,3n ⎛⎫=- ⎪ ⎪⎝⎭为平面CDE 的一个法向量, 设直线AE 与平面CDE 所成的角为0,2πθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭, 则|||341|3sin |cos ,|2||||4343AE n AE n AE n θ⋅++=〈〉===⋅⨯,所以3πθ=, 所以直线AE 与平面CDE 所成角的大小为3π. 21.证明:(1) AE CD ⊥,AB CD ∥,∴ AE AB ⊥DE EC ⊥,AB EC ∥, ∴DE AB ⊥又AE DE E =,故:AB ⊥平面DAE ,AB ⊂平面DAB ,故:平面DAB ⊥平面DAE .(2)以E 为原点,EA 为x 轴,EC 为y 轴,ED 为z 轴,建立空间直角坐标系,如图:设2DE EC ED ===,∴ ()2,0,0A ,()0,0,2D ,()0,0,0E ,()2,2,0B ,可得:()2,0,2AD =-,()0,2,0AB =,设平面DAB 的法向量(),,n x y z =,则22020n AD x z n AB y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,1n =, 平面ABE 的法向量()0,0,1m =,设二面角D AB E --的大小为θ,则12cos 22m n m n θ⋅===⋅, ∴ 45θ=︒,∴二面角D AB E --的大小为45︒.22.(1)如图,取PC 的中点F ,连接EF ,BF ,∵PE DE =,PF CF =,∴//EF CD ,2CD EF =,∵//AB CD ,2CD AB =,∴//AB EF ,且EF AB =.∴四边形ABFE 为平行四边形,∴//AE BF .∵BF ⊂平面PBC ,AE ⊄平面PBC ,故//AE 平面PBC .(2)取AB 中点O ,CD 中点M ,以O 为原点,OM 为x 轴,AB 为y 轴,OP 为z 轴,建立空间直角坐标系:则()0,1,0A -,()0,1,0B ,()1,2,0C ,()0,0,1P ,()1,2,0D -,11,1,22E ⎛⎫- ⎪⎝⎭,则11,2,22BE ⎛⎫=- ⎪⎝⎭,()0,2,0AB =,()1,1,0BC =, 设平面ABE 的一个法向量为()111,,m x y z =,平面CBE 的一个法向量为()222,,n x y z =, 则111120112022m AB y m BE x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令11x =,则()1,0,1m =-, 222220112022n BC x y n BE x y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,21x =,则()1,1,5n =--, 设m 与n 的夹角为θ,则66cos 3233m n m n θ⋅===⋅,由二面角A EB C --为钝角,则余弦值为63-.23.(1)解:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则()2,0,0B ,()0,0,2D ,()1,1,2E ,()2,2,0F ,()0,2,0C ,则(2,0,2),(1,1,2),(0,2,0)DB BE BF =-=-=设平面BEF 的法向量(,,)n x y z =,则200n BE x y z n BF y ⎧⋅=-++=⎨⋅==⎩令1z =,则2x =,0y =,所以(2,0,1)n =, ∴向量DB 和()2,0,1n =所成角的余弦为2222220210212(2)DB nDB n ⋅+-=⋅++-.即BD 和面BEF 10 (2)解:因为()2,0,2DB =-,()2,2,0BC =-,所以()()2202024DB BC ⋅=⨯-+⨯+⨯-=-,22DB =,22BC =C 到直线BD 的距离()2222422622DB BC d BC DB ⎛⎫⋅-⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭⎝⎭(3)解:假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,即EP mPF =,设(),,P x y z ,即()()1,1,22,2,x y z m x y z ---=---,所以()()12122x m x y m y z mz ⎧-=-⎪-=-⎨⎪-=-⎩,解得12112121m x m m y m z m +⎧=⎪+⎪+⎪=⎨+⎪⎪=⎪+⎩集P 点坐标为12122(,,)111m m m m m +++++, 则向量12122(,,)111m m AP m m m++=+++,向量1212(,,)111m CP m m m +=-+++, 因为()2,0,2DB =-所以()()12122202011112122020111m m m m m m m m m ++⎧⨯+⨯+-⨯=⎪⎪+++⎨+-⎪⨯+⨯+-⨯=⎪+++⎩,解得12m =. 所以存在p ,求EP 与PF 的比值1224.解:(1)取BD 的中点O ,连接OC ,OA ,因为ABD △是等边三角形,2BD =,所以AO BD ⊥,且3AO =,又因为2BC CD ==,所以OC BD ⊥112CO BD ==,又2AC = 222AO OC AC AO OC ∴+=∴⊥又AO BD ⊥,因为CO BD O ⋂=,二面角A BD C --的平面角AOC ∠是直角,∴平面ABD ⊥平面BCD ;(2)由(1)以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴建立空间直角坐标系, 不妨令E 在平面BCD 上方取CD 的中点F ,连接OF ,EF ,则,OF CD EF CD ⊥⊥.OF EF F ⋂=,,OF EF ⊂平面EOF ,∴CD ⊥平面EOF ,CD ⊂平面OCD ,∴平面EOF ⊥平面OCD ,OF =,EF =, 设EFO πθ∠=-,则(0,0,0)O ,(1,0,0)C ,(0,1,0)D,A ,(0,1,0)B -11111113cos ,cos ,cos ,cos 22222222E BE θθθθθθ⎛⎫⎛⎫++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,13322,cos ,sin ,244BE E θθ⎛==∴=∴=∴ ⎝⎭所以(1,1,0)CD =-,13,44CE ⎛=- ⎝⎭,设平面ECD 的一个法向量为(,,)n x y z =,则00CD n CE n ⎧⋅=⎨⋅=⎩,013044x y x y z -+=⎧⎪∴⎨-+=⎪⎩, 令1x =,则1,1,n ⎛=- ⎝⎭因为平面ABD 的一个法向量为(1,0,0)OC =,所以1|cos ,|4OC n〈〉==,即平面ABD 与平面ECD。

空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。

空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。

高中数学第一章-空间向量与立体几何单元测试(基础卷)(解析版)

高中数学第一章-空间向量与立体几何单元测试(基础卷)(解析版)

第一章空间向量与立体几何单元过关基础A 版解析版学校:___________姓名:___________班级:___________考号:___________一、单选题1.空间直角坐标系中,点()2,3,5-关于y 轴对称的点的坐标是( ) A .()2,3,5--- B .()2,3,5 C .()2,3,5-- D .()2,3,5-【答案】A 【解析】 【分析】关于y 轴对称,纵坐标不变,横坐标、竖坐标变为相反数. 【详解】关于y 轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数. 所以点()2,3,5-关于y 轴对称的点的坐标是()2,3,5---. 故选:A . 【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.2.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置2223333DA B C D A B C -中放一个单位正方体礼盒1111DABC D A B C -,现以点D 为坐标原点,2DA 、2DC 、3DD 分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则正确的是( )A .1D 的坐标为(1,0,0)B .1D 的坐标为(0,1,0)C .13B B 293D .13B B 14【答案】D【分析】根据坐标系写出各点的坐标分析即可. 【详解】由所建坐标系可得:1(0,0,1)D ,1(1,1,1)B ,3(2,3,4)B ,13B B ==.故选:D. 【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.3.空间直角坐标系中,已知点()()1,2,3345A B 、,,,则线段AB 的中点坐标为( ) A .()234,, B .()134,, C .()235,, D .()245,, 【答案】A 【解析】点()()1,2,3345A B 、,,, 由中点坐标公式得中得为:132435,,222+++⎛⎫⎪⎝⎭,即()234,,. 故选A.4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( ) A .AB 与AC 是共线向量B .AB 的单位向量是⎫⎪⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)- 【答案】D 【分析】根据向量的相关性质判断. 【详解】对于A 项,(2,1,0)AB =,(1,2,1)AC =-,所以AB AC λ≠,则AB 与AC 不是共线向量,所以A 项错误;对于B 项,因为(2,1,0)AB =,所以AB的单位向量为55⎛⎫⎪ ⎪⎝⎭,所以B 项错误; 对于C 项,向量(2,1,0)AB =,(3,1,1)BC =-,所以cos ,11AB BC AB BC AB BC⋅==-⋅,所以C 项错误;对于D 项,设平面ABC 的法向量是(,,)n x y z =,因为(2,1,0)AB =,(1,2,1)AC =-,所以00n AB n AC ⎧⋅=⎨⋅=⎩,则2020x y x y z +=⎧⎨-++=⎩,令1x =,则平面ABC 的一个法向量为(1,2,5)n =-,所以D 项正确. 故选:D. 【点睛】本题考查共线向量的判断,单位向量的求法,夹角的求法,平面法向量的求法,属于空间向量综合题.5.两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量()1,0,1n =-,则两平面间的距离是()A .32BC D .【答案】B 【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离22n OA n⋅-+===,故选B. 6.下图是棱长为2的正方体1111ABCD A B C D -木块的直观图,其中,,P Q F 分别是11D C ,BC ,AB 的中点,平面α过点D 且平行于平面PQF ,则该木块在平面α内的正投影面积是( )A .43B .33C .23D 3【答案】A 【分析】先根据题意平面α可以平移至平面11A BC ,即木块在平面α内的正投影即可看成是在平面11A BC 的正投影,根据投影的性质可得投影为正六边形'''111A A BC C D ,最后根据正六边形面积公式可求出投影的面积. 【详解】解:根据题意可知平面α过点D 且平行于平面PQF , 则平面α可以平移至平面11A BC ,木块在平面α内的正投影即可看成是在平面11A BC 的正投影, 根据投影的性质可得投影为正六边形'''111A A BC C D 如图所示, 因为正方体1111ABCD A B C D -棱长为2, 所以221222A B =+=则投影面内正六边形的边长为:'1226cos303A A ==根据正六边形面积公式可得投影的面积为:'''111233264323A A BC C D S ⎛=⨯= ⎝⎭故投影面积为:43故选:A【点睛】本题主要考查空间几何体和正投影得概念,考查面积公式是计算,考查空间想象力和推导能力,属于难题.7.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .13【答案】D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围. 【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得()()2212x x z =-+-化简得()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题. 8.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .8【答案】A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2iAB A P B B +⋅,最后根据棱长为1以及i ABBP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A . 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.二、多选题9.给出下列命题,其中正确的有( ) A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .A ,B ,M ,N 是空间四点,若BA ,BM ,BN 不能构成空间的一组基底,则A ,B ,M ,N 共面D .已知{,,}a b c 是空间向量的一组基底,若m a c =+,则{,,}a b m 也是空间一组基底 【答案】BCD 【分析】选项A 、B 中,根据空间基底的概念,可判断;选项C 中,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,由此可判断;选项D 中:基向量,a b 与向量m a c =+一定不共面,由此可判断. 【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 不正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确. 故选:BCD.10.已知v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( ) A .1n ∥2n ⇔α∥β B .1n ⊥2n ⇔α⊥β C .v ∥1n ⇔l ∥α D .v ⊥1n ⇔l ∥α【答案】AB 【分析】根据线面直线的位置关系逐一判断即可. 【详解】解:v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合), 则1n ∥2n ⇔α∥β,1n ⊥2n ⇔α⊥β,v ∥1n ⇔l ⊥α,v ⊥1n ⇔l ∥α或l ⊂α. 因此AB 正确.故选:AB.11.在长方体ABCD A B C D ''''-中,2AB =,3AD =,1AA '=,以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则下列说法正确的是( ) A .(3,2,1)BD '=--B .异面直线A D '与BD '所成角的余弦值为35C .平面A CD ''的一个法向量为(2,3,6)-- D .二面角C A D D '''--的余弦值为37【答案】ACD 【分析】由向量法对每一选项进行逐一计算验证,可得答案. 【详解】由题意可得()()()3,0,0,3,2,0,0,2,0A B C ,()()()()0,0,1,3,0,1,0,2,1,3,2,1D A C B '''' 选项A: 所以(3,2,1)BD '=--,则A 正确.选项B:()3,0,1DA '=,(3,2,1)BD '=--,所以,cos ,10DA BDDA BD DA BD ''''==''⋅=所以异面直线A D '与BD '所成角的余弦值为35,则B 不正确. 选项C :设平面A C D ''的一个法向量为(),,n x y z =由()3,0,1DA '=,()0,2,1DC '=,则00n DA n DC ⎧⋅=⎨⋅=⎩'' 所以3020x z y z +=⎧⎨+=⎩ ,取6z =,得()2,3,6n =--,则C 正确.选项D :由上可得平面A C D ''的一个法向量为(2,3,6)n =-- 又平面A DD ''的法向量为()0,1,0m = 则3cos ,17n m n m n m⋅-==⨯⋅ 所以二面角C A D D '''--的余弦值为37,则D 正确. 故选:ACD12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD. 【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.若直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,且l α⊥,则m =______. 【答案】2- 【分析】由已知可知,直线l 的方向向量与平面α的法向量平行,根据空间向量平行的充要条件可得到一个关于λ和m 的方程组,解方程组即可得到答案. 【详解】 解:l α⊥,直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,∴直线l 的方向向量与平面α的法向量平行.则存在实数λ使()4,2,m λ=()2,1,1-,即422m λλλ=⎧⎪=⎨⎪=-⎩,∴2m =-. 故答案为:2-.【点睛】本题考查向量语言表述线面垂直,直线的方向向量与平面的法向量平行是解本题的关键,属于基础题.14.若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________【答案】【解析】 试题分析:,与同方向的单位向量是考点:空间向量的坐标运算;15.如图,在正四面体P ABC -中,,M N 分别为,PA BC 的中点,D 是线段MN 上一点,且2ND DM =,若PD xPA yPB zPC =++,则x y z ++的值为_______.【答案】23【分析】利用基向量表示PD ,结合空间向量基本定理可得. 【详解】1111111()2323366PD PM MD PA MN PA PN PM PA PB PC =+=+=+-=++ 所以11,36x y z ===,所以23x y z ++=.【点睛】本题主要考查空间向量的基本定理,把目标向量向基底向量靠拢是求解的主要思路.16.如图所示的正方体是一个三阶魔方(由27个全等的棱长为1的小正方体构成),正方形ABCD 是上底面正中间一个正方形,正方形1111D C B A 是下底面最大的正方形,已知点P 是线段AC 上的动点,点Q 是线段1B D 上的动点,则线段PQ 长度的最小值为_______.334【分析】建立空间直角坐标系,写出点的坐标,求出目标PQ 的表达式,从而可得最小值. 【详解】以1B 为坐标原点,1111,B C B A 所在直线分别为x 轴,y 轴建立空间直角坐标系,则()()()()10,0,0,1,2,3,2,1,3,2,2,3B A C D , 设11B Q B D λ=,AP AC μ=,[],0,1λμ∈.()12,2,3B Q λλλ=,()1111,2,3B P B A AP B A AC μμμ=+=+=+-. ()1112,22,33QP B P B Q μλμλλ=-=+----, ()()()2222122233QP μλμλλ=+-+--+-222215191730221417217234λλμμλμ⎛⎫⎛⎫=-+-+=-+-+ ⎪ ⎪⎝⎭⎝⎭当1517λ=且12μ=时,2QP 取到最小值934,所以线段PQ 长度的最小值为33434. 【点睛】本题主要考查空间向量的应用,利用空间向量求解距离的最值问题时,一般是把目标式表示出来,结合目标式的特征,选择合适的方法求解最值.四、解答题17.如图,已知1111ABCD A B C D -是四棱柱,底面ABCD 是正方形,132AA AB ==,,且1160C CB C CD ︒∠=∠=,设1,,CD C a b B CC c ===.(1)试用,,a b c 表示1AC ; (2)已知O 为对角线1A C 的中点,求CO 的长.【答案】(1)1AC a b c =---;(2)292. 【分析】(1)由11AC A A AD DC =++可表示出来; (2)由21||()4CO a b c =++可计算出. 【详解】(1)11AC A A AD DC =++1AA BC CD =-+- 1CC CB CD c b a a b c =---=---=---;(2)由题意知||2,||2,||3a b c ===,110,233,23322a b a c a b ⋅=⋅=⨯⨯=⋅=⨯⨯=,111()22CO CA a b c ==++,∴21||()4CO a b c =++ ()22212224a b c a b a c b c =+++⋅+⋅+⋅, ()2221292922302323442=⨯++++⨯+⨯==. 【点睛】本题考查空间向量的线性运算,考查利用向量计算长度,属于基础题.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 中点,O 为AC 中点,222AD AB AP ===.(1)证明:OE //平面PAB ;(2)异面直线PC 与OE 所成角的余弦值.【答案】(1)见详解; (2)33【分析】(1)连接BD ,得到O 为BD 中点,然后利用中位线定理,可得//OE PB ,根据线面平行的判定定理,可得结果.(2)通过建系,可得,PC OE ,然后利用向量的夹角公式,可得结果. 【详解】(1)证明:连接BD ,则O 为BD 中点, 又E 为PD 中点,∴OE //PB .∵PB ⊂平面PAB ,OE ⊄平面PAB , ∴OE //平面PAB(2)以A 为原点建立空间直角坐标系, 如图,则(0,0,1),(1,2,0),(0,2,0)P C D ,110,1,,,1,022E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴11(1,2,1),,0,22PC OE ⎛⎫=-=-⎪⎝⎭, ∴3cos ,162PC OE ==⋅即异面直线PC 与OE 3【点睛】本题考查线面平行的判定定理以及建系通过利用向量的方法解决线线角,将几何问题用代数方法来解决,化繁为简,属基础题.19.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,2DE =,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M CDE -的体积; (2)求证:DM ⊥平面ACE .【答案】(1)M 到平面DEC 的距离为3,233M CDE V -=;(2)证明见解析. 【分析】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,利用空间向量法可求得点M 到平面DEC 的距离,计算出CDE △的面积,利用锥体的体积公式可计算出三棱锥M CDE -的体积;(2)利用向量法证明出0AC DM ⋅=,0AE DM ⋅=,可得出DM AC ⊥,DM AE ⊥,再利用线面垂直的判定定理可证得DM ⊥平面ACE . 【详解】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,如图所示.易知z 轴在平面BDEF 内,且////BF DE z 轴,则()0,3,0C 、()1,0,0D -、()1,0,2E -、()1,0,1M ,()0,0,2DE ∴=,()1,3,0DC =,()2,0,1DM =,设平面DEC 的一个法向量(),,n x y z =,则2030n DE z n DC x y ⎧⋅==⎪⎨⋅=+=⎪⎩,取3x =,得()3,1,0n =-,M ∴到平面DEC 的距离23331DM n h n⋅===+, 又1122222DECSDE DC =⨯⨯=⨯⨯=, 因此,三棱锥M CDE -的体积112323333M CDE DEC V S h -=⨯⨯=⨯⨯=△; (2)证明:由(1)易知()0,3,0A -,则()0,23,0AC =,()1,3,2AE =-,02230010AC DM ⋅=⨯+⨯+⨯=,1230210AE DM ⋅=-⨯+⨯+⨯=,DM AC ∴⊥,DM AE ⊥,ACAE A =,DM ∴⊥平面ACE .【点睛】本题考查利用空间向量法计算点到平面的距离、三棱锥体积的计算,同时也考查了利用空间向量法证明线面垂直,考查推理能力与计算能力,属于中等题.20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是正方形,侧面PDC 是边长为a 的正三角形,且平面PDC ⊥底面ABCD ,E 为PC 的中点.(1)求异面直线PA 与DE 所成角的余弦值; (2)求直线AP 与平面ABCD 所成角的正弦值. 【答案】(16(26【分析】取CD 的中点O ,连接PO ,证明出PO ⊥平面ABCD ,然后以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立空间直角坐标系.(1)写出PA 、DE 的坐标,利用空间向量法可求得异面直线PA 与DE 所成角的余弦值; (2)求得平面ABCD 的一个法向量,并写出PA ,利用空间向量法可求得直线AP 与平面ABCD 所成角的正弦值. 【详解】取DC 的中点O ,连接PO ,PDC △为正三角形,O 为DC 的中点,则PO DC ⊥.又平面PDC ⊥平面ABCD ,平面PDC平面ABCD DC =,PO ⊂平面PDC ,PO ∴⊥平面ABCD .以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭、,,02a A a ⎛⎫- ⎪⎝⎭、0,,02a C ⎛⎫ ⎪⎝⎭、0,,02a D ⎛⎫- ⎪⎝⎭.(1)设异面直线PA 与DE 所成的角为θ,E 为PC 的中点,30,4a E ⎛⎫∴ ⎪ ⎪⎝⎭,330,4DE a ⎛⎫∴= ⎪ ⎪⎝⎭,3,,2a PA a ⎛⎫=- ⎪ ⎪⎝⎭, 233330244a a PA DE a a ∴⋅=⨯-⨯=-,2PA a =,32DE =,2364cos cos ,4322a PA DE PA DE PA DEa a θ⋅=<>===⋅⨯, 因此,异面直线PA 与DE 6 (2)设直线AP 与平面ABCD 所成的角为α,易知平面ABCD 的一个法向量为()0,0,1n =,362cos ,421aPA n PA n a PA n-⋅<>===-⨯⋅. 因此,直线AP 与平面ABCD 所成角的正弦值为64. 【点睛】本题考查利用空间向量法计算异面直线所成角的余弦值以及线面角的正弦值,考查计算能力,属于中等题.21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD 、底面ABCD 为菱形,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1,120PA BAD ︒=∠=,菱形ABCD 的面积为23D AE C --的余弦值. 【答案】(1)证明见解析;(2)14. 【分析】(1)连接BD 交AC 于点O ,连接OE ,则//PB OE ,利用线面平行的判定定理,即可得证; (2)根据题意,求得菱形ABCD 的边长,取BC 中点M ,可证AM BC ⊥,如图建系,求得点坐标及,AE AC 坐标,即可求得平面ACE 的法向量,根据AM ⊥平面P AD ,可求得面ADE 的法向量,利用空间向量的夹角公式,即可求得答案. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 、E 分别为,AB ACAM PAD AE AC =⊥、PD 的中点,所以//PB OE , 又OE ⊂平面,ACE PB ⊄平面ACE 所以//PB 平面ACE(2)由菱形ABCD 的面积为23,120BAD ︒∠=,易得菱形边长为2, 取BC 中点M ,连接AM ,因为AB AC =,所以AM BC ⊥,以点A 为原点,以AM 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立如图所示坐标系.则()())10,2,0,0,0,0,0,1,,3,1,02D A E C⎛⎫ ⎪⎝⎭所以()10,1,,3,1,02AE AC ⎛⎫== ⎪⎝⎭设平面ACE 的法向量()1,,n x y z =,由11,n AE n AC ⊥⊥得10230y z x y ⎧+=⎪⎪+=⎩,令3x =3,6y z =-= 所以一个法向量()13,3,6n =-,因为AM AD ⊥,AM PA ⊥,所以AM ⊥平面P AD , 所以平面ADE 的一个法向量()21,0,0n = 所以12121231cos ,43936n n n n n n ⋅<>===++,又二面角D AE C --为锐二面角,所以二面角D AE C --的余弦值为14【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.22.如图,在四棱锥M ABCD -中,//AB CD ,90ADC BM C ∠=∠=,M B M C =,122AD DC AB ===,平面BCM ⊥平面ABCD .(1)求证://CD 平面ABM ; (2)求证:AC ⊥平面BCM ;(3)在棱AM 上是否存在一点E ,使得二面角E BC M --的大小为4π?若存在,求出AEAM 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)证明见解析(3)存在;23AE AM=【分析】(1)由线面平行判定定理证明即可;(2)由勾股定理得出2BC =,进而得AC BC ⊥,再由面面垂直的性质定理即可证明AC ⊥平面BCM ;(3)建立空间直角坐标系,利用向量法求解即可. 【详解】证明:(1)因为AB CD ∥,AB 平面ABM ,CD ⊄平面ABM ,所以CD ∥平面ABM .(2)取AB 的中点N ,连接CN . 在直角梯形ABCD 中, 易知2AN BN CD ===CN AB ⊥.在Rt CNB △中,由勾股定理得2BC =. 在ACB △中,由勾股定理逆定理可知AC BC ⊥. 又因为平面BCM ⊥平面ABCD , 且平面BCM平面ABCD BC =,所以AC ⊥平面BCM .(3)取BC 的中点O ,连接OM ,ON . 所以ON AC ∥, 因为AC ⊥平面BCM , 所以ON ⊥平面BCM . 因为BM MC =, 所以OM BC ⊥.如图建立空间直角坐标系O xyz -,则()0,0,1M ,()0,1,0B ,()0,1,0C -,()2,1,0A -,()2,1,1AM =-,()0,2,0BC =-,()2,2,0BA =-.易知平面BCM 的一个法向量为()1,0,0m =.假设在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π.不妨设AE AM λ=(01λ≤≤), 所以()22,2,BE BA AE λλλ=+=--, 设(),,n x y z =为平面BCE 的一个法向量,则0,0,n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩ 即()20,220,y x z λλ-=⎧⎨-+=⎩令x λ=,22z λ=-,所以(),0,22n λλ=-.从而2cos ,2m n m nm n ⋅==⋅.解得23λ=或2λ=. 因为01λ≤≤,所以23λ=. 由题知二面角E BC M --为锐二面角.所以在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π, 此时23AE AM=.【点睛】本题主要考查了证明线面平行,线面垂直以及由面面角求其他量,属于中档题.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

