初中数学全等三角形知识点 总结及复习
全等三角形知识点总结
全等三角形知识点总结全等三角形是初中数学中的重要概念,也是几何学中的基础知识之一。
全等三角形指的是具有相同形状和大小的三角形,它们的对应边和对应角分别相等。
全等三角形的性质和判定方法对于解题和证明都有很大的帮助。
下面我们来总结一下全等三角形的知识点。
1. 全等三角形的性质。
全等三角形的性质包括以下几点:(1)对应边相等,如果两个三角形全等,则它们的对应边相等。
(2)对应角相等,如果两个三角形全等,则它们的对应角相等。
(3)全等三角形的面积相等,如果两个三角形全等,则它们的面积相等。
2. 全等三角形的判定方法。
判定两个三角形是否全等有以下几种方法:(1)SSS判定法,如果两个三角形的三条边分别相等,则这两个三角形全等。
(2)SAS判定法,如果两个三角形的一条边和夹角分别相等,则这两个三角形全等。
(3)ASA判定法,如果两个三角形的一对角和夹边分别相等,则这两个三角形全等。
(4)AAS判定法,如果两个三角形的两对角和一条边分别相等,则这两个三角形全等。
3. 全等三角形的应用。
全等三角形的性质和判定方法在解题和证明中有着广泛的应用,特别是在几何证明中常常会用到全等三角形的知识。
例如,通过证明两个三角形全等,可以推导出它们的其他性质,进而解决一些几何问题。
此外,在实际生活中,全等三角形的知识也有着一定的应用。
例如在建筑、工程等领域,利用全等三角形的性质可以进行测量、设计和施工等工作。
总之,全等三角形是几何学中的重要概念,掌握全等三角形的性质和判定方法对于学习和应用几何知识都具有重要意义。
希望通过本文的总结,能够帮助大家更好地理解和运用全等三角形的知识。
初中数学全等三角形综合复习讲义-全面完整版
初中数学全等三角形综合复习讲义-全面完整版初中数学全等三角形综合复讲义——全面完整版一、基础知识1.全等图形的有关概念1)全等图形的定义:两个图形能够完全重合,就是全等图形。
例如,图13-1和图13-2就是全等图形。
2)全等多边形的定义:两个多边形是全等图形,则称为全等多边形。
例如,图13-3和图13-4中的两对多边形就是全等多边形。
3)全等多边形的对应顶点、对应角、对应边:两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
4)全等多边形的表示:例如,图13-5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。
表示图形的全等时,要把对应顶点写在对应的位置。
5)全等多边形的性质:全等多边形的对应边、对应角分别相等。
6)全等多边形的识别:对边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别1)根据定义:若两个三角形的边、角分别对应相等,则这两个三角形全等。
2)根据SSS:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
3)根据SAS:如果两个三角形有两边及夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
4)根据ASA:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
5)根据AAS:如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别1)根据HL:如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
2)SSS、SAS、ASA、AAS对于直角三角形同样适用。
全等三角形知识点归纳
全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。
下面就来对全等三角形的相关知识点进行一个全面的归纳。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
二、全等三角形的性质1、全等三角形的对应边相等。
也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。
2、全等三角形的对应角相等。
对应角的度数完全相同。
3、全等三角形的周长相等。
因为对应边相等,所以三条边相加的总和也相等。
4、全等三角形的面积相等。
由于形状和大小完全相同,所占的空间大小也就一样。
三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。
四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。
例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。
华东师大初中数学八年级上册《全等三角形》全章复习与巩固(基础)知识讲解
《全等三角形》全章复习与巩固(基础)知识讲解【学习目标】1. 掌握常见的五种基本尺规作图;理解命题与逆命题、定理与逆定理的意义,并能判断命题的真假;2.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法;4.理解并能应用直角三角形的性质解题;理解并能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法“斜边,直角边”(即“HL”)判定两个直角三角形全等;5.理解并掌握角平分线、线段垂直平分线的性质定理及其逆定理,能用它们解决作图题、几何计算及证明题.【知识网络】【要点梳理】要点一、全等三角形的性质和判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等.(2)可以从已知出发,看已知条件确定证哪两个三角形全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等.(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.判定直角三角形全等的特殊方法——斜边直角边定理斜边直角边定理(或简记为HL):斜边和一条直角边分别相等的两个直角三角形全等.要点诠释:判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.要点二、等腰三角形1.等腰三角形的性质及其作用性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质1用之证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).性质2用来证明线段相等,角相等,垂直关系等.2.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.3.等边三角形的性质和判定:性质:等边三角形三个内角都相等,并且每一个内角都等于60°.判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点诠释:由等边三角形的“三线合一”可得:在直角三角形中,30°所对的直角边等于斜边的一半.要点三、尺规作图、命题、定理与逆命题、逆定理1.尺规作图只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图.要点诠释:(1)要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.(2)掌握五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;经过一已知点作已知直线的垂线;作已知线段的垂直平分线.并能利用本章的知识理解这些基本作图的方法.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.要点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题.(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分.(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定正确.3.定理与逆定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.要点诠释:(1)定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.(2)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.要点四、角平分线、线段垂直平分线的性质定理及其逆定理1.角平分线性质定理及其逆定理角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边的距离相等的点在角的平分线上.要点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.2.线段垂直平分线(也称中垂线)的性质定理及其逆定理线段的垂直平分线上的点到线段两端的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.要点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.【典型例题】类型二、全等三角形的性质和判定1、已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E 三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【思路点拨】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【答案与解析】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE 特殊位置关系为BD⊥CE.