各种常用多电平逆变器小结

合集下载

多电平逆变器技术介绍

多电平逆变器技术介绍

多电平逆变器技术介绍摘要本文首先介绍了多电平逆变器的发展历史,然后根据单电源供电和多电源供电的不同分别阐述了中点钳位型、电容钳位型和级联H桥型等几种多电平逆变器拓扑和工作原理。

关键词多电平;逆变器;钳位;级联H桥德国的学者Holtz于1977年提出了一种三电平逆变器,他在两电平半桥式逆变器电路的基础上,加人了开关管辅助钳位电路,得到了三电平电压输出。

但这种三电平逆变器由于采用的是开关管辅助钳位结构形式,故只能得到三电平输出,即使增多开关管也不能得到多电平输出,所以只能算是一种多电平逆变器的雏形,还算不上是真正的多电平逆变器。

1980年,日本长冈科技大学的南波江章(A. Kira Nabae)等人对其进行了改进与发展,在IEEE工业应用(IAS)年会上提出了二极管钳位式三电平逆变器主电路的结构。

这才开始进入到多电平逆变器的研发新阶段。

由于电力系统的发展、高压大功率交流电动机变频调速的发展和环保节能的需要,又促使高电压大功率多电平逆变器的研究进入到一个新高潮。

随着Akira Nabae二极管钳位式三电平逆变器的出现,1983年,P. M. Bhagwat等人将三电平扩展到五电平、七电平和多电平二极管钳位式逆变器。

1999年,Xiaoming Yuan提出了二极管自钳位多电平逆变器。

1992年,法国学者T. A. Meynard和H. Foch,提出了飞跨电容钳位式多电平逆变器。

2000年由Fang Z.Peng在综合了多种钳位式多电平逆变器(如二极管钳位式、飞跨电容钳位式以及二极管与飞跨电容混合钳位式多电平逆变器)的特点以后,在2000年的IEEE 工业应用(IAS)年会上,提出了一种通用式的多电平逆变器的主电路结构。

这种电路结构可以不需要借助于附加电路来抑制直流侧电容的电压偏移问题,并从理论上实现了一个真正的有实际应用价值的多电平逆变器的主电路结构。

此电路结构是以飞跨电容钳位的半桥式结构为基本单元组成的电容电压自平衡式通用钳位多电平逆变器。

多电平逆变器

多电平逆变器

多电平逆变器摘要多电平逆变器及其相关技术的研究与应用,是现代电力电子技术的最新发展之一,它主要面向高压大容量的应用场合近年来,多电平逆变器的研究受到广泛重视,并得到了一定的应用。

多电平逆变器输出端可以有更多级的输出电压波形,谐波含量小,波形更接近正弦波,逆变器性能更好,更适用于高压大容量的电力电子变换。

总结和比较了多电平逆变器各种基本拓扑结构的特点,它们主要包括了:二极管钳位式、飞跨电容钳位式,电容电压自平衡式和联型式拓扑,并且分析了它们的优缺点。

本文介绍了几种多电平逆变器调制方式。

关键字多电平逆变器拓扑结构调制策略1引言1.1 多电平逆变器的产生和发展背景电力电子技术自20世纪50年代诞生以来,经过半个多世纪的飞速发展,至今已被广泛应用于电力系统、电机调速系统及各种电源系统等需要电能变换的领域。

在低压小功率的用电领域,电力电子技术的各个方面己渐趋成熟,将来的研究目标则是高功率密度、高效率和高性能;而在高压大功率的工业和输配电领域,各个方面的技术正成为当今电力电子技术的研究重点。

大功率电力电子装置如电力系统中的高压直流输电(HVDC),以静止同步补偿器(STATCOM)和有源电力滤波器(APF)为代表的柔性交流输电技术(FACTS),以及以高压变频为代表的大电机驱动和大功率电源等需要能够处理越来越高的电压等级和容量等级,同时,为了满足输出电压谐波含量的要求,这些大功率电力电子装置还要能够工作在高开关频率下,并且尽量减少电磁干扰(EMI)问题。

电力电子器件是电力电子装置的核心。

在过去几十年里,以GTO、BJT、MOSFET为代表的自关断器件得到长足的发展,尤其是以IGBT、IGCI,为代表的双极性复合器件的惊人进步,使得电力电子器件向大容量、高频、易驱动、低损耗、智能模块化的方向发展。

