八年级数学下册第一二单元测试题

合集下载

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试(含答案解析)(2)

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试(含答案解析)(2)

一、选择题1.已知如图,C为线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC,以下四个结论:①AD=BE;②△CPQ是等边三角形;③AD⊥BC;④OC平分∠AOE.其中正确的结论是()A.①②③④B.③④C.①②③D.①②④2.已知点P是ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫ABC的费马点(Fermat point).已经证明:在三个内角均小于120︒的ABC中,当APB APC BPC时,P就是ABC的费马点.若点P是腰长为6的等120++=()腰直角三角形DEF的费马点,则PD PE PFA.6 B.33+C.63D.93.如图,在四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D=40°,AB=DE,AC=AE,则∠B的度数为()A.100°B.110°C.120°D.130°4.已知等腰三角形的两边长分别为a,b,且a,b满足3a-+|b﹣4|=0,则此等腰三角形的周长为()A.7 B.10 C.11 D.10或115.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D.若∠A=30°,AE=10,则CE的长为()A.5 B.4 C.3 D.26.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.下列说法错误的是( ) A .有两边相等的三角形是等腰三角形 B .直角三角形不可能是等腰三角形C .有两个角为60°的三角形是等边三角形D .有一个角为60°的等腰三角形是等边三角形8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C 5D 7 9.如图,ABC 中,AB AC =,BD DC =,若80BAC ∠=︒,AD AE =,则CDE∠的度数为( )A .40°B .30°C .20°D .10° 10.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 11.如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .(3B .0,2x ⎛⎫ ⎪⎝⎭C .()0,3D .30,2x ⎛⎫ ⎪ ⎪⎝⎭ 12.若以Rt ABC △的一边为边画一个等腰三角形,使它的第三个顶点也在Rt ABC △的其他边上,则这样的等腰三角形最多能画出( )A .3个B .5个C .6个D .7个二、填空题13.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.14.如图,在等边ABC中,点D在AC边上,点E在ABC外部,若∠=∠,CE BDACE ABD=,连接AE,DE,则ADE的形状是______.15.如图,△ACD是等边三角形,若AB=DE,BC=AE,∠E=115°,则∠BAE=_____°.16.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于_____.17.如图,∠MON=33°,点P在∠MON的边ON上,以点P为圆心,PO为半径画弧,角OM于点A,连接AP,则∠APN=____.18.如图,∠AOB=30°,点P在∠AOB的内部,OP=6cm,点E、F分别为OA、OB上的动点,则△PEF周长的最小值为________cm.19.如图,在ABC 中,AB BC =,30C ∠=︒,过点B 作BD BC ⊥,交AC 于点D ,若2CD =,则AD 的长为__________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,Rt △ABC 中,∠BCA =90°,AC =BC ,点D 是BC 的中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点F .(1)求证:△ACD ≌△CBF ;(2)连结DF ,求证:AB 垂直平分DF ;(3)连结AF ,试判断△ACF 的形状,并说明理由.22.如图,在△ABC 中,∠BAC =62°,∠B =78°,AC 的垂直平分线交BC 于点D . (1)求∠BAD 的度数;(2)若AB =8,BC =11,求△ABD 的周长.23.如图.在△ABC 中,∠C =90 °,∠A =30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、AC 于D 、E ,交BC 的延长线于F ,连接EB .(不写作法,保留作图痕迹)(2)求证:EB 平分∠ABC .(3)求证:AE =EF .24.在△DEF 中,DE =DF ,点B 在EF 边上,且∠EBD =60°,C 是射线BD 上的一个动点(不与点B 重合,且BC≠BE ),在射线BE 上截取BA =BC ,连接AC .(1)当点C 在线段BD 上时,①若点C 与点D 重合,请根据题意补全图1,并直接写出线段AE 与BF 的数量关系为 ; ②如图2,若点C 不与点D 重合,请证明AE =BF +CD ;(2)当点C 在线段BD 的延长线上时,用等式表示线段AE ,BF ,CD 之间的数量关系(直接写出结果,不需要证明).25.如图,已知等腰ABC 的底边13BC cm =,D 是腰BA 延长线上一点,连接CD ,且12BD cm =,5CD cm =.(1)判断BDC 的形状,并说明理由;(2)求ABC 的周长.26.已知:如图,,,C D Rt AC BD AD ∠=∠=∠=与BC 相交于点P .≌.求证:(1)Rt ABC Rt BAD△是等腰三角形.(2)PAB【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先由SAS判定△ACD≌△BCE,证得①正确;再由ASA证△ACP≌△BCQ,得到CP=CQ,②正确,同理证得CM=CN,得到④正确;易得③不正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠BCD+∠ECD,∠BCD=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,故①正确;∠CAD=∠CBE,∵∠BCA=∠BCD=60°,AC=BC,∴△ACP≌△BCQ(ASA),∴CP=CQ,又∵∠PCQ=60°,∴△CPQ是等边三角形,故②正确;过C作CM⊥BE于M,CN⊥AD于N,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵CD=CE,∠CND=∠CMA=90°,∴△CDN≌△CEM(AAS),∴CM=CN,∵CM⊥BE,CN⊥AD,∴OC平分∠AOE,故④正确;当AC =CE 时,AP 平分∠BAC ,则∠PAC =30°,此时∠APC =180°﹣30°﹣60°=90°,则AD ⊥BC ,故③不正确;故选:D .【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.2.B解析:B【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题.【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥,223EF DE ∴==3EM DM ∴=∵∠PEM =30°,∠PME =90°,∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =, 故31DP ,同法可得2PF =, 则312233PD PE PF ++++=故选:B .【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE的长是解题关键.3.B解析:B【分析】先ASA证明△BAC≌△EDC,再利用全等三角形的性质,等腰三角形的两底角相等即可求解.【详解】解:∵∠BCE=∠ACD,又∵∠BCE=∠BCA+∠ACE,∠ACD=∠DCE+∠ACE,∴∠BCA=∠DCE,∵∠BAC=∠D=40°,AB=DE,∴△BAC≌△EDC(ASA),∴AC=CD,∴∠CAE=∠D=40°,∵AC=AE,∴∠AEC=∠ACE=1(180°﹣∠CAE)=70°,2∵∠AEC=∠D+∠DCE,∴∠DCE=30°,∴∠ACB=30°,∴∠B=180°﹣∠ACB﹣∠BAC=110°.故选:B.【点睛】考查了全等三角形的判定与性质,等腰三角形的性质,关键是根据ASA证明△BAC≌△EDC.4.D解析:D【分析】先根据非负数的性质列式求出a、b的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,a-3=0,b-4=0,解得a=3,b=4,①4是腰长时,三角形的三边分别为4、4、3,∵4+4>3,∴能组成三角形,4+4+3=11,②4是底边时,三角形的三边分别为3、3、4,能组成三角形,周长=3+3+4=10,所以,三角形的周长为11或10.故选:D.【点睛】本题考查了等腰三角形的性质,绝对值非负数,偶次方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出a 、b 的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.5.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE =5,再根据角平分线的性质求出CE =DE =5即可.【详解】解:∵DE ⊥AB ,∴∠ADE =90°,在Rt △ADE 中,∠A =30°,AE =10,∴DE =12AE =5, ∵BE 平分∠ABC ,DE ⊥AB ,∠ACB =90°,∴CE =DE =5,故选:A .【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.B解析:B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴OC=3,∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,,设直线A 1A 2的解析式为y kx =-∴03k =-,∴3k =∴直线A 1A 2的解析式为33y x =-, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,2),同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,∴A 2的纵坐标为2,则233x =-, 解得:52x =,∴点A 2的坐标为(52,2), ∴B 1A 2=2,同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=,,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律. 7.B解析:B【分析】利用等腰三角形和等边三角形的判定解答即可.【详解】A.有两边相等的三角形是等腰三角形,所以A 选项正确;B.等腰直角三角形就是等腰三角形,故B 选项错误;C.有两个角为60°的三角形是等边三角形,正确;D.有一个角为60°的等腰三角形是等边三角形,正确.故选B .【点睛】本题考查了等腰三角形和等边三角形的判定,解题的关键是熟练掌握有关性质. 8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.C解析:C【分析】 根据已知可求得∠DAC 及∠ADE 的度数,根据∠CDE=90°-∠ADE 即可得到答案.【详解】解:∵AB =AC ,BD=DC∴ AD⊥BC(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)∴∠ADC=90°,∵∠BAC=80°,∴∠BAD=∠DAC= 80°÷2=40°(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合),∵AD=AE,∴∠ADE=( 180°−40°)÷2=70°,∴∠CDE=∠ADC-∠ADE=90°-70°=20°,故答案为:C.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,掌握等腰三角形的性质,三角形内角和定理是解题的关键.10.B解析:B【分析】由△ABC为等边三角形,可求出∠BOA=90°,由△ADO是等腰三角形求出∠ADO=∠AOD=30°,即可求出∠BOD的度数.【详解】解:∵△ABC为等边三角形,BO为中线,∴∠BOA=90°,∠BAC=60°∴∠CAD=180°﹣∠BAC=180°﹣60°=120°,∵AD=AO,∴∠ADO=∠AOD=30°,∴∠BOD=∠BOA+∠AOD=90°+30°=120°,故选:B.【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.11.A解析:A【分析】由等边三角形的性质可得AO=OB=AB=1,BC=BD=CD,∠OBA=∠CBD=60°,可证△OBC≌△ABD,可得∠BAD=∠BOC=60°,可求∠EAO=60°,即可求OE点E坐标.【详解】解:∵△AOB,△BCD是等边三角形,∴AO=OB=AB=1,BC=BD=CD,∠OBA=∠CBD=60°,∴∠OBC=∠ABD,且OB=AB,BC=BD,∴△OBC≌△ABD(SAS),∴∠BAD=∠BOC=60°,∴∠EAO=180°−∠OAB−∠BAD=60°,在Rt△AOE中,AO=1,∠EAO=60°,∠OEA=30°,∴AE=2 AO=2,∴OE=22=3,21∴点E坐标(0,3),故选A.