【总结升华】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.举一反三:【变式】如图,已知:AE ⊥AB ,AD ⊥AC ,AB =AC ,∠B =∠C ,求证:BD =CE.【答案】证明:∵AE ⊥AB ,AD ⊥AC ,∴∠EAB =∠DAC =90° ∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.2、(2016秋•诸暨市期中)如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC . 求证:∠PCB+∠BAP=180°.【思路点拨】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.【答案与解析】证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL ),∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==, ∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90°即ED ⊥AC .类型二、等腰三角形3、如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.【思路点拨】要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和 ∠FCA 的关系.因为∠BAD =∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.【答案与解析】解:△AFC 是等腰三角形.理由如下:在△BAD 与△BCE 中,∵∠B =∠B ,∠BAD =∠BCE ,BD =BE ,∴△BAD≌△BCE,∴BA=BC,∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.【总结升华】利用全等三角形来得出角相等是本题解题的关键.举一反三:【变式】如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.【答案】解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形.4、数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.【思路点拨】(1)根据等边对等角,及角平分线定义,易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,可得AD=BD=CB,∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.(2)解:如下图所示:(3)解:如图所示:5、已知角α和线段c如图所示,求作等腰三角形ABC,使其底角∠B=α,腰长AB=c.要求仅用直尺和圆规作图,写出作法,并保留作图痕迹.已知:求作:【思路点拨】作射线BP,再作∠PBQ=∠α;在射线BQ上截取BA=c;以点A为圆心,线段c 为半径作弧交BP于点C;连接AC.则△ABC为所求.【答案与解析】解:作法:(1)作射线BP,再作∠PBQ=∠α;(2)在射线BQ上截取BA=c;(3)以点A为圆心,线段c为半径作弧交BP于点C;(4)连接AC.则△ABC为所求.△ABC就是所求作的三角形.【总结升华】此题主要考查三角形的作法,是一些基本作图的综合应用.举一反三:【变式】已知△ABC,按下列要求作图:(保留作图痕迹,不写作法)(1)作BC边上的高AD;(2)作△ABC的平分线BE.(尺规作图)【答案】解:如图:类型四、角平分线、线段垂直平分线性质定理与逆定理6、如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.【思路点拨】(1)根据垂直平分线上任意一点,到线段两端点的距离相等可得到AE=DE,再根据等角对等边可得到∠EAD=∠EDA;(2)根据线段垂直平分线的性质证明AF=DF,进而得到∠BAD=∠ADF,再利用角平分线的性质可得到∠BAD=∠CAD,利用等量代换可得∠ADF=∠CAD,再根据平行线的判定即可得到DF∥AC;(3)根据三角形内角与外角的关系可得到结论.【答案与解析】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠BAD=∠ADF,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∴∠ADF=∠CAD,∴DF∥AC;(3)由(1)∠EAD=∠EDA,即∠ADE=∠CAD+∠EAC,∵∠ADE=∠BAD+∠B,∠BAD=∠CAD,∴∠EAC=∠B.【总结升华】此题主要考查了线段的垂直平分线的性质,等腰三角形的性质,平行线的判定以及三角形内角与外角的关系,题目综合性较强,但是难度不大,需要同学们掌握好基础知识.举一反三:【变式1】如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC的外角平分线.【答案】证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥AD,PE⊥AE,∴PD=PE(角平分线上的点到角两边的距离相等),∴PF=PE,PF⊥BC,PE⊥AE,∴CP是△ABC的外角平分线(在角的内部,到角两边距离相等的点在角的平分线上).【变式2】如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。
三角形全等模型详细专题 初中数学
全等三角形中辅助线的添加主要内容:复习三角形全等的判定定理,通过三角形全等证明图形中线段和角度的关系。
(位置关系和数量关系)学习目标:通过学习三角形全等的判定,探索三角形全等的条件,能够培养比较完整、清晰的思维逻辑能力并进行基础的推理论证能力。
学习重点:灵活应用三角形中线段的性质与三角形的判定定理证明综合性的题目。
学习难点:能够从结论出发,联系已知,找出解决问题的关键点,同时能够挖掘出图中的隐含条件而且能够将未知转化为已知来解决问题(基本的全等模型与常见辅助线)。
一、知识精讲1.三边分别相等的两个三角形全等,简写为“边边边”或者“SSS”。
(三角形具有稳定性)2.两角及其夹边分别相等的两个三角形全等,简写为“角边角”或“ASA”。
3.两角分别相等且其中一组等角的对边相等的两个三角形全等,简写为“角角边”或“AAS”。
4.两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”。
5.在直角三角形中,一条斜边和一条直角边对应相等的两个直角三角形全等,简写为“HL”。
6.易错点:两边分别相等且其中一组等边的对角相等的两个三角形全等这个结论是不正确的。
EDFCBADCB A二、典型例题: 考点一倍长中线法:当遇到中线时,通常延长中线一倍,采用补短的方法,构造三角形全等条件:△ABC 中AD 是BC 边中线方法一: 延长AD 到E ,使DE=AD ,连接BE 方式 方法二:间接倍长,作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE方法三: 延长MD 到N ,使DN=MD ,连接CN【例题1】 已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.【例题2】如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.【变式训练】1、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.【练习题】1、已知:如图,在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE.求证:AF=BC+FC.2、如图所示,在△ABC中,AD是∠BAC的角平分线,且AE=AF。
最新人教版初中八年级上册数学第十二章《全等三角形(小结复习课)》精品教案
Q
P
B
C
本题源自《教材帮》
深化练习 3
如图,已知△ABC中,AB=AC=10,BC=8,点D为AB的中点,点P在线段BC上以每秒
3个单位长度的速度由点B向点C运动,同时点Q在线段CA上由点C向点A以每秒a个单
位长度的速度运动,设运动时间为t秒.
A
解:(1)由题意得:BP=3t.
∵BC=8,
∴CP=BC-BP=8-3t.
A
∠ACN=∠M+∠N =80° ,∠BCN=∠ACB-∠ACN=20° .
M
C
本题源自《教材帮》
重点解析 6
动脑想一想,动手练一练
6、如图,沿着AM折叠,使得点D落在BC的N点处,如果AD=7cm,DM=5cm,
∠DAM=30°,则AN、NM的长度以及∠NAM的度数分别是多少?
A
D
解:∵△ADM沿着AM折叠得到△ANM,
∴△BCD的面积和△ACE的面积相等.
∴四边形AECD的面积
=△ACD的面积+△ACE的面积
=△ACD的面积+△BCD的面积 =△ABC的面积= 1 ×4×4=8cm2.
2
D
C
B
本题源自《教材帮》
深化练习 1
如图,已知△ABD≌△ACE,点B、D、E、C在同一条直线上.
(1)∠BAE和∠CAD有什么关系?说明理由; A
位长度的速度运动,设运动时间为t秒.
A
(1)求CP的长(用含有t的式子表示); (2)若以点C、P、Q为顶点的三角形和以点B、D、P 为顶点的三角形全等,且∠B和∠C是对应角,求a和t 的值.