即便如此,在某些应用场合,传统的两电平电压源变换器拓扑,仍然不能满足人们对高压、大功率的要求。

并且,以现有的电力电子器件的工艺水平,其功率处理能力和开关频率之间是矛盾的,往往功率越大,开关频率越低。

三相两电平逆变器与三相三电平逆变器

三相两电平逆变器与三相三电平逆变器

三相两电平逆变器与三相三电平逆变器三相两电平逆变器与三相三电平逆变器,这两个名词听起来就像是一群调皮捣蛋的孩子,一个是两个调皮捣蛋,一个是三个调皮捣蛋。

那么,这俩孩子到底有什么区别呢?别着急,让我这个知识渊博的老司机来给你科普一下。

我们来说说三相两电平逆变器。

这个名字有点复杂,但其实它就是一种电力变换设备,将直流电转换成交流电。

它的“两电平”指的是它的输出电压有两个电平,分别是正半周和负半周。

这种逆变器的特点是输出波形比较稳定,对电器设备的保护性能较好。

但是,它的功率因数较低,不能直接驱动大功率的负载,需要再加上一个电子滤波器或者机械开关进行补偿。

接下来,我们来说说三相三电平逆变器。

这个名字听起来就很霸气,它的“三电平”指的是它的输出电压有三个电平,分别是正半周、负半周和零电平(即斩波电流)。

这种逆变器的特点是输出波形更加接近于正弦波,功率因数较高,可以直接驱动大功率的负载。

而且,它的效率更高,损耗更小。

但是,由于它的输出电压有零电平,所以在控制上有一定的难度。

那么,这两个孩子到底哪个更优秀呢?其实,这个问题没有绝对的答案,因为它们各有优缺点,适用于不同的场合。

如果你的需求是输出波形稳定、对电器设备保护性能好,那么三相两电平逆变器是个不错的选择;如果你的需求是输出波形接近正弦波、可以直接驱动大功率负载、效率高,那么三相三电平逆变器就是你的菜。

我们在选择逆变器的时候,还要考虑其他因素,比如价格、可靠性、维护成本等。

就像我们在购物时,不仅要看价格,还要看品质、售后服务等因素一样。

所以,老司机在这里给大家提个醒:在选择逆变器的时候,一定要综合考虑各种因素,才能买到性价比最高的那一款。

我想说的是,虽然三相两电平逆变器和三相三电平逆变器都是电力变换设备,但它们就像我们的生活中的各种角色一样,各有各的特点和用途。

我们要学会尊重它们,了解它们,才能更好地利用它们为我们的生活带来便利。

好了,今天的科普就到这里了。

多电平逆变器简介

多电平逆变器简介

多电平逆变器拓扑结构及其控制策略的比较多电平逆变器主要有三种拓扑结构:二极管箝位型、飞跨电容型和级联型。

二极管箝位型电路需要保证直流侧电容均压,控制困难,实际应用中还是三电平电路为主,一般不超过五电平。

飞跨电容型,亦称电容箝位型,同样存在电容电压平衡控制及冗余开关状态优化的问题,实际应用较少。

级联型多电平逆变器,又称链式逆变器,以普通的单相全桥(H桥)逆变器为基本单元,将若干个功率单元直接串联,串联数越多,输出电平数也越多。

它的优点是不存在电容平衡问题,电PWM控弦波,5电平以一、NPC型多电平逆变器优点:1)可根据不同的需要选择不同的功率器件,提高功率器件的利用率;2)电平数越大,输出电压的谐波含量就越少,输出电压波形与正弦波就越接近;3)可直接实现大功率和高电压,功率变换装置的成本降低。

缺点:1)每相桥臂开关器件的工作频率不同,造成了各开关器件的负荷不一致;2)对于m电平电路来说,每个桥臂需要(m-1)(m-2)个箝位二极管,即随着电平数的增加,所需箝位二极管数目将快速增加,成本增加;3)电平数越大,利用冗余开关状态来平衡分压电容的电压平衡的控制算法就越复杂。

二极管箝位型三电平逆变器1.拓扑结构三电平逆变器共有33=27的空间电压矢量,3个零矢量,独立的空间电压矢量有19(=1+1*6+2*6)个,60°区域小三角形个数为1+3=4。

2.控制策略1实际上,2运算34①坐标变换采用的60°坐标系为g-h坐标系,取g轴与α轴重合,逆时针旋转60°为h轴,设参考矢量,坐标系α-β到g-h坐标系的坐标变换公式为:则坐标系a-b-c到g-h坐标系的坐标变换公式为:归一化处理后(矢量坐标整数化),将三电平逆变器的基本矢量变换至g-h坐标系,得到的变换到60°坐标系下三电平逆变器的空间矢量图如图所示:②矢量分区方法扇区的确定方法:空间矢量图可分成6个扇区(A-F),设参考电压矢量在60°坐标系中的坐标为。

多电平逆变器简介

多电平逆变器简介

多电平逆变器拓扑结构及其控制策略的比较多电平逆变器主要有三种拓扑结构:二极管箝位型、飞跨电容型和级联型。

二极管箝位型电路需要保证直流侧电容均压,控制困难,实际应用中还是三电平电路为主,一般不超过五电平。

飞跨电容型,亦称电容箝位型,同样存在电容电压平衡控制及冗余开关状态优化的问题,实际应用较少。

级联型多电平逆变器,又称链式逆变器,以普通的单相全桥(H桥)逆变器为基本单元,将若干个功率单元直接串联,串联数越多,输出电平数也越多。

它的优点是不存在电容平衡问题,电路可靠性提高,易于模块化,适合7电平、9电平及以上的多电平应用,是目前应用最广的多电平电路。

缺点是需要多路独立的直流电源且不易实现四象限运行。

多电平逆变器的PWM控制策略可分为:在上述的多电平逆变器的PWM控制法中,空间电压矢量控制法适用于三-五电平的逆变器,五电平以上的多电平逆变器空间电压矢量数目较多,控制算法复杂,不适合用该方法。