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,坐标与图形性质,灵活运用全等三角形的判定和性质是本题的关键.12.D解析:D【分析】先以Rt△ABC三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点,也可以作三边的垂直平分线确定等腰三角形的第三个顶点.【详解】解:如图1,以B为圆心,BC长为半径画弧,交AB于点D,连接CD,则△BCD是等腰三角形;如图2,以A为圆心,AC长为半径画弧,交AB于点D,连接CD,则△ACD是等腰三角形;如图3,作AB的垂直平分线,交AC于点D,连接BD,则△BCD是等腰三角形;如图4,以C为圆心,BC长为半径画弧,交AC于点D,交AB于点F,连接BD,CF 则△BCD、△BCF是等腰三角形;如图5,作BC的垂直平分线,交AB于点D,连接CD,则△BCD是等腰三角形;如图6,作AC的垂直平分线,交AB于点D,连接CD,△ACD是等腰三角形,∴符合题意的等腰三角形最多能画7个,故选:D.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.二、填空题13.【分析】设∠OAC=x ∠CAB=y 根据等腰三角形的性质则∠OCA=x ∠OBA=x+y ∠OBC=x+30°利用三角形内角和定理计算即可【详解】解:设∠OAC=x ∠CAB=y ∵OA=OC ∴∠OCA=x ∵解析:60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∵OA=OC ,∴∠OCA=x ,∵OA=OB ,∴∠OBA=x+y ,∵OC=OB ,∴∠OBC=x+30°,∵30ACB ∠=︒,∴∠CAB+∠OBA+∠OBC=150°,∴y+x+y+ x+30°=150°,∴2(x+y)=120°,∵∠AOB=180°-2∠OBA=180°-2(x+y),∴∠AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.【详解】解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.125【分析】先证明得到再根据三角形内角和得到所求角中两角的和最后与等边三角形内角相加就得到结果【详解】解:是等边三角形在与中故答案为125【点睛】这道题考察的是等边三角形的性质全等三角形的判定和性 解析:125【分析】先证明ABC DEA ≌,得到BAC ADE ∠∠=,再根据三角形内角和得到所求角中两角的和BAC DAE ∠+∠,最后与等边三角形内角CAD ∠相加就得到结果.【详解】解:ACD 是等边三角形,AC AD ∴=,60CAD ∠︒=在ABC 与DEA 中, =⎧⎪=⎨⎪=⎩AB DE BC AE AC AD ABC DEA SSS ∴≌()BAC ADE ∴∠∠=18011565BAC DAE ADE DAE ∴∠+∠∠+∠︒-︒︒===6560125BAE BAC DAE CAD ∴∠∠+∠+∠︒+︒︒===故答案为125.【点睛】这道题考察的是等边三角形的性质,全等三角形的判定和性质,三角形内角和的概念.解题的关键在于熟练掌握这些相关知识点.16.【分析】过点D 作DF ⊥BC 垂足为F 根据角平分线的性质得到FD=DE 再利用面积求DE 即可【详解】解:过点D 作DF ⊥BC 垂足为F ∵BD 是△ABC 的角平分线DE ⊥ABDF ⊥BC ∴FD=DEDE=4故答案为解析:【分析】过点D 作DF ⊥BC ,垂足为F ,根据角平分线的性质得到FD=DE ,再利用面积求DE 即可.【详解】解:过点D 作DF ⊥BC ,垂足为F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴FD=DE ,182ABD SAB DE DE =⋅=, 172CBDS BC DF DE =⋅=, ABC ABD DBC S S S =+△△△,8760DE DE +=,DE=4,故答案为:4.【点睛】本题考查是角平分线的性质,解题关键是熟知角平分线性质,作垂线,利用面积求DE . 17.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO 再用外角的性质求解即可【详解】解:由作图可知PO=PA ∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO ,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA ,∴∠MON=∠PAO=33°,∠APN =∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.18.6【分析】作点P 关于OA 对称的点作点P 关于OB 对称的点连接与OA 交于点E 与OB 交于点F 此时△PEF 的周长最小然后根据∠AOB=30°结合轴对称的性质证明△是等边三角形从而可得答案【详解】解:如图作点解析:6【分析】作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小,然后根据∠AOB=30°,结合轴对称的性质证明△12OPP 是等边三角形,从而可得答案.【详解】解:如图,作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小.此时△PEF 的周长就是12PP 的长,由轴对称的性质可得:12,,POE POE P OF POF ∠=∠∠=∠12OP OP OP ==()122222,POP POE POF POE POF AOB ∴∠=∠+∠=∠+∠=∠∵∠AOB=30°,∴1260POP ∠=︒,∴△12OPP 是等边三角形.6OP =,∴121 6.PP OP OP ===∴△PEF 周长的最小值是6.故答案为:6.【点睛】本题考查轴对称最短路径问题,关键是确定E ,F 的位置,本题的突破点是证明△12OPP 是等边三角形.19.【分析】利用等腰三角形的性质判定证明BD=AD 利用直角三角形中30°角的性质计算BD 即可得解【详解】∵∴∠A=30°∠ABC=120°∵∴∠CBD=90°BD=1∴∠DBA=30°∴∠DBA=∠A ∴ 解析:1.【分析】利用等腰三角形的性质,判定,证明BD=AD ,利用直角三角形中30°角的性质计算BD 即可得解.【详解】∵AB BC =,30C ∠=︒,∴∠A=30°,∠ABC=120°,∵BD BC ⊥,2CD =,∴∠CBD=90°,BD=1,∴∠DBA=30°,∴∠DBA=∠A ,∴BD=AD ,∴AD=1.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质,熟练掌握性质,并灵活运用性质是解题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析;(3)△ACF 是等腰三角形,理由见解析【分析】(1)由AAS 证明△ACD ≌△CBF 即可;(2)由全等三角形的性质得CD =BF ,由CD =BD ,得BF =BD ,证出∠ABC =∠ABF ,由等腰三角形的性质即可得出结论;(3)由全等三角形的性质得AD =CF ,由垂直平分线的性质得AD =AF ,得出AF =CF 即可.【详解】(1)证明:∵CE ⊥AD ,∠BCF +∠ADC =90°,∵∠BCA =90°,BF ∥AC ,∴∠CBF =180°﹣∠BCA =90°,∴∠BCF +∠CFB =90°,∴∠CFB =∠ADC ,在△ACD 和△CBF 中,ACD CBF ADC CFB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF (AAS );(2)证明:由(1)得:△ACD ≌△CBF ,∴CD =BF ,∵D 为BC 的中点,∴CD =BD ,∴BF =BD ,∵∠BCA =90°,AC =BC ,∴∠ABC =45°,∴∠ABF =90°﹣∠ABC =45°,∴∠ABC =∠ABF ,∵BF =BD ,∴AB 垂直平分DF ;(3)解:△ACF 是等腰三角形,理由如下,如图:连接AF由(1)得:△ACD ≌△CBF ,∴AD =CF ,由(2)得:AB垂直平分DF,∴AD=AF,∴AF=CF,∴△ACF是等腰三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形的性质,线段垂直平分线的性质等知识,熟练掌握等腰三角形的判定与性质,全等三角形的判定定理是解题关键.22.(1)22°;(2)19.【分析】(1)利用三角形内角和求得∠C=40°,利用垂直平分线的性质,求得∠DAC=40°,最后计算∠BAD的度数即可;(2)利用周长的定义,垂直平分线的性质计算即可.【详解】解:(1)∵∠BAC=62°,∠B=78°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣62°﹣78°=40°,∵DE垂直平分AC,∴AD=CD,∴∠CAD=∠C=40°,∴∠BAD=∠BAC﹣∠CAD=62°﹣40°=22°;(2)∵AD=CD,AB=8,BC=11,∴△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=8+11=19.【点睛】本题考查了三角形的内角和定理,线段垂直平分线的性质,熟练运用定理和性质是解题的关键.23.见解析【分析】(1)先作线段AB的垂直平分线DE,再延长BC即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE,得到答案;(3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC,证得BE=EF,又因为AE= BE,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE是AB的垂直平分线∴DE⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.24.(1)①AE=BF;②见解析;(2)AE=BF﹣CD或AE=CD﹣BF【分析】(1)①如图1,根据已知条件得到△ABC是等边三角形,由等边三角形的性质得到AD=AB=BC,∠DAB=∠ABC=60°,由邻补角的性质得到∠EAD=∠FBD=120°,推出△ADE≌△BDF,根据全等三角形的性质即可得到结论;②证明:在BE上截取BG=BD,连接DG,得到△GBD是等边三角形.同理,△ABC也是等边三角形.求得AG=CD,通过△DGE≌△DBF,得到GE=BF,根据线段的和差即可得到结论;(2)如图3,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论;如图4,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论.【详解】解:(1)①如图1,∵BA=BC,∠EBD=60°,∴△ABC是等边三角形,∴AD=AB=BC,∠DAB=∠ABC=60°,∴∠EAD=∠FBD=120°,∵DE=DF,∴∠E=∠F,在△AEC与△BCF中,E FEAD FBDAD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BDF(AAS),∴AE=BF;故答案为:AE=BF;②证明:在BE上截取BG=BD,连接DG,∵∠EBD=60°,BG=BD,∴△GBD是等边三角形.同理,△ABC也是等边三角形.∴AG=CD,∵DE=DF,∴∠E=∠F.又∵∠DGB=∠DBG=60°,∴∠DGE=∠DBF=120°,在△DGE与△DBF中,E FEGD FBDDG BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DGE≌△DBF(AAS),∴GE=BF,∴AE=BF+CD;(2)如图3,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=EG﹣AG;∴AE=BF﹣CD,如图4,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=AG﹣EG;∴AE=CD﹣BF,故AE=BF﹣CD或AE=CD﹣BF.【点睛】本题考查等腰三角形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答的关键是熟练掌握相关知识的运用,利用截长补短的方法做辅助线构造全等三角形和等边三角形,运用类比的方法解决问题.25.(1)直角三角形,理由见解析;(2)325 12cm【分析】(1)根据勾股定理的逆定理得出答案即可;(2)根据勾股定理求出AC,再求出ABC的周长即可.【详解】解:(1)BDC是直角三角形,理由是:∵BC=13cm,BD=12cm,CD=5cm,∴BD2+CD2=BC2,∴∠D=90°,即BDC是直角三角形;(2)设AB=AC=x cm,在Rt ADC中,由勾股定理得:AD2+DC2=AC2,即(12-x)2+52=x2,解得:x=169 24,∴AB=AC=16924(cm),∵BC=13cm,∴△ABC的周长=AB+AC+BC=16924+16924+13=32512(cm).【点睛】本题考查了勾股定理和勾股定理的逆定理,熟记勾股定理的逆定理是解此题的关键.26.(1)见解析;(2)见解析【分析】(1)利用HL即可证明;(2)根据全等三角形的性质可得∠ABP=∠BAP,从而得到PA=PB,即可得证.【详解】解:(1)∵∠C=∠D=Rt∠,AC=BD,AB=BA,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABP=∠BAP,∴PA=PB,∴△PAB是等腰三角形.【点睛】本题主要考查了全等三角形的判定及性质,证明Rt△ABC≌Rt△BAD是解题的关键.。