第一章空间向量与立体几何综合测试题(基础、含答案、新教材)

第一章空间向量与立体几何综合测试题(基础、含答案、新教材)

第一章空间向量与立体几何综合测试题(基础)一、选择题:本题共8小题,每小题5分,共40分.在给出的四个选项中,只有一项是符合要求.1.已知(1a =,1-,2),(1b =-,m ,)n ,若a b λ=,则实数m ,n 的值分别是( ) A .1,2- B .1-,2-C .1,2D .1-,22.已知向量,若共面,则等于( )A .B .1C .1或0D .1或3.已知直线l 过定点A(2,3,1),且)1,1,0(=n 为直线l 的一个方向向量,则点P(4,3,2)到直线l 的距离为( )A .322B .22C .102D . 24.设)1,2,3(--=a 是直线l 的方向向量,)1,2,1(-=n 是平面α的法向量,则(C )A 、α⊥lB 、α//lC α//l 或α⊂l D.α⊥l 或α⊂l5.已知O 为坐标原点,向量a →=(﹣2,1,1),点A (﹣3,﹣1,4),B (﹣2,﹣2,2).若点E 在直线AB 上,且OE →⊥a →,则点E 的坐标为( ) A .(−65,−145,25) B .(65,145,−25) C .(65,−145,25) D .(−65,145,−25) 6.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A .3 B .2 C .5 D .6 7.已知空间向量)5,2,3(),4,0,3(-==b a ,则向量上的投影向量在向量a b ( ) A)5,2,3(2511- B 、)5,2,3(3811- C 、)4,0,3(2511 D 、)4,0,3(38118.如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).,,a b c x 1-1-A .11,43⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦ C .33,43⎡⎤⎢⎥⎣⎦ D .23,33⎡⎤⎢⎥⎣⎦二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.如图,ABCD ­A 1B 1C 1D 1为正方体,下面结论正确的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°10.已知空间中三点A(0,1,0),B(2,2,0),C(-1,3,1),则( ) A .AB 与AC 是共线向量 B .AB 的单位向量是()1,1,0C .AB 与BC 夹角的余弦值是5511D .平面ABC 的一个法向量是()1,-2,5 11.已知直线1l 、2l 的方向向量分别是(2AB =,4,)x ,(2CD =,y ,2),若||6AB =且12l l ⊥,则x y +的值可以是( ) A .3-B .1-C .1D .312.已知菱形ABCD 中,∠BAD =60°,AC 与BD 相交于点E .将△ABD 沿BD 折起,使顶点A 至点M ,在折起的过程中,下列结论正确的是( ) A .BD ⊥CMB .存在一个位置,使△CDM 为等边三角形C .DM 与BC 不可能垂直D .直线DM 与平面BCD 所成的角的最大值为60°三、填空题:本题共4小题,每小题5分,共20分.有两个空的,第一空2分,第二空3分。

(完整版)高中数学《空间向量与立体几何》测试题

(完整版)高中数学《空间向量与立体几何》测试题

高二数学空间向量测试题第Ⅰ卷一 选择题1、在下列命题中:①若向量a 、b 共线,则a 、b 所在的直线平行;②若向量a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c . 其中正确命题的个数为 ( )A .0 B. 1 C. 2 D. 3 2、空间四边形ABCD 中,,,,c AD b BC a AB ===则=CD ( )A .c b a -+B.c b a --C .c b a +--D .c b a ++-3、已知平行四边形ABCD 中,A (4,1,3)、B (2,-5,1)、C (3,7,-5),则顶点D 的坐标为( )A .)1,4,27(-B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4、a =(-1,-5,-2),b =(2,2,+x x ),若b a ⊥,则x =( )A .0B .314-C .-6D .±65、设a =(2,1,-m ),b =(n ,4,3-),若b a //,则m ,n 的值分别为( )A .43,8B .43-,—8C .43-,8D .43,-86、已知向量a (0,2,1),b (-1,1,-2),则a 与b 的夹角为( )A .0°B .45°C .90°D .180° 7、若斜线段AB 是它在平面α 内的射影长的2倍,则AB 与α 所成的角为( )A .60°B .45°C .30°D .120°8、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( )A .627 B. 637 C. 647 D. 6579、在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,AB BC 21=,这时二面角B -AD -C 的大小为( )A .60°B .45°C .90°D .120°10、矩形ABCD 中,AB =1,2=BC ,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 所成的角是( ) A .30°B .45°C .60°D .90°11、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB则△BCD 是 ( ) A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不确定12、P A 、PB 、PC 是从P 点引出的三条射线,每两条的夹角为60°,则直线PC 与平面APB 所成角的余弦值为( )A .21 B .36 C .33 D .23第Ⅱ卷二、填空题13、已知向量a =(4,-2,-4),b =(6,-3,2),则a 在b 方向上的投影是______. 14、已知)1,1,2(),2,0,1(==AC AB ,则平面ABC 的一个法向量为____________.15、∠BOC 在平面α 内,OA 是平面α 的一条斜线,若∠AOB =∠AOC =60°,OA =OB =OC =a ,BC =2a ,则OA 与平面α 所成的角是______.16、下列命题中:(1)0=⋅b a 则a =0或b =0;(2)==⋅⋅⋅⋅⋅22||||)3();()(q p c b a c b a 2)(q p ⋅;(4)若a 与b c a c b a ⋅⋅⋅⋅-)()(均不为0,则它们必垂直.其中真命题的序号是______.三、解答题17、如图,在平行六面体ABCD -A 1B 1C 1D 1中,1,,AA b AD a AB ==,2,MC AM c ==ND N A 21=,试用基底},,{c b a 表示.MN18、如图,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,3=AB ,BC =1,P A =2,求直线AC与PB 所成角的余弦值.19、一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是30°,求这条线段与这个二面角的棱所成的角。

空间向量与立体几何试题与答案

空间向量与立体几何试题与答案

空间向量与立体几何测试题1.已知向量),2,3(),1,,(z b y x a ==,且b a //,则yz xz +的值是( ) (A )6 (B )5 (C )4 (D )32.已知向量)2,0,1(),1,1,0(=-=b a ,若向量b a k +与向量-互相垂直,则k 的值是( ) (A )23 (B )2 (C )45 (D )47 3.下面命题正确的个数是( ) ①若23p x y =+,则p 与x 、y 共面;②若23MP MA MB =+,则M 、P 、A 、B 共面;③若0OA OB OC OD +++=,则A 、B 、C 、D 共面;④若151263OP OA OB OC =+-,则P 、A 、B 、C 共面; (A )1 (B )2 (C )3 (D )44.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )(A )448(,,)333 (B )123(,,)234(C ) 131(,,)243 (D )447(,,)333 5.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把ABD ∆和ACD ∆折成互相垂直①0≠⋅AC BD ;②60=∠BAC ;③三棱锥ABC D -是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确的是( )(A )①② (B )②③ (C )③④ (D )①④CC6.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于( ) (A )627 (B )637 (C )647 (D )6577.正方体1111D C B A ABCD -的棱长为1,E 是11B A 的中点,则E 到平面11D ABC 的距离( ) (A )23 (B )33 (C )21 (D )22 8. 如图,正方体1111ABCD A BC D -,则下列四个命题: ①P 在直线1BC 上运动时,三棱锥1A D PC -的体积不变; ②P 在直线1BC 上运动时,直线AP 与平面ACD 1所成角的大小不变; ③P 在直线1BC 上运动时,二面角1P AD C --的大小不变;④M 是平面1111A B C D 上到点D 和1C 距离相等的点,则M 点的轨迹是过1D 点的直线 其中真命题的编号是( )(A )①③④ (B )③④ (C )①③ (D )①②③9. 已知空间三点)1,1,0(),0,1,1(),0,0,0(B A O -, 在直线OA 上有一点H满足OA BH ⊥,则点H 的坐标为 .10. 如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中 点,则异面直线1A M 与DN 所成角的大小是____________。

空间向量与立体几何测试试卷

空间向量与立体几何测试试卷

空间向量与立体几何测试试卷空间向量与立体几何测试试卷一、选择题(每题2分,共20分)1.设向量a=(1,2,3),向量b=(4,5,6),则a·b的结果为:A. 4B. 14C. 32D. 562.设向量a=(1,2,3),向量b=(4,5,6),则a×b的结果为:A. (1,-2,1)B. (-1,2,-1)C. (1,2,1)D. (-1,-2,-1)3.已知向量a=(1,2,3),向量b=(4,5,6),则向量a+b的结果为:A. (5,7,9)B. (5,6,7)C. (4,7,9)D. (4,6,8)4.已知向量a=(1,2,3),向量b=(4,5,6),则向量a-b的结果为:A. (3,3,3)B. (-3,-3,-3)C. (-3,-1,1)D. (3,1,-1)5.已知向量a=(1,2,3),向量b=(4,5,6),则向量a·(a+b)的结果为:A. 42B. 56C. 70D. 846.设向量a=(1,2,3),向量b=(4,5,6),则向量a×(a+b)的结果为:A. (14,-28,14)B. (-14,28,-14)C. (14,28,14)D. (-14,-28,-14)7.设向量a=(1,2,3),向量b=(4,5,6),则向量|a|的结果为:A. √6B. √14C. √26D. √468.设向量a=(1,2,3),向量b=(4,5,6),则向量|b|的结果为:A. √14B. √26C. √38D. √509.设向量a=(1,2,3),向量b=(4,5,6),则向量a×b的模长为:A. √6B. √14C. √26D. √3810.设向量a=(1,2,3),向量b=(4,5,6),则向量a·b的模长为:A. 14B. 26C. 38D. 50二、填空题(每题3分,共30分)1.向量(2,3,4)与向量(-1,2,-3)的夹角为______度。