对于五电平以上的多电平逆变器,适合采用载波调制PWM控制法。

载波层叠PWM控制法和开关频率优化PWM控制法,既可用于二极管箝位型和飞跨电容型逆变器,也可以应用于具有独立直流电源的级联型逆变器。

载波移相PWM控制法和开关频率优化PWM控制法,则适合于级联型多电平逆变器。

开关频率优化PWM控制法由于正弦调制波中加入了三次谐波,因而只适用于三相多电平逆变器。

对于三相具有独立直流电源的级联型多电平逆变器,载波移相和开关频率优化结合的PWM控制法,可提高等效开关频率,控制效果更好。

多电平三相逆变器中,空间矢量密集,可供选择的矢量模大小种类很多,电压合成更加接近正弦波,所以多电平的空间电压矢量法控制进度高,输出电压的谐波含量小。

但在电平数在5电平以上的多电平逆变器中,此时空间电压矢量PWM法控制算法非常复杂。

一、NPC型多电平逆变器优点:1)可根据不同的需要选择不同的功率器件,提高功率器件的利用率;2)电平数越大,输出电压的谐波含量就越少,输出电压波形与正弦波就越接近;3)可直接实现大功率和高电压,功率变换装置的成本降低。

有源中点钳位三电平

有源中点钳位三电平

有源中点钳位三电平一、概述有源中点钳位三电平是一种常见的多电平逆变器拓扑结构,它可以将直流电压转换为多种不同的交流电压,并且具有较高的效率和可靠性。

该拓扑结构由两个全桥逆变器和一个中间电感组成,其中一个全桥逆变器用于控制正半周输出电压,另一个全桥逆变器用于控制负半周输出电压,中间电感则用于实现有源中点钳位。

二、工作原理有源中点钳位三电平逆变器的工作原理如下:1. 正半周输出:当S1、S4导通时,正半周期输出为Vdc/2;当S2、S3导通时,正半周期输出为-Vdc/2;当S1、S2或S3、S4导通时,正半周期输出为0V。

2. 负半周输出:当S5、S8导通时,负半周期输出为-Vdc/2;当S6、S7导通时,负半周期输出为Vdc/2;当S5、S6或S7、S8导通时,负半周期输出为0V。

3. 中点钳位:当正负两个全桥逆变器同时将其对应的开关关闭时(即S1、S4和S6、S7同时关闭,或者S2、S3和S5、S8同时关闭),中间电感将会产生一段时间的电压波动,此时有源中点钳位即形成。