D
Q
P
B
C
本题源自《教材帮》
全等三角形知识点
全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。
本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。
关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。
在数学符号中,我们通常用“≌”来表示全等。
2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。
- 对应角相等:两个全等三角形的对应角度数完全相同。
- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。
- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。
- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。
3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。
- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。
- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。
- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。
- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。
4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。
通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。
5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。
八年级上册数学第二单元:全等三角形知识点与练习
第二单元全等三角形本单元的学习目标①重点:全等三角形的性质;三角形全等的判定;角平分线的性质及应用②难点:三角形全等的判断方法及应用;角平分线的性质及应用在中考中的重要性:①中考热点,初中数学中的重点内容②考察内容多样化,有的独立考三角形全等,有的考全等三角形结合其他知识点综合,有的探究三角形全等条件或结论的开放性题目③题型以选择题、填空题、解答题为主【知识归纳】1.全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。
(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点。
重合的边叫做对应边。
重合的角叫做对应角。
(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12.全等三角形的性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等3.全等三角形的判定方法(1)三边相等(SSS);(2)两边和它们的夹角相等(SAS);(3)两角和其中一角的对应边相等(AAS);(4)两角和它们的夹边相等(ASA);(5)斜边和直角边相等的两直角三角形(HL).(该判定只适合直角三角形)注意:没有“AAA”和“SSA”的判定方法,这是因为“三角对应相等的两个三角形”和“两边及其中一边的对角对应相等的两个三角形”未必全等。
如图2,△ABC和△ADE中,∠A=∠A,∠1=∠3,∠2=∠4,即三个角对应相等,但它们只是形状相同而大小并不相等,故它们不全等;如图3,△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,即两边及其中一边的对角对应相等,但它们并不全等。
4.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。
5.角平分线推论:角的内部到角的两边距离相等的点在角的平分线上。
判定三角形全等常用思路公理及定理练笔1、一般三角形全等的判定(如图)(1) 边角边(SSS) AAB=A′B′ BC=B′C ′ _______=_____∴△ABC≌△A′B′C′(2)边角边(SAS)AB=A′B′∠B=∠B′ _______=_____ B C∴△ABC≌△A′B′C′A′(3) 角边角(ASA)∠B=∠B′ ____=_____ ∠C=∠C′∴△ABC≌△A′B′C′B ′ C′(4) 角角边(AAS)∠A=∠A′∠C=∠C′ _______=_____∴△ABC≌△A′B′C′2、直角三角形全等的判定:斜边直角边定理(HL)AB=AB _____=_____∴Rt△ABC≌Rt△A′B′C′B C B′ C′二、全等三角形的性质1、全等三角形的对应角_____2、全等三角形的对应边、对应中线、对应高、对应角平分线_______注意:1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。
初二数学全等三角形知识点总结
初二数学全等三角形知识点总结1. 什么是全等三角形全等三角形指的是具有相同形状和大小的三角形。
当两个三角形的所有对应边长和对应角度相等时,它们是全等三角形。
2. 判断全等三角形的条件两个三角形全等的判断条件有三个:•SSS(边边边)法则:当两个三角形的三条边分别对应相等时,它们是全等的。
•SAS(边角边)法则:当两个三角形的一个边和两个角分别对应相等时,它们是全等的。
•ASA(角边角)法则:当两个三角形的两个角和一个边分别对应相等时,它们是全等的。
3. 全等三角形的性质全等三角形具有以下性质:•对应边相等性质:全等三角形的对应边相等。
•对应角相等性质:全等三角形的对应角相等。
•全等三角形的三个内角和完全相等。
4. 全等三角形的应用全等三角形的知识在解决实际问题中有着广泛的应用。
•测量不可直接测量的长度:通过构造辅助的全等三角形,可以测量一些不可直接测量的长度。
•几何证明:全等三角形的性质可以用于几何证明过程中,简化证明的步骤。
•建模和仿真:在建模和仿真过程中,全等三角形的概念可以用于确定相似物体的尺寸和位置。
5. 解题技巧和注意事项在解题过程中,需要注意以下技巧和事项:•注意给定条件:仔细阅读题目,了解给定条件,判断是否可以使用全等三角形的知识进行解题。
•画图辅助理解:通过画图,可以更清晰地理解问题,辅助解题。
•注意证明过程:在使用全等三角形进行几何证明时,需要注意证明过程的严谨性和逻辑性。
•多做练习:通过多做一些练习题,加深对全等三角形知识的理解和应用能力。
6. 总结全等三角形是初中数学中重要的概念,它可以帮助我们解决实际问题,简化几何证明过程,并应用于建模和仿真。
在学习和应用全等三角形的过程中,我们需要掌握判断全等三角形的条件,了解全等三角形的性质,注意解题技巧和注意事项。
通过不断练习和应用,我们可以更好地理解和掌握全等三角形的知识。
人教版初中数学八年级上册第十二章 全等三角形
12.1 全等三角形/
12.1 全等三角形
导入新知
12.1 全等三角形/
观察这些图片,你能找出形状、大小完全一样的几何 图形吗?
导入新知
12.1 全等三角形/
你能再举出生活中的一些类似例子吗?
素养目标
12.1 全等三角形/
3. 初步帮助学生建立平移、翻折、旋转三种图形 变化与全等形的关系.
12.1 全等三角形/
观察思考:每组中的两个图形有什么特点?
①
②
③
④
⑤
探究新知
12.1 全等三角形/
归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
探究新知 下面哪些图形是全等图形?
12.1 全等三角形/
大小、形状 完全相同
课后作业
作业 内容
12.1 全等三角形/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 熟练掌握全等三角形的性质,并能灵活运用 全等三角形的性质解决相应的几何问题.
1. 熟记全等形及全等三角形的概念;能够正确找 出全等三角形的对应边、对应角.
探究新知
12.1 全等三角形/
知识点 1 全等图形的定义及性质
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
(5)
探究新知
正确的结论并证明.
解:结论:EF∥NM
其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
巩固练习
12.1 全等三角形/
如图,△ABC ≌△CDA,AB 与CD,BC 与DA 是对应边,
全等三角形 知识点总结
全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。
全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。
全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。
本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。
一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。
用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。
全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。
也就是说,在全等三角形中,三个对应角是相等的。
2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。
也就是说,在全等三角形中,三个对应边是相等的。
3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。
二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。
1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。
也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。
2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。
也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。
3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。
也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。
八年级数学 第十一章全等三角形综合复习 人教新课标版
初二数学第十一章全等三角形综合复习人教新课标版一、学习目标:1. 复习全等形与全等三角形的概念、全等三角形的判定定理,以及角平分线的作图方法和角平分线的性质等知识,建立知识系统;2. 使学生总结寻找全等三角形及其全等条件的方法、归纳常见辅助线的作法,使学生掌握分析问题的方法,提升解题能力。
二、重点、难点:重点:将所学知识科学地组织起来,将其纳入已有的知识结构中。
难点:提升分析问题、解决问题的能力。
三、考点分析:全等三角形是初中几何的重要内容,也是数学中最基础的知识,是研究平面几何的重要工具。
近几年的中考数学试题中,经常将全等与其他知识结合在一起,考查学生综合运用数学知识解决问题的能力,形式多种多样,为全等这一传统的话题增添了新颖的味道。
1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSS HL AAS SAS ASA AAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
思路分析:从结论ACF BDE ∆≅∆入手,全等条件只有AC BD =;由A E B F =两边同时减去EF 得到AF BE =,又得到一个全等条件。
还缺少一个全等条件,可以是CF DE =,也可以是A B ∠=∠。
由条件AC CE ⊥,BD DF ⊥可得90ACE BDF ∠=∠=,再加上AE BF =,AC BD =,可以证明ACE BDF ∆≅∆,从而得到A B ∠=∠。
熬夜整理:初中数学【三角形与全等】最全知识点汇总(转给孩子)
三角形是初二上学期最核心的内容,今天这份资料主要包含三角形和全等的基础知识点,解三角形常用的辅助线添加方式,构建等腰三角形的技巧,构建全等三角形的解题模型、每一部分都提供了链接,可点击查看下载方式!