湘教版数学八年级下册第一单元、第二单元测试题(各一套,附答案)

湘教版数学八年级下册第一单元、第二单元测试题(各一套,附答案)

湘教版数学八年级下册第一单元测试题(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成直角三角形的是( )A .4,5,6B .2,3,4C .1,1,2D .1,2,22.若三角形三个内角的比为1∶2∶3,则它的最长边与最短边的比为( ) A .3∶1 B .2∶1 C .3∶2 D .4∶1 3) A .3 B .4 C .5 D .无法求出第3题图第4题图4 ) A.833mB 5PQ A.3B .2 C .3 D .2 3第5题图第6题图6.,E ,AE =A .1 7.如图,在△ABC 中,∠ACB =90°,AC =12,BC =5,AM =AC ,BN =BC ,则MN 的长为( )A .2B .2.6C .3D .48.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( ) A .8 B .6 C .4 D .2第7题图第8题图第10题图9.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5 B.2 C.2.5 D.310.如图,∠ABC=90°,AB=6,BC=8,AD=CD=7,若点P到AC的距离为5,则点P 在四边形A.0个B11.在Rt12.已知,.13________________.第13题图第14题图14线AB15.AB=80.1米,参考数据:2≈1.41,3≈1.73).第15题图第16题图1617.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于________cm.第17题图第18题图18.如图,AB=6,点O是AB的中点,直线l经过点O,∠1=120°,点P是直线l上一点,当△APB为直角三角形时,AP=____________.三、解答题(共66分)19.(6分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ADC沿AC边所在的直线折叠,使点D落在点E处,得到四边形ABCE.求证:EC∥AB.20.(8分)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,______________________________________________________________________________________________.求证:________.请你补全已知和求证,并写出证明过程.21.(10分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.(10分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于点E,点F 在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.23.(10分)如图,一根长63的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑到点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1时,求BB′的长.24.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.25.(12分)如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我国边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我国领海靠近,便立即通知正在PQ上B处巡逻的103号艇注意其动向,经测量AC=10海里,AB=6海里,BC=8海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我国领海?参考答案与解析1.C 2.B 3.A 4.B 5.C 6.A 7.D 8.C 9.D10.A 解析:过点D 作DE ⊥AC ,BF ⊥AC ,垂足分别为E ,F .在Rt △ABC 中,AC =AB 2+BC 2=10,BF =6×810=4.8<5;在△ACD 中,∵AD =CD ,∴AE =CE =5,DE =72-52=26<5,则点P 在四边形ABCD 边上的个数为0个.故选A. 14.2 15.2.916.3π2+1 解析:如图所示,∵无弹性的丝带从A 至C ,绕了1.5圈,∴展开后AB =1.5×2π3或33或37.19.证明:∵CD 是AB 边上的中线,且∠ACB =90°,∴CD =AD ,∴∠CAD =∠ACD .(3分)又∵△ACE 是由△ACD 沿AC 边所在的直线折叠而成,∴∠ECA =∠ACD ,∴∠ECA =∠CAD ,∴EC ∥AB .(6分)20.解:PD ⊥OA ,PE ⊥OB ,垂足分别为点D ,E (2分) PD =PE (4分) 证明如下:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90°.在△PDO 和△PEO 中,⎩⎪⎨⎪⎧∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP ,∴△PDO ≌△PEO (AAS),∴PD =PE .(8分) 21.解:(1)全等.(1分)理由如下:∵∠1=∠2,∴DE =CE .∵∠A =∠B =90°,AE =BC ,∴Rt △ADE ≌Rt △BEC (HL).(5分)(2)△CDE 是直角三角形.(6分)理由如下:∵Rt △ADE ≌Rt △BEC ,∴∠AED =∠BCE .∵∠BCE +∠BEC =90°,∴∠BEC +∠AED =90°,∴∠DEC =90°,∴△CDE 是直角三角形.(10分)22.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .(2分)在Rt △DCF和Rt △(2)在Rt 分)∴23)(2)在Rt ′=AB =分)24.解:过E 点作EF ⊥AB ,垂足为点F .∵∠EAB =30°,AE =2,∴EF =1,∴BD =1.(3分)又∵∠-30°=3,∴25且∠海里.只从被发现到进入我国领海的时间为6.4÷12.8=0.5(小时),(10分)∴可疑船只最早10时58分进入我国领海.(12分)湘教版数学八年级下册第二单元测试题(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形2.在下列图形中,既是轴对称图形又是中心对称图形的是()3.下列命题是真命题的是()ABCD4.A.3.5 B.4 C.7 D.14第4题图第5题图第6题图5BC 的长为(A.6DCAC.7两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误8.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD,其中正确的有()A.①②③B.①②④C.②③④D.①③④9.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2 B.3a2 C.4a2 D.5a2第9题图第10题图10.,AE=CF=A.71112点C两地之间的距离是________米.第12题图第13题图13一个条件1415.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于________.第15题图第16题图16角∠A,使衣帽架拉伸或收缩.若菱形的边长等于10cm ,∠A=120°,则AB=________,AD=________.17.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为________.第17题图第18题图18.如图,菱形ABCD中,点E,F分别是BC,CD的中点,过点E作EG⊥AD于点G,连接GF,EF.若∠A=80°,则∠DGF的度数为________.三、解答题(共66分)19.(8分)一个多边形内角和的度数比外角和的度数的4倍多180度,求这个多边形的边数.20.(8分)如图,在锐角三角形ABC中,AD⊥BC于点D,点E,F,G分别是AC,AB,BC的中点.求证:FG=DE.21.(12分)如图,在▱ABCD中,点E,F为对角线AC上的两点,且AE=CF,连接DE,BF.(1)写出图中所有的全等三角形;(2)求证:DE∥BF.22.(12分)如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线,DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.23.(12分)如图,将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,连接AE,CF,AC.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形AECF的边长;②求折痕EF的长.24.(14分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D为AB的中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若点D为AB的中点,当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.参考答案与解析1.C 2.C 3.D 4.A 5.C 6.D7.C8.B解析:根据平行四边形的面积公式及“垂线段最短”的性质可知,当其面积最大时,其一边上的高与邻边重合,即其形状为矩形.此时,AC=AB2+BC2=32+42=5,故①正确;∠A=∠C=90°,∴∠A+∠C=180°,故②正确;若AC⊥BD,则此矩形又为正方形,有AB=BC,显然不符合题意,故③错误;根据矩形的对角线相等的性质,可知AC =BD,故④正确,综上可知,①②④正确.故选B.9.A10.C解析:如图所示,由题意易证△ABE≌△CDF.∴∠ABE=∠CDF.∵∠AEB=∠,,=EF,n=)(2)证明:∵AE=CF,∴AF=CE.(8分)∵四边形ABCD是平行四边形,∴AB=CD,AB ∥CD,∴∠BAF=∠DCE.在△ABF和△CDE中,AB=CD,∠BAF=∠DCE,AF=CE,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴DE∥BF.(12分)22.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF.(3分)又∵AE=CF,∴△ABE≌△CDF.(6分)(2)解:四边形BEDF是菱形.(7分)理由如下:∵四边形ABCD是平行四边形,∴AD =BC,AD∥BC.∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴BO=DO.(9分)又∵BG=DG,∴GO⊥BD,∴四边形BEDF是菱形.(12分)23.(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC .∵AD ∥BC ,∴∠F AC =∠ECA .(2分)在△AOF 和△COE 中,⎩⎪⎨⎪⎧∠F AO =∠ECO ,AO =CO ,∠AOF =∠COE ,∴△AOF≌△COE ,∴OF =OE .(4分)∴四边形AECF 为菱形.(6分)(2)解:①设菱形AECF 的边长为x ,则AE =CE =x ,BE =BC -CE =8-x .(7分)在Rt △ABE 中,∵BE 2+AB 2=AE 2,∴(8-x )2+42=x 2,解得x =5,即菱形的边长为5.(9分)②在Rt △ABC 中,AC =AB 2+BC 2=45,∴OA =12AC =2 5.在Rt △AOE 中,OE =AE 2-AO 2=5,∴EF =2OE =2 5.(12分) 24.(1)证明:∵DE ⊥BC ,∴∠DFB =90°.∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE .(2分)∵MN ∥AB ,∴四边形ADEC 是平行四边形,∴CE =AD .(4分)(2)解:四边形BECD 是菱形.(5分)理由如下:∵点D 为AB 的中点,∴AD =BD .∵CE =AD ,∴BD =CE .∵BD ∥CE ,∴四边形BECD 是平行四边形.(7分)∵∠ACB =90°,点D 为AB 的中点,∴CD =BD ,∴四边形BECD 是菱形.(9分)(3)解:当∠A =45°时,四边形BECD 是正方形.(10分)理由如下:∵∠ACB =90°,∠A =45°,∴∠ABC =∠A =45°,∴AC =BC .∵点D 为BA 的中点,∴CD ⊥AB ,∴∠CDB =90°.(12分)由(2)知四边形BECD 是菱形,∴四边形BECD 是正方形.即当∠A =45°时,四边形BECD 是正方形.(14分)。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

