七年级数学三角形知识点同步提高练习题经典

合集下载

苏科版2020-2021学年七年级数学下册7.4认识三角形考点同步训练(含答案)

苏科版2020-2021学年七年级数学下册7.4认识三角形考点同步训练(含答案)

苏科版2020-2021 学年七年级数学下册7.4 认识三角形考点同步训练考点一.三角形:1.如图,图中直角三角形共有()A.1 个B.2 个C.3 个D.4 个2.某同学在纸上画了四个点,如果把这四个点彼此连接,连成一个图形,则这个图形中会有个三角形出现.3.如图,直角三角形的个数为.4.过A、B、C、D、E 五个点中任意三点画三角形;(1)其中以AB 为一边可以画出个三角形;(2)其中以C 为顶点可以画出个三角形.考点二.三角形的角平分线、中线和高:5.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A.B.C.D.6.以下是四位同学在钝角三角形△ABC 中画AC 边上的高,其中正确的是()A.B.C.D.7.在数学课上,同学们在练习画边AC 上的高时,出现下列四种图形,其中正确的是()A.B.C.D.8.如图,△ABC 中,∠BAC 是钝角,AD⊥BC、EB⊥BC、FC⊥BC,则下列说法正确的是()A.AD 是△ABC 的高B.EB 是△ABC 的高C.FC 是△ABC 的高D.AE、AF 是△ABC 的高9.如图,已知P 为直线l 外一点,点A、B、C、D 在直线l 上,且PA>PB>PC>PD,下列说法正确的是()A.线段PD 的长是点P 到直线l 的距离B.线段PC 可能是△PAB 的高C.线段PD 可能是△PBC 的高D.线段PB 可能是△PAC 的高10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形11.如图,在四边形ABCD 中,AB∥CD,3AB=4AD=6CD,E 为AB 的中点.萧钟同学用无刻度的直尺先连接CE 交BD 于点F,再连接AF.则线段AF 是△ABD 的()A.中线B.高线C.角平分线D.中线、高线、角平分线(三线合一)12.如图,D、E 分别是△ABC 的边AC、BC 的中点,则下列说法不正确的是()A.DE 是△ABC 的中线B.BD 是△ABC 的中线C.AD=DC,BE=EC D.DE 是△BCD 的中线13.如图,AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A,在△ABC 中,AB边上的高为()A.AD B.GA C.BE D.CF14.如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD⊥BC 于D,BE⊥AC 于E,AD 与BE 交于H,则∠CHD=.15.在△ABC 中,AC=5cm,AD 是△ABC 中线,若△ABD 周长与△ADC 的周长相差2cm,则BA=cm.16.如图,在△ABC 中(AB>BC),AB=2AC,AC 边上中线BD 把△ABC 的周长分成30和20 两部分,求AB 和BC 的长.17.如图,△ABC 的周长是21cm,AB=AC,中线BD 分△ABC 为两个三角形,且△ABD的周长比△BCD 的周长大6cm,求AB,BC.18.已知:∠MON=40°,OE 平分∠MON,点A、B、C 分别是射线OM、OE、ON 上的动点(A、B、C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO 的度数是;②当∠BAD=∠ABD 时,x=;当∠BAD=∠BDA 时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.考点三.三角形的面积:19.如图,AD 是△ABC 的中线,DE 是△ADC 的高线,AB=3,AC=5,DE=2,那么点D 到AB 的距离是()A. B. C. D.2 20.如图,在△ABC 中,已知点E、F 分别是AD、CE 边上的中点,且S△BEF=4cm2,则S△ABC 的值为()A.1cm2 B.2cm2 C.8cm2 D.16cm221.已知AD 是△ABC 的中线,BE 是△ABD 的中线,若△ABC 的面积为18,则△ABE 的面积为(A.5 )B.4.5C.4 D.922.如图,D,E,F 分别是边BC,AD,AC 上的中点,若S 四边形的面积为3,则△ABC的面积是()A.5 B.6 C.7 D.8 23.如图,长方形ABCD 中,AB=4cm,BC=3cm,点E 是CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A→B→C→E 运动,最终到达点E.若点P 运动的时间为x 秒,那么当x =时,△APE 的面积等于5.24.把一张三角形的纸折叠成如图后,面积减少,已知阴影部分的面积是50 平方厘米,则这张三角形纸的面积是平方分米.考点四.三角形的稳定性:25.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角26.下列图形中不具有稳定性是()A.B.C.D.27.用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A.3 根B.4 根C.5 根D.6 根考点五.三角形的重心:28.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点29.在Rt△ABC 中,AD 是斜边BC 边上的中线,G 是△ABC 重心,如果BC=6,那么线段AG 的长为.考点六.三角形三边关系:30.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3 31.如图,为估计池塘岸边A、B 两点的距离,小方在池塘的一侧选取一点O,测得OA=15 米,OB=10 米,A、B 间的距离不可能是()A.5 米B.10 米C.15 米D.20 米32.已知关于x 的不等式组至少有两个整数解,且存在以3,a,7 为边的三角形,则a 的整数解有()A.4 个B.5 个C.6 个D.7 个33.若a、b、c 为△ABC 的三边长,且满足|a﹣4|+=0,则c 的值可以为()A.5 B.6 C.7 D.834.已知三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.1635.△ABC 中,AB=10,BC=2x,AC=3x,则x 的取值范围.36.在△ABC 中,若AB=4,BC=2,且AC 的长为偶数,则AC=.37.若a、b、c 为三角形的三边,且a、b 满足+(b﹣2)2=0,第三边c 为奇数,则c=.38.三角形的两边长分别是3 和4,第三边长是方程x2﹣13x+40=0 的根,则该三角形的周长为.39.如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.40.在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,则AD 的取值范围是.参考答案1.解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3 个,故选:C.2.解:∵①当四个点共线时,不能作出三角形;②当三个点共线,第四个点不在这条直线上时,能够画出3 个三角形;③若4 个点能构成凹四边形,则能画出4 个三角形;④当任意的三个点不共线时,则能够画出8 个三角形.∴0 或3 或4 或8.3.解:如图,直角三角形有:△ADC、△BCD、△CDE、△BDE、△ACE、△ACB,一共6 个,故答案为:6.4.解:(1)如图,以AB 为一边的三角形有△ABC、△ABD、△ABE 共3 个;(2)如图,以点C 为顶点的三角形有△ABC、△BEC、△BCD、△ACE、△ACD、△ CDE 共6 个.故答案为:(1)3,(2)6.5.解:B,C,D 都不是△ABC 的边BC 上的高,故选:A.6.解:A、高BD 交AC 的延长线于点D 处,符合题意;B、没有经过顶点B,不符合题意;C、做的是BC 边上的高线AD,不符合题意;D、没有经过顶点B,不符合题意.故选:A.7.解:AC 边上的高应该是过B 作垂线段AC,符合这个条件的是C;A,B,D 都不过B 点,故错误;故选:C.8.解:△ABC 中,画BC 边上的高,是线段AD.故选:A.9.解:A.线段PD 的长不一定是点P 到直线l 的距离,故本选项错误;B.线段PC 不可能是△PAB 的高,故本选项错误;C.线段PD 可能是△PBC 的高,故本选项正确;D.线段PB 不可能是△PAC 的高,故本选项错误;故选:C.10.解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.11.解:∵3AB=6CD,E 为AB 的中点,∴CD=AB,BE=AB,∴CD=BE,又∵AB∥CD,∴∠EBF=∠CDF,又∵∠EFB=∠CFD,∴△BEF≌△DCF(AAS),∴BF=DF,∴线段AF 是△ABD 的中线,故选:A.12.解:∵D、E 分别是△ABC 的边AC、BC 的中点,∴DE 是△ABC 的中位线,不是中线;BD 是△ABC 的中线;AD=DC,BE=EC;DE 是△BCD 的中线;故选:A.13.解:∵AB 边上的高是指过顶点C 向AB 所在直线作的垂线段,∴在AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A 中,只有CF 符合上述条件.故选:D.14.解:延长CH 交AB 于点H,在△ABC 中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH 中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.15.解:如图,∵AD 是△ABC 中线,∴BD=CD,∴△ABD 周长﹣△ADC 的周长=(BA+BD+AD)﹣(AC+AD+CD)=BA﹣AC,∵△ABD 周长与△ADC 的周长相差2cm,∴|BA﹣5|=2,∴解得BA=7 或3.故答案为:3 或7.16.解:设AC=x,则AB=2x,∵BD 是中线,∴AD=DC=x,由题意得,2x+x=30,解得,x=12,则AC=12,AB=24,∴BC=20﹣×12=14.答:AB=24,BC=14.17.解:∵BD 是中线,∴AD=CD=AC,∵△ABD 的周长比△BCD 的周长大6cm,∴(AB+AD+BD)﹣(BD+CD+BC)=AB﹣BC=6cm①,∵△ABC 的周长是21cm,AB=AC,∴2AB+BC=21cm②,联立①②得:AB=9cm,BC=3cm.18.解:(1)①∵∠MON=40°,OE 平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°,②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°,∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°;故答案为:①20°;②120,60;(2)①当点D 在线段OB 上时,∵OE 是∠MON 的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20若∠BAD=∠BDA=(180°﹣70°)=55°,则x=35若∠ADB=∠ABD=70°,则∠BAD=180°﹣2×70°=40°,∴x=50②当点D 在射线BE 上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x=20、35、50、125.19.解:∵AC=5,DE=2,∴△ADC 的面积为=5,∵AD 是△ABC 的中线,∴△ABD 的面积为5,∴点D 到AB 的距离是.故选:A.20.解:∵由于E、F 分别为AD、CE 的中点,∴△ABE、△DBE、△DCE、△AEC 的面积相等,∴S△BEC=2S△BEF=8(cm2),∴S△ABC=2S△BEC=16(cm2).故选:D.21.解:∵AD 是△ABC 的中线,∴S△ABD=S△ABC=×18=9,∵BE 是△ABD 的中线,∴S△ABE=S△ABD=×9=4.5.故选:B.22.解:∵D 为BC 的中点,∴S△ABD=S△ACD=S△ABC,∵E,F 分别是边AD,AC 上的中点,∴S△BDE=S△ABD,S△ADF=S△ADC,S△DEF=S△ADF,∴S△BDE=S△ABC,S△DEF=S△ADC=S△ABC,S△BDE+S△DEF=S△ADC+ S△ABC=S△ABC,∴S△ABC=S 阴影部分=×3=8.故选:D.23.解:①如图1,当P 在AB 上时,∵△APE 的面积等于5,∴x•3=5,x=;②当P 在BC 上时,∵△APE 的面积等于5,∴S 长方形ABCD﹣S△CPE﹣S△ADE﹣S△ABP=5,∴3×4﹣(3+4﹣x)×2﹣×2×3﹣×4×(x﹣4)=5,x=5;③当P 在CE 上时,∴ (4+3+2﹣x)×3=5,x=<3+4,此时不符合;故答案为:或5.24.解:∵折叠后面积减少,∴阴影部分的面积占三角形纸的面积的(1﹣﹣)=,∴三角形纸的面积=50÷ =200 平方厘米=2 平方分米.故答案为:2.25.解:加上EF 后,原图形中具有△AEF 了,故这种做法根据的是三角形的稳定性.故选:B.26.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然B 选项中有四边形,不具有稳定性.故选:B.27.解:过八边形的一个顶点作对角线,可以做5 条,把八边形分成6 个三角形,因为三角形具有稳定性.故选:C.28.解:三角形的重心是三条中线的交点,故选:A.29.解:∵AD 是斜边BC 边上的中线,∴AD=BC=×6=3,∵G 是△ABC 重心,∴=2,∴AG=AD=×3=2.故答案为2.30.解:3+4<8,则3,4,8 不能组成三角形,A 不符合题意;5+6=11,则5,6,11 不能组成三角形,B 不合题意;5+6>10,则5,6,10 能组成三角形,C 符合题意;1+2=3,则1,2,3 不能组成三角形,D 不合题意,故选:C.31.解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B 间的距离在 5 和25 之间,∴A、B 间的距离不可能是5 米;故选:A.32.解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式组至少有两个整数解,∴a>5,又∵存在以3,a,7 为边的三角形,∴4<a<10,∴a 的取值范围是5<a<10,∴a 的整数解有4 个,故选:A.33.解:∵|a﹣4|+ =0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5 符合条件;故选:A.34.解:设第三边的长为x,∵三角形两边的长分别是4 和10,∴10﹣4<x<10+4,即6<x<14.故选:C.35.解:根据题意得:3x﹣2x<10<3x+2x,解得:2<x<10.故答案为:2<x<10.36.解:因为4﹣2<AC<4+2,所以2<AC<6,因为AC 长是偶数,所以AC 为4,故答案为:4.37.解:∵a、b 满足+(b﹣2)2=0,∴a=9,b=2,∵a、b、c 为三角形的三边,∴7<c<11,∵第三边c 为奇数,∴c=9,故答案为9.38.解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3 和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.39.证明:延长ED 到H,使DE=DH,连接CH,FH,∵AD 是△ABC 的中线,∴BD=DC,∵DE、DF 分别为∠ADB 和∠ADC 的平分线,∴∠1=∠2=∠ADB,∠3=∠4=∠ADC,∴∠1+∠4=∠2+∠3=∠ADB+ ∠ADC=×180°=90°,∵∠1=∠5,∴∠5+∠4=90°,即∠EDF=∠FDH=90°,在△EFD 和△HFD 中,,∴△EFD≌△HFD(SAS),∴EF=FH,在△BDE 和△CDH 中,,∴△BDE≌△CDH(SAS),∴BE=CH,在△CFH 中,由三角形三边关系定理得:CF+CH>FH,∵CH=BE,FH=EF,∴BE+CF>EF.40.解:如图,延长AD 到E,使DE=AD,∵AD 是BC 边上的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=5,AC=3,∴5﹣3<AE<5+3,即2<AE<8,1<AD<4.故答案为:1<AD<4.。

初一数学三角形知识点+同步提高练习题经典.docx

初一数学三角形知识点+同步提高练习题经典.docx

初一数学三角形知识点+同步提高练习题经典.docx三角形一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C 表示三角形的三个顶点时,此三角形可记作△ABC,其中线段 AB、 BC、 AC是三角形的三条边,∠A、∠ B、∠ C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.二、三角形三边关系定理a、b、c 的不等式有:a+b>c,b+c>a,①三角形两边之和大于第三边,故同时满足△ABC三边长c+a>b.a、b、c 的不等式有:a>b-c ,b>a-c ,②三角形两边之差小于第三边,故同时满足△ABC三边长c>b-a .注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可三、三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.四、三角形的内角结论1:三角形的内角和为180°.表示:在△ AB C中,∠ A+∠ B+∠ C=180°结论 2:在直角三角形中,两个锐角互余.注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ ABC中,∠ C=180°-(∠ A+∠ B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ ABC中,已知∠ A:∠ B:∠ C=2:3: 4,求∠ A、∠ B、∠ C 的度数.五、三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.六、多边形①多边形的对角线n(n3)条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°2与三角形有关的线段A卷一、选择题:1. 如图 , 在△ ABF 中,∠ B 的对边是()2.关于三角形的边的叙述正确的是()A. 三边互不相等B. 至少有两边相等C. 任意两边之和一定大于第三边D.最多有两边相等3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ), 4cm, 8cm, 7cm, 15cm, 12cm, 20cm, 5cm, 11cm4.等腰三角形两边长分别为3,7 ,则它的周长为 ()或 17 D.不能确定5.在平面直角坐标系中,点A( -3 ,0), B(5, 0), C( 0,4)所组成的三角形ABC的面积是()6.已知三角形的三边长分别为4、 5、 x,则 x 不可能是()7.下列说法错误的是 ( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点8. 给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