1、基础知识点梳理
更多可点击查看:月考后知识衔接 |【三角形】与【全等三角形】考点、难点总结(可打印)
2、解三角形时常用辅助线添加方式
更多可点击查看:珍藏资料 | 初中数学几何辅助线做法超全整理(附例题解析,50页可下载)
3、常见的构造等腰三角形方式
更多可点击查看:构造等腰三角形解题的4大常用方法解析,附146条初中常用公式
4、全等三角形证明过程实用的11解题模型
更多可点击查看:超全整理:初中全等三角形11大解题模型图文精讲,可下载打印。
初中数学全等三角形知识点总结及复习
全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
全等三角形定义 :能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
人教版初中数学第十二章全等三角形知识点
第十二章全等三角形12.1 全等三角形1、全等形:能够完全重合的两个图形.例1.在下列图形中,与左图中的图案完全一致的是【答案】B【解析】能够完全重合的两个图形叫做全等形.与A、C、D中的图案不一致,只有与B中的图案一致.故选B.例2.下列说法正确的个数为()(1)用一张像底片冲出来的10张一寸照片是全等形(2)我国国旗商店四颗小五角星是全等形(3)所有的正六边形是全等形(4)面积相等的两个正方形是全等形A.1个B.2个C.3个D.4个【答案】C【解析】试题分析:根据全等图形的定义依次分析各小题即可判断.(1)用一张像底片冲出来的10张一寸照片是全等形,正确;(2)我国国旗商店四颗小五角星是全等形,正确;(3)所有的正六边形形状相同,但大小不一定相等,不一定是全等形,故错误;(4)面积相等的两个正方形是全等形,正确;故选C.考点:本题考查的是全等图形的定义点评:解答本题的关键是熟练掌握两个能够完全重合的图形称为全等图形.例3.下列命题:(1)只有两个三角形才能完全重合;(2)如果两个图形全等,它们的形状和大小一定都相同;(3)两个正方形一定是全等形;(4)边数相同的图形一定能互相重合.其中错误命题的个数是()A.4个B.3个C.2个D.1个【答案】B【解析】试题分析:根据全等图形的定义依次分析各小题即可判断.(1)只要形状和大小完全相同的两个图形均能重合,故错误;(2)如果两个图形全等,它们的形状和大小一定都相同,正确;(3)两个正方形形状相同,但大小不一定相等,不一定是全等形,故错误;(4)边数相同的图形形状、大小不一定相同,不一定能互相重合,故错误;故选B.考点:本题考查的是全等图形的定义点评:解答本题的关键是熟练掌握两个能够完全重合的图形称为全等图形.2、全等三角形:能够完全重合的两个三角形.3、对应顶点:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点.4、对应边:重合的边叫做对应边.5、对应角:重合的角.6、全等三角形的性质:对应边相等,对应角相等.例1.如图,△ABC ≌△DCB ,点A 、B 的对应顶点分别为点D 、C ,如果AB =7cm ,BC =12cm ,AC =9cm ,那么BD 的长是( ).A .7cmB .9cmC .12cmD .无法确定【答案】B【解析】试题分析:已知△ABC ≌△DCB ,根据全等三角形的性质可得BD=AC =9cm ,故答案选B .考点:全等三角形的性质.例2.如图,△AOC ≌△BOD ,∠A 和∠B ,∠C 和∠D 是对应角,下列几组边中是对应边的是( )ODCBAA.AC 与BDB.AO 与ODC.OC 与OBD.OC 与BD【答案】A【解析】由全等三角形的性质可知,AC 与BD 是对应边,AO 与OB 是对应边, OC 与OD 是对应边, 故选A例3.一个图形无论经过平移还是旋转,有以下说法:(1)对应线段平行;(2)对应线段相等;(3)对应角相等;(4)不改变图形的形状和大小,其中正确的有( )A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(2)( 3)(4)【答案】D【解析】试题分析:一个图形无论经过平移还是旋转,对应线段和角相等,不改变图形的形状和大小,旋转后对应的线段可能不平行.故选:D .考点:几何变换的类型.例4.如图,△ABC ≌△DEF ,点A 与D ,B 与E 分别是对应顶点,且测得BC=5cm ,BF=7cm ,则EC 长为_________cm .【答案】3.【解析】试题分析:∵△ABC ≌△DEF ,∴EF=BC=5cm ,∵BF=7cm ,BC=5cm ,∴CF=7cm-5cm=2cm ,∴EC=EF-CF=3cm ,故EC 长为3cm .考点:全等三角形的性质.12.2三角形全等的判定三角形全等的判定:1、三边分别相等的两个三角形全等(SSS ).例.如图所示,△ABC 为等腰三角形,AB=AC 且AD ⊥BC ,垂足为D ,求证:△ABD ≌△ACD.(图1)D CBA【答案】证明见解析.【解析】试题分析:根据全等三角形的判定定理SSS 可以证得△ABD ≌△ACD ;试题解析:∵D 是BC 的中点,∴BD=CD ,在△ABD 和△ACD 中,BD CD AD AD AB AC ===⎧⎪⎨⎪⎩,∴△ABD ≌△ACD (SSS );考点:1.全等三角形的判定与性质;2.等腰三角形的性质.2、两边和它们的夹角分别相等的三角形全等(SAS ).例1.已知:如图,AB ∥DE ,AB=DE ,AF=DC .求证:ABF ∆≌DEC ∆.【答案】证明见解析【解析】试题分析:根据AB ∥DC ,可得∠C=∠A ,然后由AE=CF ,得AE+EF=CF+EF ,最后利用SAS 判定△ABF ≌△CDE . 试题解析:∵AB ∥DC ,∴∠C=∠A ,∵AE=CF ,∴AE+EF=CF+EF ,在△ABF 和△CDE 中,A=C AF=CE AB CD =⎧⎪⎨⎪⎩∠∠,∴△ABF ≌△CDE (SAS ).考点:全等三角形的判定.例2.如图,C 为线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,且CD =CE ,求证:△ACD ≌△BCE .【答案】见解析A CB D E【解析】 试题分析:CD 平分∠ACE ,所以∠1=∠2;CE 平分∠BCD ,所以∠2=∠3;所以∠1=∠2=∠3 C 是线段AB 的中点,AC=CB ,已知CD=CE ,由边角边得△ACD ≌△BCE试题解析:∵C 是线段AB 的中点∴AC=BC∵CD 平分∠ACE ,CE 平分∠BCD∴∠ACD=∠ECD ,∠BCE=∠ECD∴∠ACD=∠BCE在△ACD 和△BCE 中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS ).考点:全等三角形的判定3、两角和它们的夹边分别相等的两个三角形全等(ASA ).4、两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).例1.(7分)如图,在ΔABC 与ΔDCB 中,AC 与BD 交于点E ,且,∠A=∠D ,AB=DC .(1)求证:ΔABE ≌ΔDCE(2)当∠AEB=70°时,求∠EBC 的度数.【答案】(1)详见解析;(2)35°.【解析】 试题分析:(1)根据AAS 即可推出ΔABE ≌ΔDCE ;(2)由(1)得EB=EC ,推出∠EBC=∠ECB ,根据三角形的外角性质得出∠AEB=2∠EBC ,代入即可求出∠EBC 的度数.试题解析:(1)证明:∵在△ABE 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DC AB DEC AEB D A , ∴△ABE ≌△DCE (AAS ).∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=70°,∴∠EBC=35°.考点:全等三角形的判定及性质;等腰三角形的性质;三角形外角的性质.5、斜边和一条直角边分别相等的两个直角三角形全等(HL).6、证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 例1.如图,在△ABC 和△DEF 中,满足AB=DE ,∠B=∠E ,如果要判定这两个三角形全等,添加的条件不正确的是( )A .BC=EFB .AC=DFC .∠A=∠D D .∠C=∠F【答案】B【解析】试题解析:A.∵在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),正确,故本选项错误;B 、根据AB=DE ,∠B=∠E ,AC=DF 不能推出△ABC ≌△DEF ,错误,故本选项正确;C 、∵在△ABC 和△DEF 中,A D AB DE BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ),正确,故本选项错误;D 、∵在△ABC 和△DEF 中,C F B E AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (AAS ),正确,故本选项错误;故选B .考点:全等三角形的判定.例2.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .∠BCA=∠DCAB .∠BAC=∠DAC C .CB=CD D .∠B=∠D=90°C A BD【答案】A.【解析】试题分析:A、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故A选项符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故D选项不符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意.故选:A.考点:全等三角形的判定定理.例3.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.