第一章 二次根式单元测试题(困难)(含答案)

第一章 二次根式单元测试题(困难)(含答案)

浙教版初中数学八年级下册第一单元《二次根式》(困难)(含答案解析)考试范围:第一单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 在实数范围内,√x−1有意义,则x的取值范围是( )A. x≥1B. x≤1C. x>1D. x<12. 设等式√a(x−a)+√a(y−a)=√x−a−√a−y在实数范围内成立,其中a、x、y是两两不同的实数,则3x 2+xy−y2x2−xy+y2的值是( )A. 3B. 13C. 2 D. 533. 设x、y、z是两两不等的实数,且满足下列等式:√x3(y−x)3+√x3(z−x)3=√y−x−√x−z,则x3+y3+z3−3xyz的值是( )A. 0B. 1C. 3D. 条件不足,无法计算4. 化简二次根式√−8a3的结果为( )A. −2a√−2aB. 2a√2aC. 2a√−2aD. −2a√2a5. 如果a+√a2−6a+9=3成立,那么实数a的取值范围是( )A. a≤0B. a≤3C. a≥−3D. a≥36. 如图为直线l:y=mx+n(m,n为常数且m≠0)的图象,化简√n2−|m−n|的结果为( )A. −mB. mC. m−2nD. 2n−m7. a,b,c为有理数,且等式a+b√2+c√3=√5+2√6成立,则2a+999b+1001c的值是( )A. 1999B. 2000C. 2001D. 不能确定8. a,b,c为有理数,且等式a+b√2+c√3=√5+2√6成立,则2a+999b+1001c的值是( )A. 1999B. 2000C. 2001D. 不能确定9.如图,在长方形ABCD中,AB=6,BC=10,其内部有边长为a的正方形AEFG与边长为b 的正方形HIJK,两个正方形的重合部分也为正方形,且面积为5,若S2=4S1,则正方形AEFG 与正方形HIJK的面积之和为( )A. 20B. 25C. 492D. 81410. 已知x=1√2021−√2020,则x6−2√2020x5−x4+x3−2√2021x2+2x−√2021的值为( )A. 0B. 1C. √2020D. √202111. 下列根式中为最简二次根式的是( )A. √27B. √a2+b2C. √12D. √3a312. 二次根式:①√9−x2;②√(a+b)(a−b);③√a2−2a+1;④√1x;⑤√0.75中最简二次根式是( )A. ①②B. ③④⑤C. ②③D. 只有④第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 若√4−aa+2有意义,则a的取值范围为14. 已知a<b,化简二次根式√−2a2b的结果是______.15. 实数a、b、c在数轴上的位置如图所示,化简下列代数式的值√a2−√(c−a+b)2+|b+ c|−√b33=______.16. 若x <0,则√x 2−√x 33=___________ 三、解答题(本大题共10小题,共80分。

浙教版八年级数学下册第一章单元测试卷(含答案)

浙教版八年级数学下册第一章单元测试卷(含答案)

浙教版八年级数学下册第一章单元测试卷(含答案)一、单选题1.计算4√12+3√13−√8的结果是()A.√3+√2B.√3C.√33D.√3−√22.已知是正整数,则实数n的最大值为()A.12B.11C.8D.33.如果最简根式√3a−8与√17−2a是同类二次根式,那么使√4a−2x有意义的x的取值范围是()A.x≤10B.x≥10C.x<10D.x>104.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等5.已知x为实数,化简√−x3−x√−1x的结果为()A.(x−1)√−x B.(−1−x)√−x C.(1−x)√−x D.(1+x)√−x6.如果√−53−x是二次根式,那么x 应适合的条件是()A.x ≥3B.x ≤3C.x >3D.x <37.若等腰三角形的两边长分别为√50和√72,则这个三角形的周长为()A.11√2B.16√2或17√2C.17√2D.16√28.若√x−1+√x+y=0,则x2005+y2005的值为:()A.0B.1C.-1D.29.设等式√a(x−a)+√a(y−a)=√x−a−√a−y在实数范围内成立,其中a、x、y是两两不同的实数,则3x2+xy−y2x2−xy+y2的值是()A.3B.13C.2D.5 310.“分母有理化”是我们常用的一种化简的方法,2+√32−√3=(2+√3)(2+√3)(2−√3)(2+√3)=7+4√3,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于√3+√5√3−√5,设x= √3+√5√3−√5,易知√3+√5> √3−√5,故x>0,由x2= (√3+√5−√3−√5)2= 3+√5+3−√5−2√(3+√5)(3−√5)=2,解得x= √2,即√3+√5−√3−√5=√2。

根据以上方法,化简√3−√2√3+√2√6−3√3√6+3√3后的结果为()A.5+3 √6B.5+ √6C.5-√6D.5-3 √6二、填空题11.化简√14−8√3=12.化简√−a3=.13.若实数a=12−√3,则代数式a2−4a+4的值为.14.已知,y=√(x−3)2+4−x,当x分别取1,2,3,…,2021时,所对应的y值的总和是. 15.已知实数a满足|2014-a|+ √a−2015=a,那么a-20142+1的值是.16.若实数a,b,c满足关系式√a−9+b+√9−a−b=√4a−c+4b,则c的平方根为. 17.观察下列等式:①√3+1=√3−1(√3+1)(√3−1)=√3−12;②1√5+√3=√5−√3(√5+√3)(√5−√3)=√5−√32③√7+√5=√7−√5(√7+√5)(√7−√5)=√7−√52…参照上面等式计算方法计算:1+√3√3+√5√5+√7+⋯3√11+√101=.18.如果(x﹣√x2−2008)(y﹣√y2−2008)=2008,求3x2﹣2y2+3x﹣3y﹣2007=.19.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+b=.20.若实数x,y,m满足等式√3x+5y−3−m+(2x+3y−m)2=√x+y−2−√2−x−y,则m+4的算术平方根为.三、计算题21.先化简,再求值:[(√x+√y)(√x−√y)√x+√y√xy(√y−√x)÷√x−√y√xy,其中x=1,y=2.22.已知:x=√3+√2√3−√2,y=√3−√2√3+√2,求x3−xy2x4y−2x3y2+x2y3的值.四、综合题23.设a= √8−x,b=2,c= √6.(1)当a有意义时,求x的取值范围;(2)若a,b,c为直角三角形ABC的三边长,试求x的值.24.解答题.(1)已知x=√7+1,x的整数部分为a,小数部分为b,求ab的值.(2)已知a−b=√3+√2,b−c=√3−√2,求a2+b2+c2−ab−bc−ca的值.25.王老师让同学们根据二次根式的相关内容编写一道题,以下是王老师选出的两道题和她自己编写的一道题.先阅读,再回答问题.(1)小青编的题,观察下列等式:√3+1=√3(√3+1)(√3−1)=2(√3−1)(√3)2−12=2(√3−1)3−1=√3−1√5+√3=√5√3)(√5+√3)(√5−√3)=2(√5−√3)(√5)2−(√3)2=2(√5−√3)5−3=√5−√3直接写出以下算式的结果:√7+√5=;√2n+1+√2n−1(n为正整数)=;(2)小明编的题,由二次根式的乘法可知:(√3+1)2=4+2√3,(√5+√3)2=8+2√15,(√a+√b)2=a+b+2√ab(a≥0,b≥0)再根据平方根的定义可得√4+2√3=√3+1,√8+2√15=√5+√3,√a+b+2√ab=√a+√b(a≥0,b≥0)直接写出以下算式的结果:√6+2√5=,√4−2√3=,√7+4√3=:(3)王老师编的题,根据你的发现,完成以下计算:(√3+1√5+√3+√7+√5+√9+√7√11+√9)⋅√12+2√1126.阅读下列解题过程:例:若代数式√(2−a)2+√(a−4)2=2,求a的取值.解:原式=|a﹣2|+|a﹣4|,当a<2时,原式=(2﹣a)+(4﹣a)=6﹣2a=2,解得a=2(舍去);当2≤a<4时,原式=(a﹣2)+(4﹣a)=2,等式恒成立;当a≥4时,原式=(a﹣2)+(a﹣4)=2a﹣6=2,解得a=4;所以,a的取值范围是2≤a≤4.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:(1)当3≤a≤7时,化简:√(3−a)2+√(a−7)2=;(2)请直接写出满足√(a−1)2+√(a−6)2=5的a的取值范围;(3)若√(a+1)2+√(a−3)2=6,求a的取值.27.阅读下列材料,然后回答问题,在进行二次根式的化简与运算时,我们有时会碰上如如2√3+1一样的式子,其实我们还可以将其进一步化简:√3+1=2×(√3−1)(√3+1)(√3−1)=2(√3−1)(√3)2−12=√3−1(1)以上这种化简的步骤叫做分母有理化.√3+1还可以用以下方法化简:2√3+1=3−1√3+1=(√3)2−12√3+1=(√3+1)(√3−1)√3+1=√3−1(2)(1)请参照(1)(2)的方法用两种方法化简:√7+√5方法一:√7+√5=方法二:2√7+√5=(2)直接写出化简结果:2√13+√11=2√15+√13=(3)计算:2√5+√2+2√8+√5+2√11+√8+…+2√32+√29+2√35+√3228.甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.细心观察图形,认真分析下列各式,然后解答问题:(√1)2+1=2,S1=√12;(√2)2+1=3,S2=√22;(√3)2+1=4,S3=√32;….(1)请用含有n(n是正整数)的等式表示上述变化规律,并计算出OA10的长;(2)求出S12+S22+S32+⋯+S102的值.参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】C7.【答案】B8.【答案】A9.【答案】B10.【答案】D11.【答案】2√2−√612.【答案】−a √−a .13.【答案】314.【答案】202715.【答案】201616.【答案】±617.【答案】√101−1218.【答案】119.【答案】2.520.【答案】321.【答案】解: [4(√x+√y)(√x−√y)√x+√y √xy(√y−√x)÷√x−√y √xy= [4x−y √x+√y √xy(√y−y ⃗⃗ )]×√xy √x−√y= 4x−y ×√xy √x−√y √x+√y √xy(√x−√y)√xy √x−√y = √xy (√x−√y)(x−y)√x+√y(√x−√y)2= √xy (√x−√y)(x−y)(√x+√y)2(√x−√y)2(√x+√y)= √xy−(√x+√y)2(√x−√y)(x−y)= √x−√y)2(√x−√y)(x−y)= −(√x−√y)x−y= √y−√xx−y;将x=1,y=2代入得:原式= √2−11−2=1−√2.22.【答案】解:x=5+2 √6,y=5-2 √6,xy=1,x+y=10,x-y=4 √6,原式=x+yxy(x−y)=512√623.【答案】(1)解:8- x≥0,∴x≤8(2)解:若a是斜边,则有(√8−x)2=22 +(√6)2,8-x=10,解得x=-2.若a为直角边,则有( √8−x)2+22=( √6)2,∴8-x+4=6,解得x=6.∵x都满足x≤8,∴x的值为-2或6.24.【答案】(1)解:∵22<(√7)2<32,∴2<√7<3,∴3<√7+1<4,∵x的整数部分是a,小数部分是b,∴a=3,b=√7+1−3=√7−2,∴ab=√7−2=√7(√7−2)(√7+2)=√7+2(2)解:∵a−b=√3+√2,b−c=√3−√2,∴a−c=√3+√2+√3−√2=2√3,∴a2+b2+c2−ab−bc−ac=12(2a2+2b2+2c2−2ab−2bc−2ac) =12[(a−c)2+(a−b)2+(b−c)2]=12[(2√3)2+(√3+√2)2+(√3−√2)2]=12×(12+3+2√6+2+3−2√6+2)=12×22=11.25.【答案】(1)√7−√5;√2n+1−√2n−1(n为正整数)(2)√5+1;√3−1;2+√3(3)解:(2√3+1+2√5+√32√7+√52√9+√7+2√11+√9)⋅√12+2√11=(√3−1+√5−√3+√7−√5+√9−√7+√11−√9)(√11+1)=(√11−1)(√11+1)=10 26.【答案】(1)4(2)1≤a≤6(3)解:原式=|a+1|+|a﹣3|,当a<﹣1时,原式=﹣(a+1)+(3﹣a)=2﹣2a=6,解得a=﹣2;当﹣1≤a<3时,原式=(a+1)+(3﹣a)=4,等式不成立;当a≥3时,原式=(a+1)+(a﹣3)=2a﹣2=6,解得a=4;所以,a的值为﹣2或4.27.【答案】(1)√7−√5;√7−√5(2)√13−√11;√15−√13(3)解:√5+√2+√8+√5+√11+√8+…+√32+√29+√35+√32=2(√5−√2)3+2(√8−√5)3+2(√11−√8)3+···+2(√32−√29)3+2(√35−√32)3 =23(√5−√2+√8−√5+√11−√8+···+√32−√29+√35−√32)=23(√35−√2)=2√35−2√2328.【答案】(1)解:∵OA1=1= √1,OA1=A1A2=A2A3=…=A7A8=1,∴OA22= OA12+A1A22=1+1=2,∴OA2= √2,S1=12⋅OA1⋅A1A2=12×√1×1=√12,∵OA32= OA22+A2A32=(√2)2+1=3,∴OA3=√3,S2=12⋅OA2⋅A2A3=12×√2×1=√22,∵OA42= OA32+A3A42=(√3)2+1=4,∴OA4=2,S3=12⋅OA3⋅A3A4=12×√3×1=√32,⋯,∴OA n2=OA n−12+A n−1A n2=(√(n−1))2+1=n,S n=12⋅OA n⋅A n A n+1=12×√n×1=√n2,∴OA102= (√(10−1))2+1=10,∴OA10= √10,∴含有n (n 是正整数)的等式表示上述变化规律为: (√(n −1))2+1=n ,OA 10的长为 √10 ; (2)解:由(1)知: S n =√n 2, ∴S 1=√12 , S 2=√22 , S 3=√32 , ⋯ , S 10=√102 , ∴S 12+S 22+S 32+⋯+S 102 = (√12)2+(√22)2+(√32)2+⋯+(√102)2 = 554 .。