初一数学三角形与全等三角形知识点大全-经典练习-含答案

初一数学三角形与全等三角形知识点大全-经典练习-含答案

初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差〈第三边〈两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。

证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。

3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n边形内角和等于(n-2)*1808、多边形的外角和:360度注:有些题,利用外角和,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n—3条对角线,n边形共有对角线23)-n(n条。

难点详解沪教版七年级数学第二学期第十四章三角形同步测试练习题(含详解)

难点详解沪教版七年级数学第二学期第十四章三角形同步测试练习题(含详解)

沪教版七年级数学第二学期第十四章三角形同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()A.50°B.60°C.40°D.30°2、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°3、已知ABC的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,10∠的度数为()4、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3A.80︒B.70︒C.45︒D.305、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为()A.42°B.48°C.52°D.58°6、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC =5,则五边形DECHF的周长为()A.8 B.10 C.11 D.127、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.10 B.15 C.17 D.198、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角9、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,1310、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7第Ⅱ卷(非选择题 70分)1、如图,AB ,CD 相交于点O ,AD CB =,请你补充一个条件,使得ADB CBD △≌△,你补充的条件是______.2、如图,在Rt ABC 中,90,12cm,6cm C AC BC ∠=︒==,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的长为_________.3、如图,线段AF AE ⊥,垂足为点A ,线段GD 分别交AF 、AE 于点C ,B ,连结GF ,ED .则D G AFG AED ∠∠∠∠+++的度数为______.4、如图,一把直尺的一边缘经过直角三角形ABC 的直角顶点C ,交斜AB 边于点D ;直尺的另一边缘分别交AB 、AC 于点E 、F ,若30B ∠=︒,50AEF ∠=︒,则DCB ∠=___________度.5、在平面直角坐标系xOy 中,()2,0A ,()0,4C -,AB AC =,90BAC ∠=︒,则点B 的坐标为__________.1、探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图②,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.2、如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅.(2)若40A ∠=︒,145ECD ∠=︒,求∠F 的度数.3、如图,ABC 和ADE 是顶角相等的等腰三角形,BC ,DE 分别是这两个等腰三角形的底边.求证BD CE =.4、ACB △中,90C ∠=︒,以点A 为中心,分别将线段AB ,AC 逆时针旋转60︒得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F .(1)如图1,若60A ∠=︒,CFE ∠的度数为________;(2)如图2,当3060A ︒<∠<︒吋,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.5、已知:如图,∠ABC =∠DCB ,∠1=∠2.求证AB =DC .6、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,AB CF=,CEA B F∠=∠+∠.(1)求证:EAB F∠=∠;(2)若10BC=,求BE的长.7、“三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P 旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB=13∠AOB.我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.求证:∠APB=13∠AOB.8、如图,灯塔B在灯塔A的正东方向,且75kmAB=.灯塔C在灯塔A的北偏东20°方向,灯塔C 在灯塔B的北偏西50°方向.(1)求ACB ∠的度数;(2)一轮船从B 地出发向北偏西50°方向匀速行驶,5h 后到达C 地,求轮船的速度.9、如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.10、已知,如图,AB =AD ,∠B =∠D ,∠1=∠2=60°.(1)求证:△ADE ≌△ABC ;(2)求证:AE =CE .-参考答案-一、单选题1、A【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A COD 803050,AOD 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.2、C【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C.【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.3、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.4、A【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60︒的角即可.【详解】⨯︒=︒,解:3180540⨯︒=︒,360180∴︒-︒-︒=︒,540180180180∴∠+∠+∠=︒,123180∠+∠=︒,12100380∴∠=︒,故选:A .【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.5、B【分析】根据两直线平行,同位角相等可得42B AFG ∠=∠=︒,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵FG BC ∥,∴42B AFG ∠=∠=︒,∵DE AB ⊥,∴90BDE ∠=︒,∴18048DEB BDE B ∠=︒-∠-∠=︒,故选:B .【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.6、B【分析】证明△AFH ≌△CHG (AAS ),得出AF =CH .由题意可知BE =FH ,则得出五边形DECHF 的周长=AB +BC ,则可得出答案.【详解】解:∵△GFH 为等边三角形,∴FH =GH ,∠FHG =60°,∴∠AHF +∠GHC =120°,∵△ABC 为等边三角形,∴AB =BC =AC =5,∠ACB =∠A =60°,∵∠AHF =180°-∠FHG -∠GHC =120°-∠GHC ,∠HGC =180°-∠C -∠GHC =120°-∠GHC ,∴∠AHF =∠HGC ,在△AFH 和△CHG 中A C AHF HGC FH GH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFH ≌△CHG (AAS ),∴AF =CH .∵△BDE 和△FGH 是两个全等的等边三角形,∴BE =FH ,∴五边形DECHF 的周长=DE +CE +CH +FH +DF =BD +CE +AF +BE +DF ,=(BD +DF +AF )+(CE +BE ),=AB +BC =10.故选:B .【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.7、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.8、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.9、D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.10、C【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.二、填空题1、AB CD =(答案不唯一)【分析】在ADB △与CBD 中,已经有条件:,,AD CB DB BD 所以补充,AB CD =可以利用SSS 证明两个三角形全等.【详解】解:在ADB △与CBD 中,,,AD CB DB BD所以补充:,AB CD =().ADB CBD SSS △≌△∴故答案为:AB CD =【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键. 2、6cm 或12cm【分析】先根据题意得到∠BCA =∠PAQ =90°,则以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,只有△ACB ≌△QAP 和△ACB ≌△PAQ 两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX 是AC 的垂线,∴∠BCA =∠PAQ =90°,∴以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,只有△ACB ≌△QAP 和△ACB ≌△PAQ 两种情况,当△ACB ≌△QAP ,∴6cm AP BC ==;当△ACB ≌△PAQ ,∴12cm AP AC ==,故答案为:6cm 或12cm .【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.3、270°【分析】由题意易得90ACB ABC ∠+∠=︒,然后根据三角形内角和定理可进行求解.【详解】解:∵AF AE ⊥,∴90A ∠=︒,∴90ACB ABC ∠+∠=︒,∵180,180D DBE AED ABC ACB A ∠∠∠∠∠++=︒++∠=︒,且ABC DBE ∠=∠,∴D AED ACB A ∠∠∠+=+∠,同理可得:G AFG ABC A ∠∠∠+=+∠,∴2270D G AFG AED A ABC ACB ∠∠∠∠+++=∠+∠+∠=︒,故答案为270°.【点睛】本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键.4、20【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB 即可.【详解】解:∵EF ∥CD ,∴150AEF ∠=∠=︒,∵∠1是△DCB 的外角,∴DCB ∠=∠1-∠B =50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识. 5、(6),-2【分析】按照在x 轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明1Rt OAC Rt EB A ∆∆≌和2Rt OAC DB A ∆∆≌成立,然后根据对应边相等,即可求出两种情况对应的点B 的坐标.【详解】解:如下图所示:由()2,0A ,()0,4C -可知:2OA =,4OC =.当B 点在x 轴下方时,过点B 1向x 轴作垂线,垂足为E .90BAC ∠=︒,190OAC EAB ∴∠+∠=︒90OAC OCA ∠+∠=︒1OCA EAB ∴∠=∠在Rt OAC ∆与1Rt EB A ∆中:111AOC B EA OCA EAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩1()Rt OAC Rt EB A AAS ∴∆∆≌12EB OA ∴==,4EA OC ==6OE OA EA ∴=+=1B ∴点坐标为(6),-2当B 点在x 轴上方时,过点B 2向x 轴作垂线,垂足为D .由题意可知:2290B AC B AD OAC ∠=∠+∠=︒90OAC OCA ∠+∠=︒2B AD OAC ∴∠=∠在Rt OAC ∆与2Rt DB A ∆中222OAC B AD AOC B DA AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩2()Rt OAC DB A AAS ∴∆∆≌22DB OA ∴==,4AD OC ==2OD AD OA ∴=-=∴点2B 坐标为(22)-,故答案为:(6),-2或(22)-,. 【点睛】本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.三、解答题1、(1)30°;(2)∠BAD =2∠CDE ,理由见解析;(3)∠BAD =2∠CDE .【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=902x︒+,∴∠CDE=45°+x﹣902x︒+=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD =2∠CDE .【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系2、(1)见解析;(2)105︒【分析】(1)根据平行线的性质可得A D ∠=∠,根据线段的和差关系可得AC DB =,进而根据SAS 即证明AEC DFB ≅;(2)根据三角形内角和定理以及补角的意义求得∠E ,进而根据(1)的结论即可求得∠F .【详解】(1)证明:AE DF ∥∴A D ∠=∠, AB CD =∴AB BC BC CD +=+即AC BD = 又AE DF =,∴AEC DFB ≅(2)解:40A ∠=︒,145ECD ∠=︒,18035ECA ECD ∴∠=︒-∠=︒180105E A ECA ∴∠=︒-∠-∠=︒AEC DFB ≅F E ∴∠=∠105=︒【点睛】本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.3、见解析【分析】由ABC ∆和ADE ∆是顶角相等的等腰三角形,得出BAC DAE ∠=∠知AB AC =、AD AE =、BAD CAE ∠=∠,证ABD ACE ∆≅∆即可得证.【详解】解:ABC ∆和ADE ∆是顶角相等的等腰三角形,得出BAC DAE ∠=∠,AB AC ∴=,AD AE =,BAD CAE ∠=∠,在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩, ()ABD ACE SAS ∴∆≅∆,BD CE ∴=.【点睛】本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.4、(1)120°(2)①图形见解析;②AC =【分析】(1)根据60A ∠=︒进而判断出点E 在边AB 上,得出△ADE ≌△ABC (SAS ),进而得出∠AED =∠ACB =90°最后用三角形的外角的性质即可得出结论;(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=1∠CAE=30°,即可得出结论.2(1)(1)如图1,在Rt△ABC中,∠B=30°,∴∠BAC=60°,由旋转知,∠CAE=60°=∠CAB,∴点E在边AB上,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠ACB=90°,∴∠CFE=∠B+∠BEF=30°+90°=120°,故答案为120°;(2)(2)①依题意补全图形如图2所示,②如图2,连接AF,∵∠BAD=∠CAE,∴∠EAD=∠CAB,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠C=90°,∴∠AEF=90°,∴Rt△AEF≌Rt△ACF(HL),∴∠EAF=∠CAF,∠CAE=30°,∴∠CAF=12AF,且AC2+CF2=AF2,在Rt△ACF中,CF=12∴AC【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.5、见解析【分析】由“ASA ”可证△ABO ≌△DCO ,可得结论.【详解】证明:如图,记,AC BD 的交点为,O∵∠ABC =∠DCB ,∠1=∠2,又∵∠OBC =∠ABC −∠1,∠OCB =∠DCB −∠2,∴∠OBC =∠OCB ,∴OB =OC ,在△ABO 和△DCO 中,12OB OC AOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA ),∴AB =DC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.6、(1)见解析(2)5BE =【分析】(1)利用CEA ∠是ABE △的外角,以及CEA B F ∠=∠+∠证明即可.(2)证明ABE △≌FCE △,可知BE CE =,从而得出答案.(1)证明:∵CEA ∠是ABE △的外角,∴CEA B EAB ∠=∠+∠.又∵CEA B F ∠=∠+∠,∴EAB F ∠=∠.(2)解:在ABE △和FCE △中,AB FC EAB F AEB FEC =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ABE △≌FCE △.∴BE CE =.∵10BC =,∴5BE =.【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.7、见解析【分析】由OA OC PC ==,得出,POC AOC 为等腰三角形,由外角的性质及等量代换得2CAO APB ∠=∠,再次利用外角的性质及等量代换得3AOB APB ∠=∠,即可证明.【详解】解:OA OC PC ==,,POC AOC ∴为等腰三角形,,APB COP ACO CAO ∴∠=∠∠=∠,由外角的性质得:2ACO APB COP APB ∠=∠+∠=∠,2CAO APB ∠=∠,再由外角的性质得:AOB APB CAO ∠=∠+∠,3AOB APB ∴∠=∠,13APB AOB ∴∠=∠. 【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.8、(1)70°;(2)15km/h【分析】(1)根据题意得∠BAC =70°,∠ABC =40°,根据三角形的内角和定理即可求得∠ACB ;(2)根据等腰三角形的判定可得BC=AB=75km ,进而由速度=路程÷时间求解即可.【详解】解:(1)根据题意得∠BAC =70°,∠ABC =40°,∴∠ACB =180°-∠BAC -∠ABC =180°-70°-40°=70°;(2)∵∠BAC =∠ACB =70°,∴BC=AB=75km ,∴轮船的速度为75÷5=15(km/h ).【点睛】本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.9、85°【分析】由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,【详解】解:∵AD是BC边上的高,∴∠ADB=∠ADC=90.在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.∵CE平分∠ACB,∠ACB=35°.∴∠ECB=12∵∠AEC是△BEC的外角,50∠=︒,B∴∠AEC=∠B+∠ECB=50°+35°=85°.答:∠AEC的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.10、(1)见解析;(2)见解析【分析】(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2∴∠1+BAE ∠=∠2+BAE ∠即∠DAE =∠BAC在△ADE 和△ABC 中DAE BAC AD ABD B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△ABC (ASA )(2)证明:∵△ADE ≌△ABC∴AE =AC又∵∠2=60°∴△AEC 为等边三角形∴AE =CE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.。

七年级数学下册第七章《三角形》知识点及练习

七年级数学下册第七章《三角形》知识点及练习

《七年级数学第七章*三角形》一、知识点(1)➢ 与三角形有关的线段 (1)三角形的定义(2) ①⎪⎩⎨⎩⎨⎧等边三角形底和腰不相等的三角形等腰三角形三角形按边)( ②⎪⎩⎪⎨⎧⎩⎨⎧钝角三角形锐角三角形斜三角形直角三角形三角形按角(3)三角形的主要线段①三角形的中线:顶点与对边中点的连线,三中线交点叫②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三角角平分线的交点叫③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫 (分锐角三角形,钝角三角形和直角三角形的交点的位置不同)(4)三角形三边间的关系.①两边之和大于第三边 b a c a c b c b a >+>+>+,, ②两边之差小于第三边 a c b c b a b a c <-<-<-,, (5)三角形的稳定性:三角形的三条边确定后,三角形的形状和大小不变了,这个性质叫做三角形 的稳定性.三角形的稳定性在生产和生活中有广泛的应用.二、例题分析例1:已知BD,CE 是 的高, 直线BD,CE 相交, 所成的角中有一个角为50°, 则等于BAC ∠例2:如图,已知 中, 的角平分线BD,CE 相交于点O,且 , 求例3:三角形的最长边为10,另两边的长分别为x和4,周长为c,求x和c的取值范围.一、知识点(2)➢与三角形有关的角(1)三角形的内角和定理及性质定理: 三角形的内角和等于。

推论1: 直角三角形的两个锐角。

推论2: 三角形的一个外角等于与它不相邻的两个内角的。

推论3: 三角形的一个外角大于与它不相邻的任何一个。

(2)三角形的外角及外角和①三角形的外角: 三角形的一边与另一边的延长线组成的角叫做三角形的外角。

②三角形的外角和等于。

(3)多边形及多边形的对角线①正多边形: 各个角都相等, 各条边都的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线, 若整个图形都在这条直线的同一侧, 这样的多边形称为凸多边形;, 若整个多边形不都在这条直线的同一侧, 称这样的多边形为凹多边形。