【答案】AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).【解析】试题解析:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAS”,可添加∠EBD=90°,若添加∠E=∠DBC,可利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).考点:全等三角形的判定.例4.如图,已知AB=CD,∠ABD=∠CDB,则图中共有__________对全等三角形.【答案】3.【解析】试题分析:已知AB=CD,∠ABD=∠CDB,BD=BD,利用SAS可判定△ABD≌△CDB;由全等三角形的性质可得AD=BC,∠BAD=∠DCB,再由AB=CD,∠BOA=∠DOC,利用AAS可得△BOA≌△DOC;再由AD=BC,AB=CD,AC=CA,利用SSS可得△BAC≌△DCA.故图中有3对全等三角形.考点:全等三角形的判定及性质.12.3角的平分线的性质1、角的平分线的点到角两边的距离相等.2、角的内部到角两边的距离相等的点在角的平分线上.例1.如图所示,在RtΔACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,则点D到AB的距离是()A. 9B. 8C. 7D. 6【答案】D.【解析】试题分析:∵BC=16,BD=10∴CD=6由角平分线的性质,得点D 到AB 的距离等于CD=6.故选D .考点:1.角平分线的性质;2.角平分线的定义.例2.如图,在△ABC 中,∠ABC=50°,∠ACB=80°,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( ) A .100° B .110° C .115° D .120°【答案】C .【解析】试题分析:∠ABC=50°,∠ACB=80°,BP 平分∠ABC ,CP 平分∠ACB ,∴∠PBC=25°,∠PCB=40°,∴∠BPC=115°.故选C .考点:1.三角形内角和定理;2.角平分线的定义.例3.如图,在△ABC 中,∠C =90°,BD 平分∠ABC ,若CD =5cm ,则点D 到 AB 的距离为______cm .【答案】5【解析】试题分析:过点D 作DE AB ⊥于E ,根据角平分线上的点到角的两边的距离相等可得DE CD =,从而得解. 如图,过点D 作DE AB ⊥于E ,∵90C ∠=︒ ,BD 平分ABC ∠∴DE CD =,∵5CD cm =,∴5DE cm =,即点D 到AB 的距离为5cm .考点:角平分线的性质.例4.如图,点P 是∠ABC 的平分线上一点,PM ⊥AB ,PN ⊥BC ,垂足分别是M 、N .求证:(1)∠PMN=∠PNM;(2)BM=BN.【答案】见解析【解析】试题分析:(1)根据角平分线的性质得到PM=PN,根据等腰三角形的性质证明即可;(2)根据同角的余角相等解出证明.证明:(1)∵PB是∠ABC的平分线,PM⊥AB,PN⊥BC,∴PM=PN,∴∠PMN=∠PNM;(2)∵PM⊥AB,PN⊥BC,∴∠PMB=∠PNB=90°,又∠PMN=∠PNM,∴∠BMN=∠BNM,∴BM=BN.考点:角平分线的性质.。
全等三角形知识点归纳
全等三角形知识点归纳全等三角形是初中数学中的重要内容之一。
本文将对三角形全等的概念、判定条件以及性质进行归纳总结,以帮助读者更好地理解和应用全等三角形知识。
一、全等三角形的概念全等三角形是指具有相等对应边长和对应角度的两个三角形。
形象地说,即两个三角形的所有对应部分完全重合。
二、全等三角形的判定条件1. SSS 判定法当两个三角形的三条边分别相等时,即两组对应边长完全一致,那么这两个三角形是全等的。
例如,已知△ABC 和△PQR ,若 AB = PQ,BC = QR,CA = RP,则△ABC ≌△PQR.2. SAS 判定法当两个三角形的两对边长相等,并且这两组对应边之间的夹角也相等时,即一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,那么这两个三角形是全等的。
例如,已知△ABC 和△PQR ,若 AB = PQ,BC = QR,∠B = ∠Q,则△ABC ≌△PQR.3. ASA 判定法当两个三角形的两对夹角相等,并且这两组对应边之间的夹角也相等时,即一个三角形的两夹角和边分别等于另一个三角形的两夹角和边,那么这两个三角形是全等的。
例如,已知△ABC 和△PQR ,若∠A = ∠P,∠B = ∠Q,BC = QR,则△ABC ≌△PQR.4. RHS 判定法当两个直角三角形的斜边和一个锐角(或钝角)的任意一条直角边相等时,即一个直角三角形的斜边和一个锐角(或钝角)的任意一条直角边分别等于另一个直角三角形的斜边和同样的一个锐角(或钝角)的直角边,那么这两个直角三角形是全等的。
例如,已知△ABC 和△PQR ,若 AB = PQ,∠B = ∠Q,AC = PR,则△ABC ≌△PQR.三、全等三角形的性质1. 全等三角形的对应边和对应角分别相等。
2. 全等三角形的对应高相等。
3. 全等三角形的对应中线相等。
4. 全等三角形的对应角平分线相等。
5. 全等三角形的对应边上的中垂线和角平分线相等。
初中数学(人教版)八年级上知识点最全总结
初中数学(人教版)八年级上知识点最全总结第十一章全等三角形一.知识框架二.知识概念1. 全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2 .全等三角形的性质:全等三角形的对应角相等、对应边相等。
3. 三角形全等的判定公理及推论有:(1 )“ 边角边” 简称“SAS”(2 )“ 角边角” 简称“ASA”(3 )“ 边边边” 简称“SSS”(4 )“ 角角边” 简称“AAS”(5 )斜边和直角边相等的两直角三角形(HL )。
4. 角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5. 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式( 顺序和对应关系从已知推导出要证明的问题). 在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称一.知识框架二.知识概念1. 对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2. 性质:(1 )轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2 )角平分线上的点到角两边距离相等。
(3 )线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4 )与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5 )轴对称图形上对应线段相等、对应角相等。
3. 等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4. 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
新人教版初中数学——三角形及其全等-知识点归纳及例题解析
新人教版初中数学——三角形及其全等知识点归纳及例题解析一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.考向一三角形的三边关系在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.典例1 小芳有两根长度为6 cm和9 cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为__________的木条.A.2 cm B.3 cmC.12 cm D.15 cm【答案】C【解析】设木条的长度为x cm,则9–6<x<9+6,即3<x<15,故她应该选择长度为12 cm的木条.故选C.1.以下列各组线段为边,能组成三角形的是A.2 cm,5 cm,8 cm B.3 cm,3 cm,6 cmC.3 cm,4 cm,5 cm D.1 cm,2 cm,3 cm考向二三角形的内角和外角在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.典例2 小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45°A ∠=,30D ∠=︒,则12∠+∠等于A .150︒B .180︒C .210︒D .270︒【答案】C【解析】如图,∵1D DOA ∠=∠+∠,2E EPB ∠=∠+∠, ∵DOA COP ∠=∠,EPB CPO ∠=∠, ∴12D E COP CPO ∠+∠=∠+∠+∠+∠ =180D E C ∠+∠︒+-∠ =309018090210︒︒︒︒++-=︒, 故选C .2.如图,CE 是△ABC 的外角ACD ∠的平分线,若3560,B ACE ∠=︒∠=︒,则A ∠=__________.3.如图,在△ABC 中,∠ACB =68°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC =__________.考向三三角形中的重要线段三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.另外,要注意区分三角形的中线和中位线.中线:连接三角形一个顶点和它对边中点的线段;中位线:连接三角形两条边中点的线段.