三、优点1. 输出电压更加平滑:有源中点钳位可以使输出电压在切换时更加平滑,减小了谐波分量,降低了对负载的干扰。

2. 输出电压范围更广:由于可以输出多种不同的电压,因此适用范围更广。

3. 效率高:相较于其他多电平逆变器结构,有源中点钳位三电平逆变器具有更高的效率。

四、应用由于其输出电压范围广、效率高等优点,有源中点钳位三电平逆变器被广泛应用于各种领域,如工业控制、交通运输、新能源等。

其中,在新能源领域中,它常用于太阳能或风能发电系统中的逆变器结构。

五、总结有源中点钳位三电平逆变器是一种常见的多电平逆变器拓扑结构,其具有输出电压平滑、效率高等优势。

在实际应用中,它被广泛应用于工业控制、交通运输、新能源等领域。

两电平逆变器和三电平逆变器

两电平逆变器和三电平逆变器

两电平逆变器和三电平逆变器大家好,今天咱们来聊一聊电力系统中的两个“硬核”存在——两电平逆变器和三电平逆变器。

听起来可能有点复杂,对吧?别担心,咱们就像在茶馆里喝着茶,慢慢聊,不急不躁。

先说说这两者的“前世今生”,让你能更清楚地知道它们到底是干啥的。

咱们从两电平逆变器开始。

你可以想象,它就像是一个开关,开了电流通过,关了电流就停了。

简单、粗暴。

它把直流电变成交流电,这样电力就能送到家里、厂里,甚至是电动汽车上。

这两电平的意思,就是它有两个状态,一个是0,一个是1。

你可以理解为开和关,电流要么是完全传输,要么就完全没有。

这种方式比较直观,效率也还不错,所以在一些场合下挺好用。

比如咱们常见的家用太阳能逆变器,很多就用的这种两电平设计。

它能把太阳能板收集到的直流电,转化成咱们可以用的交流电,让咱们的家里可以亮堂堂的。

但是,话说回来,这种两电平的方式也有缺点。

就是在切换的时候,电流的波动比较大,容易产生电磁干扰。

你可以把这想象成一辆车,在高速公路上突然刹车,车子的反应可能不太好,甚至会产生一些震动和噪音。

这就是为什么有些高端应用,比如说风力发电、大型工业设备里,通常用的不是两电平,而是三电平逆变器。

这三电平逆变器就厉害了,简直是两电平的“大哥”。

它不仅仅有“开”和“关”这两个状态,还有一个“中间档”。

你可以想象成是汽车的三挡,不仅可以加速,也能平稳驾驶。

在三电平逆变器中,电流的切换会更平稳一些,电磁干扰也小,整个系统更加稳定。

这样一来,电力转换效率更高,适用于那些对电力质量要求特别高的场合。

比如大功率的电力系统,或者一些需要精密控制的设备。

说到这里,可能你会觉得,两电平和三电平的差别,听起来就像是“低配”和“高配”版的区别。

其实不完全是。

两电平逆变器虽然简单,但成本低,应用广泛,操作起来也不复杂。

很多时候,简单的东西反而更好用,尤其是在一些要求不那么苛刻的场合。

比如你家里装的那套光伏系统,可能就是个典型的两电平逆变器,能满足日常需求,又便宜实惠。

多电平逆变器

多电平逆变器

E S12
S 32
S 42
S 22
vH 2
S13
S33
E
S43
S23
vH 3
S11
S31
E
S 41
S 21
A
vH1
S12
S 32
E
S42 S22
vH 2
S13 S33
E
S43 S23
vH 3
S14
S 34
E
S44
S 24
vH 4
7电平和9电平串联H桥逆变器一相的结构
多电平逆变器
15
A
A6
13电平串联H桥逆变器结构
忽略。
7
单极性调制法
两个极性相反三角波:Vcr和Vcr-,它们的幅值和频率相同,相位互差180°
两个三角波都与同一个正弦 波Va进行比较,产生两个门 信号Vg1和Vg3,分别驱动 H桥逆变器上部的两个器件 S1和S3。
单极性调制法: Vab逆变器 输出电压在正半周期中只在ห้องสมุดไป่ตู้0和+Vd之间切换,在负半 周期,则只在0和-Vd之间 切换。
第4部分: 多电平逆变器
多电平逆变器
1
4.1 简 介 4.2 H 桥逆变器
4.3 多电平逆变器拓扑结构
4.4 基于载波的PWM调制法 4.5 阶梯波调制法 4.6 应用实例
多电平逆变器
2
4.1 简 介
串联H桥逆变器: 英文Cascaded H-Bridge, CHB
S1
D1
S3
D3
Vd
Cd
v AB
3.当S31、S41、S32和S42导通时,为
H1
-2E。

级联多电平逆变器

级联多电平逆变器

级联多电平逆变器级联多电平逆变器是一种用于电力转换的重要设备,其主要功能是将直流电转换为交流电。

它通过将直流电源输入转换为多个电平的直流电压,再将其转换为交流电压输出。

级联多电平逆变器具有高效率、高可靠性和较高的输出质量等优点,被广泛应用于电力系统、电动汽车、太阳能发电等领域。

级联多电平逆变器的工作原理是通过多级电路来实现对输入电压的精确调节。

一般来说,级联多电平逆变器由多个逆变单元组成,每个逆变单元都包含一个开关和一个电容。

这些逆变单元按照一定的顺序连接在一起,形成一个级联的结构。

当输入电压经过每个逆变单元时,开关会根据控制信号的指令来切换开关状态,从而实现对电压的调节。

这样,级联多电平逆变器就能够将输入的直流电压转换为多个不同电平的直流电压,并进一步将其转换为交流电压输出。

级联多电平逆变器具有多个电平输出的优点。

首先,多电平输出可以减小输出电压的谐波含量,提高输出电压的质量。

这在一些对电压质量要求较高的应用中尤为重要,例如电力系统中的电力质量调节。

其次,多电平输出可以提高逆变器的效率。

通过将输入电压分成多个电平进行处理,可以减小开关器件的损耗,提高逆变器的转换效率。

此外,多电平输出还可以提高逆变器的可靠性。

由于多个逆变单元可以相互独立地工作,一旦某个逆变单元出现故障,其他逆变单元仍然可以正常工作,从而保证了逆变器的可靠性。

级联多电平逆变器的控制方式也有多种。

其中一种常用的控制方式是基于PWM调制技术的控制。

PWM调制技术可以通过调节开关器件的开关频率和占空比来实现对输出电压的精确调节。

通过将PWM控制信号传输到每个逆变单元,可以实现对电压的精确控制。

另外,还有一种常用的控制方式是基于谐波消除技术的控制。

这种控制方式通过控制每个逆变单元的输出相位差来实现对输出电压谐波的消除,从而提高输出电压的质量。

级联多电平逆变器是一种用于电力转换的重要设备。

它通过将输入的直流电压转换为多个不同电平的直流电压,并进一步将其转换为交流电压输出。

多电平逆变器

多电平逆变器

m 2H 1 nSM 6(m 1)
m:逆变器输出电平数
nSM: 器件数
H: H桥逆变器单元数 NOTE: 串联H桥逆变器的电平数目总是奇数
13
串联H桥逆变器可完全扩展到任意电平数。下图给出 了7电平和9电平逆变器一相的结构。 在7电平逆串联H桥逆变器中,每相有3个H桥单元,9 电平逆变器中每相有4个H桥单元。
8
4.3 多电平逆变器拓扑结构
1. 直流侧电压相同的串联H桥逆变器
串联H桥逆变器采用由多个直流电源分别供电的H桥单元 ,各单元的输出串联连接输出高交流电压。
5电平串联H桥逆变器:结构如下图所示,其中每相有两 个H桥单元,分别由电压为E的两个独立直流电源供电。
此直流电源可以采用多脉波二极管整流器实现。
H桥逆变器包括两个桥臂,每个桥壁有两个IGBT串联组成。 逆变器直流母线电压固定不变,输出的交流电压可通过PWM 方法进行调节,即双极性调制法和单极性调制法。
g1
Vd
S1
D1
g3
S3
D3
Cd
v AB
S2
D2
g2
g4
S4
D4
4ቤተ መጻሕፍቲ ባይዱ
串联H桥多电平逆变器:
由多个单相H桥逆变器(也称为功率单元)组成的,把每个功率单元的交 流输出串联连接,来实现中压输出,并减小输出电压的谐波。是中压大功
第4部分: 多电平逆变器
1
4.1 简