[数学]-专题7.4认识三角形专项提升训练(重难点培优)-【】2022-2023学年七年级数学下册尖

[数学]-专题7.4认识三角形专项提升训练(重难点培优)-【】2022-2023学年七年级数学下册尖

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】专题7.4认识三角形专项提升训练班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共24题,其中选择8道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•鼓楼区校级期中)下列各组图形中,表示线段AD是△ABC中BC边上的高的图形为()A.B.C.D.2.(2021秋•曾都区期末)如图,在△ABC中,D,E,F分别是边AB,AC,BC的中点,G为线段EC的中点,下列四条线段中,是△ABC的中线的是()A.线段DE B.线段BE C.线段EF D.线段FG3.(2022秋•路南区期中)如图,四根木条钉成一个四边形框架ABCD,要使框架稳固且不活动,至少还需要添加木条()A.1根B.2根C.3根D.4根4.(2022秋•顺平县期中)修理一把摇晃的椅子,我们可以斜着钉上一块木条(如图),其中所涉及的数学原理是()A.两边之和大于第三边B.三角形稳定性C.两点之间线段最短D.两点确定一条直线5.(2022秋•西城区校级期中)课堂上,老师组织大家用小棒摆三角形.已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是()A.10 B.8 C.7 D.46.(2022秋•银海区期中)若2和8是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20 B.18 C.17或19 D.18或207.(2022秋•惠东县期中)如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC =8m2,则阴影部分面积S=()cm2A.1 B.2 C.3 D.48.(2022秋•延平区校级月考)如图,AD、BE、CF是△ABC三边的中线,若S△ABC=12,则图中的阴影部分的面积是()A.3 B.4 C.5 D.6二、填空题(本大题共8小题,每小题2分,共16分)请把答案直接填写在横线上9.(2021秋•乾安县期末)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是.10.(2022春•姜堰区月考)已知△ABC中,AB=3,BC=1,则AC的长度的取值范围是.11.(2021秋•岚山区期末)有四根长度分别是2,3,5,7的线段,从中选出三条线段首尾顺次相接围成三角形,则三角形的周长是.12.(2021秋•盘山县期末)如图,△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,AE=3,则点B到直线AD的距离为.13.(2022秋•浠水县期中)如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,其中AC=6,BC=8,AB=10,那么点C到AB的距离是.14.(2022春•沙坪坝区校级月考)若a,b,c是△ABC的三边,则化简|a+b﹣c|+|b﹣c﹣a|﹣2|c﹣a﹣b|=.15.(2021秋•大荔县期末)如图,在△ABC中,D、E、F分别为BC、AD、CE的中点,且S△ABC=24cm2,则阴影部分△AEF的面积为cm2.16.(2021秋•上虞区期末)如图,正方形网格中有两个三角形,它们的顶点均在正方形网格的格点上.若S△DEF=a,则S△ABC=.三、解答题(本大题共8小题,共68分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•栖霞市期中)如图,△ABC在8×8的网格中,每一个小格都是边长为1的正方形,△ABC 的顶点均在格点上.(1)在上面网格中画出△ABC的AB边上的高CE,并说明理由;(2)求出△ABC的面积.18.(2022秋•德江县期中)已知a、b、c为△ABC的三边长,b、c满足(a﹣3)2+|b﹣2|=0,且c为方程|c﹣4|=2的解,判断△ABC的形状,并求△ABC的周长.19.(2022秋•仁怀市期中)如图,AD,BE分别是△ABC的高,若AD=4,BC=6,AC=5,求BE的长.20.(2022秋•瑶海区期中)如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成70和50两部分,求AC和AB的长.21.(2022秋•增城区期中)已知三角形的两边长为5和7,第三边的边长a.(1)求a的取值范围;(2)若a为整数,当a为何值时,组成的三角形的周长最大,最大值是多少?22.(2022秋•包河区期中)如图,D为△ABC的边BC上一点,试判断2AD与△ABC的周长之间的大小关系,并加以证明.23.(2022秋•西城区校级期中)已知△ABC(如图),按下列要求画图:(1)△ABC的中线AD;(2)△ABD的角平分线DM;(3)△ACD的高线CN;(4)若C△ADC﹣C△ADB=3,(C表示周长)且AB=4,则AC=.24.(2022秋•东光县校级月考)按要求完成下列各小题.(1)在△ABC中,AB=8,BC=2,AC的长为偶数,求△ABC的周长;(2)已知△ABC的三边长分别为3,5,a,化简|a+1|﹣|a﹣8|﹣2|a﹣2|.。

北师大版七年级数学下册第四章三角形同步练习试题(含解析)

北师大版七年级数学下册第四章三角形同步练习试题(含解析)

北师大版七年级数学下册第四章三角形同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为了估算河的宽度,我们可以在河的对岸选定一个目标点A ,再在河的这一边选定点B 和F ,使AB BF ⊥,并在垂线BF 上取两点C 、D ,使BC CD =,再作出BF 的垂线DE ,使点A 、C 、E 在同一条直线上,因此证得ABC EDC △△≌,进而可得AB DE =,即测得DE 的长就是AB 的长,则ABC EDC △△≌的理论依据是( )A .SASB .HLC .ASAD .AAA2、如果一个三角形的两边长分别为5cm 和8cm ,则第三边长可能是( )A .2cmB .3cmC .12cmD .13cm3、如图,在△ABC 与△AEF 中,AB =AE ,BC =EF ,∠ABC =∠AEF ,∠EAB =40°,AB 交EF 于点D ,连接EB .下列结论:①∠FAC =40°;②AF =AC ;③∠EFB =40°;④AD =AC ,正确的个数为( )A.1个B.2个C.3个D.4个4、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为()A.3 B.4 C.5 D.65、在下列长度的各组线段中,能组成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,126、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.67、如图,D为∠BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有()A.1个B.2个C.3个D.4个8、下列长度的三条线段能组成三角形的是()A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 119、如图,ABN≌ACM△,B和C∠是对应角,AB和AC是对应边,则下列结论中一定成立的是()A.BAM MAN=∠=∠B.AM CNC.BAM ABM=∠=∠D.AM AN10、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于()A.180°B.210°C.360°D.270°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD AC⊥于点E,BD,CE交于点F,请你添加一个条件:______(只添加一⊥于点D,CE AB△≌ACE个即可),使得ABD2、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.3、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm24、如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△BEF=2cm2,则S△ABC=__________.5、已知三角形的三边分别为n,5,7,则n的范围是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,M是线段AB上的一点,ED是过点M的一条线段,连接AE、BD,过点B作BF∥AE交ED于点F,且EM=FM.(1)求证:AE=BF.(2)连接AC,若∠AEC=90°,∠CAE=∠DBF,CD=4,求EM的长.2、如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a−t)2+|b−t|=0(t>0).(1)证明:OB =OC ;(2)如图1,连接AB ,过A 作AD ⊥AB 交y 轴于D ,在射线AD 上截取AE =AB ,连接CE ,F 是CE 的中点,连接AF ,OA ,当点A 在第一象限内运动(AD 不过点C )时,证明:∠OAF 的大小不变;(3)如图2,B ′与B 关于y 轴对称,M 在线段BC 上,N 在CB ′的延长线上,且BM =NB ′,连接MN 交x 轴于点T ,过T 作TQ ⊥MN 交y 轴于点Q ,当t =2时,求点Q 的坐标.3、如图,四边形ABCD 中,90BCD BAD ∠=∠=︒,AB AD =,AG CD ⊥于点G .(1)如图1,求证:AG CG =;(2)如图2,延长AB 交DC 的延长线于点F ,点E 在DG 上,连接AE ,且2AEF F ∠=∠,求证:FG AE EG =+;(3)如图3,在(2)的条件下,点H 在CB 的延长线上,连接EH ,EH 交AG 于点N ,连接CN ,且=CN AE ,当5BH =,9EF =时,求NG 的长.4、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC ,CE 交BA 于点D ,CE 交BF 于点M . 求证:(1)EC =BF ;(2)EC ⊥BF .5、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.-参考答案-一、单选题1、C【分析】根据题意及全等三角形的判定定理可直接进行求解.【详解】解:∵AB BF⊥,DE BF⊥,∴90ABC EDC∠=∠=︒,在ABC和EDC△中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC EDC △△≌(ASA ),∴AB DE =;故选C .【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.2、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c ,由题可知8-5<<8+5c ,即3<<13c , 所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点3、C【分析】由“SAS ”可证△ABC ≌△AEF ,由全等三角形的性质依次判断可求解.【详解】解:在△ABC 和△AEF 中,AB AE ABC AEF BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AEF (SAS ),∴AF =AC ,∠EAF =∠BAC ,∠AFE =∠C ,故②正确,∴∠BAE =∠FAC =40°,故①正确,∵∠AFB =∠C +∠FAC =∠AFE +∠EFB ,∴∠EFB =∠FAC =40°,故③正确,无法证明AD =AC ,故④错误,故选:C .【点睛】本题考查全等三角形的判定与性质,是重要考点,掌握相关知识是解题关键.4、C【分析】证明△AOB ≌△COD 推出OB =OD ,OA =OC ,即可解决问题.【详解】解:∵∠AOC =∠BOD ,∴∠AOC +∠COB =∠BOD +∠COB ,即∠AOB =∠COD ,∵∠A =∠C ,CD =AB ,∴△AOB ≌△COD (AAS ),∴OA =OC ,OB =OD ,∵AD =8,OB =3,∴OC=AO=AD-OD=AD-OB=5.故选C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.5、C【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【详解】解:A、∵247+<,∴不能构成三角形;B、∵149+<,∴不能构成三角形;C、∵345+>,∴能构成三角形;D、∵5612+<,∴不能构成三角形.故选:C.【点睛】本题主要考查运用三角形三边关系判定三条线段能否构成三角形的情况,理解构成三角形的三边关系是解题关键.6、A【分析】利用角相等和边相等证明ABE ECD ∆∆≌,利用全等三角形的性质以及边的关系,即可求出BE 的长度.【详解】解:由题意可知:∠ABE =∠AED =∠ECD =90°,1809090AEB DEC ∴∠+∠=︒-︒=︒,90A AEB ∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和ECD ∆中,ABE ECD A DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE ECD AAS ∴∆∆≌,8CE AB ∴==,12BE BC CE ∴=-=,故选:A .【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.7、D【分析】利用AAS 证明△CDE ≌△BDF ,可判断①④正确;再利用HL 证明Rt△ADE ≌Rt△ADF ,可判断②正确;由∠BAC =∠EDF ,∠FDE =∠BDC ,可判断③正确.【详解】解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE =DF ,∠DFB =∠DEC =90°,∵∠FDE =∠BDC ,∴∠FDB =∠EDC ,在△CDE 与△BDF 中,FDB CDE DFB DEC DF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△BDF (AAS ),故①正确;∴CE =BF ,在Rt△ADE 与Rt△ADF 中,AD AD DE BF =⎧⎨=⎩, ∴Rt△ADE ≌Rt△ADF (HL ),∴AE =AF ,∴CE =AB +AF =AB +AE ,故②正确;∵∠DFA =∠DEA =90°,∴∠EDF +∠FAE =180°,∵∠BAC +∠FAE =180°,∴∠FDE =∠BAC ,∵∠FDE =∠BDC ,∴∠BDC =∠BAC ,故③正确;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正确故选:D.【点睛】本题主要考查了全等三角形的判定及性质,外角的性质等,熟悉掌握全等三角形的判定方法,灵活寻找条件是解题的关键.8、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D .∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.9、D【分析】根据全等三角形的性质求解即可.【详解】解:∵ABN ≌ACM △,B 和C ∠是对应角,AB 和AC 是对应边,∴BAN CAM ∠=∠,AM AN =,∴BAM CAN =∠∠,∴选项A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.10、B【分析】已知90C ∠=︒,得到2390∠+∠=︒,根据外角性质,得到1D α∠=∠+∠,4F β∠=∠+∠,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵90C ∠=︒,∴2390∠+∠=︒,∵1D α∠=∠+∠,4F β∠=∠+∠,∴14D F αβ∠+∠=∠+∠+∠+∠,∵12∠=∠,34∠=∠,∴1423D F D F ∠+∠+∠+∠=∠+∠+∠+∠,∵30D ∠=︒,90F ∠=︒,∴23233090210D F ∠+∠+∠+∠=∠+∠+︒+︒=︒;故选D .【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.二、填空题1、AB AC =(答案不唯一)【分析】由题意依据全等三角形的判定条件进行分析即可得出答案.【详解】解:∵BD AC ⊥于点D ,CE AB ⊥于点E ,∴90AEC ADB ︒∠=∠=,∵A A∠=∠,△≌ACE(AAS).∴当AB AC=时,ABD故答案为:AB AC=.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.2、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B∠=∠+∠,∴B ACD A∠=∠-∠,∵∠ACD=75°,∠A=45°,∴30∠=︒.B故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、6【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.4、8cm2【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E点为AD的中点得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【详解】解:∵F点为CE的中点,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D点为BC的中点,S△BCE=2cm2,∴S△BDE=12∵E点为AD的中点,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案为:8cm2.【点睛】本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键.5、2<n<12【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求第三边长的范围.【详解】解:由三角形三边关系定理得:7﹣5<n<7+5,即2<n<12故n的范围是2<n<12.故答案为:2<n<12.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.三、解答题1、(1)见解析;(2)2【分析】(1)根据平行线的性质和全等三角形的判定证明△AME≌△BMF即可证得结论;(2)由△AME≌△BMF证得AE=BF,EM=FM,∠BFM=∠AEC=90°,根据全等三角形的判定证明△AEC≌△BFD,则有EC=FD,即EF=CD=4,即可求解.【详解】解:(1)∵BF∥AE,∴∠EAM=∠FBM,又∠AME=∠BMF,EM=FM,∴△AME≌△BMF(ASA),∴AE=BF;(2)∵△AME≌△BMF,∴AE=BF,EM=FM,∠BFM=∠AEC=90°,∴∠AEC=∠BFD=90°,又∠CAE=∠DBF,∴△AEC≌△BFD(ASA),∴EC=FD,即EF=CD=4,EF=2.∴EM= 12【点睛】本题考查平行线的性质、全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答的关键.2、(1)见解析(2)见解析(3)点Q坐标为(0,2 ).【分析】(1)利用绝对值以及平方的非负性求出B、C的坐标,利用坐标表示边长,即可证明结论.(2)延长AF 至点G ,使GF AF =,连接GC 、GO ,利用条件先证明GCF AEF ∆∆≌,再根据全等三角形性质,进一步证明GCO ABO ∆∆≌,最后综合条件得到GAO ∆为等腰直角三角形,进而得到∠OAF 为45︒,是个定值,即可证得结论成立.(3)先连接MQ 、NQ 、BQ 、'B Q ,过M 作MH CN ∥交x 轴于H ,利用平行关系和边相等证明'NTB MTH ∆∆≌,然后通过全等三角形性质进一步证明'NQB MQB ∆∆≌,再根据角与角之间的关系,求出'90BQB ∠=︒ ,得到'BBQ ∆为等腰直角三角形,最后利用等腰三角形的性质,即可求出点Q 坐标.【详解】(1)证明:(a −t )2+|b −t |=0(t >0), 00a t b t ∴-=-=,,即a b t ==, 点B 坐标为(a ,0),点C 坐标为(0,b ), OB OC t ∴==,故结论得证.(2)解:如图所示:延长AF 至点G ,使GF AF =,连接GC 、GO ,F 是CE 的中点,CF EF ∴=,在GCF ∆和AEF ∆中,CF EF CFG EFA FG AF =⎧⎪∠=∠⎨⎪=⎩()GCF AEF SAS ∴∆∆≌,CG AE ∴=GCF AEF ,GC AD ∴∥,GCD CDA ,AB AE =,GC AB ,AD AB ⊥,OB OC ⊥,90COB BAD ,180ABO ADO ,180ADO ADC , ADC ABO , GCD CDA ,GCD ABO ,在GCO ∆与ABO ∆中,GC AB GCO ABO OC OB =⎧⎪∠=∠⎨⎪=⎩()GCO ABO SAS ∴∆∆≌.GO AO ,GOC AOB , 90AOB AOC ,90GOC AOC,∴∆为等腰直角三角形.GAOOAF,故∠OAF的大小不变.45(3)解:连接MQ、NQ、BQ、'B Q,过M作MH CN∥交x轴于H.如下图所示:'B和B关于y轴对称,C在y轴上.'∴=,CB CB''∴∠=∠,CBB CB B∥,MH CN''∴∠=∠=∠,MHB CB B CBB∴=.MH BM'=,BM B N'MH B N ∴=,MH CN ∥,'NBT MHT ∴∠=∠,在'NTB ∆和MTH ∆中,NB T MHT B TN MTH B N MH ∠=∠⎧⎪∠=='∠'⎨'⎪⎩'()NTB MTH AAS ∴∆∆≌.TN MT ∴=,又TQ MN ⊥,MQ NQ ∴=, CQ 垂直平分'BB ,'BQ BQ ∴=,在'NQB ∆和MQB ∆中,B Q BQ NQ MQ B N BM ''=⎧⎪=⎨⎪=⎩'()NQB MQB SSS ∴∆∆≌.'BQN BQM ∴∠=∠,'QNB QMB ∠=∠.'180QNB QMC QMB QMC ∴∠+∠=∠+∠=︒,故180NQM NCM ∠+∠=︒.18090NQM NCM ∴∠=︒-∠=︒,'90BQB NQM ∠=∠=︒.∴'BBQ ∆为等腰直角三角形.'12OQ BB OB t ∴===. 故点Q 坐标为(0,2-).【点睛】本题主要是考查了对称点的坐标关系以及利用坐标求解几何图形,熟练掌握垂直平分线、平行线以及等腰三角形、全等三角形的判定和性质,是解决本题的关系.3、(1)见解析;(2)见解析;(3)2【分析】(1)过点B 作BQ AG ⊥于点Q ,根据AAS 证明△ABQ DAG ≅∆得AG BQ =,再证明四边形BCGQ 是矩形得BQ =CG ,从而得出结论;(2) 在GF 上截取GH =GE ,连接AH ,证明AH =FH ,GE =GH 即可;(3) 过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,证明()Rt AGE Rt CGN HL ∆≅∆得GN GE MG ==,可证明AC 是EH 的垂直平分线,再证明()Rt APH Rt AGM HL ∆≅∆和△()ABH ADM SAS ≅∆得5BH MD ==可求出4ME =,从而可得结论.【详解】解:(1)证明:过点B 作BQ AG ⊥于点Q ,如图1∵AG CD ⊥90AQB BAD ︒∴∠==∠ABQ BAQ DAG BAQ ∴∠+∠=∠+∠ABQ DAG ∴∠=∠又AB AD =,90AQB AGD ︒∠=∠=∴△()ABQ DAG AAS ≅∆B AG Q ∴=,,BC CD AG CD BQ AG ⊥⊥⊥∴四边形BCGQ 是矩形BQ CG ∴=CG AG ∴=;(2)在GF 上截取GH =GE ,连接AH ,如图2,,HG GE AG GF =⊥AH AE ∴=AEH AHE ∴∠=∠2AEF F ∠=∠2AHE F ∴∠=∠又AHE F FAH ∠=∠+∠F FAH ∴∠=∠FH AH ∴=AE FH ∴=FG FH HG AE EG ∴=+=+(3)过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,如图3,由(1)、(2)知,AP CG AG ==,,AM AE FM F FAM==∠=∠∵EF FG GE FM ME =+=+∴9AM ME =+∵,CN AE AG CG ==∴()Rt AGE Rt CGN HL ∆≅∆∴GN GE MG ==∴∠45GNE GEN ︒=∠=∵BC FD ⊥∴∠45CHE CEH ︒=∠=∴CH CE =∵AG CG =∴∠45ACG CAG ︒=∠=∴45ACG ACH ∠=∠=︒∴AC 是EH 的垂直平分线,∴AH AE =∴AH AM =又∵AG AP =∴()Rt APH Rt AGM HL ∆≅∆∴∠HAP MAG =∠∴∠90HAM PAG ︒=∠=∵∠F FAM =∠,90,90FAM MAD F D ∠+∠=︒∠+∠=︒∴∠MAD D =∠∴AM MD =∵,,AP CH HC FD AG FD ⊥⊥⊥∴90PAG ∠=︒∴90MAG PAM ∠+∠=︒∵∠HAP MAG =∠∴90PAH MAP ∠+∠=︒,即90HAM ∠=︒∴90HAB BAM ∠+∠=︒∵90BAD ∠=︒,即90BAM MAD ∠+∠=︒∴HAB MAD ∠=∠在ABH ∆和ADM ∆中,{AA =AA∠AAA =∠AAA AA =AA∴△()ABH ADM SAS ≅∆∴5BH MD ==∴5AM FM ==∴4ME =∴2GN GE MG ===【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.4、(1)见解析;(2)见解析【详解】(1)先利用SAS 证明△ABF ≌△AEC 即可得到EC =BF ;(2)根据(1)中的全等推得∠AEC =∠ABF ,根据∠BAE =90°,∠AEC +∠ADE =90°,再根据对顶角相等,等量代换后,推得∠BMD =90°.【解答】证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE =∠CAF =90°,∴∠BAE +∠BAC =∠CAF +∠BAC ,∴∠EAC =∠BAF ,在△ABF 和△AEC 中,AB AE EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,由(1)得:△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∴∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,∴EC⊥BF.【点睛】本题主要考查了全等三角形的性质与判定,对顶角的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5、见解析【分析】证明△BAC≌△BDC即可得出结论.【详解】解:∵BC平分∠ABD,∴∠ABC=∠DBC,在△BAC和△BDC中A DABC DBCBC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△BDC,∴AC=DC.【点睛】本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.。