空间向量与立体几何基础测试题

空间向量与立体几何基础测试题

空间向量与立体几何基础测试题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章:空间向量与立体几何专题复习1. 直三棱柱ABC —A 1B 1C 1中,若====B A C CC b CB a CA 11,,,则( ) A .c b a -+B .c b a +-C .c b a ++-D .c b a -+-2.在空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则21AB +→--(→--BD +→--BC )等于 ( )A 、→--ADB 、→--GAC 、→--AGD 、→--MG 4.对空间任意两个向量b a o b b a //),(,≠的充要条件是( )A .b a =B .b a -=C .a b λ=D .b a λ=2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角,〈〉a b 为 ( )(A )30° (B )45° (C )60° (D )以上都不对6.已知线段AB 、BC 都在平面α内,BC ⊥AB,线段DA ⊥α,若AB=1,BC=2,CD=3,则DA= . 6. 已知b a ,是空间二向量,若b a b a b a 与则,7||,2||,3||=-==的夹角为7.已知 b a ,c 两两之间的夹角都是︒60且1||=a ,1||=b ,1||=c 则2)2(c b a +-=1. 已知向量(0,2,1)=a ,(1,1,2)=--b ,则a 与b 的夹角为 ( ) (A )0° (B )45° (C )90° (D )180°3.设|m |=1,|n |=2,2m +n 与m -3n 垂直,a =4m -n ,b =7m +2n ,则,〈〉a b =4. 已知→-a =(3,-3,-1),→-b =(2,0,3),→-c =(0,0,2),求→-a ·(→-b +→-c )=__________。

第01章 空间向量与立体几何(A卷基础卷)(解析版)

第01章 空间向量与立体几何(A卷基础卷)(解析版)

第一章空间向量与立体几何(A卷基础卷)一.选择题(共8小题)1.(2020春•和平区期中)已知空间向量(3,1,3),(﹣1,λ,﹣1),且∥,则实数λ=()A.B.﹣3 C.D.6【解答】解:∵∥,∴可设k,∴,解得λ=k.故选:A.2.(2020春•点军区校级月考)在正四面体P﹣ABC中,棱长为2,且E是棱AB中点,则的值为()A.﹣1 B.1 C.D.【解答】解:如图,P﹣ABC为正四面体,则∠APC=∠BPC=∠APB=60°,E是棱AB中点,所以,,所以•()1﹣2=﹣1,故选:A.3.(2020春•点军区校级月考)设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,则||=()A.B.C.3 D.4【解答】解:设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,∴,解得x=1,y=﹣2,∴(1,1,1)+(1,﹣2,1)=(2,﹣1,2),∴||.故选:C.4.(2019秋•焦作期末)在△ABC中,D是线段AB上靠近B的三等分点,E是线段AC的中点,BE与CD 交于F点,若,则a,b的值分别为()A.B.C.D.【解答】解:取AD的中点为G,连接GE.由已知得GE∥CD,所以DF∥EG,又因为D是GB的中点,所以F是BE的中点,所以.∴a,b.故选:A.5.(2019秋•榆树市期末)若向量,且与的夹角余弦为,则λ等于()A.B.C.或D.2【解答】解:∵向量,与的夹角余弦为,∴cos,解得λ.故选:A.6.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A 处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【解答】解:可设A所在的纬线圈的圆心为O',OO'垂直于纬线所在的圆面,由图可得∠OHA为晷针与点A处的水平面所成角,又∠OAO'为40°且OA⊥AH,在Rt△OHA中,O'A⊥OH,∴∠OHA=∠OAO'=40°,故选:B.7.(2019秋•龙岩期末)如图所示,在平行六面体ABCD﹣A1B1C1D1中,,,,M是D1D的中点,点N是AC1上的点,且,用表示向量的结果是()A.B.C.D.【解答】解:∵M是D1D的中点,∴.故选:D.8.(2020•茂名二模)已知六棱锥P﹣ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB.则下列命题中正确的有()①平面P AB⊥平面P AE;②PB⊥AD;③直线CD与PF所成角的余弦值为;④直线PD与平面ABC所成的角为45°;⑤CD∥平面P AE.A.①④B.①③④C.②③⑤D.①②④⑤【解答】解:∵P A⊥平面ABC,∴P A⊥AB,在正六边形ABCDEF中,AB⊥AE,P A∩AE=A,∴AB⊥平面P AE,且AB⊂面P AB,∴平面P AB⊥平面P AE,故①成立;∵AD与PB在平面的射影AB不垂直,∴②不成立;∵CD∥AF,直线CD与PF所成角为∠PF A,在Rt△P AF中,P A=2AF,∴cos∠PF A,∴③成立.在Rt△P AD中,P A=AD=2AB,∴∠PDA=45°,故④成立.∵CD∥AF∥平面P AF,平面P AF∩平面P AE=P A,∴直线CD∥平面P AE也不成立,即⑤不成立.故选:B.二.多选题(共4小题)9.(2019秋•连云港期末)已知点P是△ABC所在的平面外一点,若(﹣2,1,4),(1,﹣2,1),(4,2,0),则()A.AP⊥AB B.AP⊥BP C.BC D.AP∥BC【解答】解;A.•2﹣2+4=0,∴⊥.因此正确.B.(2,﹣1,﹣4)+(1,﹣2,1)=(3,﹣3,﹣3),•3+6﹣3=6≠0,∴AP与BP不垂直,因此不正确.C.(4,2,0)﹣(﹣2,1,4)=(6,1,﹣4),∴||,因此正确.D.假设k,则,无解,因此假设不正确,因此AP与BC不可能平行,因此不正确.故选:AC.10.(2019秋•南通期末)设,,是空间一个基底()A.若⊥,⊥,则⊥B.则,,两两共面,但,,不可能共面C.对空间任一向量,总存在有序实数组(x,y,z),使D.则,,一定能构成空间的一个基底【解答】解:由,,是空间一个基底,知:在A中,若⊥,⊥,则与相交或平行,故A错误;在B中,,,两两共面,但,,不可能共面,故B正确;在C中,对空间任一向量,总存在有序实数组(x,y,z),使,故C正确;在D中,,,一定能构成空间的一个基底,故D正确.故选:BCD.11.(2019秋•建邺区校级期中)已知点P是平行四边形ABCD所在的平面外一点,如果(2,﹣1,﹣4),(4,2,0),(﹣1,2,﹣1).下列结论正确的有()A.AP⊥ABB.AP⊥ADC.是平面ABCD的一个法向量D.∥【解答】解:对于A,•2×(﹣1)+(﹣1)×2+(﹣4)×(﹣1)=0,∴⊥,即AP⊥AB,A正确;对于B,•(﹣1)×4+2×2+(﹣1)×0=0,∴⊥,即AP⊥AD,B正确;对于C,由⊥,且⊥,得出是平面ABCD的一个法向量,C正确;对于D,由是平面ABCD的法向量,得出⊥,则D错误.故选:ABC.12.(2019秋•菏泽期末)如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,P A⊥底面ABCD,且P A=AD=AB=2BC,M、N分别为PC、PB的中点.则()A.CD⊥ANB.BD⊥PCC.PB⊥平面ANMDD.BD与平面ANMD所在的角为30°【解答】解:A显然错误;若BD⊥PC,由BD⊥P A,则BD⊥平面P AC,则BD⊥AC,显然不成立;C、PB⊥AN,又PB⊥NM,可得到C成立;D、连接DN,因为PB⊥平面ADMN,所以∠BDN是BD与平面ADMN所成的角在Rt△BDN中,,所以BD与平面ADMN所成的角为30°成立;故选:CD.三.填空题(共4小题)13.(2019秋•房山区期末)设θ是直线与平面所成的角,则角θ的取值范围是[0,].【解答】解:θ是直线与平面所成的角,当直线在平面内或直线平行于平面时,θ取最小值0,当直线与平面垂直时,θ取最大值,∴角θ的取值范围是[0,].故答案为:[0,].14.(2019秋•温州期末)在平面直角坐标系中,点A(﹣1,2)关于x轴的对称点为A'(﹣1,﹣2),那么,在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为(﹣1,﹣2,﹣3),若点C (1,﹣1,2)关于xOy平面的对称点为点C',则|B'C'|=.【解答】解:在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为(﹣1,﹣2,﹣3),若点C(1,﹣1,2)关于xOy平面的对称点为点C',则C′(1,﹣1,﹣2),∴|B'C'|.故答案为:(﹣1,﹣2,﹣3),.15.(2020•杨浦区一模)已知圆锥的底面半径为lcm,侧面积为2πcm2,则母线与底面所成角的大小为.【解答】解:由圆锥侧面积公式S=πrl=π•1•l=2π,解得l=2,设母线与底面所成角为θ,则cosθ,∴θ,故答案为:.16.(2020春•和平区校级月考)如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为4.【解答】解:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设DD1=a,则A(2,0,0),C(0,2,0),D1(0,0,a),故,设平面ACD1的一个法向量为,则,可取,故,又直线CC1与平面ACD1所成角的正弦值为,∴,解得a=4.故答案为:4.四.解答题(共5小题)17.(2020•长春四模)如图,四棱锥P﹣ABCD中,底面ABCD为梯形,AB∥DC,∠BAD=90°,点E为PB的中点,且CD=2AD=2AB=4,点F在CD上,且.(Ⅰ)求证:EF∥平面P AD;(Ⅱ)若平面P AD⊥平面ABCD,P A=PD且P A⊥PD,求直线P A与平面PBF所成角的正弦值.【解答】解:(Ⅰ)证明:取P A的中点,连接DM,EM,在△P AB中,ME为一条中位线,则,又由题意有,,故,∴四边形DFEM为平行四边形,∴EF∥DM,又EF⊄平面P AD,DM⊂平面P AD,∴EF∥平面P AD;(Ⅱ)取AD中点N,BC中点H,连接PN,NH,由平面P AD⊥平面ABCD,且PN⊥AD,平面P AD∩平面ABCD=AD,可知PN⊥平面ABCD,又AD⊥NH,故以N为原点,NA,NH,NP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则,设平面PBF的一个法向量为,则,可取,又,故,∴直线P A与平面PBF所成角的正弦值为.18.(2020•沙坪坝区校级模拟)如图,四棱台ABCD﹣A1B1C1D1的底面是矩形,平面ABCD⊥平面ABB1A1,AB=2A1B1=2,AA1=2,.(1)求证:DC⊥AA1;(2)若二面角B﹣CC1﹣D的二面角的余弦值为,求AD的长.【解答】解:(1)取AB中点E,连接B1EAE=A1B1,且AE∥A1B1,所以四边形AEB1A1为平行四边形,所以B1E=AA1=2,BE=1,所以,则BE⊥B1E,所以AA1⊥AB,又平面ABCD⊥平面ABB1A1,所以AA1⊥平面ABCD,所以DC⊥AA1;(2)由(1)知AA1⊥AD,设AD=2a(a>0),建系如图,则A(0,0,0),B(0,0,2),C(2a,0,2),D(2a,0,0),C1(a,2,1),故,设平面CC1D的法向量,则,可取,设平面BCC1的法向量,则,可取,所以,由二面角B﹣CC1﹣D的二面角的余弦值为,得,解得a=2,所以AD=4.19.(2019秋•清远期末)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCD,AP⊥BD.(1)证明:BC⊥平面PDB,(2)若AB,PB与平面APD所成角为45°,求点B到平面APC的距离.【解答】解:(1)证明:∵PD⊥平面ABCD,BC在平面ABCD内,BD在平面ABCD内,∴PD⊥BC,PD⊥BD,又AP⊥BD,AP∩PD=P,且AP,PD均在平面APD内,∴BD⊥平面APD,又AD在平面APD内,∴BD⊥AD,又底面ABCD为平行四边形,∴BC⊥BD,又PD∩BD=D,且都在平面PBD内,∴BC⊥平面PDB;(2)由(1)知,PB与平面APD所成角即为∠BPD,故∠BPD=45°,又AB,∠DAB=45°,∴,,∴AP2+PC2=AC2,即AP⊥CP,∴,,又V P﹣ABC =V B﹣P AC,∴,即,解得,即点B到平面APC的距离为.20.(2020•安徽模拟)如图1,四边形PBCD是等腰梯形,BC∥PD,PB=BC=CD=2,PD=4,A为PD 的中点,将△ABP沿AB折起,如图2,点M是棱PD上的点.(1)若M为PD的中点,证明:平面PCD⊥平面ABM;(2)若PC,试确定M的位置,使二面角M﹣AB﹣D的余弦值等于.【解答】解:(1)证明:由题意,AD=BC,且AD∥BC,故四边形ABCD是平行四边形,又PB=BC=CD=2,PD=4,∴△PBA是正三角形,四边形ABCD是菱形,取AB的中点E,连接PE,CE,易知△ABC是正三角形,则AB⊥PE,AB⊥EC,又PE∩EC=E,∴AB⊥平面PEC,∴AB⊥PC,取PC的中点N,连接MN,BN,则MN∥CD∥AB,即A,B,N,M四点共面,又PB=BC=2,则BN⊥PC,又AB∩BN=B,∴PC⊥平面ABM,又PC在平面PCD内,∴平面PCD⊥平面ABM;(2)∵,∴PE⊥EC,又AB⊥PE且AB⊥EC,则可以EB,EC,AB所在直线为x轴,y轴,z轴建立空间直角坐标系,则,设,则,易知平面ABD的一个法向量为,设平面MAB的一个法向量为,又,∴,则可取,由题意,,解得λ=2,故DM=2MP.21.(2019秋•扬州期末)如图,直三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,点O为AB中点,点D为AA1中点.(1)求平面ABC与平面B1CD所成锐二面角的大小;(2)已知点E满足,当异面直线DE与CB1所成角最小时,求实数λ的值.【解答】解:在直三棱柱ABC﹣A1B1C1中,AB=BC=CA,取A1B1的中点O1,连接OO1,则OO1∥AA1,AB⊥OC,又直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,而AB,OC⊂平面ABC,故AA1⊥OC,AA1⊥AB,所以OO1⊥OC,OO1⊥AB,以{OA,OO1,OC}为正交基底,建立如图所示的空间直角坐标系O﹣xyz,则,所以,(1)∵AA1⊥平面ABC,∴平面ABC的一个法向量为,设平面B1CD的一个法向量为,则,故可取,∴,∴平面ABC与平面B1CD所成锐二面角为;(2)∵,∴,则,设异面直线DE与CB1所成角为θ,则,令t=λ+1∈[1,2],则,当时,cosθ取得最大值,∵y=cosθ在上递减,∴θ取得最小值,此时.。

(完整版)空间向量与立体几何测试题及答案

(完整版)空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题一、选择题1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( )A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++D.11111()2AB CD AC ++答案:B3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C.12D.2-答案:B5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D.649答案:B6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-,,AB AC AD ,则四点,,,A B C D ( )A.一定共圆B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,, 的中点,则2a 等于( )A.2BA AC · B.2AD BD ·C.2FGCA ·D.2EFCB · 答案:B8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122-,,C.51122--,,D.51122,,答案:A9.若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为89,则λ=( ) A.2 B.2- C.2-或255D.2或255-答案:C10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( )A.7412⎛⎫- ⎪⎝⎭,, B.(241),, C.(2141)-,, D.(5133)-,,答案:D11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos3D.3arccos6答案:D12.给出下列命题:①已知⊥a b ,则()()a b c c b a b c ++-=···;②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面;③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( )A.1 B.2 C.3 D.4 答案:C13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055⎛⎫-⎪⎝⎭,,14.已知,,A B C 三点不共线,O 为平面ABC 外一点,若由向量1253OP OA OB OC λ=++确定的点P 与A B C ,,共面,那么λ= . 答案:21515.已知线段AB ⊥面α,BC α⊂,CD BC ⊥,DF ⊥面α于点F ,30DCF ∠=°,且D A ,在平面α的同侧,若2AB BC CD ===,则AD 的长为 . 答案:2216.在长方体1111ABCD A B C D -中,1B C 和1C D 与底面所成的角分别为60°和45°,则异面直线1B C 和1C D 所成角的余弦值为 . 答案:64三、解答题17.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试问是否存在实数λμν,,,使4123a a a a λμν=++成立?如果存在,求出λμν,,;如果不存在,请写出证明.答案:解:假设4123a a a a λμν=++成立.1234(211)(132)(213)(325)a a a a =-=-=--=,,,,,,,,,,,∵, (22323)(325)λμνλμνλμν+--++--=,,,,∴. 22332235λμνλμνλμν+-=⎧⎪-++=⎨⎪--=⎩,,,∴解得213λμν=-⎧⎪=⎨⎪=-⎩,,. 所以存在213v λμ=-==-,,使得412323a a a a =-+-. 理由即为解答过程.为2a ,求1AC 与侧面18.如图2,正三棱柱111-ABC A B C 的底面边长为a ,侧棱长11ABB A 所成的角.解:建立如图所示的空间直角坐标系,则113(000)(00)(002)222⎛⎫-⎪ ⎪⎝⎭,,,,,,,,,,,aA B a A a C a a . 由于(100)=-,,n 是面11ABB A 的法向量,1111312cos 6023aAC AC AC a AC ===⇒=,,·°n n n n.故1AC 与侧面11ABB A 所成的角为30°.19.如图3,直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=°,侧棱12AA D E =,,分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,求点1A 到平面AED 的距离.解:建立如图所示的空间直角坐标系,设2CA a =, 则1221(200)(020)(001)(202)(1)333a a A a B a D A a E a a G ⎛⎫⎪⎝⎭,,,,,,,,,,,,,,,,,.从而2(021)333a a GE BD a ⎛⎫==- ⎪⎝⎭,,,,,.由0GE BD GEBD ⊥⇒=·,得1a =, 则1(202)(200)(111)A A E ,,,,,,,,.自1A 作1A H ⊥面AED 于M ,并延长交xOy 面于H ,设(0)H x y ,,,则1(22)A H x y =--,,. 又(201)AD =-,,,(111)AE =-,,. 由112(2)20(2)20A H AD x A H AE x y ⊥---=⎧⎧⇒⎨⎨⊥--+-=⎩⎩,,11x y =⎧⇒⎨=⎩,,得(110)H ,,.又1111cos A M A A A A A M =,·111426cos 2326A AA A A H ==⨯=,·.20.已知正方体1111ABCD A B C D -的棱长为2,P Q ,分别是BC CD ,上的动点,且2PQ =,确定P Q ,的位置,使11QB PD ⊥.解:建立如图所示的空间直角坐标系,设BP t =, 22那么211(202)(022)(20)(22(2)20)B D P t Q t ---,,,,,,,,,,,,从而21(2(2)22)QB t =---,,,1(222)PD t =--,,, 由11110QB PD QB PD ⊥⇒=·, 即222(2)2(2)401t t t -----+=⇒=. 故P Q ,分别为BC CD ,的中点时,11QB PD ⊥.21.如图4,在底面是直角梯形的四棱锥S ABCD -中,90ABC ∠=°,SA ⊥面ABCD ,112SA AB BC AD ====,,求面SCD 与面SBA 所成二面角的正切值. 解:建立如图所示的空间直角坐标系,则1(000)(100)(110)00(001)2A B C D S ⎛⎫-- ⎪⎝⎭,,,,,,,,,,,,,,. 延长CD 交x 轴于点F ,易得(100)F ,,,作AE SF ⊥于点E ,连结DE ,则DEA ∠即为面SCD 与面SBA 所成二面角的平面角.又由于SA AF =且SA AF ⊥,得11022E ⎛⎫ ⎪⎝⎭,,,那么102EA ⎛⎫=-- ⎪⎝⎭,,12,111222ED ⎛⎫=-- ⎪⎝⎭,,,从而6cos 3EA ED EA ED EA ED ==,·, 因此2tan 2EAF ED =,. 故面SCD 与面SBA 所成二面角的正切值为22.22.平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠,试问:当1CDCC 的值为多少时,1A C ⊥面1C BD ?请予以证明.解:欲使1A C ⊥面1C BD ,只须11AC C D ⊥,且11AC C B ⊥. 欲证11AC C D ⊥,只须证110CA C D =·, 即11()()0CA AA CD CC +-=·, 也就是11()()0CD CB CC CD CC ++-=·, 22由于1C CB BCD ∠=∠,显然,当1CD CC =时,上式成立; 同理可得,当1CD CC =时,11AC C B ⊥. 因此,当11CDCC =时,1A C ⊥面1C BD .一。