4.2 H 桥逆变器 4.3 多电平逆变器拓扑结构 4.4 基于载波的PWM调制法 4.5 阶梯波调制法 4.6 应用实例
2
4.1 简 介
串联H桥逆变器: 英文Cascaded H-Bridge, CHB

H桥级联型多电平逆变器的研究

H桥级联型多电平逆变器的研究

上海交通大学工程硕士学位论文第1章绪论1.1课题背景及意义随着社会工农业生产规模的不断扩大,对能源的需求量也越来越大,对于现有的有限能源,如何合理利用,是各国政府关心的问题。

我国政府制定的“十一五”规划,把节能减排定为规划纲要,以保证我国经济和社会的可持续发展[1]。

电动机作为工业、农业、市政等领域的主动力源,是能源消耗的大户,根据国家权威部门统计,我国的发电量有60%左右被电动机消耗,而其中的90%被交流电动机消耗[2,3]。

因此,对于交流电动机的变频调速研究,存在着巨大的节能空间。

对于广泛应用的高压大功率风机、泵类的高压电机,由于传统的工作方式为电网电压直接驱动,存在电机转速不能根据实际工况进行有效地调节,造成了很大的电能损失。

而高压变频技术正是能够解决这个问题的关键技术,但现有的功率开关受耐压等级的制约,传统的两电平逆变器无法有效应用于高压变频调速领域,即使是采用功率器件直接串联的两电平逆变器,也存在动、静态均压问题,并且d v/d t较大,会产生难以处理的电磁干扰问题[4]。

为此,有学者提出一种多电平功率变换技术,旨在解决功率开关耐压不足与高压大功率驱动之间的矛盾,并且可以有效减小d v/d t,降低输出电压的谐波含量,已成为高压大功率驱动场合的发展趋势[5]。

多电平变换技术的思想最早是在1980年IAS年会上,由日本长岗科技大学的 A. Nabae等人提出的[6]。

该电路用两个串联的电容将直流母线电压分为三个电平,每个桥臂用四个开关管串联,用一对串联箝位二极管和内侧开关管并联,其中心抽头和第三电平连接,实现中点箱位,形成所谓中点箱位变换器(NPC-Neutral Point Clamped)。

在这个电路中,主功率开关关断时,仅仅承受直流母线电压的一半,所以特别适合高压大功率应用场合。

1983年,Bhagwat等人在此基础上,将三电平电路推广到任意N电平,对NPC电路及其统一结构作了进一步的研究[7]。

市面常见逆变器的分类及优缺点一览!

市面常见逆变器的分类及优缺点一览!

市面常见逆变器的分类及优缺点一览!逆变器作为光伏发电的重要组成部分,主要的作用是将光伏组件发出的直流电转变成交流电。

目前,市面上常见的逆变器主要分为集中式逆变器与组串式逆变器,还有新潮的集散式逆变器。

今天,小编就针对三种逆变器来谈一谈各自的特点。

一、集中式逆变器集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。

因此,逆变器的功率都相对较大。

光伏电站中一般采用500kW以上的集中式逆变器。

1集中式逆变器的优点如下1).功率大,数量少,便于管理;元器件少,稳定性好,便于维护;2).谐波含量少,电能质量高;保护功能齐全,安全性高;3).有功率因素调节功能和低电压穿越功能,电网调节性好。

2集中式逆变器存在如下问题1).集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,组件配置不灵活;2).集中式逆变器占地面积大,需要专用的机房,安装不灵活;3).自身耗电以及机房通风散热耗电量大。

二、组串式逆变器组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。

因此,逆变器的功率都相对较小。

光伏电站中一般采用50kW以下的组串式逆变器。

1组串式逆变器优点1).不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量;2).MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长;3).体积较小,占地面积小,无需专用机房,安装灵活;4).自耗电低、故障影响小。

2组串式逆变器存在问题1).功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起,稳定性稍差;2).户外型安装,风吹日晒很容易导致外壳和散热片老化;3).逆变器数量多,总故障率会升高,系统监控难度大;4).不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。

三集散式逆变器集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中逆变”和“分散MPPT跟踪”。

多电平逆变电路主要有哪几种形式?各有什么特点?

多电平逆变电路主要有哪几种形式?各有什么特点?