七年级数学暑假专题 三角形同步练习 北师大版

七年级数学暑假专题 三角形同步练习 北师大版

初一数学北师大版暑假专题——三角形同步练习(满分100分,答题时间:60分钟)一、选择题(每小题4分,共36分)﹡1. 在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是() A.4cmB.5cmC.9cmD.13cm﹡2. 在下图中,正确画出AC 边上的高的是()A. B. C. D.﹡3. 如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,且PD =PE ,则△APD 与△APE 全等的理由是()A.SASB.AASC.SSSD.HL﹡4. 已知ΔABC 的三个内角∠A 、∠B 、∠C 满足关系式∠B+∠C=3∠A ,则此三角形() A.一定有一个内角为45°B.一定有一个内角为60° C.一定是直角三角形D.一定是钝角三角形﹡5. 在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=90°-∠B ,④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有()A.1个B.2个C.3个D.4个﹡6. 在下列条件中,不能说明△ABC ≌△A’B’C 的是() A.∠A =∠A ˊ,∠C =∠C ˊ,AC =A ˊC ˊ B.∠A =∠A ˊ,AB =A ˊB ˊ,BC =B ˊC ˊ C.∠B =∠B ˊ,∠C =∠C ˊ,AB =A ˊB ˊ D.AB =A ˊB ˊ, BC =B ˊC ,AC =A ˊC ˊ﹡7.如图,∠1=∠2,∠C=∠D ,AC 与BD 相交于点E ,下面结论中错误的是() A.∠DAE=∠CBE B.△DEA ≌△CEB C.CE=DA D.△EAB 是等腰三角形﹡8.如图,AB=AC,EB=EC,那么图中的全等三角形共有()A. 1对B. 2对C. 3对D. 4对﹡9.用尺规作图,利用下列所给条件不能作出唯一直角三角形的是()A.已知两直角边B.已知两锐角C.已知一直角边和一锐角D.已知斜边和一直角边二、沉着冷静耐心填(每小题4分,共28分)﹡10. 为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,他这样做的道理是。

2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析)

2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析)