新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)

新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)

一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22== 2.若x=,则2x 2x -=( )A B .1 C .2D 13.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤14.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+6 5.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=6.下列算式中,正确的是( )A .3=B =C =D 4= 7.下列四个数中,是负数的是( )A .2-B .2(2)-C .D 8.下列计算正确的是( )A 7=±B 7=-C 112=D =9x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 10.下列各式计算正确的是( )A +=B .26=(C 4=D = 11.下列计算正确的是( )A .336a a a +=B .1=C .()325x x =D .642b b b ÷=12. )A B .C D .二、填空题13.计算:()235328-+---=__________.14.如果代数式1x -有意义,那么实数x 的取值范围是____15.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.16.若224y x x =-+-+,则y x 的平方根是__________.17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.13a a+=a a =______. 19.计算:232)(32)=______.20.2121=-+3232=+4343=+,请从上述等式找出规律,并利用规律计算(20082)32435420082007++⋅⋅⋅++=++++_________. 三、解答题21.(1)计算:503248- (2)计算:16215)362(3)解方程组:25214323x y x y -=-⎧⎨+=⎩(4)解方程组:4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 22.计算:(1)121850322(2)21)-.23.计算:(12- (2) 248(31)(31)(31)(31)1++++- 24.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2++⋯+; (3)设a =,b =c =,比较a ,b ,c 的大小关系.25()201220202π-⎛⎫+-- ⎪⎝⎭26.计算:.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.B解析:B【分析】直接将已知分母有理化,进而代入求出答案.【详解】解:∵ x==1=, ∴ ()2x 2x x x 2-=- )112=- 21=-1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.3.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得.【详解】A、=B235=+=,此项错误;C==D2==,此项错误;故选:C.【点睛】本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.7.C解析:C先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.8.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C====,故该选项正确;D2故选:D.【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.9.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 11.D解析:D【分析】依次根据合并同类项法则,二次根式的加减、幂的乘方和同底数幂的除法判断即可.【详解】解:A. 3332a a a +=,故该选项错误;B. =C. ()32236x x x ⨯==,故该选项错误;D. 64642b b b b -÷==,故该选项正确.故选:D .【点睛】本题考查幂的相关计算,合并同类项和二次根式的加减.掌握相关运算法则,能分别计算是解题关键.12.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D、=,所以2故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.14.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.15.﹣2a【分析】依据数轴即可得到a+1<0b﹣1>0a﹣b<0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a .【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a <﹣1,1<b <2,∴a +1<0,b ﹣1>0,a ﹣b <0,∴|a +1|=|a +1|﹣|b ﹣1|+|a ﹣b |=﹣a ﹣1﹣(b ﹣1)+(﹣a +b )=﹣a ﹣1﹣b +1﹣a +b=﹣2a ,故答案为:﹣2a .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.16.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =, ∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零.17.【分析】设两个正方形AB的边长是xy(x<y)得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x)x求出即可【详解】解:设两个正方形AB的边长是xy(x<y)则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,则阴影部分的面积是(y-x)x=-=2-,故答案为:2-.【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.19.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 20.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】 所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯ ∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.(1)72;(2)-2)25x y =⎧⎨=⎩;(4)368x y =⎧⎨=⎩【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)由二次根式的性质和乘法运算进行化简,再计算加减运算即可;(3)利用加减消元法解二元一次方程,即可得到答案;(4)利用加减消元法解二元一次方程,即可得到答案;【详解】解:(1)4=4 =142-=72; (2)=-=-;(3)25214323x y x y -=-⎧⎨+=⎩①②, 由②-①⨯2,得1365y =,∴5y =,把5y =代入①,得22521x -=-,∴2x =,∴方程组的解为25x y =⎧⎨=⎩; (4)4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①②, 由①-②,得334x x -=, ∴36x =,把36x =代入①,得124y -=,∴8y =, ∴方程组的解为368x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,二次根式的性质,二元一次方程组的解法,解题的关键是熟练掌握运算法则,正确的进行解题.22.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式31322=++52=; (2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.(1==2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (21=+1=1=.(3)a ==2b ==2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.25.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.26.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(答案解析)(4)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(答案解析)(4)