典例3 在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是A.5 B.7 C.9 D.11【答案】B【解析】∵D、E、F分别为AB、BC、AC中点,∴DF=12BC=2,DF∥BC,EF=12AB=32,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+32)=7,故选B.【名师点睛】三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.典例4 在△ABC中,∠BAC=115°,DE、FG分别为AB、AC的垂直平分线,则∠EAG的度数为A.50°B.40°C.30°D.25°【答案】A【解析】∵∠BAC=115°,∴∠B+∠C=65°,∵DE、FG分别为AB、AC的垂直平分线,∴EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAG=∠BAC–(∠EAB+∠GAC)=∠BAC–(∠B+∠C)=50°,故选A.4.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于D点,AB=4,BD=5,点P是线段BC上的一动点,则PD 的最小值是__________.考向四全等三角形1.从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路:(1)已知两边SASHLSSS ⎧⎪⎨⎪⎩找夹角→找直角→找第三边→(2)已知一边、一角AASSASASAAAS⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩一边为角的对边→找另一角→找夹角的另一边→一边为角的邻边找夹角的另一角→找边的对角→(3)已知两角ASAAAS ⎧⎨⎩找夹边→找其中一角的对边→2.若题中没有全等的三角形,则可根据题中条件合理地添加辅助线,如运用作高法、倍长中线法、截长补短法、分解图形法等来解决运动、拼接、旋转等探究性题目.典例5 如图,点B、F、C、E在同一条直线上,AB∥DE,∠A=∠D,BF=EC.(1)求证:△ABC≌△DEF;(2)若∠A=120°,∠B=20°,求∠DFC的度数.【解析】(1)∵AB∥DE,∴∠B=∠E,∵BF=EC∴BF+FC=EC+CF,即BC=EF,在△ABC和△DEF中,A DB E BC EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF.(2)∵∠A=120°,∠B=20°,∴∠ACB=40°,由(1)知△ABC≌△DEF,∴∠ACB=∠DFE,∴∠DFE=40°,∴∠DFC=40°.【名师点睛】本题考查了全等三角形的判定方法,①三边对应相等的两个三角形全等,简记为“SSS”;②两边及其夹角对应相等的两个三角形全等,简记为“SAS”;③两角及其夹边对应相等的两个三角形全等,简记为“ASA”;④两角及其中一角的对边对应相等的两个三角形全等,简记为“AAS”;⑤斜边及一直角边对应相等的两个三角形全等,根据这几种判定方法解答即可.5.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在∠O的平分线上,其中正确的结论个数是A.0 B.1 C.2 D.36.如图,在△BCE中,AC⊥BE,AB=AC,点A、点F分别在BE、CE上,BF、AC相交于点D,BD=CE.求证:AD=AE.1.下列线段,能组成三角形的是A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,8 cm2.下列图形不具有稳定性的是A.正方形B.等腰三角形C.直角三角形D.钝角三角形3.直角三角形中两锐角之差为20°,则较大锐角为A.45°B.55°C.65°D.50°4.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC=A3B.2 C.3 D3+25.如图所示,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠1=∠26.如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=__________.7.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________度.8.如图,已知AB∥CF,E为DF的中点,若AB=8,CF=5,则BD=__________.9.如图,在△ABC中,AB=AC,∠BAC=90°,BD是中线,AF⊥BD,F为垂足,过点C作AB的平行线交AF的延长线于点E.求证:(1)∠ABD=∠FAD;(2)AB=2CE.10.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=C B.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥C D.求∠BDC的度数.11.如图,操场上有两根旗杆CA与BD之间相距12 m,小强同学从B点沿BA走向A,一定时间后他到达M点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3 m,小强同学行走的速度为0.5 m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?1.下列长度的三条线段,能组成三角形的是 A .2,2,4 B .5,6,12 C .5,7,2 D .6,8,102.三角形的内角和等于 A .90︒B .180︒C .270︒D .360︒3.将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1∠的度数是A .95︒B .100︒C .105︒D .110︒4.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是A .15°B .30°C .45°D .60°5.如图,在ABC △中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使2ADC B ∠=∠,则符合要求的作图痕迹是A .B .C .D .6.如图,在ABC △中,90C ∠=︒,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于A .4B .3C .2D .17.如图,DE 是ABC △的边AB 的垂直平分线,D 为垂足,DE 交AC 于点E ,且85AC BC ==,,则BEC △的周长是A .12B .13C .14D .158.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .29.如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为A .2B .4C .3D 1010.一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,DE BC ∥,则BFC ∠等于A .105︒B .100︒C .75︒D .60︒11.如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =35°,∠C =50°,则∠CDE 的度数为A .35°B .40°C .45°D .50°12.如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .113.在△ABC 中,AB =AC ,∠A =40°,则∠B =__________.14.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50 m ,则AB 的长是__________m .15.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.16.如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.17.如图,AB CD ∥,AD 和BC 相交于点O ,OA OD =.求证:OB OC =.18.如图,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,FC ∥AB ,求证:ADE CFE △≌△.19.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .△≌△;求证:(1)DBC ECB.(2)OB OC变式拓展1.【答案】C【解析】2cm+5cm<8cm,A不能组成三角形;3cm+3cm=6cm,B不能组成三角形;3cm+4cm>5cm,C能组成三角形;1cm+2cm=3cm,D不能组成三角形;故选C.2.【答案】85°【解析】∵∠ACE=60°,CE是△ABC的外角∠ACD的平分线,∠ACD=2∠ACE=120°,∵∠ACD=∠A+∠B,∠B=35°,∴∠A=∠ACD-∠B=85°,故答案为:85°.3.【答案】112°【解析】∵∠1+∠PCB=∠ACB=68°,又∵∠1=∠2,∴∠2+∠PCB=68°,∵∠BPC+∠2+∠PCB=180°,∴∠BPC=180°-68°=112°,故答案为:112°.4.【答案】3【解析】由勾股定理知AD3=,BD平分∠ABC交AC于D点,所以PD=AD最小,PD=3,故答案为:3.5.【答案】D【解析】∵OA=OB,∠A=∠B,∠O=∠O,∴△AOD≌△BOC(ASA),故①正确;∴OD=CO,∴BD=AC,∴△ACE≌△BDE(AAS),故②正确;∴AE=BE,连接OE,∴△AOE≌△BOE(SSS),∴∠AOE=∠BOE,∴点E在∠O的平分线上,故③正确,故选D.6.【解析】∵AC⊥BE,∴∠BAD=∠CAE=90°,在Rt△ABD和Rt△ACE中,BD CE AB AC=⎧⎨=⎩,∴Rt△ABD≌Rt△ACE(HL),∴AD=AE.1.