沪教版七年级数学第二学期第十四章三角形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是()BF;④BH=CE.①BCD为等腰三角形;②BF=AC;③CE=12A.①②B.①③C.①②③D.①②③④2、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm3、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为()A .35°B .65°C .55°D .40°4、在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n )(0m >).若ABC 是等腰直角三角形,且AB BC =,当01a <<时,点C 的横坐标m 的取值范围是( )A .02m <<B .23m <<C .3m <D .3m >5、下列命题是真命题的是( )A .等腰三角形的角平分线、中线、高线互相重合B .一个三角形被截成两个三角形,每个三角形的内角和是90度C .有两个角是60°的三角形是等边三角形D .在ABC 中,2A B C ∠=∠=∠,则ABC 为直角三角形6、如图,等腰△ABC 中,AB =AC ,点D 是BC 边中点,则下列结论不正确...的是( )A .∠B =∠C B .AD ⊥BC C .∠BAD =∠CAD D .AB =2BC7、如图,将△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A 的度数为110°,∠D 的度数为40°,则∠AOD 的度数是( )A .50°B .60°C .40°D .30°8、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°9、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C =∠F =90°,∠A =45°,∠D =30°,则∠a +∠β等于( )A .180°B .210°C .360°D .270°10、根据下列已知条件,不能画出唯一ABC 的是( )A .60A ∠=︒,45B ∠=︒,4AB = B .30A ∠=︒,5AB =,3BC =C .60B ∠=︒,6AB =,10BC =D .90C ∠=︒,5AB =,3BC =第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _____).2、如图,△ABC 中,AB =AC =DC ,D 在BC 上,且AD =DB ,则∠BAC =_____.3、如图,△ABC 的面积等于35,AE =ED ,BD =3DC ,则图中阴影部分的面积等于 _______4、如图,在正方形网格中,∠BAC ______∠DAE .(填“>”、“=”或“<”)5、若2(3)|7|0a b -+-=,则以a 、b 为边长的等腰三角形的周长为________.三、解答题(10小题,每小题5分,共计50分)1、如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅.(2)若40A ∠=︒,145ECD ∠=︒,求∠F 的度数.2、△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,从点A 作AE ∥BC 交BD 的延长线于点E .(1)若∠BAC =40°,求∠E 的度数;(2)点F 是BE 上一点,且FE =BD .取DF 的中点H ,请问AH ⊥BE 吗?试说明理由.3、如图,在△ABC 中,AD ⊥BE ,∠DAC =10°,AE 是∠BAC 的外角∠MAC 的平分线,BF 平分∠ABC 交AE 于点F ,求∠AFB 的度数.4、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA ,PB 组成,两根棒在P 点相连并可绕点P 旋转,C 点是棒PA 上的一个固定点,点A ,O 可在棒PA ,PB 内的槽中滑动,且始终保持OA =OC =PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB=13∠AOB.我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.求证:∠APB=13∠AOB.5、已知:如图,在ABC中,AB=AC,点D、E分别在边BC,AC上,AD=AE.(1)若∠BAD=30°,则∠EDC=°;若∠EDC=20°,则∠BAD=°.(2)设∠BAD=x,∠EDC=y,写出y与x之间的关系式,并给出证明.6、如图,点C是线段AB上一点,ACF与BCE都是等边三角形,连接AE,BF.(1)求证:AE BF;(2)若点M ,N 分别是AE ,BF 的中点,连接CM ,MN ,NC .①依题意补全图形;②判断CMN △的形状,并证明你的结论.7、已知:在△ABC 中,AD 平分∠BAC ,AE=AC .求证:AD ∥CE .8、如图,在四边形ABCD 中,E 是CB 上一点,分别延长AE ,DC 相交于点F ,AB CF =,CEA B F ∠=∠+∠.(1)求证:EAB F ∠=∠;(2)若10BC =,求BE 的长.9、如图,ABC 为等边三角形,D 是BC 中点,60ADE ∠=︒,CE 是ABC 的外角ACF ∠的平分线. 求证:AD DE =.10、如图,在Rt ACB △中,90ACB ∠=︒,CA CB =,点D 是ACB △内一点,连接CD ,过点C 作CE CD ⊥且CE CD =,连接AD ,BE .求证:AD BE =.-参考答案-一、单选题1、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=12BF;由CE=12BF,BH=12BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD,故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=12AC=12BF,故③正确;∵CE=12AC=12BF,BH=12BC,在△BCF中,∠CBE=12∠ABC=22.5°,∠DCB=∠ABC=45°,∴∠BFC=112.5°,∴BF<BC,∴CE<BH,故④错误;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.2、C【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C .【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3、A【分析】先根据三角形内角和定理求出∠ACB =35°,再根据全等三角形性质即可求出∠CAD =35°.【详解】解:∵∠BAC =80°,∠ABC =65°,∴∠ACB =180°-∠BAC -∠ABC=35°,∵△ABC ≌△CDA ,∴∠CAD =∠ACB =35°.故选:A【点睛】本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.4、B【分析】过点C 作CD x ⊥轴于D ,由“AAS ”可证AOB BDC ∆≅∆,可得2AO BD ==,BO CD n a ===,即可求解.【详解】解:如图,过点C 作CD x ⊥轴于D ,点(0,2)A ,2AO ∴=,ABC ∆是等腰直角三角形,且AB BC =,90ABC AOB BDC ∴∠=︒=∠=∠,90ABO CBD ABO BAO ∴∠+∠=︒=∠+∠,BAO CBD ∴∠=∠,在AOB ∆和BDC ∆中,AOB BDC BAO CBD AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOB BDC AAS ∴∆≅∆,2AO BD ∴==,BO CD n a ===,01a ∴<<,2OD OB BD a m =+=+=,23m ∴<<,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.5、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为180606060︒-︒-︒=︒,所以三角形是等边三角形,故此选项正确;D.设C x ∠=,则2A B x ∠=∠=,故22180x x x ++=︒,解得36x =︒,所以72A B ∠=∠=︒,36C ∠=︒,此三角形不是直角三角形,故此选项错误.故选:C .【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.6、D【分析】根据等腰三角形的等边对等角的性质及三线合一的性质判断.【详解】解:∵AB =AC ,点D 是BC 边中点,∴∠B =∠C ,AD ⊥BC ,∠BAD =∠CAD ,故选:D .【点睛】此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.7、A【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A COD 803050,AOD 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.8、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∴∠ABP =∠CBP =20°,∠ACP =∠MCP =50°,∵∠PCM 是△BCP 的外角,∴∠P =∠PCM −∠CBP =50°−20°=30°,【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.9、B【分析】已知90C ∠=︒,得到2390∠+∠=︒,根据外角性质,得到1D α∠=∠+∠,4F β∠=∠+∠,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵90C ∠=︒,∴2390∠+∠=︒,∵1D α∠=∠+∠,4F β∠=∠+∠,∴14D F αβ∠+∠=∠+∠+∠+∠,∵12∠=∠,34∠=∠,∴1423D F D F ∠+∠+∠+∠=∠+∠+∠+∠,∵30D ∠=︒,90F ∠=︒,∴23233090210D F ∠+∠+∠+∠=∠+∠+︒+︒=︒;故选D .本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.10、B【分析】根据三角形存在的条件去判断.【详解】∵60A ∠=︒,45B ∠=︒,4AB =,满足ASA 的要求,∴可以画出唯一的三角形,A 不符合题意;∵30A ∠=︒,5AB =,3BC =,∠A 不是AB ,BC 的夹角,∴可以画出多个三角形,B 符合题意;∵60B ∠=︒,6AB =,10BC =,满足SAS 的要求,∴可以画出唯一的三角形,C 不符合题意;∵90C ∠=︒,5AB =,3BC =,AB 最大,∴可以画出唯一的三角形,D 不符合题意;故选B .【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.二、填空题1、角边角或【分析】根据全等三角形的判定定理得出即可.【详解】解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,故答案为:角边角或ASA.【点睛】本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.2、108°108度【分析】先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据DC=CA可知∠ADC=∠CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.【详解】设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵DC=CA,∴∠ADC=∠CAD=2x,在△ABC中,x+x+2x+x=180°,解得:x=36°.∴∠BAC=108°.故答案为:108°.【点睛】此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理 3、15【分析】连接DF ,根据AE =ED ,BD =3DC ,可得12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =,然后设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+,再由△ABC 的面积等于35,即可求解. 【详解】解:如图,连接DF ,∵AE =ED ,∴12ABE BDE ABD S S S == ,AEF DEF S S =,∵BD =3DC ,∴3ABD ADC S S = ,3BDF CDF S S =设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+, ∵△ABC 的面积等于35,∴()1353x x y y x y +++++= , 解得:15x y += .故答案为:15【点睛】 本题主要考查了与三角形中线有关的面积问题,根据题意得到12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =是解题的关键.4、>【分析】找到点F ,连接,AF DF (见解析),根据等腰直角三角形的性质、网格特点即可得45B C A E A D F DA ∠∠>∠=︒=.【详解】解;如图,找到点F ,连接,AF DF ,则ADF 是等腰直角三角形,45DAF DAE ∴∠=︒>∠,又Rt ABC 是等腰直角三角形,45DAF D BAC AE ∠=︒=∴∠>∠, 故答案为:>.【点睛】本题考查了等腰直角三角形、角的大小比较,正确找出点F 是解题关键.5、17【分析】先根据非负数的性质列式求出a 、b 的值,再分情况讨论求解即可.【详解】解:∵2(3)|7|0a b -+-=,∴30a -=,70b -=,解得:3a =,7b =,①若3a =是腰长,则底边为7,三角形的三边分别为3、3、7,∵337+<,∴3、3、7不能组成三角形;②若7b =是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长为:77317++=,∴以a 、b 为边长的等腰三角形的周长为17,故答案为:17.【点睛】本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解.三、解答题1、(1)见解析;(2)105︒【分析】(1)根据平行线的性质可得A D ∠=∠,根据线段的和差关系可得AC DB =,进而根据SAS 即证明AEC DFB ≅;(2)根据三角形内角和定理以及补角的意义求得∠E ,进而根据(1)的结论即可求得∠F .【详解】(1)证明:AE DF ∥∴A D ∠=∠, AB CD =∴AB BC BC CD +=+即AC BD = 又AE DF =,∴AEC DFB ≅(2)解:40A ∠=︒,145ECD ∠=︒,18035ECA ECD ∴∠=︒-∠=︒180105E A ECA ∴∠=︒-∠-∠=︒AEC DFB ≅F E ∴∠=∠105=︒【点睛】本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.2、(1)∠E =35°;(2)AH ⊥BE .理由见解析.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD 的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS ”可证△ABD ≌△AEF ,可得AD =AF ,由等腰三角形的性质可求解.【详解】解:(1)∵AB =AC ,∴∠ABC =∠ACB ,∵∠BAC =40°,∴∠ABC =12(180°-∠BAC )=70°,∵BD 平分∠ABC ,∴∠CBD =12∠ABC =35°,∵AE ∥BC ,∴∠E =∠CBD =35°;(2)∵BD 平分∠ABC ,∠E =∠CBD ,∴∠CBD =∠ABD =∠E ,∴AB =AE ,在△ABD 和△AEF 中,AB AE E ABD BD EF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△AEF (SAS ),∴AD =AF ,∵点H 是DF 的中点,∴AH ⊥BE .【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.3、∠AFB =40°.【分析】由题意易得∠ADC =90°,∠ACB =80°,然后可得11,22MAE MAC ABF ABC ∠=∠∠=∠,进而根据三角形外角的性质可求解.【详解】解:∵AD ⊥BE ,∴∠ADC =90°,∵∠DAC =10°,∴∠ACB =90°﹣∠DAC =90°﹣10°=80°,∵AE 是∠MAC 的平分线,BF 平分∠ABC , ∴11,22MAE MAC ABF ABC ∠=∠∠=∠, 又∵∠MAE =∠ABF +∠AFB ,∠MAC =∠ABC +∠ACB ,∴∠AFB =∠MAE ﹣∠ABF =()11111804022222MAC ABC MAC ABC ACB ∠-∠=∠-∠=∠=⨯︒=︒. 【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.4、见解析【分析】由OA OC PC ==,得出,POC AOC 为等腰三角形,由外角的性质及等量代换得2CAO APB ∠=∠,再次利用外角的性质及等量代换得3AOB APB ∠=∠,即可证明.【详解】解:OA OC PC ==,,POC AOC ∴为等腰三角形,,APB COP ACO CAO ∴∠=∠∠=∠,由外角的性质得:2ACO APB COP APB ∠=∠+∠=∠,2CAO APB ∠=∠,再由外角的性质得:AOB APB CAO ∠=∠+∠,3AOB APB ∴∠=∠,13APB AOB ∴∠=∠. 【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.5、(1)15,40;(2)y =12x ,见解析【分析】(1)设∠EDC =m ,则∠B =∠C =n ,根据∠ADE =∠AED =m +n ,∠ADC =∠B +∠BAD 即可列出方程,从而求解.(2)设∠BAD =x ,∠EDC =y ,根据等腰三角形的性质可得∠B =∠C ,∠ADE =∠AED =∠C +∠EDC =∠B +y ,由∠ADC =∠B +∠BAD =∠ADE +∠EDC 即可得∠B +x =∠B +y +y ,从而求解.【详解】解:(1)设∠EDC =m ,∠B =∠C =n ,∵∠AED =∠EDC +∠C =m +n ,又∵AD =AE ,∴∠ADE =∠AED =m +n ,则∠ADC =∠ADE +∠EDC =2m +n ,又∵∠ADC =∠B +∠BAD ,∴∠BAD =2m ,∴2m +n =n +30,解得m =15°,∴∠EDC的度数是15°;若∠EDC=20°,则∠BAD=2m=2×20°=40°.故答案是:15;40;x,(2)y与x之间的关系式为y=12证明:设∠BAD=x,∠EDC=y,∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠AED=∠C+∠EDC=∠B+y,∴∠ADC=∠B+∠BAD=∠ADE+∠EDC,∴∠B+x=∠B+y+y,∴2y=x,x.∴y=12【点睛】本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.6、(1)证明见解析;△是等边三角形,证明见解析.(2)①补全图形见解析;②CMN【分析】=.结合题意易得出(1)由等边三角形的性质可知60=,CB CEACF BCE∠=∠=︒,AC FC≅,即得出AE BF∠=∠.即可利用“SAS”证明ACE FCBACE FCB=;(2)①根据题意补全图形即可;②由全等三角形的性质可知CAM CFN ∠=∠,AE BF =.再由题意点M ,N 分别是AE ,BF 的中点,即得出AM FN =.即可利用“SAS ”证明ACM FCN ≅,得出结论CM CN =,ACM FCN ∠=∠.最后根据ACM FCM FCN FCM ∠-∠=∠-∠,即得出60ACF MCN ∠=∠=︒,即可判定CMN △是等边三角形.(1)∵ACF 与BCE 都是等边三角形,∴60ACF BCE ∠=∠=︒,AC FC =,CB CE =,∴ACF ECF BCE ECF ∠+∠=∠+∠,即ACE FCB ∠=∠,在ACE 和FCB 中,∴AC FC ACE FCB CE CB =⎧⎪∠=∠⎨⎪=⎩, ∴()ACE FCB SAS ≅,∴AE BF =.(2)①画图如下:②CMN △是等边三角形.理由如下:∵ACE FCB ≅,∴CAM CFN ∠=∠,AE BF =.∵点M ,N 分别是AE ,BF 的中点,∴AM FN =,在ACM △和FCN △中,∵AC FC CAM CFN AM FN =⎧⎪∠=∠⎨⎪=⎩, ∴()ACM FCN SAS ≅,∴CM CN =,ACM FCN ∠=∠,∴ACM FCM FCN FCM ∠-∠=∠-∠,即60ACF MCN ∠=∠=︒,∴CMN △是等边三角形.【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.7、见解析.【分析】先根据角平分线的定义得到∠BAD =12∠BAC ,再根据等腰三角形的性质和三角形外角定理得到∠E =12∠BAC ,从而得到∠BAD =∠E ,即可证明AD ∥CE .【详解】解:∵AD 平分∠BAC ,∴∠BAD =12∠BAC ,∵AE =AC ,∴∠E =∠ACE ,∵∠E +∠ACE =∠BAC ,∴∠E =12∠BAC ,∴∠BAD =∠E ,∴AD ∥CE .【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.8、(1)见解析(2)5BE =【分析】(1)利用CEA ∠是ABE △的外角,以及CEA B F ∠=∠+∠证明即可.(2)证明ABE △≌FCE △,可知BE CE =,从而得出答案.(1)证明:∵CEA ∠是ABE △的外角,∴CEA B EAB ∠=∠+∠.又∵CEA B F ∠=∠+∠,∴EAB F ∠=∠. (2)解:在ABE △和FCE △中,AB FC EAB F AEB FEC =⎧⎪∠=∠⎨⎪∠=∠⎩,△.∴ABE△≌FCE=.∴BE CEBC=,∵10BE=.∴5【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.9、证明见解析.【分析】过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.【详解】证明:过D作DG∥AC交AB于G,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠BAC=60°,又∵DG∥AC,∴∠BDG=∠BGD=60°,∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,∴DG=BD,∵点D 为BC 的中点,∴BD =CD ,∴DG =CD ,∵EC 是△ABC 外角的平分线,∴∠ACE =12(180°−∠ACB )=60°,∴∠BCE =∠ACB +∠ACE =120°=∠AGD ,∵AB =AC ,点D 为BC 的中点,∴∠ADB =∠ADC =90°,又∵∠BDG =60°,∠ADE =60°,∴∠ADG =∠EDC =30°,在△AGD 和△ECD 中,AGD ECD GD CDADG EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGD ≌△ECD (ASA ).∴AD =DE .【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.10、证明见解析.【分析】先根据角的和差可得ACD BCE ∠=∠,再根据三角形全等的判定定理证出ACD BCE ≅△△,然后根据全等三角形的性质即可得证.【详解】证明:90ACB ∠=︒,90ACD BCD ∴∠+∠=︒,CE CD ⊥,90BCE BCD ∠∴∠+=︒,ACD BCE ∠∠∴=,在ACD △和BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴≅,AD BE ∴=.【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.。

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

三角形的高、中线和角平分线同步练习题5套(含答案)(一)1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC (3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________.如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______. 2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A 为锐角) (∠A 为直角) (∠A 为钝角)(2)这三条高AD 、BE 、CF 所在的直线有怎样的位置关系?4.(1)分别画出△ABC 的三条中线AD 、BE 、CF .(2)这三条中线AD 、BE 、CF 有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?(一)参考答案1.(1)垂线,顶点、垂足,=,90°,高CD的长.(2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC,∠BAD,∠DAC2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM=2ME.5.(1)略,(2)三条角平分线交于一点,(3)点N到△ABC三边的距离相等.三角形的高、中线与角平分线(二)一.选择题:1.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0 B.0<a<4 C.4<a<8 D.0<a<82.△ABC中,CA=CB,D为BA中点,P为直线CD上的任一点,那么PA与PB的大小关系是( ) A.PA >PB B.PA<PB C.PA=PB D.不能确定3.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<54.△ABC中,AB=13,BC=10,BC边上中线AP=12,则AB,AC关系为( )A.AB>ACB.AB=ACC.AB<ACD.无法确定5.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个6.一个三角形中,下列说法正确的是( )A.至少有一个内角不小于90°B.至少一个内角不大于30°C. 至少一个内角不小于60°D. 至少一个内角不大于45°7.△ABC中,∠A=40°,高BD和CE交于O,则∠COD为( )A.40°或140°B. 50°或130°C. 40°D. 50°8.已知,如图1,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是( )A.∠BAC<∠ADCB.∠BAC=∠ADCC.∠BAC>∠ADCD.不能确定9.在△ABC中,已知∠A+∠C=2∠B,∠C-∠A=80°,则∠C的度数是( )A.60°B.80°C.100°D.120°10.如图2,∠B=∠C,则∠ADC与∠AEB的关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.不能确定二、填空题:1.△ABC中,∠A-∠B=10°,2∠C-3∠B=25°,则∠A= .2.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长为________.3.点A、B关于直线l对称,点C、D也关于l对称,AC、BD交于O,则O点在上.4.△ABC周长为36,AB=AC,AD⊥BC于D,△ABD周长为30cm,则AD= .5.等腰三角形一腰上的高与另一腰夹角为45°,则顶角为 .6.三角形三边的长为15、20、25,则三条高的比为 .7.若三角形三边长为3、2a-1、8,则a的取值范围是 .8.如果等腰三角形两外角比为1∶4则顶角为 . 9.等腰三角形两边比为1∶2,周长为50,则腰长为 . 10.等腰三角形底边长为20,腰上的高为16.则腰长为 . 三、解答题:1.△ABC 中AB=AC ,D 在AC 上,且AD=BD=BC.求△ABC 的三内角度数.2.如图,AC=BD ,AD ⊥AC ,BD ⊥BC ,求证AD=BC.3.CD 为Rt △ABC 斜边的中线 V ,DE ⊥AC 于E ,BC=1,AC=3.求△CED 的周长.4. 如图,AD 为△ABC 的中线,∠ADB 的平分线交AB 于E ,∠ADC 的平分线交AC 于E,求证BE+CF >EF.5.△A BC 中,AD ⊥BC 交边BC 于D.(1)若∠A=90° 求证:AD+BC >AB+AC(2)若∠A >90°,(1)中的结论仍然成立吗?若不成立,请举反例,若成立,请给出证明 6.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,ED ′ 的延长线与BC 交于点G ,若∠EFG =50°,求∠1、∠2的度数.(二)参考答案一、选择:DCBBB CABCB 二、填空:(1).55° (2).(8,8,5)或(6,6,9) (3).l (4).12 (5).45°或135° (6).20∶15∶12 (7).3<a <6 (8).140° (9).20 (10).350三.解答:1.设∠A=x AD=DB=BCAB=AC ∴∠ABD=x ∠BDC=2x ∠ABC=∠C=2x ∠DBC=x ∴5x=180° x=36° ∴∠A=36°∠C=72° ∠ABC=72°2.连DC ,∠DAC=∠DBC=90° AC=BD DC=DC ∴Rt △DAC ≌△CBD (HL) ∴AD=BC.3.∵∠ACB=90° BC=1 AC=3 ∴AB=2 ∠A=∠ACD=30°C D=1 DE=21CE=23 周长为2334.延长ED 至G ,使ED=DG ,连GC ,GF DE 平分∠BDA ,DF 平分∠ADC ∴∠EDF=90°,ED=DG ∴EF=FG ,△BED ≌△CGD ∴BE=GC ;GC+CF >GF.∴BE+CF >EF.5.(1)∵∠A=90°∴AB2+AC2=BC2AB ·AC=AD ·BC.(AB+AC)2=AB2+AC2+2AB ·AC=BC2+2AD ·BC <BC2+2AD ·BC+AD2=(BC+AD)2∴AD+BC >AB+AC. (2)若∠A >90°,上述结论仍成立.证∵∠A >90°,作AE ⊥AB 交BC 于E ,则AD 为Rt △BAE 斜边上的高 由(1)∴AD+BE >AB+AE ① 在△AE C 中 AE+EC >AC ②;①+② AD+BE+EC+AE >AB+AC+AE ∴AD+BC >AB+AC 6、80°,100°三角形的高、中线与角平分线(三)一、选择题1.一定在三角形内部的线段是( )A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、两条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.如图,△ABC 中,点E 是BC 上的一点,EC=2BE,BD 是边AC 上的中线,若S △ABC =12,则S △ADF -S △BEF =( ) A.1 B.2 C.3 D.4 二、填空题3.空调外机安装在墙壁上时,一般都会按如图所示的方法固定在墙壁上,这种方法应用的数学知识是三角形的 .4.如图所示,∠BAD=45°,AE=4 cm.(1)如果AD 是△ABC 的角平分线,那么∠DAC= ;(2)如果AE=CE,那么线段BE 是△ABC 的 ,AC 的长为 ; (3)如果AF 是△ABC 的高,那么图中以AF 为高的三角形有 个.5.如图,在△ABC中,AD是△ABC边BC上的中线,CE是△ACD边AD上的中线,F是EC的中点.若S△BFC=1,则S△ABC= .三、解答题6.如图,已知AD、AE分别是△ABC的高和中线,AB=9 cm,AC=12 cm,BC=15 cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度;(3)△A CE与△ABE的周长的差.7.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形的三边长.(三)参考答案1.答案 A A项,锐角三角形的三条高、三条角平分线、三条中线一定在三角形内部,故本选项正确;B项,钝角三角形的三条高有两条在三角形的外部,故本选项错误;C项,任意三角形的一条中线、两条角平分线都在三角形内部,但三条高不一定都在三角形内部,故本选项错误;D项,直角三角形的三条高有两条是直角边,不在三角形内部,故本选项错误.故选A.2.答案B∵S△ABC=12,EC=2BE,点D是AC的中点,∴S△ABE=S△ABC=4,S△ABD=S△ABC=6,∴S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故选B.3.答案稳定性解析题中方法应用的数学知识是三角形的稳定性.4.答案(1)45°(2)中线;8 cm (3)6解析(1)∵AD是△ABC的角平分线,∴∠DAC=∠BAD=45°.(2)∵AE=CE,∴线段BE是△ABC的中线,AC=2AE=2×4=8(cm).(3)以AF为高的三角形有△ABD、△ABF、△ABC、△ADF、△ADC、△AFC,共6个. 5.答案 4解析如图,连接BE.∵点D、E分别为BC、AD的中点,∴S△ABD=S△ACD=S△ABC,S△BDE=S△ABD=S△ABC,S△CDE=S△ACD=S△ABC,∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC,∵点F是CE的中点,∴S△BEF=S△BFC=S△BCE=×S△ABC=S△ABC,∵S△BFC=1,∴S△ABC=4.6.解析(1)∵△ABC是直角三角形,∠BAC=90°,AB=9 cm,AC=12 cm,∴S△ABC=AB·AC=×9×12=54(cm2).∵AE是边BC上的中线,∴BE=EC,∴BE·AD=EC·AD,即S△ABE=S△AEC,∴S△ABE=S△ABC=27 cm2.∴△ABE的面积是27 cm2. (2)∵∠BAC=90°,AD是边BC上的高,∴AB·AC=BC·AD,∴AD===(cm),即AD的长度为 cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=12-9=3(cm),即△ACE与△ABE的周长的差是3 cm.7.解析如图,设AB=AC=a,BC=b,则有或解得或这时三角形的三边长分别为16,16,10或12,12,18,它们都能构成三角形.所以三角形的三边长分别为16,16,10或12,12,18.三角形的高、中线与角平分线(四)一、选择题1、已知三角形的两边分别为4和9,则此三角形的第三边可能是()A. 4 B. 5 C.9 D. 132、下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.5 cm、7 cm、2 cm B.7 cm、13 cm、10 cmC.5 cm、7 cm、11 cm D.5 cm、10 cm、13 cm3、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.115°B.120°C.125°D.130°4、下列长度的三条线段,不能组成三角形的是()A.2、3、4 B.1、2、3 C.3、4、5 D.4、5、65、若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线6、如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④7、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118、如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACB C.AE=BE D.CD⊥BE9、一个三角形中直角的个数最多有()A.3B.1C.2D.010、下列图形不具有稳定性的是()11、下列各组中的三条线段能组成三角形的是()A.3,4,8 B.5,6,11C.5,6,10 D.4,4,812、如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个13、下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形14、如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交BC,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高二、填空题15、在△ABC是AB=5,AC=3,BC边的中线的取值范围是。