一、选择题1.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到450m 以外的安全区域.已知导火线的燃烧速度是12cm/s .,操作人员跑步的速度是6m/s .为了保证操作人员的安全,导火线的长度要超过( )A .90cmB .80cmC .70cmD .60cm 2.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .2 3.不等式323x x +-≤的非负整数解有( ) A .3个 B .4个 C .5个 D .无数个 4.已知a b >,下列不等式中,不成立的是( )A .44a b +>+B .33a b ->-C .22a b > D .22a b ->- 5.若点(,)A n m 在第二象限,则点()2,B m n -位于( )A .第一象限B .第二象限C .第三象限D .第四象限 6.点P 坐标为(m +1,m -2),则点P 不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 8.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 9.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 10.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤ 11.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a- 12.下列各数是不等式271x -≥的解的是( ).A .4B .3C .2D .1二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.已知a 340218a <+<a 的值为____________.15.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 16.已知关于x 的不等式0123x a x ->⎧⎨->-⎩只有五个整数解,则实数a 的取值范围是__________.17.不等式组()2231117232x x x x ⎧+>-⎪⎨-≤-⎪⎩的解为_____.18.若方程组3133x y a x y +=+⎧⎨+=⎩的解x 、y 满足 3y x -<,则a 的取值范围为_________. 19.不等式组235,324,x x -≤⎧⎨-<⎩的解集是________. 20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______.三、解答题21.如图,ABC 中,8,6AC BC AB ===,现有两点,M N 分别从点A 点B 同时出发,沿三角形的边运动,已知点M 的速度为每秒1个单位长度,点N 的运度为每秒2个单位长度,当点M 到达B 点时,,M N 同时停止运动,设运动时间为t 秒.(1)当03t ≤≤时,AM = ,AN = ;(用含t 的代数式表示)(2)当点,M N 在边BC 上运动时,是否存在某个时刻,使得12AMN ABC S S =△△成立,若成立,请求出此时点M 运动的时间;若不成立请说明理由.(3)当点,M N 在同一直线上运动时,求运动时间t 的取值范围.22.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题: (1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.23.为了美化校园,某学校决定利用现有的332盆甲种花卉和310盆乙种花卉,搭配A ,B 两种园艺造型共50个,摆放在校园道路两侧.已知一个A 种园艺造型需甲种花卉7盆,乙种花卉5盆;一个B 种园艺造型需甲种花卉6盆,乙种花卉8盆.(1)问搭配A ,B 两种园艺造型共有几种方案?(2)若一个A 种园艺造型的成本是200元,一个B 种园艺造型的成本是300元,哪种方案成本最低?请写出此方案.24.某县在创建省文明卫生城市中,绿化档次不断提升.某校计划购进A 、B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元(1)求A 种、B 种树木每棵各多少元?(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价八折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.解下列不等式组()220463x x x ⎧-<⎨+≥⎩26.为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A ,B 两种蔬菜,若种植20亩A 种蔬菜和30亩B 种蔬菜,共需投入36万元;若种植30亩A 种蔬菜和20亩B 种蔬菜,共需投入34万元.(1)种植A ,B 两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A 种蔬菜每亩可获利0.8万元,种植B 种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w 万元.设种植A 种蔬菜m 亩,请直接写出w 关于m 的函数关系式;(3)在(2)的条件下,若要求A 种蔬菜的种植面积不能少于B 种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意可知:操作人员点燃导火线后,要在炸药爆炸前跑到450米以外的安全区域,列出不等式,解不等式即可.【详解】解:设导火线长度为x cm ,根据题意得,1.2x >4506, 解得x >90,故选:A .【点睛】本题考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式. 2.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k 的取值范围,再结合选项解答.【详解】解:根据图象,得2k <6,3k >5,解得k <3,k >53,所以53<k <3. 只有2符合.故选:D .【点睛】 利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.3.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x -2)≤x +3,去括号,得3 x -6≤x +3,移项、合并同类项,得2x ≤9,系数化为1,得x ≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C .【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.4.D解析:D【分析】根据不等式的性质逐个判断即可.【详解】解:A .不等式a b >两边都加上4,不等号的方向不变,即44a b +>+,原变形成立,故此选项不符合题意;B .不等式a b >两边都减去3,不等号的方向不变,即33a b ->-,原变形成立,故此选项不符合题意;C .不等式a b >两边都除以2,不等号的方向不变,即22a b >,原变形成立,故此选项不符合题意; D .不等式a b >两边都乘以2-,不等号的方程改变,即22a b -<-,原变形不成立,故此选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;:②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.5.A解析:A【分析】根据第二象限的点的横坐标是负数,纵坐标是正数,表示出m、n,再根据各象限内的点的坐标特征解答即可;【详解】∵点A(n,m)在第二象限,∴m>0,n<0,∴m2>0,-n>0,∴点B(m2,-n)在第一象限,故选:A.【点睛】本题考查了各象限内点的坐标的特征以及解不等式,记住各象限内点的坐标的符号是解决问题的关键.6.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解.【详解】解:A、当m>2时,m+1与m-2都大于0,P在第一象限,所以A不符合题意;B、若P在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.7.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y(x,y均是非负整数),则有y=5-3x,且0≤y≤3,由此即可求得x、y的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y,∵该球队小组赛共积5分,∴y=5-3x,又∵0≤y≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.8.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.9.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.10.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②,解不等式①得:37x ≤,解不等式②得:18x >,∴1837x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.11.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A 错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误;由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D .【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键. 12.A解析:A【分析】先求出不等式的解集,再选项进行判断即可.271x -≥,217x +≥,28x ≥解得,4x ≥.故选:A .【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.15.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.16.【分析】此题需要首先解不等式根据解的情况确定a 的取值范围特别是要注意不等号中等号的取舍【详解】解不等式x-a >0得:x >a 解不等式1-2x >-3得:x <2∴不等式组的解集是a <x <2∵只有五个整数解解析:43a -≤<-【分析】此题需要首先解不等式,根据解的情况确定a 的取值范围.特别是要注意不等号中等号的取舍.【详解】解不等式x -a >0,得:x >a ,解不等式1-2x >-3,得:x <2,∴不等式组的解集是a < x <2,∵只有五个整数解,∴整数解是1,0,-1,-2,-3∴-4≤a <-3,故答案为:-4≤a <-3.【点睛】此题考查了一元一次不等式组的解法.解题中要注意分析不等式组的解集的确定,含参数问题需要特别注意取等号时的情况.17.x≤4【分析】求出每个不等式的解集再根据找不等式组解集的规律找出即可【详解】解:解不等式①得x <5;解不等式②得x≤4;所以不等式组的解集为:x≤4【点睛】本题考查的知识点是不等式的性质解一元一次不解析:x≤4【分析】求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【详解】解:()2231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩①② 解不等式①得,x <5;解不等式②得,x≤4;所以,不等式组的解集为:x≤4.【点睛】本题考查的知识点是不等式的性质,解一元一次不等式组,解此题的关键是能根据不等式的解集找出不等式组的解集.18.a >-4【分析】先把两式相减求出y−x 的值再代入中得到关于a 的不等式进而求出a 的取值范围即可【详解】由②-①得:2y−2x =2−a ∵则∴2−a <6∴a >-4故答案是:a >-4【点睛】本题考查的是解二解析:a >-4【分析】先把两式相减求出y−x 的值,再代入 3y x -<中得到关于a 的不等式,进而求出a 的取值范围,即可.【详解】3133x y a x y +=+⎧⎨+=⎩①②, 由②-①得:2y−2x =2−a ,∵ 3y x -<,则2 26y x -<,∴2−a <6,∴a >-4,故答案是:a >-4.【点睛】本题考查的是解二元一次方程组及一元一次不等式,解答此题的关键是把a 当作常数表示出y−x 的值,再得到关于a 的不等式.19.【分析】求出不等式组中两不等式的解集找出解集的公共部分即可;【详解】∵由第一个式子求得:x≥-1由第二个式子求得:x <2则不等式组的解集为-1≤x <2故答案为:-1≤x <2【点睛】本题考查了解一元一解析:12x -≤<【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可;【详解】∵235324x x -≤⎧⎨-⎩< 由第一个式子求得:x ≥-1,由第二个式子求得:x <2,则不等式组的解集为-1≤x <2,故答案为:-1≤x <2【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解本题的关键; 20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)t ,62t -;(2)存在,10秒;(3)37t ≤≤或811t ≤≤【分析】(1)先由运动得出AM=t ,BN=2t ,继而得出AN ,即可得出结论;(2)当点M ,N 在边BC 上运动时,AM=t-8,CN=2t-6-8,即可得到MN=t-6,根据题意知12MN BC =,列出方程即可求解; (3)根据运动的时间、速度和距离即可求得运动时间t 的取值范围.【详解】(1)∵6÷2=3,∴当 0≤t≤3 时,点N 在AB 上运动(包括端点),∵运动时间为t 秒.∴AM=t ,BN=2t ,∴AN=6-2t ,故答案为:t ,6-2t ;(2)存在.理由如下:当M N 、在边BC 上运动时,8672t +>=,点N 在边BC 上,881t >=,点M 在边BC 上, ∴点N 在点M 前面,此时,CM=t-8,CN=2t-14, ∵12AMN ABC S S ∆∆=, ∴12MN BC =, 则1(214)(8)82t t ---=⨯, 解得:10t = 所以,当点M N 、在边BC 上运动,10t =秒时,12AMN ABC S S ∆∆=; (3)①当点M N 、同在AC 上时,∵68AB AC ==,,点N 的速度为2, ∴当66822t +≤≤即37t ≤≤时,点N 在AC 上, 又∵点M 的速度为1,∴当18t ≤≤时,点M 在AC 上, ∴当37t ≤≤时,点M N 、同在AC 上;②当点M N 、同在BC 上时,∵68AB AC ==,,点N 的速度为2,∴当6868822t +++≤≤即711t ≤≤时,点N 在BC 上, 又∵点M 的速度为1. ∴当88811t +≤≤即816t ≤≤时,点M 在BC 上, ∴当811t ≤≤时,点M N 、同在AC 上; 综上所述,当37t ≤≤与811t ≤≤时,点M N 、在同一直线上运动.【点睛】本题考查了一元一次方程在几何中的应用,一元一次不等式在几何中的应用等,解题的关键是理解题意,学会用方程的思想思考问题.22.(1)33x y =⎧⎨=⎩;(2)B ;(3)三种,方案见解析 【分析】(1)求方程3x-y=6的正整数解,可给定x 一个正整数值,计算y 的值,如果y 的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m 本,单价为5元的钢笔n 支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支;或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数.23.(1)共有3种方案;(2)当A种园艺造型32个,B种园艺造型18个,成本最低【分析】(1)根据题意列出一元一次不等式组,直接解不等式组,然后取整数解即可得出答案;(2)根据题意列出总成本关于x的一次函数,利用一次函数的性质求解可得.【详解】(1)解:设A种园艺造型x个,B种园艺造型(50)x-个()()76503325850310x x x x ⎧+-≤⎪⎨+-≤⎪⎩∴3032x ≤≤x 为正整数:x 取30,31,32,∴可设计3种搭配方案:第一种:A 种园艺造型30个,B 种园艺造型20个;第二种:A 种园艺造型31个,B 种园艺造型19个;第三种:A 种园艺造型32个,B 种园艺造型18个.(2)解:设总成本为y 元()20030050y x x =+-10015000y x =-+∴0k <,y 随x 的增大而减小∴当32x =时,y 取最小值∴当A 种园艺造型32个,B 种园艺造型18个,成本最低【点睛】本题主要考查了一元一次不等式组和一次函数的实际应用,解题关键是弄清题意,合适的等量关系,列出不等式组,属于中档题.24.(1)A 种树每棵100元,B 种树每棵80元;(2)当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(100-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.8×(A 种树的金额+B 种树的金额)进行解答.【详解】解:(1)设A 种树每棵x 元,B 种树每棵y 元依题意得:256003380x y x y +=⎧⎨+=⎩解得10080x y =⎧⎨=⎩ 答:A 种树每棵100元,B 种树每棵80元(2)设购买A 种树木为a 棵,则购买B 种树木为()100a -棵则()3100a a ≥-解得75a ≥设实际付款总金额是w 元,则()0.810080100w a a =+-⎡⎤⎣⎦即166400w a =+∵160>,w 随a 的增大而增大∴当75a =时,w 最小即当75a =时,167564007600w =⨯+=最小值(元)答:当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元.【点睛】本题考查了一次函数的应用和二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.25.62x -≤<【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()220463x x x ⎧-<⎨+≥⎩①②由①得:2x <由②得:6x ≥-∴62x -≤<【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)种植A ,B 两种蔬菜,每亩各需分别投入0.6和0.8万元;(2)w =−0.1m +150;(3)当种A 蔬菜100亩,B 种蔬菜50亩时,获得最大利润为140万元.【分析】(1)根据题意列二元一次方程组,问题即可求解;(2)用w 表示种植两种蔬菜的利润,即可得到w 与m 之间函数关系式;(3)根据A 种蔬菜的种植面积不能少于B 种蔬菜种植面积的2倍得到m 的取值范围,结合一次函数的性质,即可求出w 最大值.【详解】(1)设种植A ,B 两种蔬菜,每亩各需分别投入x ,y 万元,根据题意得:203036302034x y x y ⎧⎨⎩+=+=, 解得:0.60.8x y ⎧⎨⎩==, 答:种植A ,B 两种蔬菜,每亩各需分别投入0.6和0.8万元;(2)由题意得:w =0.8m +1.2×1000.60.8m -=−0.1m +150, 即:w =−0.1m +150;(3)由(2)得:m≥2×1000.60.8m-,解得:m≥100,∵w=−0.1m+150,k=−0.1<0,∴w随m的增大而减小,∴当m=100时,w最大=140,此时,1000.60.8m-=50,∴当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.【点睛】本题主要考查一次函数实际应用问题,二元一次方程组、不等式、列一次函数关系式和根据自变量取值范围求一次函数的最值.根据题意,列出方程和一次函数解析式,掌握一次函数的性质,是解题的关键.。