多选题009(立体几何与空间向量30道题+详细解析)

多选题009(立体几何与空间向量30道题+详细解析)

第9模块:立体几何与空间向量多选题(每题5分,选不全得3分,总计100分;建议完成后统计自己的正答率)1.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A .直线BC 与平面11ABC D 所成的角等于4πB .点C 到面11ABCD 的距离为22C .两条异面直线1D C 和1BC 所成的角为4π D .三棱柱1111AA D BB C -外接球半径为322.已知菱形ABCD 中,∠BAD =60°,AC 与BD 相交于点O .将△ABD 沿BD 折起,使顶点A 至点M ,在折起的过程中,下列结论正确的是( )A .BD ⊥CMB .存在一个位置,使△CDM 为等边三角形C .DM 与BC 不可能垂直D .直线DM 与平面BCD 所成的角的最大值为60°3.三棱锥P−ABC 的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,则下列说法正确的是( )A .PAB ∆是钝角三角形B .此球的表面积等于5πC .BC ⊥平面P ACD .三棱锥A−PBC 的体积为324.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm ,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下30.02cm 的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是( )A .沙漏中的细沙体积为3102481cm π B .沙漏的体积是3128cm πC .细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD .该沙漏的一个沙时大约是1985秒( 3.14π≈)5.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中正确的是( )A .11//FM ACB .BM ⊥平面1CC FC .存在点E ,使得平面//BEF 平面11CCD D D .三棱锥B CEF -的体积为定值6.在棱长为1的正方体1111ABCD A B C D -中,点M 在棱1CC 上,则下列结论正确的是( )A .直线BM 与平面11ADD A 平行B .平面1BMD 截正方体所得的截面为三角形C .异面直线1AD 与11A C 所成的角为3π D .1MB MD +的最小值为5 7.如图,在棱长均相等的四棱锥P ABCD -中, O 为底面正方形的中心, M ,N 分别为侧棱PA ,PB 的中点,有下列结论正确的有:( )A .PD ∥平面OMNB .平面PCD ∥平面OMNC .直线PD 与直线MN 所成角的大小为90 D .ON PB ⊥8.在正方体1111ABCD A B C D -中,N 为底面ABCD 的中心,P 为线段11A D 上的动点(不包括两个端点),M 为线段AP 的中点,则( )A .CM 与PN 是异面直线B .CM PN >C .平面PAN ⊥平面11BDD B D .过P ,A ,C 三点的正方体的截面一定是等腰梯形9.等腰直角三角形直角边长为1 ,现将该三角形绕其某一边旋转一周 ,则所形成的几何体的表面积可以为( )A .2πB .()12π+C .22πD .()22π+ 10.若将正方形ABCD 沿对角线BD 折成直二面角,则下列结论中正确的是( )A .异面直线AB 与CD 所成的角为60︒B .AC BD ⊥ C .ACD ∆是等边三角形 D .二面角A BC D --的平面角正切值是211.已知A ,B ,C 三点不共线,O 为平面ABC 外的任一点,则“点M 与点A ,B ,C 共面”的充分条件的是( )A .2OM OA OB OC =--B .OM OA OB OC =+- C .1123OM OA OB OC =++D .111236OM OA OB OC =++ 12.已知菱形ABCD 中,60BAD ∠=︒,AC 与BD 相交于点O ,将ABD △沿BD 折起,使顶点A 至点M ,在折起的过程中,下列结论正确的是( )A .BD CM ⊥B .存在一个位置,使CDM 为等边三角形C .DM 与BC 不可能垂直D .直线DM 与平面BCD 所成的角的最大值为60︒13.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )A .()()2212AA AB AD AC ++= B .()10AC AB AD ⋅-=C .向量1B C 与1AA 的夹角是60°D .1BD 与AC 所成角的余弦值为6 14.如图,正方形ABCD 中,EF 、分别是AB BC 、的中点将,,ADE CDF BEF ∆分别沿DE DF EF 、、折起,使、、A B C 重合于点P .则下列结论正确的是( )A .PD EF ⊥B .平面PDE PDF ⊥平面C .二面角P EFD --的余弦值为13 D .点P 在平面DEF 上的投影是DEF ∆的外心15.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且12EF =,则下列结论中错误的是( )A .AC AF ⊥B .//EF 平面ABCDC .三棱锥A BEF -的体积为定值D .AEF ∆的面积与BEF 的面积相等16.下列命题中正确的是( ) A .,,,A B M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,,A B M N 共面B .已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为2(2,0,)3n =-,则直线//l αD .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的正弦值为55 17.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则 ( )A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值C .异面直线AP 与1AD 所成角范围是[]45,90︒︒ D .直线1C P 与平面11AC D 所成角的正弦最大值为63 18.下列选项正确的为( )A .已知直线1l :()()2110a x a y ++--=,2l :()()12320a x a y -+++=,则12l l ⊥的充分不必要条件是1a =B .命题“若数列{}2n a 为等比数列,则数列{}n a 为等比数列”是假命题 C .棱长为a 正方体1111ABCD A B C D -中,平面11AC D 与平面1ACB 距离为33a D .已知P 为抛物线22y px =上任意一点且(),0M m ,若PM OM ≥恒成立,则(],m p ∈-∞19.在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为ABC ∆的重心,则111333PQ PA PB PC =++ C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若四面体P ABC -各棱长都为2,M ,N 分别为PA ,BC 的中点,则1MN =20.给出下列命题,其中正确命题有( )A .空间任意三个不共面的向量都可以作为一个基底B .已知向量//a b ,则,a b 与任何向量都不能构成空间的一个基底C .,,,A B M N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么,,,A B M N 共面D .已知向量{},,a b c 组是空间的一个基底,若m a c =+,则{},,a b m 也是空间的一个基底21.正方体1111ABCD A B C D -的棱长为2,,,E F G 分别为11,,BC CC BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为92D .点C 与点G 到平面AEF 的距离相等22.正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 和点G 到平面AEF 的距离相等 23.如图,梯形ABCD 中,//AD BC ,1AD AB ==,AD AB ⊥,45BCD ∠=︒,将ABD ∆沿对角线BD 折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD .给出下面四个命题正确的:()A .A D BC '⊥B .三棱锥A BCD '-的体积为22C .CD ⊥平面A BD ' D .平面A BC '⊥平面A DC ' 24.如图,PA 垂直于以AB 为直径的圆所在的平面,点C 是圆周上异于A ,B 的任一点,则下列结论中正确..的是( )A .PB AC ⊥ B .PC BC ⊥ C .AC ⊥平面PBCD .平面PAB ⊥平面PBC E.平面PAC ⊥平面PBC25.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 26.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 27.如图,矩形ABCD ,M 为BC 的中点,将ABM ∆沿直线AM 翻折成1AB M ∆,连接1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥;B .翻折过程中,CN 的长是定值;C .若AB BM =,则1AM BD ⊥;D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π. 28.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为629.正方体1111ABCD A B C D -的棱长为2,已知平面1AC α⊥,则关于α截此正方体所得截面的判断正确的是( )A .截面形状可能为正三角形B .截面形状可能为正方形C .截面形状可能为正六访形D .截面面积最大值为3330.如图1,点E 为正方形ABCD 边BC 上异于点,B C 的动点,将ABE ∆沿AE 翻折,得到如图2所示-,且平面BAE⊥平面AECD,点F为线段BD上异于点,B D的动点,则在四棱锥的四棱锥B AECD-中,下列说法正确的有( )B AECDA.直线BE与直线CF必不在同一平面上B.存在点E使得直线BE⊥平面DCEC.存在点F使得直线CF与平面BAE平行D.存在点E使得直线BE与直线CD垂直第9模块:立体几何与空间向量 参考答案1.ABD 【解析】根据线面角的定义及求法,点面距的定义,异面直线所成角的定义及求法,三棱柱的外接球的半径求法,即可判断各选项的真假.【详解】正方体1111ABCD A B C D -的棱长为1,对于A ,直线BC 与平面11ABC D 所成的角为14CBC π∠=,故选项A 正确;对于B ,因为1B C ⊥面11ABC D ,点C 到面11ABC D 的距离为1B C 长度的一半,即22h =,故选项B 正确;对于C ,因为11//BC AD ,所以异面直线1D C 和1BC 所成的角为1AD C ∠,而1AD C 为等边三角形,故两条异面直线1D C 和1BC 所成的角为3π,故选项C 错误;对于D ,因为11111,,A A A B A D 两两垂直,所以三棱柱1111AA D BB C -外接球也是正方体1111ABCD A B C D -的外接球,故222111322r ++==,故选项D 正确.故选:ABD .【点睛】本题主要考查线面角的定义以及求法,点面距的定义以及求法,异面直线所成角的定义以及求法,三棱柱的外接球的半径求法的应用,属于基础题.2.ABD 【解析】【分析】画出图形,利用直线与直线的位置关系,直线与平面的位置关系判断选项的正误即可.【详解】对A ,菱形ABCD 中,60BAD ∠=︒,AC 与BD 相交于点O .将ABD ∆沿BD 折起,使顶点A 至点M ,如图:取BD 的中点E ,连接ME ,EC ,可知ME BD ⊥,EC BD ⊥,所以BD ⊥平面MCE ,可知MC BD ⊥,故A 正确;对B ,由题意可知AB BC CD DA BD ====,三棱锥是正四面体时,CDM ∆为等边三角形,故B 正确; 对C ,三棱锥是正四面体时,DM 与BC 垂直,故C 不正确;对D ,平面BDM 与平面BDC 垂直时,直线DM 与平面BCD 所成的角的最大值为60︒,故D 正确. 故选:ABD .【点睛】本题考查空间几何体的直线与直线、直线与平面的位置关系的综合判断、命题的真假的判断,考查转化与化归思想,考查空间想象能力.3.BC 【解析】【分析】根据余弦定理可得底面为直角三角形,计算出三棱锥的棱长即可判断A ,找到外接球的球心求出半径即可判断B ,根据线面垂直判定定理可判断C ,根据椎体的体积计算公式可判断D .【详解】如图,在底面三角形ABC 中,由1AC =,2AB =,60BAC ∠=︒,利用余弦定理可得:2211221232BC =+-⨯⨯⨯=∴222AC BC AB +=,即AC BC ⊥,由于PC ⊥底面ABC ,∴PC AC ⊥,PC BC ⊥,∵PC AC C =,∴BC ⊥平面P AC ,故C 正确;∴222PB PC BC AB =+==,由于2220PB AB PA +->,即PBA ∠为锐角,∴PAB ∆是顶角为锐角的等腰三角形,故A 错误;取D 为AB 中点,则D 为BAC 的外心,可得三角形ABC 外接圆的半径为1,设三棱锥P ABC -的外接球的球心为O ,连接OP ,则215122OP ⎛⎫=+= ⎪⎝⎭, 即三棱锥P ABC -的外接球的半径为52R =,∴三棱锥球的外接球的表面积等于2545ππ⨯=⎝⎭,故B 正确;11313132P ABC V -=⨯⨯=,故D 错误;故选:BC .【点睛】 本题主要考查了线面垂直的判定,椎体的体积计算以及三棱锥外接球体积的计算等等,属于中档题.4.ACD 【解析】【分析】A .根据圆锥的体积公式直接计算出细沙的体积;B .根据圆锥的体积公式直接计算出沙漏的体积;C .根据等体积法计算出沙堆的高度;D .根据细沙体积以及沙时定义计算出沙时.【详解】A .根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径28433r cm =⨯=,所以体积23121641610243339381h V r cm πππ=⋅⋅=⋅⋅=; B .沙漏的体积2231125622483233h V h cm πππ⎛⎫=⨯⨯⨯⨯=⨯⨯⨯⨯= ⎪⎝⎭; C .设细沙流入下部后的高度为1h ,根据细沙体积不变可知:21102418132h h ππ⎛⎫⎛⎫=⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以1102416813h ππ=,所以1 2.4h cm ≈;D .因为细沙的体积为3102481cm π,沙漏每秒钟漏下30.02cm 的沙, 所以一个沙时为:10241024 3.14815019850.0281π⨯=⨯≈秒.故选:ACD.【点睛】本题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式. 5.ABD 【解析】【分析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明BM CF ⊥再证明BM ⊥平面1CC F 即可.对C,根据BF 与平面11CC D D 有交点判定即可.对D,根据三棱锥B CEF -以BCF 为底,且同底高不变,故体积不变判定即可.【详解】在A 中,因为,F M 分别是,AD CD 的中点,所以11////FM AC AC ,故A 正确;在B 中,因为tan 2BC BMC CM ∠==,tan 2CD CFD FD∠==,故BMC CFD ∠=∠, 故2BMC DCF CFD DCF π∠+∠=∠+∠=.故BM CF ⊥,又有1BM C C ⊥,所以BM ⊥平面1CC F ,故B 正确;在C 中,BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故C 错误.在D 中,三棱锥B CEF -以面BCF 为底,则高是定值,所以三棱锥B CEF -的体积为定值,故D 正确.故选:ABD. 【点睛】本题主要考查了线面垂直平行的证明与判定,同时也考查了锥体体积等问题.属于中档题.6.ACD 【解析】【分析】根据线面平行,异面直线夹角,截面图形,线段最值的计算依次判断每个选项得到答案.【详解】如图所示:易知平面11//BCC B 平面11ADD A ,BM ⊂平面11BCC B ,故直线BM 与平面11ADD A 平行,A 正确;平面1BMD 截正方体所得的截面为1BMD N 为四边形,故B 错误;连接1BC ,1A B ,易知11//AD BC ,故异面直线1AD 与11A C 所成的角为11AC B ∠,1111A B AC BC ==,故113AC B π∠=,故C 正确;延长DC 到'B 使'1CB =,易知'BM B M =,故11'5MB MD D B +≥=,当M 为1CC 中点时等号成立,故D 正确;故选:ACD .【点睛】本题考查了异面直线夹角,截面图形,线面平行,最短距离,意在考查学生的空间想象能力和计算能力.7.ABD 【解析】【分析】选项A,利用线面平行的判定定理即可证明;选项B,先利用线面平行的判定定理证明CD ∥平面OMN ,再利用面面平行的判定定理即可证明;选项C ,平移直线,找到线面角,再计算;选项D,因为ON ∥PD ,所以只需证明PD ⊥PB ,利用勾股定理证明即可.【详解】选项A,连接BD ,显然O 为BD 的中点,又N 为PB 的中点,所以PD ∥ON,由线面平行的判定定理可得,PD ∥平面OMN ;选项B, 由M ,N 分别为侧棱PA ,PB 的中点,得MN ∥AB,又底面为正方形,所以MN ∥CD ,由线面平行的判定定理可得,CD ∥平面OMN,又选项A 得PD ∥平面OMN ,由面面平行的判定定理可得,平面PCD ∥平面OMN ;选项C,因为MN ∥CD ,所以∠ PDC 为直线PD 与直线MN 所成的角,又因为所有棱长都相等,所以∠ PDC=60,故直线PD 与直线MN 所成角的大小为60;选项D ,因底面为正方形,所以222AB AD BD +=,又所有棱长都相等,所以222PB PD BD +=,故PB PD ⊥,又PD ∥ON ,所以ON PB ⊥,故ABD 均正确.