【答案】B【解析】A、3+2=5,故选项错误;B、5+6>10,故正确;C、1+1<3,故错误;D、4+3<8,故错误.故选B.2.【答案】A【解析】根据三角形具有稳定性可知,只有选项A不具有稳定性,故选A.3.【答案】B【解析】设两个锐角分别为x、y,由题意得,=90=20x yx y+︒-︒⎧⎨⎩,解得=55=35xy︒︒⎧⎨⎩,所以最大锐角为55°.故选B.4.【答案】C【解析】根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=3.故选C.5.【答案】D【解析】根据全等“SAS”判定可知,要证△ABE≌△DBC还需补充条件AB,BE与BC,BD的夹角相等,即∠ABE=∠CBD或者∠1=∠2,故选D.6.【答案】45°【解析】∵AD⊥BC,BE⊥AC,∴∠ADB=∠ADC=∠BEC=90°,∴∠HBD+∠C=∠CAD+∠C=90°,∴∠HBD=∠CAD,∵在△HBD和△CAD中,HBD CADHDB CDA BH AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△HBD≌△CAD,∴AD=BD,∴∠DAB=∠DBA,∵∠ADB=90°,∴∠ABD=45°,即∠ABC=45°故答案为:45°.7.【答案】135【解析】如图所示:由题意可知△ABC≌△EDC,∴∠3=∠BAC,又∵∠1+∠BAC=90°,∴∠1+∠3=90°,∵DF=DC,∴∠2=45°,∴∠1+∠2+∠3=135度,故答案为:135.8.【答案】3【解析】∵AB∥CF,∴∠A=∠FCE,∠ADE=∠F,又∵DE=FE,∴△ADE≌△CFE,∴AD=CF=5,∵AB=8,∴BD=AB–AD=8–5=3,故答案为:3.9.【解析】(1)∵∠BAC=90°,∴∠FAD+∠BAF=90°.∵AF⊥BD,∴在Rt△ABF中,∠ABD+∠BAF=90°,∴∠ABD=∠FAD.(2)∵CE∥AB,∠BAC=90°,∴∠ACE=90°,在△BAD和△ACE中,∵∠ABD=∠CAE,AB=CA,∠BAC=∠ACE=90°,∴△BAD≌△ACE(ASA),∴AD=CE.∵BD为△ABC中AC边上的中线.∴AC=2AD,∴AC=2CE.又∵AB=AC,∴AB=2CE.10.【解析】(1)∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°–∠ACD=∠FCE,在△BCD和△FCE中,CB=CF,∵BCD=∠FCE,CD=CE,CB=CF,∠BCD=∠FCE,∴△BCD≌△FCE.(2)由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°–∠DCE=90°,∴∠BDC=90°.11.【解析】(1)如图,∵CM和DM的夹角为90°,∴∠1+∠2=90°,∵∠DBA=90°,∴∠2+∠D=90°,∴∠1=∠D,在△CAM 和△MBD 中,1A B D CM MD ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴△CAM ≌△MBD (AAS ),∴AM =DB ,AC =MB , ∵AC =3m ,∴MB =3m ,∵AB =12m ,∴AM =9m ,∴DB =9m ; (2)9÷0.5=18(s ). 答:小强从M 点到达A 点还需要18秒.1.【答案】D【解析】∵224+=,∴2,2,4不能组成三角形,故选项A 错误, ∵5612+<,∴5,6,12不能组成三角形,故选项B 错误, ∵527+=,∴5,7,2不能组成三角形,故选项C 错误, ∵6810+>,∴6,8,10能组成三角形,故选项D 正确,故选D . 2.【答案】B【解析】因为三角形的内角和等于180度,故选B . 3.【答案】C 【解析】如图,直通中考由题意得,2454903060∠=︒∠=︒︒=︒,-,∴3245∠=∠=︒, 由三角形的外角性质可知,134105∠=∠+∠=︒,故选C . 4.【答案】B【解析】∵BE 是∠ABC 的平分线,∴∠EBM =12∠ABC , ∵CE 是外角∠ACM 的平分线,∴∠ECM =12∠ACM , 则∠BEC =∠ECM –∠EBM =12×(∠ACM –∠ABC )=12∠A =30°,故选B .5.【答案】B【解析】∵2ADC B ∠=∠且ADC B BCD ∠=∠+∠,∴B BCD ∠=∠,∴DB DC =, ∴点D 是线段BC 中垂线与AB 的交点,故选B . 6.【答案】C【解析】如图,过点D 作DE AB ⊥于E ,∵8AC =,13DC AD =,∴18213CD =⨯=+, ∵90C ∠=︒,BD 平分ABC ∠,∴2DE CD ==,即点D 到AB 的距离为2,故选C . 7.【答案】B【解析】∵DE 是ABC △的边AB 的垂直平分线,∴AE BE =,∵85AC BC ==,,∴BEC △的周长是:13BE EC BC AE EC BC AC BC ++=++=+=.故选B . 8.【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCEADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B . 9.【答案】A【解析】如图,连接FC ,则AF =FC .∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OC AOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FOA ≌△BOC (ASA ),∴AF =BC =3,∴FC =AF =3,FD =AD -AF =4-3=1.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+12=32,∴CD 2A . 10.【答案】A【解析】由题意知45E ∠=︒,30B ∠=︒,∵DE CB ∥,∴45BCF E ∠=∠=︒, 在CFB △中,1801803045BFC B BCF ∠=︒-∠-∠=︒-︒-︒105=︒,故选A . 11.【答案】C【解析】∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =352︒,∠AFB =∠EFB =90°,∴∠BAF =∠BEF =90°-17.5°,∴AB =BE ,∴AF =EF ,∴AD =ED ,∴∠DAF =∠DEF , ∵∠BAC =180°-∠ABC -∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°-50°=45°,故选C . 12.【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OBAOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO 平分BMC ∠,④正确,正确的个数有3个,故选B .13.【答案】70°【解析】∵AB =AC ,∴∠B =∠C ,∵∠A +∠B +∠C =180°,∴∠B =12(180°-40°)=70°.故答案为:70°. 14.【答案】100【解析】∵点D ,E 分别是AC ,BC 的中点,∴DE 是△ABC 的中位线,∴AB =2DE =2×50=100 m . 故答案为:100.15.【答案】9 【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE ,∴BD =CE =9,故答案为:9.16.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°,在Rt △ABE 和Rt △CBF 中,AB CB AE CF=⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF , ∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.17.【解析】∵AB CD ∥,∴A D ∠=∠,B C ∠=∠,在AOB △和DOC △中,A D B C OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△,∴OB OC =.18.【解析】∵FC ∥AB ,∴∠A =∠FCE ,∠ADE =∠F ,所以在△ADE 与△CFE 中,A FCE ADE F DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CFE .19.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △,∴∠DCB =∠EBC ,∴OB =OC .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.CD平分∠ACB
A D C E B 8题图 7题图
8题图 11.尺规作图作 的平分线方法如下:以
10题图
为圆心,任意长为半径画弧交
、
于
、
,再分别以点
、
为圆心,以大于
长为半径画弧,两弧交于点
,作射线
由作法得
的根据是( )A.SAS B.ASA C.AAS D.SSS
12.如图, ∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB
例2. 如图所示,已知:AF=AE,AC=AD,CF与DE交于点B。求证: 。
例3 .如图所示,AC=BD,AB=DC,求证: 。
例4. 如图所示, ,垂足分别为D、E,BE与CD相交于点O,且 求证:BD=CE。
例5:已知:如图,在四边形ABCD中,AC平分∠BAD、CE⊥AB于E, 且∠B+∠D=180。
11题图
12题图
二、填空题 1.如图,已知
,
,要使
≌
,可补充的条件是
(写出一个即可)_______________.