多电平逆变电路主要有哪几种形式?各有什么特点?多电平逆变电路是一种通过在输出电压上产生多个离散电平的逆变器结构。

常见的多电平逆变电路形式包括以下几种:
1.多电平PWM逆变电路:利用多种开关模式和多级逆变电
路,通过PWM调制技术在输出电压上实现多个离散的电
平。

其中较为常见的是三电平和五电平的PWM逆变电路。

o三电平PWM逆变电路:具有三个输出电平(正、零和负),可以实现更低的谐波和更接近正弦波形的输
出。

o五电平PWM逆变电路:具有五个输出电平,进一步降低了输出谐波含量和提高了输出波形质量。

2.多电平逆变电路:通过多级串联逆变器实现多个输出电平,
每个级别可以控制并输出不同的电压水平。

这种电路可根
据需要灵活地增加级数,以增加输出电压水平的数量。

以上多电平逆变电路的特点包括:
•低谐波含量:通过产生更多的离散电平,能够有效降低逆变器输出的谐波含量,接近于正弦波形输出。

•更高的输出质量:多电平逆变电路可以提供更平滑、更接近正弦波的输出电压,减小谐波畸变和噪声。

•更低的电磁干扰:由于输出波形更接近正弦波形,多电平逆变电路产生的电磁干扰较少。

多电平逆变电路通常适用于对输出波形质量要求较高的应用,
如电力电子领域、可再生能源逆变器、电机驱动等。

然而,多电平逆变电路的设计和控制较为复杂,电路结构和开关模式的选择需要根据具体应用需求和性能要求进行仔细的分析和优化。

多电平逆变器

多电平逆变器

电容箝位自平衡式多电平逆变器(通用拓扑)
电容箝位自平衡式多电平逆 变器是针对逆变器的电容电 压具有自平衡功能而定的名 称,它属于电容箝位式多电 平逆变器的一种改进形式。 这种逆变器不需要借助附加 的电路来抑制直流侧电容电 压的偏移问题,从理论上实 现了电容电压的自平衡。
电容箝位自平衡式多 电平逆变器电路
混合箝位式多电平逆变器
二极管电容混合箝位式多电平 逆变器电路能够比较好地解决 单纯二极管箝位式多电平逆变 电路的内侧开关管的耐压问题 以及直流侧电容电压的平衡问 题。电路的特点是,在二极管 箝位多电平逆变器的单相电路 中,增加了(m-1)(m-2)/2个电 容。
二极管电容混合箝位 多电平逆变器电路
率成正比。降低开关频率或加入一些特定的开关状态, 可以大大减少损耗,提高效率。
2)和一般的二极管箝位和电容箝位电路相比,这 种逆变器各级的中点电压都能得到很好的控制。
3)对一个m级电平的通用式多电平逆变器,所需 的开关器件、开关管数量为m(m-1);需要的电容数量为 m(m-1)/2。
4)计算简单,器件应力可以达到最小。 5)通用拓扑,易于衍生出新的拓扑结构,具有很 高的研究价值。
二极管自箝位五电平 逆变器
二极管箝位式多电平逆变器
这种二极管箝位式五电平逆变器增多了电平数,因而可 以使输出电压和输出电流的总谐波含量大大减小。这种电路 结构形式的显著优点是利用二极管进行箝位,解决了功率开 关管串联均压的问题。但也存在一些缺点:
1)为保证每个箝位二极管承受相同的反向电压,箝位 二极管的数量将按电平数的二次方快速增加。
多电平变换器概述
多电平变换器
1、多电平变换器产生的背景 2、多电平变换器的分类 3、箝位式多电平变换ቤተ መጻሕፍቲ ባይዱ 4、级联型的多电平变换器 5、开绕组双端供电式多电平变换器

个人总结-多电平变换器的拓扑结构和控制策略(shrimplm)

个人总结-多电平变换器的拓扑结构和控制策略(shrimplm)

多电平变换器的概念自从A.Nabael在1980年的IAS年会上提出以后,以其独特的优点受到广泛的关注和研究。

首先,对于n电平的变换器,每个功率器件承受的电压仅为母线电压的1/(n-1),这就使得能够用低压器件来实现高压大功率输出,且无需动态均压电路;多电平变换器的输出电压波形由于电平数目多,使波形畸变(THD)大大缩小,改善了装置的EMI特性;还使功率管关断时的dv/dt应力减少,这在高压大电机驱动中,有效地防止了电机转子绕组绝缘击穿;最后,多电平变换器输出无需变压器,从而大大减小了系统的体积和损耗。

因此,多电平变换器在高电压大功率的变频调速、有源电力滤波装置、高压直流(HVDC)输电系统和电力系统无功补偿等方面有着广泛的应用前景.1 多电平变换器的拓扑结构国内外学者对多电平变换器作了很多的研究,提出了不少拓扑结构。

从目前的资料上看,多电平变换器的拓扑结构主要有4种: 1)二极管中点箝位型(见图1);2)飞跨电容型(见图2);3)具有独立直流电源级联型(见图3);4)混合的级联型多电平变换器。

图1 二极管箝位型三电平变换器图2 飞跨电容型三电平变换器图3 级联型五电平变换器其中混合级联型是3)的改进模型,它和3)的结构基本上相同,唯一不同的就是3)的直流电源电压均相等,而4)则不等.从图1至图3不难看出这几种拓扑的结构的优缺点.二极管箝位型多电平变换器的优点是便于双向功率流控制,功率因数控制方便。