【点睛】解决平行关系基本问题的3个注意点(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.8.BCD 【解析】【分析】由,CN PM 交于点A 得共面,可判断A ,利用余弦定理把,CM PN 都用,AC AP 表示后可比较大小,证明AN 与平面11BDD B 后可得面面垂直,可判断C ,作出过P ,A ,C 三点的截面后可判断D .【详解】,,C N A 共线,即,CN PM 交于点A ,共面,因此,CM PN 共面,A 错误;记PAC θ∠=,则2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+-⋅, 2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅,又AP AC <, 22223()04CM PN AC AP -=->,22CM PN >,即CM PN >.B 正确; 由于正方体中,AN BD ⊥,1BB ⊥平面ABCD ,则1BB AN ⊥,1BB BD B ⋂=,可得AN ⊥平面11BB D D ,AN ⊂平面PAN ,从而可得平面PAN ⊥平面11BDD B ,C 正确;取11C D 中点K ,连接11,,KP KC AC ,易知11//PK A C ,又正方体中,11//AC AC ,∴//PK AC ,,PK AC 共面,PKCA 就是过P ,A ,C 三点的正方体的截面,它是等腰梯形.D 正确.故选:BCD.【点睛】本题考查共面,面面垂直,正方体的截面等问题,需根据各个知识点进行推理证明判断.难度较大.9.AB 【解析】【分析】分2种情况,一种是绕直角边,一种是绕斜边,分别求形成几何体的表面积.【详解】如果是绕直角边旋转,形成圆锥,圆锥底面半径为1,高为12, 所以所形成的几何体的表面积是)2212121S rl r πππππ=+=⨯⨯=.2,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以写成的几何体的表面积222122S rl πππ=⨯=⨯⨯⨯=.综上可知形成几何体的表面积是()21π+或2π.故选:AB 【点睛】本题考查旋转体的表面积,意在考查空间想象能力和计算能力,属于基础题型. 10.ABCD 【解析】【分析】作出正方形ABCD 翻折后的立体几图形,再对选项进行逐个分析.【详解】如图所示,设正方形的边长为2,对A ,设三角形A 运动到'A ,连接AC 交BD 于O ,连'AA ,因为2'2'2AA AO AO =+=,所以'AA B ∆为正三角形,所以 异面直线AB 与CD 所成的角为60︒,故A 正确; 对B ,因为,,BD AO BD CO AO BO O ⊥⊥⋂=,所以BD ⊥平面AOC ,AC ⊂平面AOC ,所以AC BD ⊥,故B 正确;对C ,由A 选项的证明,同理可得2AC AD CD ===,所以可推理得ACD ∆是等边三角形,故C 正确;对D ,取BC 的中点M ,连接AM ,OM ,AB AD =,O 为BD 的中点,AO BD ∴⊥, 平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面ABD ,AO ∴⊥平面BCD ,BC ⊂平面BCD ,AO BC ∴⊥,OM BC ⊥,AO OM O =,BC ∴⊥平面AOM ,AM ⊂平面AOM ,AM BC ∴⊥,所以AMO ∠为二面角A BC D --的平面角,所以2tan 21AO AMO OM ∠===,故D 正确;故选:ABCD .【点睛】本题考查空间中图形的翻折问题、线面、面面位置关系、异面直线所成角、二面角等知识,考查转化与化归思想,考查空间想象能力和运算求解能力,求解时注意翻折前后的不变量.11.BD 【解析】【分析】根据“OM xOA yOB zOC =++时,若1x y z ++=则点M 与点,,A B C 共面”,分别判断各选项是否为充分条件.【详解】当MA mMB nMC =+时,可知点M 与点,,A B C 共面,所以()()MO OA m MO OB n MO OC +=+++,所以()1x y OM OA xOB yOC +-=-++,所以11111OA mOB nOC m n OM OA OB OC m n m n m n m n -++==-+++-+-+-+-, 不妨令11x m n -=+-,1m y m n =+-,1n z m n =+-,且此时1x y z ++=, 因为()()21101+-+-=≠,()1111++-=,111111236++=≠,1111236++=,由上可知:BD 满足要求. 故选:BD.【点睛】本题考查利用空间向量证明空间中的四点共面,难度一般.常见的证明空间中四点,,,M A B C 共面的方法有:(1)证明MA xMB yMC =+;(2)对于空间中任意一点O ,证明OM OA xMB yMC =++;(3) 对于空间中任意一点O ,证明()1OM xOA yOB zOC x y z =++++=. 12.ABD 【解析】【分析】根据线面垂直的判定定理与性质可判断A 选项;设菱形ABCD 的边长为2,根据题意,当CDM 为等边三角形时,求得二面角M BD C --存在,即可判断B 选项;用向量的方法计算DM BC ⋅,判定其能否为0,即可判断C 选项;根据线面角的概念,找到线面角的最大值,即可判断D 选项.【详解】A 选项,因为菱形ABCD 中,AC 与BD 相交于点O ,所以AO BD ⊥,CO BD ⊥;将ABD △沿BD 折起,使顶点A 至点M ,折起过程中,AO 始终与BD 垂直,因此MO BD ⊥,又MO CO ,由线面垂直的判定定理,可得:BD ⊥平面CMO ,因此BD CM ⊥,故A 正确;B 选项,因为折起的过程中,AD 边长度不变,因此MD CD =;若CDM 为等边三角形,则CM CD =;设菱形ABCD 的边长为2,因为60BAD ∠=︒,则sin 603AO AB =⋅=,即3AO MO ==,又2CM CD ==,所以3341cos 233MOC +-∠==⨯,即二面角M BD C --的余弦值为13时,CDM 为等边三角形;故B 正确; C 选项,DM OM OD =-,BC OC OB =-,由A 选项知,MO BD ⊥,CO BD ⊥,所以0OM OB OD OC ⋅=⋅=,因此()()+DM BC OM OD OC OB OM OC OD OB ⋅=-⋅-=⋅⋅,同B 选项,设菱形ABCD 的边长为2,易得3OC OM ==,1OB OD ==,所以3cos 1DM BC MOC ⋅=∠+,显然当1cos 3MOC ∠=-时,0DM BC ⋅=,即DM BC ⊥;故C 错误; D 选项,同BC 选项,设菱形ABCD 的边长为2,则3OM =,1OD =,2MD =,由几何体直观图可知,当OM ⊥平面BCD ,直线DM 与平面BCD 所成的角最大,为MDO ∠,易知60MDO ∠=︒.故选:ABD. 【点睛】本题主要考查立体几何的综合应用,熟记线面垂直的判定定理,线面角的概念,灵活运用向量的方法判定即可,属于常考题型.13.AB 【解析】【分析】直接用空间向量的基本定理,向量的运算对每一个选项进行逐一判断.【详解】以顶点A 为端点的三条棱长都相等, 它们彼此的夹角都是60°,可设棱长为1,则11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒=()22221111=+2+2+2AA AB AD AA AB AD AA AB AB AD AA AD ++++⋅⋅⋅ 11113262=+++⨯⨯= 而()()()22222222AC AB AD AB AD AB AD =+=++⋅ 121122362⎛⎫=++⨯=⨯= ⎪⎝⎭, 所以A 正确.()()()11AC AB AD AA AB AD AB AD ⋅-⋅=++- 2211AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅- =0,所以B 正确.向量11B C A D =,显然1AA D △ 为等边三角形,则160AA D ∠=︒.所以向量1A D 与1AA 的夹角是120︒ ,向量1B C 与1AA 的夹角是120︒,则C 不正确又11=AD AA BD AB +-,AC AB AD =+ 则()211||=2AD AA A B B D =+-,()2||=3AC AB AD =+()()111AD AA AB BD AC AB AD ⋅=+-=+⋅ 所以11116cos ===6||||23BD AC BD AC BD AC ⋅⋅⨯,,所以D 不正确.故选:AB 【点睛】本题考查空间向量的运算,用向量求夹角等,属于中档题.14.ABC 【解析】【分析】对于A 选项,只需取EF 中点H ,证明EF ⊥平面PDH ;对于B 选项,知,,PE PF PD 三线两两垂直,可知正确;对于C 选项,通过余弦定理计算可判断;对于D 选项,由于PE PF PD =≠,可判断正误.【详解】对于A 选项,作出图形,取EF 中点H ,连接PH ,DH ,又原图知BEF ∆和DEF ∆为等腰三角形,故PH EF ⊥,DH EF ⊥,所以EF ⊥平面PDH ,所以PD EF ⊥,故A 正确;根据折起前后,可知,,PE PF PD 三线两两垂直,于是可证平面PDE PDF ⊥平面,故B 正确;根据A 选项可知 PHD ∠为二面角P EF D --的平面角,设正方形边长为2,因此1PE PF ==,22PH =,2322222DH =-=,222PD DF PF =-=,由余弦定理得:2221cos 23PH HD PD PHD PH HD +-∠==⋅,故C 正确;由于PE PF PD =≠,故点P 在平面DEF 上的投影不是DEF ∆的外心,即D 错误;故答案为ABC.【点睛】本题主要考查异面直线垂直,面面垂直,二面角的计算,投影等相关概念,综合性强,意在考查学生的分析能力,计算能力及空间想象能力,难度较大.15.AD 【解析】【分析】通过特殊化,点F 与点1B 重合可判定A 错误;正方体1111ABCD A B C D -的两个底面平行,判定B 正确,三角形BEF 的面积是定值,A 点到面11DD B B 距离是定值,可判定C 正确,△AEF 的面积与△BEF 的面积相等不正确,可判定D 错误.【详解】A .由题意及图形知,当点F 与点1B 重合时,160o CAB ∠=故选项A 错误;B .//EF 平面ABCD ,由正方体1111ABCD A B C D -的两个底面平行,EF ⊂平面1111D C B A ,故有//EF 平面ABCD ,此命题正确,不是正确选项;C .三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面11DD B B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确,不是正确选项;D .由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确,故D 是错误的.故选:AD 【点睛】本题考查直线与平面平行、垂直的判定、棱锥的体积,考查空间想象能力与运算求解能力,属于中档题.16.ABD 【解析】【分析】不共面的三个非零向量可以构成空间向量的一个基底,由此可判断A 、B ,若直线的方向向量与平面α的法向量垂直,则线面平行,可判断C ,直线的方向向量与平面的法向量夹角的余弦值的绝对值与该直线与此平面所成角的正弦值相等,由此可判断D .【详解】对于A ,,,,A B M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,BA BM BN 共面,则,,,A B M N 共面,故A 对;对于B ,已知{},,a b c 为空间的一个基底,则,,a b c 不共面,若m a c =+,则,,a b m 也不共面,则{},,a b m 也是空间的基底,故B 对;对于C ,因为21(2)+00+3=03e n ⋅=⨯-⨯⨯,则e n ⊥,若l α⊄,则//l α,但选项中没有条件l α⊄,有可能会出现l α⊂,故C 错;对于D ,∵cos ,e n e n e n ===,则则直线l 与平面α,故D 对;故选:ABD . 【点睛】本题主要考查命题的真假,考查空间基底的定义,考查空间向量在立体几何中的应用,属于中档题.17.ABD 【解析】【分析】利用线面垂直的性质判定可判定选项A,对三棱锥11P AC D -转化顶点可判定选项B,找到异面成角的最小值的情况即可判断选项C,转化直线1C P 与平面11AC D 所成角的正弦值的最大值为直线1C P 与直线1BD 所成角的余弦值最大,进而判断选项D 【详解】对于选项A,连接11B D ,由正方体可得1111AC B D ⊥,且1BB ⊥平面1111D C B A ,则111BB A C ⊥,所以11A C ⊥平面11BD B ,故111AC BD ⊥;同理,连接1AD ,易证得11A D BD ⊥,则1BD ⊥平面11AC D ,故A 正确;对于选项B,1111P A C DC A PD V V --=,因为点P 在线段1B C 上运动,所以1112A DP S A D AB =⋅,面积为定值,且1C 到平面11A PD 的距离即为1C 到平面11A B CD 的距离,也为定值,故体积为定值,故B 正确;对于选项C,当点P 与线段1B C 的端点重合时,AP 与1A D 所成角取得最小值为60︒,故C 错误;对于选项D,因为直线1BD ⊥平面11AC D ,所以若直线1C P 与平面11AC D 所成角的正弦值最大,则直线1C P 与直线1BD 所成角的余弦值最大,则P 运动到1B C 中点处,即所成角为11C BD ∠,设棱长为1,在11Rt D C B中,111126cos 33C B C BD BD ∠===,故D 正确故选:ABD 【点睛】本题考查线面垂直的判定,考查异面成角,线面成角,考查棱锥体积,考查转化思想和空间想象能力18.ABCD 【解析】【分析】A .分析“1a =”与“12l l ⊥”的互相推出情况,由此确定是否为充分不必要条件;B .分析特殊情况:121,2,2a a n =-=≥时,2112,4n n n n a a a a ++==,由此判断命题真假;C .将面面距离转化为点到面的距离,从而可求出面面距离并判断对错;D .根据线段长度之间的关系列出不等式,从而可求解出m 的取值范围.【详解】A .当1a =时,11:3l x =,22:5l y =-,显然12l l ⊥; 当12l l ⊥时,()()()()211230a a a a +-+-+=,解得1a =±,所以12l l ⊥的充分不必要条件是1a =正确;B .当121,2,2a a n =-=≥时,2112,4n n n n a a a a ++==,所以此时{}2n a 为等比数列, 但{}n a 不是等比数列,所以命题是假命题,故正确;C .如图所示:由图可知:111111111//,//,,AC AC B C A D AC B C C AC A D A ==,所以平面1//AB C 平面11AC D ,所以平面11AC D 与平面1ACB 距离即为1B 到平面11AC D 的距离,记为h , 由等体积可知:)21312332a a a h a ⎫⨯⨯=⨯⨯⎪⎪⎝⎭,所以3h =,故正确;D .设()00,P x y ,因为PM OM ≥,所以()2200x m y m -+≥,所以()22200x m y m -+≥且2002y px =,所以200022x px mx +≥, 当00x =时显然符合,当00x >时02x m p ≤+,所以m p ≤,综上可知:(],m p ∈-∞.故正确.故选:ABCD. 【点睛】本题考查命题真假的判断,难度一般.(1)判断命题p 是命题q 的何种条件时,注意从两方面入手:充分性、必要性;(2)立体几何中求解点到平面的距离,采用等体积法较易.19.ABC 【解析】【分析】根据向量的线性运算与数量积一一判断即可.【详解】解:对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- ,2BD DC ∴=,3BD BD DC ∴=+即3BD BC =,故A 正确;对于B ,若Q 为ABC ∆的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=3PQ PA PB PC ∴=++即111333PQ PA PB PC =++,故B 正确;对于C ,若0PA BC ⋅=,0PC AB ⋅=,则PA BC PC AB ⋅=⋅0PA BC PC AB ∴⋅+⋅=()0PA BC PC AC CB ∴⋅+⋅+=0PA BC PC AC PC CB ∴⋅+⋅+⋅=0PA BC PC AC PC BC ∴⋅+⋅-⋅=()0PA PC BC PC AC ∴-⋅+⋅= 0CA BC PC AC ∴⋅+⋅=0AC CB PC AC ∴⋅+⋅=()0AC CB PC ∴⋅+=0AC PB ∴⋅= 故C 正确; 对于D ,()()111222MN PN PM PB PC PA PB PC PA =-=+-=+- 12MN PA PB PC ∴=--222222PA PB PC PA PB PC PA PB PA PC PB PC --=++-⋅-⋅+⋅==4=2MN ∴=故D 错误.故选:ABC 【点睛】本题考查向量的线性运算,向量的数量积及利用向量的数量积求向量的模,属于中档题.20.ABCD 【解析】【分析】根据空间基底的概念,结合向量的共面定量,逐项判定,即可求解,得到答案.【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确.故选:ABCD.【点睛】本题主要考查了空间基底的概念及其判定,其中解答中熟记空间基底的概念,合理利用共面向量定量进行判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.21.BC 【解析】【分析】A .利用线面垂直的定义进行分析;B .作出辅助线利用面面平行判断;C .作出截面然后根据线段长度计算出截面的面积;D .通过等体积法进行判断.【详解】A .若1D D AF ⊥,又因为1D D AE⊥且AE AF A ⋂=,所以1DD ⊥平面AEF ,所以1DD EF ⊥,所以1CC EF ⊥,显然不成立,故结论错误; B .如图所示,取11B C 的中点Q ,连接1,A Q GQ ,。

空间向量与立体几何单元练习题(供参考)(新)

空间向量与立体几何单元练习题(供参考)(新)