鲁教版(五四制)数学七年级上册第一章《三角形》1.2图形的全等同步练习(含答案)

鲁教版(五四制)数学七年级上册第一章《三角形》1.2图形的全等同步练习(含答案)

初中数学鲁教版七年级上册第一章《三角形》1.2图形的全等同步练习学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.在下列每组图形中,是全等形的是()。

A. B. C. D.2.下列说法:①能够重合的两个图形一定是全等图形;②两个全等图形的面积一定相等;③两个面积相等的图形一定是全等图形;④两个周长相等的图形一定是全等图形。

这些说法中正确的是()。

A.①②B.②③④C.①②④D.①②③④3.如图,将边长分别为10cm和4cm的矩形纸片沿着虚线剪成两个全等的梯形纸片.裁剪线与矩形较长边所夹的锐角是45°,则梯形纸片中较短的底边长为()。

A.2cmB.2.5cmC.3cmD.3.5cm4.下列说法不正确的是()。

A.如果两个图形全等,那么它们的形状和大小一定相同B.面积相等的两个图形是全等图形C.图形全等,只与形状、大小有关,而与它们的位置无关D.全等三角形的对应边相等,对应角相等5.下列说法正确的是()。

①用一张像纸冲洗出来的10张1寸像片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等形的面积一定相等,⑤周长相等的两个三角形全等.A.1个B.2个C.3个D.4个6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()。

A.30°B.45°C.60°D.90°7.下图所示的图形分割成两个全等的图形,正确的是()。

A. B. C. D.(示例图形)8.如图,△ABC与△CDA是全等三角形,则一定是一组对应边的是()。

A.AB和DCB.AC和CAC.AD和CBD.AD和DC9.如果两个图形全等,那么这两个图形必定是()。

A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同10.有一张三角形纸片ABC,已知∠B=∠C=α,按下列方案用剪刀沿着箭头方向剪开,所剪下的三角形纸片不一定是全等图形的是()。

初中三角形专题必做40题

初中三角形专题必做40题

初中三角形专题必做40题1. 两条边的和与差1) 已知等腰三角形的底边和等腰边的差是10cm,等腰边的长度是14cm,请计算底边的长度。

2) 一个三角形的两条边的和是31cm,差是3cm,求这两条边的长度分别是多少?2. 两角的和与差1) 已知一个三角形的两个内角是75度和45度,求第三个角的大小。

2) 一个三角形的两个内角的和是110度,差是20度,求这两个角的度数分别是多少?3. 利用三角形的特性1) 已知一个三角形的两个角分别是40度和75度,求第三个角的大小,判断它属于什么类型的三角形。

2) 在一个等边三角形中,每个角的度数是多少?3) 一个三角形的两个角分别是50度和60度,求第三个角的度数,并判断它是否为锐角三角形。

4. 判断三角形的类型1) 已知一个三角形的三条边分别是3cm、4cm、5cm,请判断这个三角形的类型。

2) 一个三角形的两条边分别是10cm和12cm,夹角是75度,请判断这个三角形的类型。

5. 根据给定条件计算三角形的面积1) 已知一个等边三角形的边长是8cm,求其面积。

2) 一个直角三角形的两个直角边分别是5cm和12cm,请计算其面积。

3) 在一个三角形中,已知两边分别是6cm和8cm,夹角是30度,请计算其面积。

6. 根据面积和边长计算三角形的高1) 已知一个等腰直角三角形的面积是24cm²,求其斜边的长度。

2) 在一个三角形中,已知底为10cm,高为8cm,请计算其面积。

7. 根据三角形的面积计算某一边的长度1) 在一个三角形中,已知底为16cm,高为10cm,请计算其面积。

2) 在一个等腰三角形中,底边的长度是12cm,高为8cm,求其面积。

8. 特殊三角形的性质1) 一个等边三角形的高与边长的关系是多少?2) 已知一个等腰三角形的底边是6cm,腰长是8cm,请计算其面积。

3) 在一个等腰直角三角形中,直角边的长度是10cm,请计算其斜边的长度。

通过以上40道题目的练习,你可以对初中阶段的三角形专题有更深入的了解,掌握三角形的基本概念、性质以及计算方法。

三角形的认识大题专练(分层培优解答30题,七下苏科)七年级数学下学期复习备考高分秘籍【苏科版】

三角形的认识大题专练(分层培优解答30题,七下苏科)七年级数学下学期复习备考高分秘籍【苏科版】

2022-2023学年七年级数学下学期复习备考高分秘籍【苏科版】专题2.2三角形的认识大题专练(分层培优解答30题,七下苏科)A卷基础过关卷(限时50分钟,每题10分,满分100分)1.(2021春•广陵区校级期中)已知a、b、c是一个三角形的三条边长,则化简|a+b﹣c|+|b﹣a﹣c|的结果是多少?2.(2020春•相城区期中)若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|.3.(2019春•大丰区期中)如图,在△ABC中,点D在BC上,且∠BAD=∠CAD,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?4.(2022春•盱眙县期中)如图,已知AD、AE分别是△ABC的高和中线,AB=3cm,AC=4cm,BC=5cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度.5.(2022春•姜堰区期末)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都在格点上.(1)利用网格画直线CD,使CD⊥AB,且点D在格点上,并标出所有符合条件的格点D;(2)在(1)的条件下,连接AD、BD,求△ABD的面积.6.(2022春•高港区校级月考)已知△ABC的三边长分别为3、5、a,化简|a﹣2|﹣|a﹣1|+|a﹣8|.7.(2022春•锡山区校级月考)已知a,b,c是一个三角形的三边长,(1)填入“>、<或=”号:a﹣b﹣c0,b﹣a﹣c0,c+b﹣a0.(2)化简:|a﹣b﹣c|+|b﹣a﹣c|﹣|c+b﹣a|.8.(2022春•亭湖区校级月考)如图,AD、AE、AF分别是△ABC的高线、角平分线和中线.(1)若S△ABC=20,CF=4,求AD的长.(2)若∠C=70°,∠B=26°,求∠DAE的度数.9.(2022春•泗阳县月考)如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时,若AE=6,△ABC的面积为30,求CD的长;(2)当AD为∠BAC的角平分线时,若∠C=66°,∠B=36°,求∠DAE的度数.10.(2022春•阜宁县期中)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.(1)∠2与∠DCB相等吗?为什么?(2)试说明CD是△ABC的高.B卷能力提升卷(限时60分钟,每题10分,满分100分)11.(2022春•东台市月考)如图,已知△ABC的周长为24cm,AB=6cm,BC边上的中线AD=5cm,△ABD 的周长为16cm,求AC的长.12.(2019春•锡山区期中)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.13.(2022春•鼓楼区期末)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.14.(2022春•秦淮区期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.15.(2020春•姜堰区期中)如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时.若AE=4,△ABC的面积为24,求CD的长;(2)当AD为∠BAC的角平分线时.①若∠C=65°,∠B=35°,求∠DAE的度数;②若∠C﹣∠B=20°,则∠DAE=°.16.如图,点P是△ABC内一点,连接BP,并延长交AC于点D.(1)试探究线段AB+BC+CA与线段2BD的大小关系;(2)试探究AB+AC与PB+PC的大小关系.17.如图,已知D、E是△ABC内的两点,问AB+AC>BD+DE+EC成立吗?请说明理由.18.如图,已知O是△ABC内的一点,试说明:(1)OB+OC<AB+AC;(2)OA+OB+OC>(AB+BC+AC).19.(2021秋•铁东区校级月考)如图,AD为△ABC中BC边上的中线(AB>AC)(1)求证:AB﹣AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.20.(2022秋•乌鲁木齐县月考)已知a,b,c是△ABC的三边长,a=4,b=6,设△ABC的周长是x.(1)求c与x的取值范围;(2)若x是小于18的偶数,试判断△ABC的形状.C卷培优压轴卷(限时70分钟,每题10分,满分100分)21.(2022春•宝应县校级月考)如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上.(1)若三角形BDE的周长与四边形ACDE的周长相等,求线段AE的长.(2)若三角形ABC的周长被DE分成的两部分的差是2cm,求线段AE的长.22.(2020春•如东县期末)如图,△ABC中,∠ACB=90°,AC=16cm,BC=12cm,AB=20cm,若动点P从点C开始按沿C→A→B→C的路径运动,且速度为每秒3cm,设运动时间为t秒.(1)当CP把△ABC的面积分成相等的两部分时,t的值为多少?(2)当t=8时,求CP把△ABC分成的两部分面积之比.23.(2019春•无锡期末)如图,已知△ABC中,点D、E分别在边AB、AC上,点F在CD上.(1)若∠AED=∠ACB,∠DEF=∠B,求证:EF∥AB;(2)若D、E、F分别是AB、AC、CD的中点,连接BF,若四边形BDEF的面积为6,试求△ABC的面积.24.(2019秋•江阴市期中)如图,P是长方形ABCD内一点,三角形ABP的面积为a.(1)若长方形ABCD的面积为m,则三角形CPD的面积为;(用含m、a的代数式表示)(2)若三角形BPC的面积为b(b>a),则三角形BPD的面积为.(用含a、b的代数式表示)25.(2020春•江阴市期中)如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3cm,设运动的时间为t秒.(1)当t=时,CP把△ABC的周长分成相等的两部分?(2)当t=时,CP把△ABC的面积分成相等的两部分?(3)当t为何值时,△BCP的面积为18cm2?26.(2022秋•西城区校级期中)已知△ABC(如图),按下列要求画图:(1)△ABC的中线AD;(2)△ABD的角平分线DM;(3)△ACD的高线CN;(4)若C△ADC﹣C△ADB=3,(C表示周长)且AB=4,则AC=.27.(2020春•张家港市期末)如图,已知∠BDC+∠EFC=180°,∠DEF=∠B.(1)求证:ED∥BC;(2)若D,E,F分别是AB,AC,CD边上的中点,四边形ADFE的面积为6.①求△ABC的面积;②若G是BC边上一点,CG=2BG,求△FCG的面积.28.(2020春•姑苏区期中)【数学经验】三角形的中线的性质:三角形的中线等分三角形的面积.【经验发展】面积比和线段比的联系:如图1,M为△ABC的AB上一点,且BM=2AM,若△ABC的面积为a,若△CBM的面积为S,则S=(用含a的代数式表示).【结论应用】如图2,已知△CDE的面积为1,,,求△ABC的面积.【迁移应用】如图3,在△ABC中,M是AB的三等分点(AM=AB),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为.29.(2021秋•秦淮区校级月考)如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3个单位,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的面积分成相等的两部分;(2)当t=5时,CP把△ABC分成的两部分面积之比是S△APC:S△BPC=;(3)当t为何值时,△BPC的面积为18.30.(2022春•沭阳县月考)如图,在△ABC中,∠A=∠BCD,CD⊥AB于点D,BE平分∠ABC交CD、CA于点F、E.(1)求∠ACB的度数;(2)试说明∠CEF=∠CFE;(3)若AC=3CE,AB=4BD,△ABC、△CEF、△BDF的面积分别表示为S△ABC、S△CEF、S△BDF,且S=60,则S△CEF﹣S△BDF=(仅填结果).△ABC。

2022年强化训练冀教版七年级数学下册第九章 三角形同步测试试题(含答案解析)

2022年强化训练冀教版七年级数学下册第九章 三角形同步测试试题(含答案解析)