2.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,
且AB=5cm,则△DEB的周长为 ________
3.如图,
,请你添加一个条件:
,使
(只添一个即可).
2.如图,在中,,分别以为边作两个等腰直角三角形和,使. (1)求的度数;(2)求证:.
3.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O. 求证:(1) △ABC≌△AED; (2) OB=OE .
4.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边 △EDC,连接AE,找出图中的一组全等三角形,并说明理由. E D C B A
有
个.
6.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB= ________度.
7如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三 角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于 点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ; ④DE=DP;⑤∠AOB=60°.
恒成立的结论有_______________________(把你认为正确的序号都 填上)。
8.如图所示,AB = AD,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △ADE,则需要添加的条件是________.
O A B C D E
6题图
7 题图
8 题图
A
BD
EC
三、解答题
1.如图,已知AB=AC,AD=AE,求证:BD=CE.
20.如图,已知E是正方形ABCD的边CD ∠DAE=∠FAE.
求证:AF=AD+CF。 A
B F C E D
的中点,点F在BC上,且
14.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线, 且BD⊥AE于D,CE⊥AE于E,(1)当直线AE处于如图①的位置时,有 BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则 BD,DE,CE的关系如何?请说明理由;(3)归纳(1)(2),请用简 洁的语言表达BD,DE,CE之间的关系。
①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS) (三)经典例题 例1. 已知:如图所示,AB=AC, ,求证: .
处.若,则等于( )
3.如图(四),点
是
上任意一点,
,还应补充一个条件,才能推出
.从下列条件中补充一个条件,不一定能推出
的是( ) A.
B.
C.
D.
A.
B.
C.
D.
C
A
D
P
B
图(四)
1题图
2题图
4.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能
使△ABC≌△DEF,不能添加的一组条件是( )
小结:在几何证明过程中,如果现成的三角形不可
以证明,则需要我们选出所需要的三角形,这就需要我们恰到好处的添
加辅助线。
(四) 全等三角形复习练习题
一、选择题
1.如图,给出下列四组条件:
①;②;
③;④.
其中,能使的条件共有( )A.1组
B.2组
C.3
组
D.4组
2.如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点
求证:AE=AD+BE 分析:从上面例题,可以看出,有时为了证明某两条线段和等于另
一条线段,可以考虑“截长补短”的添加辅助线,本题是否仍可考虑这 样“截长补短”的方法呢?由于AC是角平分线,所以在AE上截AF=AD, 连结FC,可证出ADC≌AFC,问题就可以得到解决。
证明(一): 在AE上截取AF=AD,连结FC。 在AFC和ADC中
6. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要
求它到三条公路的距离相等,则可供选择的地址有( )A.1
处
B.2处
C.3处
D.4处
④ ① ② ③ 6题图
4题图
5题图Biblioteka 7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完 全一样的玻璃,那 么最省事的方法是( )A.带①去 B.带②去 C.带③去
B A D E C B C E A D
;(2)
. D C B A O
1 2 3 4
7.如图,在和中,现给出如下三个论断:①;②; ③.请选择其中两个论断为条件,另一个论断为结论,构造一个命题. (1)写出所有的真命题(写成“”形式,用序号表示):
2 1 A C D B
.
(2)请选择一个真命题加以证明. 你选择的真命题是:. 证明:
8.已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF, ∠B=∠C.求证:OA=OD.
9.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延 长线垂直于过C点的直线于E,直线CE交BA的延长线于F.
求证:BD=2CE.
10.如图,,请你写出图中三对全等三角形,并选取其中一对加以证 明. B D C F A 郜 E
11.已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个 与△AED的面积相等的三角
形.(直接写出结果,不要求证明):
12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC 于F,若AB=CD,AF=CE,BD交AC于点M.
(A)∠B=∠E,BC=EF(B)BC=EF,AC=DF (C)∠A=∠D,∠B=∠E(D)
∠A=∠D,BC=EF
5.如图,△ABC中,∠C = 90°,AC = BC,AD是∠BAC的平分线,
DE⊥AB于E,
若AC = 10cm,则△DBE的周长等于( )
A.10cm B.8cm C.6cm D.9cm
全等三角形知识点总结及复习
一、知识网络
二、基础知识梳理 (一)、基本概念
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形; (2)大小相等的图形;
即能够完全重合的两个图形叫全等形。同样我们把能够完全重合 的两个三角形叫做全等三角形。 全等三角形定义 :能够完全重合的两个三角形称为全等三角形。 (注:全等三角形是相似三角形中的特殊情况) 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重 合的边叫做对应边,互相重合的角叫做对应角。 由此,可以得出:全等三角形的对应边相等,对应角相等。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是 对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是 对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一
组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可 能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角 等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找:
D.带①②③去 8.如图,在
中,
,
是
的垂直平分线,交
于点
,交
于点
.已知
,则
的度数为( ) A.
B.
C.
D.
9.如图,,=30°,则的度数为(
A.20°
B.30°
D.40°
10.如图,AC=AD,BC=BD,则有(
A.AB垂直平分CD
) C.35°
)
B.CD垂直平分AB
1题图C.AB与CD互相垂直平分
18.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F, 连接EF,EF与AD交于G,AD与EG垂直吗?证明你的结论。