《空间向量与立体几何》习题一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是A .-21a +21b +c B .21a +21b +c C .21a -21b +c D .-21a -21b +c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.OC OB OA OM --=23B.OC OB OA OM 513121++=C.0=+++OC OB OA OMD.0=++MC MB MA3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ⋅等于A.41B.41- C.43 D.43-4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453 D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是①正方体 ②圆锥 ③三棱台 ④正四棱锥A .9πB .10πC .11πD .12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A .6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD的距离为 .三、解答题(共80分)俯视图 正(主)视图 侧(左)视图 2 32 215.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG..17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证: (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD .224侧视图正视图624GEFC'B'D'C A B DMPD C BAED CBA P 18.(本小题满分14分)如图,已知点P 在正方体''''D CB A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD所成最大角的正切值为2,求二面角E AF C --的余弦值.PBDFA D 'C 'B'A'PD C BA练习题参考答案一、选择题1.)(21111BC BA A A BM B B M B ++=+==c +21(-a +b )=-21a +21b +c ,故选A.2.1),,(=++∈++=⇔z y x R z y x z y x C B A M 且四点共面、、、由于MC MB MA MC MB MA C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在y x y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF 21,21//=∴=∴且,41120cos 1121,210-=⨯⨯⨯>=<=⋅=⋅∴ 故选B .4.B5.B6.D7.D8.D9.D 10.4,cos ==><=,5==,故选A二、填空题 11.9 12.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则++=θθcos 6)180,0,0,2530-=-=⋅=⋅=⋅===0022222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=θθθθ由于AC DB DB CD CD AC DB CD AC14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系设平面P AD 的法向量是(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面PAD 的距离15B A m d m⋅==.三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21AB AP AD BP BC BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于 23)]110(2211[41)](2[41)(4122222222=+-+++=⋅+⋅-⋅-+++=++-=∴c b c a b a c b a c b a BM 2626的长为,BM BM ∴=∴. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中, 连结AD ',则AD BC ''∥. 因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥, 从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴E F ∥AD ,∵AD ⊂面ACD ,E F ⊄面ACD ,∴直线E F ∥面ACD ;(2)∵AD ⊥BD ,E F ∥AD ,∴E F ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵B D ⊂面BCD ,∴面EFC ⊥面BCD .A BC D E F GA 'B 'C 'D '18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''. 在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<>,,可得2m =. 解得2m=,所以21DH ⎛⎫= ⎪ ⎪⎝⎭. (1)因为0011cos 2DH CC +⨯'<>==,, 所以45DH CC '<>=,,即DP 与CC '所成的角为45.(2)平面AA D D''的一个法向量是(010)DC =,,. 因为011012cos 2DH DC ++⨯<>==,, 所以60DH DC <>=,,可得DP 与平面AA D D ''所成的角为30. 19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=⋅=(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又ACPC C =∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ⊂平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EB ∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ⋅==BG在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGBzyxEDC BAP∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===-设平面ADE 和平面ABE 的法向量分别为(,,),(',',')m a b c n a b c ==由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+= 令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PAAD A =,所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角. 在Rt EAH △中,3AE =, 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大. 此时36tan 2AE EHA AH AH ∠===, 因此2AH =.又2AD =,所以45ADH ∠=, 所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E作EO AC⊥于O,则EO⊥平面PAC,过O作OS AF⊥于S,连接ES,则ESO∠为二面角E AF C--的平面角,在Rt AOE△中,3sin 30EO AE==3cos302AO AE==,又F是PC的中点,在Rt ASO△中,32sin454 SO AO==,又SE===Rt ESO△中,cos SOESOSE∠===,.解法二:由(1)知AE AD AP,,两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E F,分别为BC PC,的中点,所以(000)10)0)(020)A B C D-,,,,,,,,,,1(002)0)12P E F⎫⎪⎪⎝⎭,,,,,,,,所以31(300)12AE AF⎛⎫== ⎪⎪⎝⎭,,,,,.设平面AEF的一法向量为111()x y z=,,m,则AEAF⎧=⎪⎨=⎪⎩,,mm因此1111122x y z=++=⎪⎩,.取11z=-,则(021)=-,,m,因为BD AC⊥,BD PA⊥,PAAC A=,所以BD⊥平面AFC,故BD为平面AFC的一法向量.又(0)BD=-,,所以cos5BDBDBD<>===,mmm.因为二面角E AF C--为锐角,所以所求二面角的余弦值为5.B。

人教版高二数学空间向量与立体几何练习(含答案)

人教版高二数学空间向量与立体几何练习(含答案)

人教版高二数学空间向量与立体几何练习(含答案)1.空间直角坐标系中,已知(1,2,3)A -,(3,2,5)B -,则线段AB 的中点坐标为( ) A.(1,2,4)--B.(2,0,1)-C.(2,0,2)-D.(2,0,1)-2.若向量(1,,0)λ=a ,(2,1,2)=-b ,且a 与b 的夹角的余弦值为23,则实数λ等于( ). A.0B.43-C.0或43-D.0或433.已知棱长为1的正方体1111ABCD A B C D -的上底面1111A B C D 的中心为1O ,则11AO AC ⋅的值为( ).A.-1B.0C.1D.24.已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 的一个法向量的是( ) A.(1,1,1)- B.(1,1,1)- C.333,,333⎛⎫--- ⎪ ⎪⎝⎭D.333,,333⎛⎫- ⎪⎪⎝⎭5.如图,在三棱锥P ABC -中,ABC 为等边三角形,PAC 为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A.142 3 D.126.如图,点P 为矩形ABCD 所在平面外一点,PA ⊥平面,ABCD Q 为线段AP 的中点,3,4,2AB BC PA ===,则点P 到平面BQD 的距离为( )A.513B.1213C.135D.13127.(多选)已知向量(1,1,)m =-a ,(2,1,2)m =--b ,则下列结论中正确的是( ) A.若||2=a ,则2m = B.若⊥a b ,则1m =- C.不存在实数λ,使得=a b D.若1⋅=-a b ,则(1,2,2)+=---a b8.(多选)已知正方体1111ABCD A B C D -的棱长为1,点E 、O 分别是11A B 、11A C 的中点,P 在正方体内部且满足1312423AP AB AD AA =++,则下列说法正确的是( ) A.点A 到直线BE 5 B.点O 到平面11ABC D 2 C.平面1A BD 与平面11B CD 3 D.点P 到直线AB 的距离为25369.已知(1,52) AB =-,,(3,1,)BC z =,若AB BC ⊥,(1,,3)BP x y =--,且BP ⊥平面ABC ,则x y +=___________.10.如图,在正四棱锥P ABCD -中,PA AB =,点M 为PA 的中点,BD BN λ=.若MN AD ⊥,则实数λ=__________.11.在棱长为2的正方体1111ABCD A B C D -中,M ,N 分别是111,A D CD 的中点,则直线MN 与平面ABCD 所成的角的余弦值为__________.12.如图,ABC △和BCD △都是边长为2的正三角形,且它们所在平面互相垂直.DE ⊥平面BCD ,且6AE =.(1)设P 是DE 的中点,求证://AP 平面BCD . (2)求二面角B AE C --的正弦值.答案以及解析1.答案:D解析:设中点坐标为(,,)x y z ,根据中点坐标公式得1322x +==,2202y -+==,3512z -==-.故选D. 2.答案:C解析:由题意得2202cos ,||31414λλ⋅-+〈〉===+⋅++a b a b a b ,解得0λ=或43λ=-.故选C. 3.答案:D解析:建立如图所示的空间直角坐标系,则(1,0,0)A ,111,,122O ⎛⎫⎪⎝⎭,1(0,1,1)C ,111,,122AO ⎛⎫=- ⎪⎝⎭,1(1,1,1)AC =-,121111,,1(1,1,1)122222AO AC ⎛⎫∴⋅=-⋅-=++= ⎪⎝⎭.故选D.4.答案:C解析:易得(1,1,0)AB =-,(1,0,1)AC =-, 设(,,)x y z =n 为平面ABC 的一个法向量,则0,0,AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x y x z -+=⎧⎨-+=⎩x y z ∴==,故选C.5.答案:B解析:取AC 的中点O ,连接OP ,OB ,PA PC =,AC OP ∴⊥,平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC = ,OP ∴⊥平面ABC ,又AB BC =,AC OB ∴⊥,以O 为坐标原点,建立如图所示的空间直角坐标系,PAC 是等腰直角三角形,4PA PC ==,ABC 为等边三角形,(22,0,0)A ∴,(2,0,0)C -,2)P ,(2,6,0)D , (42,0,0)AC ∴=-,(2,6,2)PD =-,2cos ,424||||AC PD AC PD AC PD ⋅∴〈〉===⨯∴异面直线AC 与PD 所成角的余弦值为24. 故选B. 6.答案:B解析:如图,以A 为原点,分别以,,AB AD AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(3,0,0),(0,4,0),(0,0,2),(0,0,1)B D P Q ,(3,0,1),(3,4,0),(0,0,1)QB BD QP =-=-=.设平面BQD 的一个法向量为(,,)x y z =n ,则0,0,BD QB ⎧⋅=⎪⎨⋅=⎪⎩n n 即340,30.x y x z -+=⎧⎨-=⎩ 令4x =,则12,3,(4,3,12)z y ==∴=n .∴点P到平面BQD 的距离||12||13QP d ⋅==n n . 7.答案:AC解析:由||2=a 2221(1)2m +-+, 解得2m =±,故A 选项正确;由⊥a b得2120m m --++=,解得1m =,故B 选项错误; 若存在实数λ,使得λ=a b ,则12λ=-,1(1)m λ-=-,2m λ=,显然λ无解,即不存在实数λ使得λ=a b ,故C 选项正确; 若1⋅=-a b ,则2121m m --++=-,解得0m =, 于是(1,2,2)+=--a b ,故D 选项错误. 8.答案:BC解析:如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,1(0,1,1)D ,1,0,12E ⎛⎫ ⎪⎝⎭,所以(1,0,0)BA =-,1,0,12BE ⎛⎫=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,225sin 1cos θθ-. 故A 到直线BE 的距离12525||sin 1d BA θ===A 错. 易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭, 平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211222DA C O d DA ⋅===,故B 对. 1(1,0,1)A B =-,1(0,1,1)A D =-,11(0,1,0)A D =.设平面1A BD 的法向量为(,,)x y z =n ,则110,0,A B A D ⎧⋅=⎪⎨⋅=⎪⎩n n 所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1y =,1x =, 所以(1,1,1)=n .所以点1D 到平面1A BD 的距离1133||3A D d ⋅=n n . 因为易证得平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 3,故C 对.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离2218195||144166||AP AB d AP AB ⋅=-=-=,故D 错. 9.答案:257解析:已知AB BC ⊥,由题意,可得BP AB ⊥,BP BC ⊥.利用向量数量积的运算公式,可得352015603(1)30z x y x y z +-=⎧⎪-++=⎨⎪-+-=⎩,,,解得4071574,x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,401525777x y ∴+=-=. 10.答案:4解析:连接AC ,交BD 于点O ,连接OP ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设2PA AB ==,则(2,0,0)A ,(0,2,0)D -,22M ⎝⎭,2,0)B ,(0,2,0)BD ∴=-,(2,2,0)AD =-,设(0,,0)N b ,则(0,2,0)BN b =-.BD BN λ=,22(2)b λ∴-=,222b λ-∴=222N λ⎛⎫-∴ ⎪ ⎪⎝⎭,22222,,22MN λλ⎛⎫-∴=-- ⎪ ⎪⎝⎭, MN AD ⊥,2410MN AD λλ-∴⋅=-=,解得4λ=.11.答案:63解析:建立如图所示的空间直角坐标系,则1(0,0,0),(0,0,2),(1,0,2),,(0,1,1)D D M N ,所以(1,1,1)MN =--,平面ABCD 的一个法向量为1(0,0,2)DD =,所以1113cos ,3||MN DD MN DD MN DD ⋅〈==-MN 与平面ABCD 所成的角为θ,则3sin θ,所以6cos θ=. 12.答案:(1)见解析 26解析:(1)证明:取BC 的中点O ,连接,,AO DO AD .ABC ∴△是正三角形, OA BC ∴⊥.∵平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,OA ∴⊥平面BCD . OD ⊂平面BCD , AO OD ∴⊥.在Rt AOD △中,2sin 603AO DO ===336∴=+=.AD又6AE=,∴△为等腰三角形.ADE∴⊥.P是DE的中点,AP DEDE⊥平面BCD,∴∴⊥∴.AO DE AP AO AP OD////,,BCD AP⊄平面BCD,OD⊂平面,∴平面BCD.//AP(2)由(1)知,,OA DP AP OD,////∴四边形APDO为平行四边形,∴==,PD OA3∴=.23DE以点O为坐标原点,以,,OD OC OA的方向分别为x轴、y轴、z轴的正方向,建立如图的空间直角坐标系O xyz-,则3),(0,1,0)C E,A B-,(0,1,0),(3,0,23)∴===-.BA AE AC(0,1,3),(3,0,3),(0,1,3)设平面ABE的法向量为(,,)m,x y z=则0,0,BA AE ⎧⋅=⎪⎨⋅=⎪⎩m m即0,0.y ⎧=⎪=令y =1,1x z ==-,1)∴=-m .设平面ACE 的法向量为(,,)a b c =n , 则0,0,AE AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.b ==⎪⎩ 令1a =-,则1b c ==,(∴=-n.1cos ,||||5⋅∴===m n m n m n. sin ,∴=m n ∴二面角B AE C --.。

空间向量与立体几何测试题(含答案)

空间向量与立体几何测试题(含答案)

[学生用书P151(单独成册)][A 基础达标]1.已知a =(-3,2,5),b =(1,5,-1),则a ·(a +3b )=( ) A .(0,34,10) B .(-3,19,7) C .44D.23解析:选C.a +3b =(-3,2,5)+3(1,5,-1)=(0,17,2),则a ·(a +3b )=(-3,2,5)·(0,17,2)=0+34+10=44.2.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1→-D 1C 1→等于( ) A.AD 1→ B.AC 1→ C.AD →D.AB →解析:选A.AB →+BC →+CC 1→-D 1C 1→=AC 1→+C 1D 1→=AD 1→.3.如图所示,在几何体A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =1,CD =2,点E 为CD 中点,则AE 的长为 ( )A. 2B. 3 C .2D. 5解析:选B.AE →=AB →+BC →+CE →, 因为|AB →|=|BC →|=1=|CE →|, 且AB →·BC →=AB →·CE →=BC →·CE →=0. 又因为AE →2=(AB →+BC →+CE →)2,所以AE →2=3,所以AE 的长为 3.故选B.4.如图所示,点P 在正方形ABCD 所在平面外,P A ⊥平面ABCD ,P A =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D.30° 解析:选B.将题中图补成正方体ABCD -PQRS ,如图,连接SC ,AS ,则PB ∥SC ,所以∠ACS (或其补角)是PB 与AC 所成的角.因为△ACS 为正三角形,所以∠ACS =60°,所以PB 与AC 所成的角是60°,故选B.5.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,D 为AA 1上一点.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A.2B. 3 C .2 D.22解析:选A.如图,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Cxyz ,则C (0,0,0),B 1(0,2,2).设AD =a ,则点D 的坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2).设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CB 1→=0m ·CD →=0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0,令z =-1,得m=(a ,1,-1).又平面C 1DC 的一个法向量为(0,1,0),记为n ,则由cos 60°=|m ·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2.故选A. 6.已知平行六面体OABC -O ′A ′B ′C ′,OA →=a ,OC →=c ,OO ′→=b ,D 是四边形OABC 的对角线的交点,则O ′D →=________.解析:O ′D →=OD →-OO ′→=12(OA →+OC →)-OO ′→=12a +12c -b .答案:12a +12c -b7.已知平面α的一个法向量为n =(1,-1,0),则y 轴与平面α所成的角的大小为________.解析:y 轴的一个方向向量s =(0,1,0),cos 〈n ,s 〉=n ·s |n |·|s |=-22,即y 轴与平面α所成角的正弦值是22,故其所成的角的大小是π4. 答案:π48.直角三角形ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P到斜边AB 的距离是________.解析:以点C 为坐标原点,CA ,CB ,CP 所在直线分别为x轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (4,0,0),B (0,3,0),P (0,0,95),所以AB →=(-4,3,0),AP →=⎝⎛⎭⎫-4,0,95.所以AP →在AB →上的投影为|AP →·AB →||AB →|=165,所以点P 到斜边AB 的距离d =|AP →|2-⎝⎛⎭⎫1652=16+8125-25625=3.答案:39.如图,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.(1)求异面直线DP 与CC ′所成角的大小; (2)求DP 与平面AA ′D ′D 所成角的大小.解:如图,以D 为坐标原点,DA 为单位长度建立空间直角坐标系Dxyz .则DA →=(1,0,0),CC ′→=(0,0,1).连接BD ,B ′D ′,在平面BB ′D ′D 中,延长DP 交B ′D ′于点H . 设DH →=(m ,m ,1)(m >0),由〈DH →,DA →〉=60°及DH →·DA →=|DH →||DA →|cos 〈DH →,DA →〉, 可得2m =2m 2+1,解得m =22, 所以DH →=⎝⎛⎭⎫22,22,1.(1)因为cos 〈DH →,CC ′→〉=11×2=22,所以〈DH →,CC ′→〉=45°,即异面直线DP 与CC ′所成的角为45°. (2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0). 因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°,即DP 与平面AA ′D ′D 所成的角为30°.10.(2018·武汉高二检测)在如图所示的空间几何体中,平面ACD ⊥平面ABC ,△ACD 与△ACB 是边长为2的等边三角形,BE =2,BE 和平面ABC 所成的角为60°,且点E 在平面ABC 上的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:(1)证明:由题意知,△ABC ,△ACD 都是边长为2的等边三角形, 取AC 的中点O ,连接BO ,DO , 则BO ⊥AC ,DO ⊥AC . 又平面ACD ⊥平面ABC ,所以DO ⊥平面ABC ,作EF ⊥平面ABC , 那么EF ∥DO ,根据题意,点F 落在BO 上,因为BE 和平面ABC 所成的角为60°,所以∠EBF =60°, 因为BE =2,所以EF =DO =3,所以四边形DEFO是平行四边形,所以DE ∥OF . 因为DE ⊄平面ABC ,OF ⊂平面ABC , 所以DE ∥平面ABC . (2)建立如图所示的空间直角坐标系Oxyz , 则B (0,3,0),C (-1,0,0), E (0,3-1,3), 所以BC →=(-1,-3,0), BE →=(0,-1,3),平面ABC 的一个法向量为n 1=(0,0,1), 设平面BCE 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·BC →=0n 2·BE →=0,所以⎩⎨⎧-x -3y =0-y +3z =0,取z =1,所以n 2=(-3,3,1).所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=1313,又由图知,所求二面角的平面角是锐角,所以二面角E -BC -A 的余弦值为1313. [B 能力提升]11.(2018·河南洛阳模拟)如图,已知三棱锥A -BCD ,AD ⊥平面BCD ,BD ⊥CD ,AD =BD =2,CD =23,E ,F 分别是AC ,BC 的中点,P 为线段BC 上一点,且CP =2PB .(1)求证:AP ⊥DE ;(2)求直线AC 与平面DEF 所成角的正弦值. 解:(1)证明:作PG ∥BD 交CD 于G .连接AG . 所以CG GD =CPPB =2,所以GD =13CD =233.因为AD ⊥平面BCD ,所以AD ⊥DC , 因为在△ADG 中,tan ∠GAD =33, 所以∠DAG =30°,在Rt △ADC 中,AC 2=AD 2+CD 2=4+12=16,所以AC =4,又E 为AC 的中点,所以DE =AE =2,又AD =2,所以∠ADE =60°,所以AG ⊥DE .因为AD ⊥平面BCD ,所以AD ⊥BD ,又因为BD ⊥CD ,AD ∩CD =D ,所以BD ⊥平面ADC , 所以PG ⊥平面ADC ,所以PG ⊥DE .又因为AG ∩PG =G ,所以DE ⊥平面AGP ,又AP ⊂平面AGP ,所以AP ⊥DE .(2)以D 为坐标原点,DB 、DC 、DA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz ,则D (0,0,0),A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0), 所以DF →=(1,3,0),DE →=(0,3,1),AC →=(0,23,-2). 设平面DEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,令x =3,则n =(3,-3,3). 设直线AC 与平面DEF 所成角为θ,则sin θ=|cos 〈AC →,n 〉|=|AC →·n ||AC →|·|n |=|-6-6|421=217,所以AC 与平面DEF 所成角的正弦值为217.12.(2017·高考山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF ︵的中点.(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小; (2)当AB =3,AD =2时,求二面角E -AG -C 的大小. 解:(1)因为AP ⊥BE ,AB ⊥BE , AB ,AP ⊂平面ABP ,AB ∩AP =A , 所以BE ⊥平面ABP , 又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC =120°, 因此∠CBP =30°. (2)法一:取EC ︵的中点H ,连接EH ,GH ,CH . 因为∠EBC =120°, 所以四边形BEHC 为菱形,所以AE =GE =AC =GC =32+22=13. 取AG 中点M ,连接EM ,CM ,EC , 则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角. 又AM =1,所以EM =CM =13-1=2 3. 在△BEC 中,由于∠EBC =120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12, 所以EC =23,因此△EMC 为等边三角形, 故所求的角为60°. 法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧m ·AE →=0,m ·AG →=0,可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2). 设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由⎩⎪⎨⎪⎧n ·AG →=0,n ·CG →=0,可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2). 所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此所求的角为60°.13.(选做题)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:如图,以O 为坐标原点,建立空间直角坐标系Oxyz .则A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4),所以AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC . (2)假设存在满足题意的点M ,设PM →=λP A →,0≤λ<1, 则PM →=λ(0,-3,-4), 所以BM →=BP →+PM →=(-4,-2,4)+λ(0,-3,-4) =(-4,-2-3λ,4-4λ), AC →=(-4,5,0).设平面BMC 的一个法向量为n 1=(x 1,y 1,z 1),平面APC 的一个法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧BM →·n 1=0BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0-8x 1=0即⎩⎪⎨⎪⎧x 1=0z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0AC →·n 2=0,得⎩⎪⎨⎪⎧3y 2+4z 2=0-4x 2+5y 2=0,即⎩⎨⎧x 2=54y 2z 2=-34y2,可取n 2=(5,4,-3).由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故AM =35|AP →|=35×32+42=3.综上所述,线段AP 上存在点M 符合题意,此时AM =3.。