八年级数学下册第一单元《二次根式》测试(含答案解析)

八年级数学下册第一单元《二次根式》测试(含答案解析)

一、选择题1.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .12. )A .1B .2C .3D .43. )A B C D 4.下列式子中是二次根式的是( )A B C D 5.下列运算正确的是 ( )A B C .1)2=3-1 D 6.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .7.下列计算正确的是( )A 7=±B 7=-C 112=D 2=8.合并的是( )A B C D 9.下列计算正确的是( )A =B =C .216=D 1=10.若0<x<1,则 )A .2xB .- 2xC .-2xD .2x11.=x 可取的整数值有( ). A .1个 B .2个C .3个D .4个12. )A .1个B .2个C .3个D .4个二、填空题13.x 的取值范围是______________. 14._____. 15.2=__________.16.已知+3,则x-y=_____________.17.已知a 、b 为有理数,m 、n分别表示521amn bn +=,则3a b +=_________.18.19.===…(a 、b 均为实数)则=a __________,=b __________.20.)0a >=______.三、解答题21.(1(2)解不等式组:2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩ 22.先化简再求值:2211,211a a a a a ----+-其中a = 23.(1)计算2011(20181978)|22-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 24.先化简,再求值:21133x x x x xx ,其中1x =25.计算:(12(5)-; (2)(x ﹣2y+3)(x+2y+3).26.计算(1)22018112-⎛⎫-+ ⎪⎝⎭;(20|1-;(3)2(1)16x -=;(4)321x +=【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A+1+1)=0,故本选项不合题意;B、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意; C﹣2)=3,故本选项不合题意;D)(12,故本选项不合题意.故选:B .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b )(a-b )=a 2-b 2.2.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===, 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.4.C解析:C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B 1x <-时,不是二次根式,故此选项不符合题意;C =()2 10x +≥恒成立,因此该式是二次根式,故此选项符合题意;D 20-<,不是二次根式,故此选项不符合题意;故选:C .【点睛】(0a ≥)的式子叫做二次根式. 5.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A A 错误;B ,故选项B 正确;C 、21)313=-=-,故选项C 错误;D 53=≠+,故选项D 错误;故选:B .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的法则. 6.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 7.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A 77=-=,故该选项错误;B 77=-=,故该选项错误;C ==D == 故选:D .【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键. 8.D解析:D【分析】先化简选项中各二次根式,然后找出被开方数为2的二次根式即可.【详解】的同类二次根式.A63无法合并,故A错误;B43无法合并,故B错误;C25无法合并,故C错误;D32可以合并,故D正确.故选D.【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.9.B解析:B【分析】根据二次根式加减法、乘除法的法则分别计算即可得到答案.【详解】A A错误;B==B正确;C、28=,故选项C错误;D==D错误;故选:B.【点睛】本题主要考查了二次根式的加减乘除运算,熟练掌握运算方法是解题的关键.10.D解析:D【分析】利用完全平方公式以及二次根式的性质,结合0<x<1,进行化简,即可得到答案.【详解】∵0<x<1,∴1+xx >0,1-xx<0,∴=11|+||-|x x x x- =1+x x +1-x x=2x ,故选D【点睛】||a =,是解题的关键. 11.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.12.B解析:B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;2被开方数相同,故是同类二次根式.2个,故选:B .【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.二、填空题13.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.14.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.1【分析】由题可得即可得出再根据二次根式的性质化简即可【详解】由题可得∴∴∴故答案为:【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简掌握二次根式的性质是解决问题的关键解析:1【分析】由题可得,30x -≥,即可得出20x -≤,再根据二次根式的性质化简即可.【详解】由题可得,30x -≥,∴3x ≥,∴20x -≤,∴2()()23x x =----23x x =-+-+1=.故答案为:1.【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.16.﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】解:由题意得:所以x=2当x=2时y=3所以x -y=2-3=﹣1故答案为:﹣1【点睛】解析:﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以x -y=2-3=﹣1.故答案为:﹣1.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.17.4【分析】只需先对估算出大小从而求出其整数部分a 其小数部分用表示再分别代入进行计算;【详解】∵2<<3∴2<<3∴m=2n==把m=2n=代入∴化简得:∴且解得:∴故答案为:4【点睛】本题考查了无理解析:4【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52=3,把m=2,n=3代入21amn bn +=∴ ((22331a b -+-=,化简得:())616261a b a b ++= ,∴ 6161a b +=且260a b +=,解得: 1.5a =,0.5b =-∴331.50.54a b +=⨯-=,故答案为:4.【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;18.<【分析】直接利用二次根式的性质分别变形进而比较得出答案【详解】解:==∵>∴∴<故答案为:<【点睛】此题主要考查了二次根式的分母有理化正确化简二次根式是解题关键解析:<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.【详解】===== ∵+∴< ∴故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.-b 【分析】先确定b 的取值范围再利用二次根式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b 的取值范围及理解被开平方数具有非负性.三、解答题21.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.22.()()211a a -+,1. 【分析】分母先分解因式化简,两个异分母分式通分后相减,再把a 值代入求解即可.【详解】2211211a a a a a ----+- =211(1)(1)(1)a a a a a ----+- =1111a a --+ =()()(1)(1)11a a a a +---+=()()211a a -+,当a =原式231=-=1【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(1)12)12x -,12- 【分析】(1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案. 【详解】解:(1)原式(141241212⎛=-⨯--=--+= ⎝⎭; (2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠,x 只能取0,当0x =时,原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.24.2x x -;2+.【分析】先把括号内通分化简,然后利用除法运算化为乘法运算,将算式化简,再将1x =代入计算原式的值即可.【详解】 解:21133x x x x x x 2311=333x x x x x x x x2131=33x x x x x x x 213=31x x x x x1x x2x x =-当1x =时,原式2212122.【点睛】本题考查了分式的化简求值,熟悉相关运算法则是解题的关键.25.(1)345;(2)x 2+6x+9﹣4y 2 【分析】(1)首先计算开方,然后从左向右依次计算;求出算式的值是多少即可.(2)将各多项式分组,利用平方差公式和完全平方公式计算即可.【详解】解:(1)原式=2+(﹣1)+45+5 =6+45 =345; (2)原式=(x+3﹣2y )(x+3+2y )=(x+3)2﹣4y 2=x 2+6x+9﹣4y 2. 【点睛】本题主要考查实数的运算,平方差公式和完全平方公式,解决此类问题,要熟练掌握运算顺序和运算方法.26.(1)-5;(2;(3)5x =或3x =-;(4)-1【分析】(1)分别利用乘方、负整数指数幂、算术平方根和立方根计算,再将结果相加减;(2)分别利用二次根式的性质、绝对值的性质和零指数幂化简(或计算),再将结果相加减;(3)两边直接开平方后,解一元一次方程即可;(4)移项合并后开立方即可.【详解】解:(1)原式=145(3)-+-+-=94-+=5-;(2)原式=211-;(3)2(1)16x -=两边同时开平方得:14x -=±,即14x =±,即5x =或3x =-;(4)321x +=移项后合并得:31x =-两边同时开立方得:1x =-.【点睛】本题考查实数的混合运算,利用平方根和立方根解方程.涉及的知识点有二次根式的性质、零指数幂和负整数指数幂、化简绝对值、平方根和立方根等.(1)(2)中能利用相关定义分别计算是解题关键;(3)(4)中主要用到的思想是降次.。

北师大版八年级数学下册单元测试《第1章 三角形的证明》(解析版)