冀教版七年级数学下册第九章三角形同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC中,∠A=∠B=14∠C,则∠C=()A.70°B.80°C.100°D.120°2、数学课上,同学们在作ABC中AC边上的高时,共画出下列四种图形,其中正确的是().A.B.C.D.3、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为()A .3454a ︒+ B .2603a ︒+ C .3454a ︒- D .2603a ︒-4、如图,在ABC 中,35A ∠=︒,45C ∠=︒,则外角ABD ∠的度数是( )A .35°B .45°C .80°D .100°5、如图,△AOB 绕点O 逆时针旋转65°得到△COD ,若∠COD =30°,则∠BOC 的度数是()A .30°B .35°C .45°D .60°6、下列各组数中,不能作为一个三角形三边长的是( )A .4,4,4B .2,7,9C .3,4,5D .5,7,97、如图,AD ∥BC ,∠C =30°,∠ADB :∠BDC =1:2,∠EAB =72°,以下四个说法:①∠CDF =30°;②∠ADB =50°;③∠ABD =22°;④∠CBN =108°其中正确说法的个数是( )A .1个B .2个C .3个D .4个8、如果一个三角形的两边长都是6cm ,则第三边的长不能是( )A .3cmB .6cmC .9cmD .13cm9、一把直尺与一块三角板如图放置,若140∠=︒,则2∠=( )A .120°B .130°C .140°D .150°10、若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是80,则△ABE 的面积是________.2、如图,在△ABC中,点D在CB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.3、若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.4、一个三角形的其中两个内角为88︒,32︒,则这个第三个内角的度数为______.5、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).三、解答题(5小题,每小题10分,共计50分)1、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.2、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.(1)求△ABC的面积;(2)求AD的长.3、已知直线MN∥PQ,点A是直线MN上一个定点,点B在直线PQ上运动.点H为平面上一点,且满足∠AHB=90°.设∠HBQ=α.(1)如图1,当α=70°时,∠HAN=.(2)过点H作直线l平分∠AHB,直线l交直线MN于点C.①如图2,当α=60°时,求∠ACH的度数;②当∠ACH=30°时,直接写出α的值.4、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.5、如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,若∠BAC=50°,∠ABC=60°.求∠DAC和∠BOA的度数.-参考答案-一、单选题1、D【解析】【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.2、A【解析】【分析】满足两个条件:①经过点B ;②垂直AC ,由此即可判断.解:根据垂线段的定义可知,A 选项中线段BE ,是点B 作线段AC 所在直线的垂线段,故选:A .【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、A【解析】【分析】根据题意设,ABD ACD βθ∠=∠=,根据三角形内角和公式定理βθ+,进而表示出α,进而根据三角形内角和定理根据()1803BDC βθ∠=︒-+即可求解【详解】解:∵∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,设,ABD ACD βθ∠=∠=,∴3,3DBC DCB βθ∠=∠=180A ABC ACB ∠+∠+∠=︒即44180αβθ++=︒454αβθ∴+=︒-∴()1803BDC βθ∠=︒-+31803454544αα⎛⎫=︒-⨯︒-=︒+ ⎪⎝⎭ 故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.4、C【分析】根据三角形的外角的性质直接求解即可,ABD A C ∠=∠+∠.【详解】解:∵在ABC 中,35A ∠=︒,45C ∠=︒,∴ABD A C ∠=∠+∠453580=︒+︒=︒故选C【点睛】本题考查了三角形的外角的性质,掌握三角形的外角的性质是解题的关键.5、B【解析】【分析】由旋转的性质可得∠AOC =65°,由∠AOB =30°,即可求∠BOC 的度数.【详解】解:∵△AOB 绕点O 逆时针旋转65°得到△COD ,∴∠AOC =65°,∵∠AOB =30°,∴∠BOC =∠AOC −∠AOB =35°.故选:B .【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.6、B【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.7、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC =2∠ADB ,∵∠ADC =∠ADB +∠BDC =∠ADB +2∠ADB =3∠ADB =150°,解得∠ADB =50°,故②正确∵∠EAB =72°,∴∠DAN =180°-∠EAB =180°-72°=108°,∴∠ABD =180°-∠NAD -∠ADB =180°-108°-50°=22°,故③正确∵AD ∥BC ,∴∠CBN =∠DAN =108°,故④正确其中正确说法的个数是4个.故选择D .【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.8、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm ,依题意有6666x -<<+ ,即012x <<,故只有D 符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.9、B【解析】【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.10、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.二、填空题1、20【解析】【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:∵AD是BC上的中线,∴S△ABD=S△ACD=12S△ABC,∵BE是△ABD中AD边上的中线,∴S△AB E=S△BED=12S△ABD,∴S△ABE=14S△ABC,∵△ABC的面积是80,∴S △ABE =14×80=20. 故答案为:20.【点睛】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.2、50°【解析】【分析】首先根据平角的概念求出ABC ∠的度数,然后根据三角形内角和定理即可求出C ∠的度数.【详解】解:∵∠ABD =110°,∴18070ABC ABD ∠=︒-∠=︒,∴180180607050C A ABC ∠=︒-∠-∠=︒-︒-︒=︒故答案为:50°.【点睛】此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.3、3<m <9【解析】【分析】直接利用三角形三边关系得出答案.【详解】解:∵△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,边AC的长为m,∴m的取值范围是:3<m<9,故答案为:3<m<9.【点睛】本题主要考查了三角形三边关系,正确掌握三角形三边关系是解题关键.4、60°##60度【解析】【分析】依题意,利用三角形内角和为:180︒,即可;【详解】由题得:一个三角形的内角和为:180︒;又已知两个其中的内角为:88︒,32︒;∴ 第三个角为:180883260︒-︒-︒=︒;故填:60︒【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;5、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x <7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.三、解答题1、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.2、(1)27;(2)4.5【解析】【分析】(1)根据三角形面积公式进行求解即可;(2)利用面积法进行求解即可.【详解】解:(1)由题意得:2116927cm 22ABCS A CE B ==⨯⨯=⋅. (2)∵12ABC AD S BC ⋅=, ∴127122AD =⨯⋅. 解得 4.5cm AD =.【点睛】本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式.3、 (1)20°(2)①∠ACH =15°;②α=75°【解析】【分析】(1)延长BH 与MN 相交于点D ,根据平行线的性质可得∠ADH =∠HBQ =70°,再根据三角形外角定理可得AHB =∠HAN +∠ADH ,代入计算即可得出答案;(2)①延长CH 与PQ 相交于点E ,如图4,根据角平分线的性质可得出∠BHE 的度数,再根据三角形外角定理可得∠HBQ =∠HEB +∠BHE ,即可得出∠HEB 的度数,再根据平行线的性质即可得出答案;②根据平行线的性质可得∠HEB的度数,再根据三角形外角和∠HBQ=∠HEB+∠BHE,即可得出答案.【小题1】解:延长BH与MN相交于点D,如图3,∵MN∥PQ,∴∠ADH=∠HBQ=70°,∵∠AHB=90°,∴∠AHB=∠HAN+∠ADH,∴∠HAN=90°-70°=20°.【小题2】①延长CH与PQ相交于点E,如图4,∵∠AHB=90°,CH平分∠AHB,∠AHB=45°,∴∠BHE=12∵∠HBQ=∠HEB+∠BHE,∴∠HEB=60°-45°=15°,∵MN∥PQ,∴∠ACH=∠HEB=15°;②α=75°.如图4,∵∠ACH=30°,∴∠HEB=30°,∵∠AHB=90°,CH平分∠AHB,∴∠BHE=12∠AHB=45°,∴∠HBQ=∠HEB+∠BHE=30°+45°=75°,∴α=75°.【点睛】本题主要考查了平行线的性质,熟练应用平行线的性质进行计算是解决本题的关键.4、∠AFB=40°.【解析】【分析】由题意易得∠ADC=90°,∠ACB=80°,然后可得11,22MAE MAC ABF ABC∠=∠∠=∠,进而根据三角形外角的性质可求解.【详解】解:∵AD⊥BE,∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,∵AE是∠MAC的平分线,BF平分∠ABC,∴11,22MAE MAC ABF ABC ∠=∠∠=∠, 又∵∠MAE =∠ABF +∠AFB ,∠MAC =∠ABC +∠ACB ,∴∠AFB =∠MAE ﹣∠ABF =()11111804022222MAC ABC MAC ABC ACB ∠-∠=∠-∠=∠=⨯︒=︒. 【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.5、∠DAC =20°,∠BOA =125°【解析】【分析】先求出∠C =70°,因为AD 是高,所以∠ADC =90°,又因为∠C =70°,所以∠DAC 度数可求;因为∠BAC =50°,∠C =70°,所以∠BAO =25°,∠ABC =60°,BF 是∠ABC 的角平分线,则∠ABO =30°,故∠BOA 的度数可求.【详解】解:∵∠BAC =50°,∠ABC =60°∴∠C =180°-∠BAC -∠ABC =70°∵AD ⊥BC∴∠ADC =90°∵∠C =70°∴∠DAC =180°−90°−70°=20°;∵∠BAC =50°,∠C =70°∴∠BAO =25°,∠ABC =60°∵BF 是∠ABC 的角平分线∴∠ABO =30°∴∠BOA=180°−∠BAO−∠ABO=180°−25°−30°=125°.【点睛】本题考查了同学们利用角平分线的性质解决问题的能力,有利于培养同学们的发散思维能力.。

4.2 全等三角形-北师大版七年级数学下册同步提升训练(含解析)

4.2 全等三角形-北师大版七年级数学下册同步提升训练(含解析)

4.2全等三角形同步提升训练1.如图为正方形网格,则∠1+∠2+∠3=( )A.105°B.120°C.115°D.135°2.下列说法中正确的是( )A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形3.下列各组中的两个图形属于全等图形的是( )A.B.C.D.4.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是( )A.1B.2C.3D.4 5.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为( )A.45°B.60°C.90°D.100°6.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是( )A.6cm B.5cm C.7cm D.无法确定7.已知△ABC≌△A′C′B′,∠B与∠C′,∠C与∠B′是对应角,有下列4个结论:①BC =C′B′;②AC=A′B′;③AB=A′B′;④∠ACB=∠A′B′C′,其中正确的结论有( )A.1个B.2个C.3个D.4个8.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是( )A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF 9.下列选项中表示两个全等的图形的是( )A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形10.如图,△ABC≌△CDA,∠BAC=∠DCA,则BC的对应边是( )A.CD B.CA C.DA D.AB11.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a>b,求出阴影部分的面积为 .12.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3= .13.连接正方形网格中的格点,得到如图所示的图形,则∠1+∠2+∠3+∠4= °.14.从同一张底片上冲出来的两张五寸照片 全等图形,从同一张底片上冲出来的一张一寸照片和一张两寸照片 全等图形(填“是”或“不是”).15.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′= °,∠A= °,B′C′= ,AD= .16.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是 .17.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.18.图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.19.你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗?20.把下列各图分成若干个全等图形,请在原图上用虚线标出来.21.找出七巧板中(如图)全等的图形.22.如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.参考答案1.解:∵在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠1+∠3=90°,∵AD=MD,∠ADM=90°,∴∠2=45°,∴∠1+∠2+∠3=135°,故选:D.2.解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.3.解:A、两个图形不属于全等图形,故此选项不合题意;B、两个图形不属于全等图形,故此选项不合题意;C、两个图形不属于全等图形,故此选项不合题意;D、两个图形属于全等图形,故此选项符合题意;故选:D.4.解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.5.解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:C.6.解:∵△ABC≌△ADE,∴DE=BC,∵BC=7cm,∴DE=7cm.故选:C.7.解:如图,∵△ABC≌△A′C′B′,∠B与∠C′,∠C与∠B′是对应角,∴BC=C′B′,AC=A′B′,∠ACB=∠A′B′C′,∴①②④共3个正确的结论.AB与A′B′不是对应边,不正确.故选:C.8.解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选:A.9.解:A、形状相同的两个图形大小不一定相等,所以,不是全等图形,故本选项错误;B、周长相等的两个图形形状、大小都不一定相同,所以,不是全等图形,故本选项错误;C、面积相等的两个图形形状、大小都不一定相同,所以,不是全等图形,故本选项错误;D、能够完全重合的两个图形是全等图形,故本选项正确.故选:D.10.解:∵△ABC≌△CDA,∠BAC=∠DCA,∴∠BAC与∠DCA是对应角,∴BC与DA是对应边(对应角对的边是对应边).故选:C.11.解:∵如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a﹣b的正方形,∴阴影部分的面积=(a﹣b)2,故答案为:(a﹣b)2.12.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.13.解:由网格可得:△AFE≌△BDA,则∠1=∠5,∵AC=BC=,AB=,∴△ACB是直角三角形,故∠CAB=∠CBA=45°,∴∠4+∠5=∠4+∠1=180°﹣45°=135°,∠2+∠3=90°﹣45°=45°,∴∠1+∠2+∠3+∠4=135°+45°=180°.故答案为:180.14.解:由全等形的概念可知:从同一张底片上冲出来的两张五寸照片是全等图形,由同一张底片冲洗出来的一寸照片和二寸照片,大小不一样,所以不是全等图形.故答案为:是,不是.15.解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.16.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.17.解:设计方案如下:18.解:对应顶点:A和G,E和F,C和I,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,d=5,e=11,α=90°,β=115°.19.解:如图所示.20.解:如图所示:21.解:由图知:△ADE与△DEC,△EHK与△CJF,△ADC与△ABC,四边形AGKE与四边形CFKE,四边形AGKD与四边形CFKD是重合的,即是全等的图形.22.解:如图所示:.。

七年级数学三角形同步练习

七年级数学三角形同步练习

认识三角形、图形的全等、图案设计一、请准确填空1.分别以2 cm 、3 cm 、4 cm 、5 cm 的线段为边可构成________个三角形.2.在△ABC 中,∠C =90°,∠A =40°,则∠B =________.3.两根木棒的长分别是7cm 和9 cm ,现要你选择第3根木棒,将它们钉成一个三角形,若选择的木棒长度是7的倍数,则你选择的木棒的长为________cm.4.有三个三角形,它们的两个内角的度数分别如下:①30°和50°;②70°和20°;③82°和23°,其中属于锐角三角形的是________.5.在△ABC 中,若∠C =21∠B =31∠A ,则△ABC 是________三角形(按角分类).6.把四边形ABCD 绕点A 旋转120°变到四边形AEFG 的位置,如图1所示,那么四边形ABCD 与四边形AEFG ________全等图形(填“是”或“不是”).ABCDEFGA B CD 图1 图27.如图2所示,∠ACB =90°,CD ⊥AB ,则图中属于直角三角形的有________个.8.根据图3中已知角的度数,求出其中∠α的度数.110o70oα(2)(3)o55α30o40 o50o35oα(1)图3(1)∠α=________;(2)∠α=________; (3)∠α=________. 二、相信你的选择9.如图4所示,图中共有几个三角形( )ABC D O图4A.4B.6C.8D.1010.在三角形的角平分线、中线、高线中,属于直线的有(每种线只有一条) ( )A.0条B.1条C.2条D.3条11.现有两根木棒分别长40 cm 和50 cm ,要从下列长度的木棒中选出一条,与前面两根木棒钉成一个三角架(木棒不能余),则可选出( )①5 cm ②10 cm ③40 cm ④45 cm ⑤80 cm ⑥90 cm A.3条 B.4条 C.5条 D.6条 12.在一个三角形的三个内角中,说法正确的是( ) A.至少有一个直角 B.至少有一个钝角 C.至多有两个锐角 D.至少有两个锐角 13.锐角三角形中,任意两个内角之和必大于( ) A.120° B.100° C.90° D.60° 14.下列各图中,CD 属于△ABC 的高的图形是( )ABCDBDAB C (D )AB CDCAB CD A图515.如图6所示,∠1=∠2=∠3=∠4,则AD 是△ABC 的( )1 2 3 4A BCD图6A.高B.角平分线C.中线D.以上都不是16.给定下列条件,不能判定三角形是直角三角形的是( ) A.∠A ∶∠B ∶∠C =1∶2∶3 B.∠A +∠B =∠CC.∠A =21∠B =31∠C D.∠A =2∠B =3∠C三、考查你的基本功17.如图7所示,图中有n 个三角形,分别指出来,并选出三个指出它们的边和角.ABCDE图718.已知钝角△ABC ,(如图8)试画出:ABC图8(1)AB 边上的高;(2)BC 边上的中线; (3)∠BAC 的角平分线;(4)图中相等的线段有:__________; (5)图中相等的角有:________________.A D C BEF 1 219. AD 是△ABC 的一条高,也是△ABC 的角平分线,若∠B =40°,求∠BAC的度数..ABC D四、生活中的数学20.如图9所示,按规定,一块模板中AB 、CD 的延长线应相交成85°的角,因交点不在板上,不便测量.如果你是技术工人,利用你所学的知识,能否验证这个模板是否合格?请写出你的验证过程.A BCD图921.以三根火柴为边,可以组成一个三角形,用6根火柴能组成4个三角形吗?动手做一做,说出你的拼法,并与同伴交流.五、探究拓展与应用22.如图10所示,把△ABC 的一边BC 延长,得到∠ACD ,我们把∠ACD 叫做△ABC 的一个外角,试观察∠ACD 与∠A 、∠B 有什么关系?写出过程,并用语言叙述这种关系.ABCD图10。