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。

第二章空间向量与立体几何基础选择30道

第二章空间向量与立体几何基础选择30道

第二章空间向量与立体几何基础选择30道一、单选题1.已知()1,5,2a =-,(),2,1b m m =+,若a b ⊥,则m 的值为( ) A .6-B .8-C .6D .82.已知向量()1,1,0a =-,()0,1,1b =-,则⋅=a b ( ) A .0B .1C .1-D .23.已知()2,2,5μ=-,()6,4,4ν=-,μ、ν分别是平面α,β的法向量,则平面α,β的位置关系是( )A .平行B .垂直C .所成的二面角为锐角D .所成的二面角为钝角4.若直线l 的方向向量为(1,3)a =,则直线l 的斜率为( )A .12B .2C .3D5.在空间直角坐标系中,点()1,3,1A -和点()2,1,2B -之间的距离为( )A .2B CD6.已知空间两点()()1213,5,2,4,3P P --,,则12PP 等于( )AB .C D7.已知点(1,2,3)A 关于原点的对称点为A 1,则A 1坐标为( ) A .(1,2,)3- B .1,2)3(,--- C .(1,2,3)--D .(1,2,3)-8.已知空间向量(,1,)a t t =,(2,,1)b t t =-,则a b -的最小值为( )AB C .2D .49.若二面角l αβ--为3π,直线m α⊥,则平面β内的所有直线与m 所成角的取值范围是( )A .(0,)2πB .[,]62ππC .[,]32ππD .[,]63ππ10.如图,在单位正方体1111ABCD A B C D -中,以D 为原点,DA ,DC ,1DD 为坐标向量建立空间直角坐标系,则平面11A BC 的法向量是( )A .(1,1,1)B .(1-,1,1)C .(1,1-,1)D .(1,1,1)-11.在三棱锥S ABC -中,平面SAC ⊥平面ABC ,SA AC ⊥,BC AC ⊥,6SA =,21AC =8BC =,则SB 的长为( )A .8B .9C .11D .1212.在空间直角坐标系中,已知点()4,3,5A -,()2,1,7B --,则线段AB 的中点坐标是( ) A .()2,2,2--B .()1,11--C .()1,1,1D .()2,2,213.已知向量()1,21a →=-,,()3,,1b x =,且a b →→⊥,那么b →等于( ) A 10B 11C .23D .514.在空间直角坐标系O xyz -中,点M (x ,y ,2020)(x ∈R ,y ∈R )构成的集合是( ) A .一条直线 B .平行于平面xOy 的平面 C .两条直线D .平行于平面xOz 的平面15.在空间直角坐标系中,点()3,2,1P --关于原点对称的点的坐标是( ) A .()3,2,1--B .()3,2,1-C .()3,2,1-D .()3,2,1-16.在长方体1111ABCD A B C D -中,下列各式运算结果为1BD 的是( )①111A D A A AB -- ②111BC BB D C +- ③1AD AB DD -- ④1111B D A A DD -+ A .①②B .②③C .③④D .①④17.在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A .1122-++a b c B .1122a b c ++ C .1122a b c --+ D .1122a b c -+ 18.已知向量(,1,3)λ=a ,(0,3,3)λ=-+b ,若a b ⊥,则实数λ的值为( ) A .2-B .32-C .32D .219.已知平面0{|0}P P n P α=⋅=,其中点0(1P ,2,3),法向量(1n =,1,1),则下列各点中不在平面α内的是( ) A .(3,2,1) B .(2-,5,4) C .(3-,4,5)D .(2,4-,8)20.已知(123)A -,,、(211)B -,,两点,则直线AB 与空间直角坐标系中的yOz 平面的交点坐标为( )A .(000),,B .(057)-,,C .51(0)33,, D .71(0)44,,21.如图,在平行六面体1111ABCD A B C D -中,若11BD xAB yAD zAA =++,则(,,)x y z =( )A .(1-,1,1)B .(1,1-,1)C .(1,1,1)-D .(1-,1-,1)-22.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++,若M ,A ,A .712B .13C .512D .1223.已知()()()2,2,0,0,2,2,2,0,2A B C ,则,,A B C 满足( ) A .三点共线 B .构成直角三角形 C .构成钝角三角形D .构成等边三角形24.已知平面α的一个法向量为()1,1,0n =-,则y 轴与平面α所成的角的大小为( ) A .6π B .4π C .3π D .2π 25.已知351,,22a ⎛⎫=-⎪⎝⎭,153,,2b λ⎛⎫=-- ⎪⎝⎭满足//a b ,则λ等于( ) A .23 B .92C .92-D .23-26.在正方体1111ABCD A B C D -中,棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的正弦值为( )A .6B C .6D 27.已知向量a →()3,2,5=-,b →()1,,1x =-,且a b →→⊥,则x 的值为( ) A .4B .1C .3D .228.已知正方体1111ABCD A B C D -,点E 是上底面11A C 的中心,若1AE AA xAB yAD =++,则x y +等于( )A .13B .12C .1D .229.若两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-,则1l 和2l 的位置关系是( )A .平行B .相交C .垂直D .不确定30.空间直角坐标系中,O 为坐标原点,已知两点坐标为A (3,1,0),B (-1,3,0),若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为 A .平面 B .直线 C .圆 D .线段参考答案1.D 【分析】由a b ⊥,可得0a b ⋅=,则有102(1)0m m +-+=,从而可求出m 的值, 【详解】解:因为a b ⊥,所以0a b ⋅=, 因为()1,5,2a =-,(),2,1b m m =+, 所以102(1)0m m +-+=,解得8m =, 故选:D 2.B 【分析】直接利用空间向量的数量积运算求解. 【详解】因为向量()1,1,0a =-,()0,1,1b =-, 所以()()1011011a b ⋅=-⨯+⨯+⨯-=, 故选:B 3.B 【分析】直接利用μ、ν的数量积运算判断. 【详解】因为()2,2,5μ=-,()6,4,4ν=-,且分别是平面α,β的法向量, 而()()6242540μν⋅=⨯-+-⨯+⨯=, 所以α,β的位置关系是垂直, 故选:B 4.D 【分析】设向量(1,3)a =起点为原点,终点为A ,则直线OA 的斜率即为直线l 的斜率. 【详解】取坐标平面内两点()0,0O 和A ,则(1,a OA ==,则直线OA 斜率即为直线l 的斜率,而OA k l 故选:D . 5.C 【分析】直接利用空间两点间的距离公式可求得结果. 【详解】||AB ===故选:C 6.A 【分析】利用空间两点距离公式直接计算即可. 【详解】()()1213,5,2,4,3P P --,12PP ∴==故选:A. 7.B 【分析】根据空间点的对称性,直接求解. 【详解】点()1,2,3A 关于原点的对称点()11,2,3A ---. 故选:B 8.C 【分析】利用空间向量的坐标运算和模的坐标表示求得a b -关于t 的函数关系,然后利用二次函数的性质即得所求. 【详解】解:∵(,1,)a t t =,(2,,1)b t t =-, ∴(2,1,1)a b t t -=--,则2||2(1a b -=+=,∴当1t =时,a b -取最小值为2. 故选:C . 【点睛】关键要熟练掌握空间向量的模的坐标表示,注意准确运算. 9.B 【分析】根据二面角的平面角大小可知m 与β所成的角的大小,考虑特殊位置可得β所在平面内的直线与m 所成角,从而求出所求. 【详解】由二面角l αβ--的大小为3π,直线m α⊥,得m 与β所成的角的大小为6π,于是β所在平面内的直线与m 所成的角的最小值为6π,而最大值为2π.故选:B 10.A 【分析】设平面11A BC 的法向量是(n x =,y ,)z ,由11·0·0n BA y z n BC x z ⎧=-=⎪⎨=-+=⎪⎩可求得法向量.【详解】在单位正方体1111ABCD A B C D -中,以D 为原点,DA ,DC ,1DD 为坐标向量建立空间直角坐标系, 1(1A ,0,1),(1B ,1,0),1(0C ,1,1),1(0BA =,1,1)-,1(1BC =-,0,1),设平面11A BC 的法向量是(n x =,y ,)z ,则11·0·0n BA y z n BC x z ⎧=-=⎪⎨=-+=⎪⎩,取1x =,得(1n =,1,1),∴平面11A BC 的法向量是(1,1,1).故选:A.11.C 【分析】建立空间直角坐标系,写出点S 和点B 坐标,利用空间中两点间距离公式即可求解. 【详解】如图:建立以A 为原点的空间直角坐标系,则()000A ,,,(821B ,,,(006)S ,,,∴(011SB SB ===,故选:C 12.B 【分析】利用中点坐标公式即可求解. 【详解】在空间直角坐标系中,点()4,3,5A -,()2,1,7B --,则线段AB 的中点坐标是423157,,222--+-⎛⎫⎪⎝⎭ ,即()1,11-- 故选:B 13.B 【分析】 由a b →→⊥,得 【详解】解:因为向量()1,21a →=-,,()3,,1b x =,且a b →→⊥,所以13210x -⨯++=,解得1x =, 所以()3,1,1b =,所以b →==故选:B 14.B 【分析】由点的竖坐标可选出正确答案. 【详解】解:由题意知,点M 在平面xOy 的上方,且距平面xOy 始终为2020, 故选:B. 15.D【分析】关于原点对称的两点坐标对应互为相反数. 【详解】在空间直角坐标系中,点()3,2,1P --关于原点对称的点的坐标是()3,2,1- 故选:D 16.A 【分析】根据空间向量的运算法则,逐项计算,即可判断出结果. 【详解】11111AD A A AB AD AB BD --=-=,①对; 1111111111BC BB DC BC CC DC BC C D BD +-=+-=+=,②对; 111111AD AB DD BD DD B D D B D D --=-=+=,③错;11111111B D A DD BD DD DD BD DD A -+=++=+显然不等于1BD ,④错.故选:A . 17.A 【分析】利用空间向量的加法的三角形法则,结合平行六面体的性质分析解答. 【详解】由题意,1111112BM BC CC C M BC CC C A =++=++()111111122222BC CC AB BC AB BC CC a b c =+-+=-++=-++; 故选:A . 18.A 【分析】根据a b ⊥得0+1(3)3(3)0,λλ⨯⨯-+⨯+=解方程即得解. 【详解】 因为a b ⊥,所以0+1(3)3(3)0,2λλλ⨯⨯-+⨯+=∴=-.故选:A19.B【分析】结合各个选项分别求出0P P ,计算0P Pn ⋅的值是否为0,从而得出结论. 【详解】对于A ,0(2P P =,0,2)-,012101(2)0P P n ⋅=⨯+⨯+⨯-=,故选项A 在平面α内; 对于B ,0(3P P =-,3,1),01(3)131110P n P ⋅=⨯-+⨯+⨯=≠,故选项B 不在平面α内;对于C ,0(4P P =-,2,2),01(4)12120P n P ⋅=⨯-+⨯+⨯=,故选项C 在平面α内; 对于D ,0(1P P =,6-,5),0111(6)150P P n ⋅=⨯+⨯-+⨯=,故选项D 在平面α内. 故选:B20.B【分析】设直线AB 与平面yOz 的交点为11(0)P y z ,,,利用A 、B 、1P 三点共线得向量共线,由此可求出答案.【详解】解:设直线AB 与平面yOz 的交点为11(0)P y z ,,,(方法一)∵A 、B 、1P 三点共线,则1//AP AB, ∵(123)A -,,、(211)B -,,, ∴111(1,2),3AP y z +-=-,(1,3,4)AB =-, 则11231134y z +--==-,解得1157y z =-⎧⎨=⎩, 则(057)P -,,, (方法二)∵A 、B 、1P 三点共线,则1(1)OP OA OB λλ=⋅+-⋅,则11(0,)(1,2,3)(1)(2,1,1),y z λλ=⋅-+-⋅-,则11022221133141y z λλλλλλλλλ=+-=-⎧⎪=-+-=-⎨⎪=-+=-⎩,解得11257y z λ=⎧⎪=-⎨⎪=⎩,则(057)P -,,, 故选:B .21.A【分析】利用向量的加法公式,对向量1BD 进行分解,进而求出x ,y ,z 的值.【详解】解:1111BD BB B D =+,又因11BB AA =,11B D BD AD AB ==-,∴111BD AA AD AB xAB yAD zAA =+-=++, 1x ∴=-,1y =,1z =,故选:A .22.A【分析】 利用空间四点共面可知11146λ++=,直接求λ的值. 【详解】因为M ,A ,B ,C 共面,则11146λ++=,得712λ=. 故选:A【点睛】本题考查空间四点共面定理,属于基础题型.23.D【分析】利用空间两点间的距离公式计算可得结果.【详解】因为||AB ==||BC ==,||AC ==所以||||||AB BC AC ==,所以ABC 为等边三角形.故选:D.【点睛】本题考查了空间两点间的距离公式,属于基础题.24.B【分析】求出y 轴的方向向量,代入向量的夹角公式,即可得解.【详解】易知y 轴的方向向量为()0,1,0m =,解得:(1,sin cos ,2n m α===, =4πα, 故选:B.【点睛】本题考查了向量法求线面角,在解题时注意线面角和向量所成角的关系,注意公式的正确应用,属于基础题.25.B【分析】根据空间向量的共线可得答案. 【详解】因为351,,22a ⎛⎫=- ⎪⎝⎭,153,,2b λ⎛⎫=-- ⎪⎝⎭, 因为//a b ,所以a tb =,即351513,,222t t t λ=--==-, 得13t =-, 92λ=. 故选:B.【点睛】本题考查空间向量平行的坐标表示,属于基础题.26.C【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法求出直线EF 与平面11AA D D 所成角的正弦值.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则E (2,1,0),F (1,0,2),()1,1,2EF =--,因为y 轴与11AA D D 垂直,则平面11AA D D 的一个法向量()0,1,0n =,设直线EF 与平面11AA D D 所成角为θ, 则6sin 6EF nEF n θ⋅===⋅. ∴直线EF 与平面11AA D D 6 故选:C .【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题.27.A【分析】由向量的数量积为0可求得x .【详解】∵a b →→⊥,∴3250a b x →→⋅=-+-=,解得4x =.故选:A .【点睛】本题考查空间向量垂直的坐标表示,属于基础题.28.C【分析】结合几何体,根据空间向量的加法运算得到,x y 的值.【详解】 如图,()111111112AE AA A E AA A B A D =+=++ ()11111222AA AB AD AA AB AD =++=++, 所以12x y ==, 所以1x y +=.故选:C【点睛】本题考查空间向量的运算,重点考查数形结合分析问题,属于基础题型.29.A【分析】由212v ν=-,可知两直线的位置关系是平行的【详解】解:因为两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-, 所以212v ν=-,即2ν与1v 共线,所以两条不重合直线1l 和2l 的位置关系是平行,故选:A【点睛】此题考查了直线的方向向量,共线向量,两直线平行的判定,属于基础题. 30.B【详解】设点C 的坐标为(,,)x y z ,由题意可得 (,,)(3,3,0)x y z αβαβ=-+, 再由α+β=1可得,250x y +-=,故点C 的轨迹方程为250x y +-=故选:B .。