缺点是电容均压较为复杂和困难。

在国内外这种拓扑结构的产品已经进入了实用化.飞跨电容型多电平变换器,由于采用了电容取代箝位二极管,因此,它可以省掉大量的箝位二极管,但是引入了不少电容,对高压系统而言,电容体积大、成本高、封装难。

另外这种拓扑结构,输出相同质量波形的时候,开关频率增高,开关损耗增大,效率随之降低。

目前,这种拓扑结构还没有达到实用化的地步。

级联型多电平变换器的优点主要是同数量电平的时候,使用二极管数目少于拓扑结构1);由于采用的是独立的直流电源,不会有电压不平衡的问题.其主要缺点是采用多路的独立直流电源。

三相两电平逆变器与三相三电平逆变器

三相两电平逆变器与三相三电平逆变器

三相两电平逆变器与三相三电平逆变器嘿,伙计们!今天我们来聊聊三相两电平逆变器和三相三电平逆变器,这两个家伙在咱们家里可是大有来头啊!它们都是用来把直流电转换成交流电的,但是它们之间还是有很大区别的。

别着急,让我慢慢给你们道来。

咱们来说说三相两电平逆变器。

这个家伙有点儿“低调”,它只有两个电平,分别是高压和低压。

虽然它没有那么高大上,但是它的性能还是挺不错的。

它的输出电压和频率可以调节,而且还支持多种保护功能,比如过压、欠压、过流等等。

所以,如果你家里的电器对电压和频率的要求不是很高,那么三相两电平逆变器就足够了。

它的价格也相对便宜一些,是个性价比很高的选择。

接下来,我们来看看三相三电平逆变器。

这个家伙可是个“大咖”,它有三个电平,分别是U、V、W。

这意味着它的输出电压和频率可以更精细地调节,而且还支持更多的保护功能。

比如,它可以实现真正的正弦波输出,这样你家里的电器就不会受到电网波动的影响了。

它还可以支持并机运行,也就是说你可以同时使用多个逆变器为家里的电器供电。

这对于那些对电力质量要求较高的家庭来说,是一个非常实用的功能。

由于它的性能更好,所以价格也相对较高。

那么,咱们家里到底该选哪个逆变器呢?这就要看你的需求了。

如果你家里的电器对电压和频率的要求不高,那么三相两电平逆变器就足够了。

而如果你家里的电器对电力质量要求较高,或者你需要同时为很多电器供电,那么三相三电平逆变器就是个更好的选择。

三相两电平逆变器和三相三电平逆变器各有优缺点,咱们要根据自己的需求来选择合适的逆变器。

不过,无论你选择哪个逆变器,都要记得买正规厂家的产品,这样才能保证安全可靠哦!好了,今天的“逆变器讲座”就到这里啦!希望对你们有所帮助。

下次再见啦!。

典型多电平逆变器拓扑结构

典型多电平逆变器拓扑结构

典型多电平逆变器拓扑结构从当前资料上能够得到的典型多电平逆变器,根据其结构形式可分为钳位式多电平逆变器和具有独立直流电源的级联式多电平逆变器两种,近年来还有采用级联叠加变压器的多电平逆变器等新型的多电平逆变器拓扑结构见诸文献资料,鉴于本项目采用的多电平逆变器结构,以下仅对典型多电平逆变器分类介绍。

一、钳位式多电平逆变器钳位式多电平逆变器是由基本逆变单元通过串、并联组合而成的单一直流电源、半桥式结构形式的多电平逆变器,主要包括二极管钳位式多电平逆变器(diode-clamped multi-1evel inverter)、电容钳位式多电平逆变器(flying-capacitor multi-1evel inverter)、混合钳位式多电平逆变器以及通用钳位式多电平逆变器。

二极管钳位式多电平逆变器是由德国学者于1977年首先提出,主要包括二极管串联钳位和二极管自钳位式多电平逆变器,采用多个二极管对相应的开关管进行钳位,同时利用不同的开关状态组合得到不同的输出电平数。

串联钳位结构解决了功率开关管串联均压问题,提高了输出电压的电平数,使输出电压和电流的总谐波含量大大降低,但是由于二极管的电压应力不均匀,需要不同的反向耐压,且在开关状态改变时,电流回路发生改变,钳位二极管电压突变,由于二极管杂散性,可能导致某个二极管承受的反向电压过高。

二极管自钳位式多电平逆变器解决了钳位二极管受压不均的问题,不但可以将功率开关管钳位在单个直流分压电容上,二极管也被钳位在单个直流分压电容电压上,避免了二极管直接串联存在的安全隐患。

二极管钳位式多电平逆变器所需的钳位二极管数量随着电平数的提高大大增加,导致成本提高、系统可靠性降低,所以采用该结构时直流侧分压电容一般少于四个。

图1.5 二极管钳位式逆变器,左为串联钳位、右为自钳位电容钳位式多电平逆变器是由法国学者于1992年首先提出,用多个飞跨电容取代二极管对功率开关进行钳位,利用不同的开关组合得到不同电平的输出电压,解决了二极管钳位式多电平逆变器中功率开关阻断电压不均衡和钳位二极管反向电压难以快速回复的问题。