2022年必考点解析冀教版七年级数学下册第九章 三角形同步训练练习题(无超纲)

2022年必考点解析冀教版七年级数学下册第九章 三角形同步训练练习题(无超纲)

冀教版七年级数学下册第九章 三角形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列长度的三条线段能组成三角形的是( )A .3 4 8B .4 4 10C .5 6 10D .5 6 112、如图,90C A ∠=∠=︒,25B ∠=︒,则D ∠的度数是( )A .55°B .35°C .45°D .25°3、三角形的外角和是( )A .60°B .90°C .180°D .360°4、下图中能体现∠1一定大于∠2的是( )A .B .C .D .5、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°6、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒7、下列各图中,有△ABC 的高的是( )A .B .C.D.8、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理9、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为()A .100°B .105°C .115°D .120°10、将一张正方形纸片ABCD 按如图所示的方式折叠,CE 、CF 为折痕,点B 、D 折叠后的对应点分别为B '、D ',若∠ECF =21°,则∠B 'CD '的度数为( )A .35°B .42°C .45°D .48°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AE CF ∥,ACF ∠的平分线交AE 于点B ,G 是CF 上的一点,GBE ∠的平分线交CF 于点D ,且BD BC ⊥,下列结论:①BC 平分ABG ∠;②∥AC BG ;③与DBE ∠互余的角有2个;④若A α∠=,则1808BDF α∠=︒-.其中正确的是________.(请把正确结论的序号都填上)2、如图,AB =DE ,AC =DF ,BF =CE ,点B 、F 、C 、E 在一条直线上,AB =4,EF =6,求△ABC 中AC 边的取值范围.3、ABC 中,A ∠比B 大10°,50C ∠=︒,则A ∠=______.4、如图,AD 是△ABC 的中线,BE 是△ABD 的中线,若△ABC 的面积为24 cm 2,则△ABE 的面积为________cm 25、如图,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且S △BEF =2cm 2,则S △ABC =__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC 中,∠BAC =40°,∠B =75°,AD 是△ABC 的角平分线,求∠ADB 的度数.2、已知:如图,AB CD ∥,37,60E D ∠=︒∠=︒,求ABE ∠的度数.3、若AE 是ABC 边BC 上的高,AD 是EAC ∠的平分线且交BC 于点D .若40ACB ∠=︒,65B ∠=︒,分别求BAD ∠和DAE ∠的度数.4、如图,在△ABC 中,AD ⊥BE ,∠DAC =10°,AE 是∠BAC 的外角∠MAC 的平分线,BF 平分∠ABC 交AE 于点F ,求∠AFB 的度数.5、在△ABC 中,∠B =∠A +30°,∠C =40°,求∠A 和∠B 的度数.-参考答案-一、单选题1、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.2、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD与BC相交于O,则∠COD=∠AOB,∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,∴∠D=∠B=25°,故选:D.【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.3、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】∠+∠=∠+∠=∠+∠=︒,解:如图,142536180∴∠+∠+∠+∠+∠+∠=︒,142536540又123180∠+∠+∠=︒,∴∠+∠+∠=︒-︒=︒,456540180360即三角形的外角和是360︒,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.4、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;∠=∠B、如图,13,∠∠若两线平行,则∠3=∠2,则1=2,若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.5、B【解析】【分析】由外角的性质可得∠ABD =20°,由角平分线的性质可得∠DBC =20°,由平行线的性质即可求解.【详解】解:(1)∵∠A =30°,∠BDC =50°,∠BDC =∠A +∠ABD ,∴∠ABD =∠BDC −∠A =50°−30°=20°,∵BD 是△ABC 的角平分线,∴∠DBC =∠ABD =20°,∵DE ∥BC ,∴∠EDB =∠DBC =20°,故选:B .【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.6、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.7、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B 是过顶点C 作的AB 边上的高,∴有△ABC 的高的是选项B ,故选:B .【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.8、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.9、B【解析】【分析】首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.【详解】解:在△ABC和△DEF中,∠BAC=∠EDF=90°,∠F=45°,∠B=60°,∴∠C=90°-∠B=30°,∠E=90°-∠F=45°,∵BC∥EF,∴∠MDC=∠E=45°,在△CMD中,∠CMD=180°-∠C-∠MDC=105°.故选:B.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.10、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.二、填空题1、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.【详解】∵BD平分∠GBE∠GBE∴∠EBD=∠GBD=12∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴与∠DBE互余的角共有4个故③错误∵AC∥BG,∠A=α∴∠GBE=α∴12 GBDα∠=∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=1+18018022ααα︒-=︒-故④错误即正确的结论有①②故答案为:①②【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.2、2<AC<10【解析】【分析】由BF=CE得到 BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE,点B、F、C、E在一条直线上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB =4,∴6-4<AC <6+4,即2<AC <10,∴AC 边的取值范围为2<AC <10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.3、70°【解析】【分析】根据三角形内角和定理可得130A B ∠+∠=︒,由题意A ∠比B ∠大10︒,可得10A B ∠-∠=︒,组成方程组求解即可.【详解】解:∵50C ∠=︒,∴130A B ∠+∠=︒,∵A ∠比B ∠大10︒,∴10A B ∠-∠=︒,∴13010A B A B ∠+∠=︒⎧⎨∠-∠=︒⎩, 解得:7060A B ∠=︒⎧⎨∠=︒⎩, 故答案为:70︒.【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.4、6【解析】【分析】 中线将三角形分成两个面积相等的三角形,可知12ABD ABC SS =⨯,12ABE ABD S S =⨯计算求解即可. 【详解】解:由题意知BD CD DE AE ==,∴2112cm 2ABD ACD ABC S S S ==⨯= ∵216cm 2ABE BDE ABD SS S ==⨯= ∴2=6cm ABE S故答案为:6.【点睛】本题考查了三角形的中线.解题的关键在于理解中线将三角形分成两个面积相等的三角形. 5、8cm 2【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S △CFB =S △EFB =2cm 2,于是得到S △CEB =4cm 2,再求出S △BDE =2cm 2,利用E 点为AD 的中点得到S △ABD =2S △BDE =4cm 2,然后利用S △ABC =2S △ABD 求解.【详解】解:∵F 点为CE 的中点,∴S △CFB =S △EFB =2cm 2,∴S △CEB =4cm 2,∵D 点为BC 的中点,∴S △BDE =12S △BCE =2cm 2,∵E 点为AD 的中点,∴S △ABD =2S △BDE =4cm 2,∴S △ABC =2S △ABD =8cm 2.故答案为:8cm 2.【点睛】本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键.三、解答题1、85°【解析】【分析】根据角平分线定义求出DAB ∠,根据三角形内角和定理得出180ADB DAB B ∠=︒-∠-∠,代入求出即可.【详解】解:AD 平分CAB ∠,40BAC ∠=︒,1202DAB BAC ∴∠=∠=︒, 75B ∠=︒,180180207585ADB DAB B ∴∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于180︒.2、97°【分析】延长AB 交DE 于点F ,根据平行线的性质可得160D ∠=∠=︒,根据三角形的外角性质即可求得ABE ∠的度数.【详解】解:如图,延长AB 交DE 于点F .∵AB ∥CD ,∠D =60°,∴160D ∠=∠=︒∵∠ABE 是△BEF 的一个外角,∴∠ABE =∠E +∠1∵∠E =37°∴∠ABE =37°+60°=97°【点睛】本题考查了平行线的性质,三角形外角的性质,掌握三角形的外角性质是解题的关键.3、25DAE ∠=︒;50BAD ∠=︒【解析】【分析】根据△AEC 的内角和定理可得:18050EAC AEC ACB ∠=︒-∠-∠=︒,根据角平分线的性质可得11502522DAE EAC ∠=∠=⨯︒=︒,根据△ABC 的内角和定理可得∠BAC ,又因为BAE BAC EAC ∠=∠-∠,BAD BAE DAE ∠∠∠=+,即可得解.解:∵AE 是ABC 边BC 上的高∴90AEC ∠=︒∴在EAC 中,有180EAC AEC ACB ∠+∠+∠=︒又∵40ACB ∠=︒∴180EAC AEC ACB ∠=︒-∠-∠1809040=︒-︒-︒50=︒∵AD 是EAC ∠的平分线 ∴11502522DAE EAC ∠=∠=⨯︒=︒∵在ABC 中,有180BAC B BAC ∠+∠+∠=︒ 已知40ACB ∠=︒,65B ∠=︒∴180BAC ACB B ∠=︒-∠-∠1804065=︒-︒-︒75=︒∴755025BAE BAC EAC ∠∠∠=-=︒-︒=︒∴525205BAD BAE DAE ∠∠∠=+=︒=+︒︒【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.4、∠AFB =40°.【解析】【分析】由题意易得∠ADC =90°,∠ACB =80°,然后可得11,22MAE MAC ABF ABC ∠=∠∠=∠,进而根据三角形外角的性质可求解.【详解】解:∵AD ⊥BE ,∴∠ADC =90°,∵∠DAC =10°,∴∠ACB =90°﹣∠DAC =90°﹣10°=80°,∵AE 是∠MAC 的平分线,BF 平分∠ABC , ∴11,22MAE MAC ABF ABC ∠=∠∠=∠, 又∵∠MAE =∠ABF +∠AFB ,∠MAC =∠ABC +∠ACB ,∴∠AFB =∠MAE ﹣∠ABF =()11111804022222MAC ABC MAC ABC ACB ∠-∠=∠-∠=∠=⨯︒=︒. 【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.5、55A ∠=︒,85B ∠=︒【解析】【分析】利用已知结合三角形内角和定理即可求解.【详解】解:∵40C ∠=︒,∴140A B ∠+∠=︒.∵30B A ∠=∠+︒,∴30140A A ∠+∠+︒=︒,∴55A ∠=︒,∴85B ∠=︒.【点睛】本题考查三角形内角和定理,正确得出30140A A ∠+∠+︒=︒是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.二、三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可三、三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.四、三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°结论2:在直角三角形中,两个锐角互余.注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.五、三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.六、多边形①多边形的对角线2)3(nn条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°与三角形有关的线段A卷一、选择题:1.如图,在△ABF中,∠B的对边是()A.ADB.AEC.AFD.AC2.关于三角形的边的叙述正确的是()A.三边互不相等B.至少有两边相等C.任意两边之和一定大于第三边D.最多有两边相等3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm, 4cm, 8cmB.8cm, 7cm, 15cmC.13cm, 12cm, 20cmD.5cm, 5cm, 11cm4.等腰三角形两边长分别为3,7,则它的周长为( )A.13B.17C.13或17D.不能确定5.在平面直角坐标系中,点A(-3,0),B(5,0),C(0,4)所组成的三角形ABC 的面积是()A.32B.4C.16D.86.已知三角形的三边长分别为4、5、x,则x不可能是()A.3B.5C.7D.97.下列说法错误的是( ).A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )A.1个B.2个C.3个D.4个9.三角形的两边分别为3和5,则三角形周长y 的范围是( )A.2<y <8B.10<y <18C.10<y <16D.无法确定10.一个三角形的两条边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )A.14B.15C.16D.17 11.如图,在△ABC 中EF ∥AC ,BD ⊥AC 于D ,交EF 于G ,则下面说话中错误的是( ) A.BD 是△ABC 的高 B.CD 是△BCD 的高 C.EG 是△ABD 的高 D.BG 是△BEF 的高12.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 13.如图,若上∠1=∠2、∠3=∠4,下列结论中错误的是( ) A.AD 是△ABC 的角平分线B.CE 是△ACD 的角平分线C.∠3=21∠ACB D.CE 是△ABC 的角平分线14.下列判断中,正确的个数为( )(1)D 是△ABC 中BC 边上的一个点,且BD=CD ,则AD 是△ABC 的中线 (2)D 是△ABC 中BC 边上的一个点,且∠ADC=90°,则AD 是△ABC 的高 (3)D 是△ABC 中BC 边上的一个点,且∠BAD=21∠BAC ,则AD 是△ABC 的角平分线(4)三角形的中线、高、角平分线都是线段A.1B.2C.3D.4 二、填空题:1.已知线段a 、b 、c 且a <b <c,则以a 、b 、c 为边可组成三角形的条件是__________2.△ABC 中,如果AB=8cm ,BC=5cm ,那么AC 的取值范围是_____________3.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是4.锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的5.一个三角形周长为27cm ,三边长比为2∶3∶4,则最长边比最短边长6.等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为________7.等腰三角形一腰上的中线将这个等腰三角形的周长分成15和6两部分,则这个等腰三角形的三边长是____________8.如图所示:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°.(2)AE 平分∠BAC ,交BC 于E 点,则AE 叫做△ABC 的________,∠________=∠________=21∠________. (3)若AF =FC ,则△ABC 的中线是________,S △ABF =________.(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.三、计算题:1.a 、b 、c 是△ABC 的边长,化简|a-b-c|+|a+b-c|-|-a-b-c|.2.已知等腰三角形的两边之差为8 cm,这两边之和为18 cm,求等腰三角形的周长.3.一个等腰三角形的周长为32 cm ,腰长的3倍比底边长的2倍多6 cm.求各边长. B 卷一、选择题:1.下面说法正确的是个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在 ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。

A.3个B.4个C.5个D.5个2.等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B .10 cm C.6 cm D.8 cm 或6 cm3.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为( ) A.5 B.6 C.7 D.84.如图,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E.F 为AB 上的一点,CF ⊥AD 于H.下列判断正确的有( )(1)AD 是三角形ABE 的角平分线. (2)BE 是三角形ABD 边AD 上的中线. (3)CH 为三角形ACD 边AD 上的高.A.1个B.2个C.3个D.0个二、填空题:1.已知△ABC的周长是偶数,且a=2,b=7,则此三角形的周长是________2.用7根火柴首尾顺次连结摆成一个三角形,能摆成不同的三角形的个数是___________3.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为4.探究规律:如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点。

(1)请写出图中面积相等的各对三角形:______________________________。

(2)如果A、B、C为三个定点,点P在m上移动,那么无论P点移动到任何位置总有:与△ABC的面积相等;理由是:三、计算题:1.如图,某校有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块.请你设计几种不同的划分方案.2.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC的各边的长。

3.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;(4)作出△BCD的边BC边上的高DF,当BD=11cm 时,试求出DF的长。

C卷1.如图所示,已知在△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE ⊥AC于点E.若△ABC的面积为14,问:PD+PE的值是否确定?若能确定,是多少?若不能确定,请说明理由.2.如图,已知P是△ABC内任意一点,求证:PB+PC<AB+AC。

相关文档
最新文档