空间向量与立体几何练习题

空间向量与立体几何练习题

空间向量与立体几何时间:45分钟 分值:100分一、选择题(每小题6分,共计36分) 1.已知正方体ABCD -A 1B 1C 1D 1,则异面直线BD 1与AC 所成的角为( ) A .30° B .45° C .60° D .90° 解析:连接BD 、B 1D 1.∵在正方体ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,∴D 1D ⊥AC ,又AC ⊥BD ,D 1D ∩BD =D ,∴AC ⊥平面BDD 1B 1,∴AC ⊥BD 1.故选D.答案:D图12.如图1,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α,β所成的角分别为π4和π6,过A ,B 两点分别作两平面交线的垂线,垂足为A ′,B ′,若AB=12,则A ′B ′的长为( )A .4B .6C .8D .9 解析:连接AB ′和A ′B ,设AB =a ,可得AB 与平面α所成的角为∠BAB ′=π4,在Rt △BAB ′中有AB ′=22a ;AB 与平面β所成的角为∠ABA ′=π6,所以A ′A =12a ,因此在Rt △AA ′B ′中,A ′B ′=(22a )2-(12a )2=12a ,所以AB A ′B ′=a 12a =2 1,又AB =12,所以A ′B ′=6,故选B.答案:B3.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.31010D.35解析:连接BA 1,因为CD 1∥BA 1,所以∠A 1BE 即为异面直线BE 与CD 1所成的角,令AA 1=2AB =2,则EB =2,A 1E =1,A 1B =5,故由余弦定理得cos ∠A 1BE =31010,即异面直线BE 与CD 1所成角的余弦值为31010.答案:C4.已知三棱锥底面是边长为1的等边三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( )A.32B.12C.33D.36解析:由于是正三棱锥,故顶点在底面上的射影是底面正三角形的中心,底面的一个顶点到这个中心的距离是23×32=33,故侧棱与底面所成角的余弦值为332=36.答案:D5.已知正三棱锥P -ABC 的高PO 为h ,点D 为侧棱PC 的中点,PO 与BD 所成角的余弦值为23,则正三棱锥P -ABC 的体积为( )图2A.338h 3B.238h 3C.38h 3D.334h 3 解析:图3设底面边长为a ,连接CO 交AB 于点F ,过点D 作DE ∥PO 交CF 于点E ,连接BE ,则∠BDE 为PO 与BD 所成的角,∴cos ∠BDE =23,∵PO ⊥平面ABC ,∴DE ⊥平面ABC ,即△BED 是直角三角形,∵点D 为侧棱PC 的中点,∴DE =h 2,∴BE =144h ,在Rt △BEF 中,BE 2=EF 2+FB 2,即a 23+a 24=78h 2,∴a 2=32h 2,∴V P -ABC =13×12×a ×32a ×h =312a 2h =38h 3,故选C. 答案:C图46.在三棱柱ABC -A 1B 1C 1中,各棱长均为4,侧棱垂直于底面,点D 是棱AB 的中点,则AC 与平面DCA 1所成角的正弦值是( )A.55B.22C.24D.64 解析:图5由题易知CD ⊥AB ,∴CD ⊥侧面ABB 1A 1,∴平面A 1CD ⊥侧面ABB 1A 1,作AE ⊥A 1D ,则AE ⊥平面DCA 1,连接CE ,则∠ACE 为AC 与平面DCA 1所成的角,∵AC =AA 1=4,AD =2,易得AE =455,∴sin ∠ACE =55,故选A.答案:A二、填空题(每小题8分,共计24分)图67.如图6,长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =3,AA 1=6,则异面直线AB 1与BC 1所成角的大小为________.解析:连接C 1D 、BD ,则∠BC 1D 就是异面直线AB 1与BC 1所成的角,由题意知C 1D =22,C 1B =3,BD =5,由余弦定理,得cos ∠BC 1D =8+9-52×3×22=22,所以异面直线AB 1与BC 1所成的角是π4. 答案:π4图78.如图7,在正方体ABCD -A 1B 1C 1D 1中,点M 为平面ABB 1A 1的中心,则MC 1与平面BB 1C 1C 所成角的正切值为________.解析:如图8所示,过点M 作BB 1的垂线,垂足为N ,则MN ⊥平面BB 1C 1C ,连接NC 1,则∠MC 1N 为MC 1与平面BB 1C 1C 所成的角,设正方体的棱长为2a ,则MN =a ,NC 1=5a ,图8∴tan ∠MC 1N =55.答案:55图99.如图9,在等腰直角三角形ABD 中,∠BAD =90°,且等腰直角三角形ABD 与正三角形CBD 所在平面垂直,E 为BC 的中点,则AE 与平面BCD 所成角的大小为________.解析:取BD 的中点F ,连接EF 、AF ,则∠AEF 就是AE 与平面BCD 所成的角,由题意知EF =12CD =12BD =AF ,所以∠AEF =45°,即AE 与平面BCD所成的角为45°.答案:45°三、解答题(共计40分) 10.(10分)(2011·陕西高考)如图10,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.图10(1)证明:平面ADB ⊥平面BDC ;(2)设E 为BC 的中点,求AE→与DB →夹角的余弦值. 解:(1)∵折起前AD 是BC 边上的高,∴ 当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D ,∴AD ⊥平面BDC , ∵AD 平面ABD ,∴平面ADB ⊥平面BDC.图11(2)由∠BDC =90°及(1)知DA ,DB ,DC 两两垂直,不妨设|DB |=1,以D为坐标原点,以DB→,DC →,DA →所在直线为x ,y ,z 轴建立如图11所示的空间直角坐标系,易得D (0,0,0),B (1,0,0),C (0,3,0),A (0,0,3),E (12,32,0).∴AE →=(12,32,-3),DB →=(1,0,0,), ∴AE→与DB →夹角的余弦值为 cos 〈AE →,DB →〉=AE →·DB →|AE →|·|DB →|=121×224=2222.11.(15分)(2011·北京高考)图12如图12,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.解:(1)证明:因为四边形ABCD 是菱形,所以AC ⊥BD . 又因为PA ⊥平面ABCD ,所以PA ⊥BD . 所以BD ⊥平面PAC .(2)设AC ∩BD =O .因为∠BAD =60°,PA =PB =2, 所以BO =1,AO =CO = 3.图13如图13,以O 为坐标原点,建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).所以PB→=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. (3)由(2)知BC→=(-1,3,0). 设P (0,-3,t )(t >0),则BP→=(-1,-3,t ). 设平面PBC 的法向量m =(x ,y ,z ), 则BC →·m =0,BP →·m =0.所以⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0.令y =3,则x =3,z =6t .所以m =(3,3,6t).同理,平面PDC 的法向量n =(-3,3,6t).因为平面PBC ⊥平面PDC ,所以m ·n =0,即-6+36t2=0.解得t = 6.所以PA = 6.12.(15分)(2011·浙江高考)图14 如图14,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.解:方法一:(1)如图15,以O 为原点,以射线OP 为z 轴的正半轴,建立空间直角坐标系O -xyz ,图15则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)设PM→=λPA →,λ≠1,则PM →=λ(0,-3,-4) BM→=BP →+PM →=BP →+λPA → =(-4,-2,4)+λ(0,-3,-4) =(-4,-2-3λ,4-4λ), AC→=(-4,5,0),BC →=(-8,0,0). 设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2).由⎩⎨⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎨⎧x 1=0z 1=2+3λ4-4λy 1,可取n 1=(0,1,2+3λ4-4λ).由⎩⎨⎧AP →·n 2=0,AC →·n 2=0,,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=542,z 2=-34y 2,可取n 2=(5,4,-3).由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故AM =3,综上所述,存在点M 符合题意,AM =3.图16方法二:(1)由AB =AC ,D 是BC 的中点,得AD ⊥BC . 又PO ⊥平面ABC ,得PO ⊥BC .因为PO ∩AD =O ,所以BC ⊥平面PAD ,故BC ⊥PA . (2)如图16,在平面PAB 内作BM ⊥PA 于M ,连结CM . 由(1)知AP ⊥BC ,得AP ⊥平面BMC . 又AP ⊂平面APC ,所以平面BMC ⊥平面APC .在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41. 在Rt △POD 中,PD 2=PO 2+OD 2, 在Rt △PDB 中,PB 2=PD 2+BD 2,所以PB 2=PO 2+OD 2+DB 2=36得PB =6,在Rt △POA 中,PA 2=AO 2+OP 2=25,得PA =5,又cos∠BPA=PA2+PB2-AB22PA·PB=13,从而PM=PB cos∠BPA=2,所以AM=PA-PM=3,综上所述,存在点M符合题意,AM=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焠 焠t
焠t焠
焠焠 ,
焠 焠t
焠t焠
且两向量互相垂直,
所以
焠焠 , t,
解得 .
6. A 则点 所以 又在
【解析】设点 , 在底面 体 鼠 的射影分别为 , ,
为 鼠 的中点,
鼠∽
体,
鼠,

中,易得


所以

不妨设正方体的棱长为 ,以 鼠 为原点,鼠 ,鼠 ,鼠鼠 所在的直线分别为 ,᧋,अ 轴建立空间直角坐 标系,
互相垂直,则 的值是
C.
D.
6. 如图,在正方体 体 鼠 则
体 鼠 中, 为棱 鼠 的中点.设 与平面 体体 鼠 鼠 的交点为 ,
A. 三点 鼠 , ,体 共线,且 体

B. 三点 鼠 , ,体 不共线,且 体

C. 三点 鼠 , ,体 共线,且 体 鼠
D. 三点 鼠 , ,体 不共线,且 体 鼠
二、填空题(共 6 小题;共 30 分)



又因为

体,
所以


14. (1) 连接 体 , .
因为 , 分别为 体体 ,体 的中点,
所以 ∥体 ,且
体.
又因为 为 鼠 的中点,
所以 鼠
鼠.
由题设知 体 ∥鼠 且 体 鼠 ,可得 体 ∥ 鼠 且 体
鼠,
故 ∥ 鼠且
鼠,
因此四边形 鼠 为平行四边形, ∥ 鼠.

平面 鼠 ,
所以 ∥平面 鼠 . (2) 过 作 的垂线,垂足为 t.
所以 体 平面 体.
因为 体 平面 体,
所以 体 体.
(2) 在
体 中,
因为
,体 ,体 ,
所以
体 体,
所以 体 体.
所以,建立空间直角坐标系 体 ᧋अ,如图所示.
所以
焠t焠t ,体 t焠t焠t , t焠 焠t ,鼠 焠 焠t , t焠t焠 ,

焠 焠t ,
t焠 焠

易知平面 体 鼠 的一个法向量为
t焠t焠 .
体 中,平面 体 平面 体 ,

, , 分别为 体, 的中点.
体 为等边三角形,
体且
(1)求证: 体∥平面 ;
(2)求证:平面
平面 体;
(3)求三棱锥
体 的体积.
第 2页(共 9 页)
14. 如图,直四棱柱 体 鼠 体 鼠 的底面是菱形, 分别是 体 ,体体 , 鼠 的中点.
, 体 , 体 鼠 t, , ,
与 鼠 所成角的正切值为
A.
B.
C.
D.
3. 如 图 , 在 三 棱 锥
体 中,

, 体 t,
平面 体,鼠 为 体 中点,则 鼠 与平面 体 所成的角为
A. π
B. π
C. π
D. π
4. 已知向量
焠 焠,
焠t焠 , t焠t焠 ,则
A.
B.
C.
D.
5. 已知向量 A.
焠 焠t , B.
焠t焠 ,且

空间向量与立体几何基础练习题
一、选择题(共 6 小题;共 30 分)
1. 点 焠᧋焠अ 满足


A. 以点 焠 焠 为圆心, 为半径的圆上
,则点 在
B. 以点 焠 焠 为中心, 为棱长的正方体内
C. 以点 焠 焠 为球心, 为半径的球面上
D. 无法确定
2. 在正方体 体 鼠 体 鼠 中, 为棱 的中点,则异面直线
11. 如图所示为一个正方体的一种表面展开图,图中的四条线段 体,
鼠, , t 在原正方体中互为异面直线的有
对,成 t
角的有
对.
12. 在空间直角坐标系
᧋अ 中,平面 体 的一个法向量为
则点 到平面 体 的距离 等于
.
焠 焠 ,已知点
焠焠 ,
三、解答题(共 3 小题;共 40 分)
13. 如图,在三棱锥
又因为向量 所以与向量 8. , t 【解析】由
焠 焠 的模为 焠 ,得 ,
所以 cos 焠

所以向量 与 之间的夹角是 t .
9.
t
10. t 11. ,
12.
【解析】


焠焠
t
t
焠 焠. ,
第三部分
13. (1) 因为 , 分别为, 体, 的中点, 所以 ∥ 体 .
(1)证明: ∥平面 鼠 ; (2)求点 到平面 鼠 的距离.
第 3页(共 9 页)
15. 如图,在四棱锥
体 鼠 中,平面 体 平面 体 鼠, 体 体 , 鼠∥体 , 鼠 ,

体 ,体 .
(1)求证:体 (2)求二面角
体; 鼠 的余弦值;
(3)若点 在棱 上,且 体 ∥平面
鼠,求线段 体 的长.
第 4页(共 9 页)
则 焠t焠t ,体 焠 焠t , t焠 焠 ,鼠 t焠t焠 ,
设点 焠᧋焠अ ,
则由



焠᧋焠अ
焠 ᧋焠 अ ,
第 5页(共 9 页)
焠 解得 ᧋ 焠
अ焠
所以 鼠
焠焠 ,体 焠焠
所以 体 鼠 , 所以三点 鼠 , ,体 共线,且 体
, 鼠.
第二部分
7. t 焠 焠

t焠

【解析】因为与向量 共线的单位向量是 ,
由已知可得 鼠 体 ,鼠

所以 鼠 平面 ,
故 鼠 t.
从而 t 平面 鼠 ,
故 t 的长即为 到平面
由已知可得

鼠 的距离, ,
所以
,故 t

第 7页(共 9 页)
从而点 到平面 鼠 的距离为 .
15. (1) 因为 平面 体 平面 体 鼠,且 平面 体 平面 体 鼠 体,
因为 体 体,且 体 平面 体 鼠,
设平面 则
鼠 的一个法向量为

t焠 即 t焠
᧋焠 ᧋
अ焠
焠᧋焠अ ,
令 अ ,则
焠 焠.
设二面角
鼠 的平面角为 ,可知 为锐角,
则 cos cos 焠
t,
即二面角
鼠 的余弦值为 t.
(3) 因为点 在棱 ,
所以 因为
, t焠 . 焠t焠 ,
所以
焠t焠 ,体 体
焠t焠 .
又因为 体 ∥平面 鼠, 为平面 鼠 的一个法向量,
7. 与向量 焠 焠 共线的单位向量是

第 1页(共 9 页)
8. 已知向量
焠t焠 ,


焠 焠t ,则 的值是
,向量 与 之间的夹角
9. 已知二面角 弦值为
的两个面的法向量分别为 .
焠t焠 和
焠 焠t ,则此二面角的余
10. 已知向量
焠焠
与平面 所成的角为
是直线 的方向向量,向量 .
焠t焠t 是平面 的法向量,则直线
所以 体
t,即
t,
所以 .
所以 体
焠t焠 ,
所以 体 体

第 8页(共 9 页)
第 9页(共 9 页)
答案
第一部分
1. C 【解析】根据两点间距离公式的几何意义,动点 焠᧋焠अ 满足到定点 焠 焠
2. C
3. B 【解析】因为
平面 体,
所以 平面 体 平面 体 ,
则 鼠 在平面 体 上的射影在 体 上,
所以 体 鼠 就是 鼠 与平面 体 所成的角, 即 体 鼠 π.
的距离恒等于 .
4. C 5. D 【解析】因为
又因为 体 平面 ,
又因为
平面 ,
所以 体∥平面
(2) 因为
所以
体,
. 体 , 为 体 的中点,
又因为 平面 体 平面 体 ,且
平面 体 ,
所以
平面 体,
所以 平面
平面 体.
第 6页(共 9 页)
(3) 在等腰直角三角形 体 中,


所以 体 ,

所以等边三角形 体 的面积 体

又因为
平面 体,
所以
相关文档
最新文档