多电平逆变器的控制策略及应用研究

多电平逆变器的控制策略及应用研究

多电平逆变器的控制策略及应用研究1.PWM调制策略:脉宽调制(PWM)是一种常用的多电平逆变器控制策略。

它通过调整开关管的导通时间和断开时间,来实现输出电压的控制。

PWM调制策略将直流电压分成若干个不同大小的电平,通过这些电平的组合可以实现多种不同的输出电压波形。

常用的PWM调制技术有正弦脉宽调制(SPWM)和三角脉宽调制(TPWM)。

2.多电平逆变策略:多电平逆变策略通过增加开关管的个数,将直流电压分成多个不同大小的电平,以实现更高质量的输出电压波形。

多电平逆变策略可以减小电压谐波和纹波电流,提高逆变器输出电压的质量。

常用的多电平逆变策略有三电平逆变策略和五电平逆变策略。

3.谐波消除策略:谐波消除策略主要用于减小逆变器输出电压的谐波含量。

通过控制开关管的导通和断开时间,在电流波形的关键位置添加额外的电平,可以减小逆变器输出电压的谐波含量。

常用的谐波消除策略有多重谐波消除策略和空间矢量调制策略。

1.可再生能源领域:多电平逆变器广泛应用于太阳能发电和风力发电等可再生能源系统中。

通过控制多电平逆变器的输出电压和频率,可以实现可再生能源的接入电网,提高系统的电能利用效率。

2.高压直流输电领域:多电平逆变器可以用于将高压直流电能转换为交流电能,以降低输电线路的损耗和提高输电效率。

通过控制多电平逆变器的输出电压和频率,可以实现多级逆变器的串联,提高系统的输出电压。

总之,多电平逆变器的控制策略和应用研究对于推动可再生能源的发展和提高输电效率具有重要意义。

随着技术的进一步发展和研究的深入,多电平逆变器将更加广泛地应用于电力系统中。

目前常见逆变器介绍

目前常见逆变器介绍

目前常见逆变器介绍一、集中式逆变器在大于400kW的光伏发电站系统中,很多并行的光伏组串被连接到同一台集中逆变器的直流输入侧。

该类型的逆变器在很多情况下,使用与大型电机或UPS中使用的相似三相IGBT功率模块。

这类逆变器最大特点就是效率高,成本低。

目前,世界上规模产业化、市场化的集中逆变器的额定功率最大为1MWp。

由于部分太阳电池组件容易收到阳光遮挡影响造成各光伏组件最佳工作点与逆变器的不正确匹配,将影响逆变器的效率和整个系统的发电量。

图1-1 集中式逆变器图片二、组串式逆变器太阳电池组件被连接成几个相互平行的串,每个串都连接单独的一台逆变器,即成为“组串逆变器”。

这样,各光伏组串在直流侧无并接关系,而是在交流侧与电网并接。

每个组串并网逆变器具有独立的最大功率跟踪单元,从而减小了太阳电池组串的最佳工作点与逆变器不匹配的现象和阳光阴影带来的损失,增加了发电量。

自20世纪90年代中期以来,组串逆变器已经成为小型光伏系统的主流技术,可应用与几千瓦的光伏系统中。

多组串连接的这种技术可有效适用于连接特性、类型均不同的太阳电池组件。

由此,可使光伏发电电站具有模块化性能,增加了系统设计适应性和扩展性,逆变器成本也有所提升图1-2 组串式逆变器图片三、集散式逆变器集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中逆变”和“分散MPPT跟踪”。

集散式逆变器是聚集了集中式逆变器和组串式逆变器两种逆变器优点的产物,达到了“集中式逆变器的低成本,组串式逆变器的高发电量。

其主要特点为:1、与集中式对比,“分散MPPT跟踪”减小了失配的几率,提升了发电量; 2、与集中式及组串式对比,集散式逆变器具有升压功能,降低了线损;3、与组串式对比,“集中逆变”在建设成本方面更具优势。

图1-3 集散式逆变器图片四、微型逆变器每个太阳电池组件连接一台逆变器,使用微型逆变器的光伏逆变器的光伏发电系统的特点是每个太阳电池组件都有一个独立最大功率跟踪系统,增加了逆变器对太阳电池组件的匹配性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种常用多电平逆变器小结
本文首先总结了级联H桥、NPC和FC多电平逆变器的工作原理和优缺点,并以七电平为例仿真验证了关于器件开关频率、器件电压应力、输出谐波含量等特点。

接着研究了紧密型多电平逆变器的工作原理和控制策略,主要研究内容包括主电路拓扑、运行原理、控制策略、调制策略等方面,并对各类拓扑中器件数量与电平关系进行了归纳总结,形成数学表达式。

建立了传统两电平、二极管钳位三电平、紧密型七电平逆变器的损耗模型,分别计算了在开关频率为10kHz、20kHz和50kHz下的损耗值大小。

通过电压外环电流内环的控制方式,建立了单相紧密型七电平逆变器在孤岛运行时的仿真模型,最后建立了单相紧密型七电平逆变器在并网运行时的仿真模型。

 经过本文的研究,得到如下结论:
(1)传统两电平逆变器的电磁干扰大,du/dt大,设备体积大,开关频率高,逆变效率低,不适用于高压系统等,采用多电平逆变器可以有效的解决这些问题。

相关文档
最新文档