北师大版八年级数学下册单元测试《第1章 三角形的证明》(解析版)

《第1章三角形的证明》一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=24.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.456.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.97.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.《第1章三角形的证明》参考答案与试题解析一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】由三角形的三个内角度数比为1:1:2,可设三角形的三个内角分别为:x,x,2x,然后由三角形的内角和等于180°,即可得方程:x+x+2x=180°,解此方程即可求得答案.【解答】解:∵三角形的三个内角度数比为1:1:2,∴设三角形的三个内角分别为:x,x,2x,∴x+x+2x=180°,解得:x=45°,∴三角形的三个内角度数分别为:45°,45°,90°.∴这个三角形为等腰直角三角形.故选:D.【点评】此题考查了三角形的内角和定理.此题比较简单,解题的关键是根据三角形的三个内角度数比为1:1:2,设三角形的三个内角分别为:x,x,2x,利用方程思想求解.2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形【考点】等腰三角形的判定.【分析】认真阅读各选项,结合各选项提供的已知条件及等腰三角形的定义可得.【解答】解:A、第三个角180°﹣50°﹣65°=65°,有两等角的三角形是等腰三角形,正确;B、外角相等,则对应的内角也相等,有两等角的三角形是等腰三角形,正确;C、利用两直线平行,内错角相等,同位相等,可知,另外的两内角也相等,有两等角的三角形是等腰三角形,正确;D、两个内角不相等的三角形可能是等腰三角形,错误.故选D.【点评】本题考查了等腰三角形的判定;找出各选项的正误是正确解答本题的关键.3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2【考点】反证法.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【考点】反证法.【专题】证明题.【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.45【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题意可得EB=ED,根据等边对等角的性质,易得∠B=∠EDB=∠ACB,即可得EF∥AC,又由AE=BE,根据平行线等分线段成比例定理,可得BD=CD,然后利用SAS即可证得△EBD≌△CFD,即可得∠F=∠BED.【解答】解:∵以点E为圆心,EB为半径画弧,交BC于点D,∴EB=ED,∴∠EDB=∠B=70°,∴∠BED=180°﹣∠B=∠BDE=40°,∵AB=AC,∴∠ACB=∠B,∴∠EDB=∠ACB,∴EF∥AC,∵E是AB的中点,即BE=AE,∴BD=CD,在△EBD和△FCD中,,∴△EBD≌△FCD(SAS),∴∠F=∠BED=40°.故选A.【点评】此题考查了全等三角形的判定与性质、等腰三角形的性质以及平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用,注意理解题意.6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里【考点】等腰三角形的判定与性质;方向角;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.【解答】解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选:D.【点评】本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是6.【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,根据等腰三角形的性质与三角形内角和定理,易求得各角的度数,继而求得答案.【解答】解:∵在△ABC中,AB=AC,∠ABD=36°,即△ABC是等腰三角形,∴∠C=∠B=36°,∴∠BAC=108°,∵∠DAE=∠EAC=36°,∴∠BAD=36°,∴∠BAD=∠B=36°,∠EAC=∠C=36°,∴△ABD,△ACE是等腰三角形,∴∠ADE=∠AED=∠DAC=∠BAE=72°,∴△ADE,△ABE,△ACD是等腰三角形.故答案为:6.【点评】此题考查了等腰三角形的性质与判定.此题难度不大,注意掌握数形结合思想的应用.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9.【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【考点】等腰三角形的判定与性质.【专题】压轴题.【分析】可根据等腰三角形三线合一的性质来判断①②是否正确;③④要通过作等腰三角形来判断其结论是否成立.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.【点评】此题主要考查的是等腰三角形的判定和性质;本题的难点是结论③的证明,能够正确的构建出等腰三角形是解答③题的关键.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.【考点】反证法.【专题】证明题.【分析】运用反证法进行求解:(1)假设结论PB≠PC不成立,PB=PC成立.(2)从假设出发推出与已知相矛盾.(3)得到假设不成立,则结论成立.【解答】证明:假设PB≠PC不成立,则PB=PC;∵在△ABP和△ACP中,,∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC.【点评】解此题关键要懂得反证法的意义及步骤.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【考点】等腰三角形的判定与性质;作图—基本作图.【专题】作图题.【分析】(1)以D为圆心,以任意长为半径画弧,交AD于G,交DC于H,分别以G、H为圆心,以大于GH为半径画弧,两弧交于N,作射线DN,交AM 于F.(2)求出∠BAD=∠CAD,求出∠FAD=×180°=90°,求出∠CDF=∠AFD=∠ADF,推出AD=AF,即可得出答案.【解答】解:(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.【点评】本题考查了作图﹣基本作图,等腰三角形的性质和判定的应用,主要培养学生的动手操作能力和推理能力,题目比较典型,难度也适中.13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.【考点】作图—应用与设计作图;角平分线的性质;等腰三角形的判定.【分析】(1)作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB于点C、D,则△OCD是以CD为底边的等腰三角形;(2)根据PQ∥OA,得出∠QPR=∠OCD,进而得出OD=CD,即可得出答案;(3)作QP∥DO,再作∠ODR=∠O,即可得出答案.【解答】解:(1)能.画法:作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB 于点C、D,则△OCD是以CD为底边的等腰三角形,如图①.(2)∵PQ∥OA,∴∠QPR=∠OCD,又∵∠QPR=∠AOB,∴∠OCD=∠AOB.∴OD=CD.即△OCD是以OC为底的等腰三角形.(3)如图②.【点评】此题主要考查了基本作图角平分线的性质等知识;作角平分线是正确解答本题的关键.。

人教版数学八年级下册单元测试-第二单元

人教版数学八年级下册单元测试-第二单元

单元测试(二)勾股定理(时间:45分钟满分:100分)一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(C) A.3,4,5 B.6,8,10 C.3,2, 5 D.5,12,13 2.已知命题:等边三角形是等腰三角形,则下列说法正确的是(B)A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.点A(-3,-4)到原点的距离为(C)A.3 B.4 C.5 D.74.如图,数轴上点A表示的数是0,点B表示的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC的长为半径画弧,与数轴交于点D,则点D表示的数为(B)A.1.4B. 2C. 3D.25.下面各三角形中,面积为无理数的是(C)6.已知一个三角形的三个内角的比是1∶2∶1,则这三个内角对应的三条边的比是(C) A.1∶1∶ 2 B.1∶1∶2 C.1∶2∶1 D.1∶4∶1 7.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为(D)A.1 B.2 C.3 D.4第7题图第8题图第9题图8.如图是一扇高为2 m,宽为1.5 m的门框,李师傅有3块薄木板,尺寸如下:①号木板长3 m,宽2.7 m;②号木板长2.8 m,宽2.8 m;③号木板长4 m,宽2.4 m.可以从这扇门通过的木板是(C)A.①号B.②号C.③号D.均不能通过9.如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若AC =3,AB =5,则DE 等于(C)A .2B.103C.158D.15210.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为(A)A .(12)6B .(12)7C .(22)6D .(22)7 二、填空题(每小题4分,共24分)11.直角三角形斜边长是6,一直角边的长是5, 12.写出命题“如果a =b ,那么3a =3b ”的逆命题:如果3a =3b ,那么a =b .13.在Rt △ABC 中,∠C =90°,∠A =45°,AB =10,BC14.在平静的湖面上,有一朵红莲,高出水面1 m ,一阵风吹来,红莲被吹到一边,花朵贴到水面,已知红莲移动的水平距离为2 m ,则这里的水深是32m .15.如图,在△ABC 中,AB ∶BC ∶CA =3∶4∶5,且周长为36 cm ,点P 从点A 开始沿AB 边向点B 以每秒1 cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2 cm 的速度移动,如果同时出发,则过3秒时,△BPQ 的面积为18cm 2.第15题图 第16题图16.要在街道旁修建一个奶站,向居民区A ,B 提供牛奶,奶站应建在什么地方,才能使A ,B 到它的距离之和最小?小聪根据实际情况,以街道为x 轴,建立了如图所示的平面直角坐标系,并测得A 点的坐标为(0,3),B 点的坐标为(6,5),则A ,B 两点到奶站距离之和的最小值是10.三、解答题(共46分)17.(8分)如图,在△ABD 中,∠D =90°,C 是BD 上一点,已知CB =9,AB =17,AC =10,求AD 的长.解:设CD=x.在Rt△ACD中,由AD2=AC2-CD2,得AD2=102-x2.在Rt△ABD中,由AD2=AB2-BD2,得AD2=172-(x+9)2,∴102-x2=172-(x+9)2,解得x=6.∴CD=6.∴AD=AC2-CD2=102-62=8.18.(8分)已知a,b,c满足(a-3)2+b-4 +|c-5|=0.求:(1)a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.解:(1)∵(a-3)2+b-4+|c-5|=0,又∵(a-3)2≥0,b-4≥0,|c-5|≥0,∴a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5.(2)∵32+42=52,∴此三角形是直角三角形.∴以a,b,c为边能构成三角形,且它的周长为3+4+5=12.19.(8分)一根直立的旗杆AB长8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图,工人在修复的过程中,发现在折断点C的下面1.25 m的D处,有一明显伤痕,如果下次大风将旗杆从D处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt△ABC中,AB=4 m,设BC=x m,则AC=(8-x)m.由勾股定理,得BC2=AC2+AB2,即x2=(8-x)2+42,解得x=5.如果下次旗杆从D处刮断,设着地点为E,则DE=BC+CD=5+1.25=6.25(m),AD=AC-CD=3-1.25=1.75(m).在Rt△ADE中,由勾股定理,得AE2=DE2-AD2=6.252-1.752=36,∴AE=6 m.∴杆脚周围6 m范围内有被砸伤的危险.20.(10分)如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD ′与BC 交于点E ,若AD =4,DC =3,求BE 的长.解:∵四边形ABCD 是长方形,∴AB =CD ,∠B =∠D =90°. 由折叠可知,∠D =∠D′,CD =CD′.∴∠B =∠D′,AB =CD′. 又∠AEB =∠CED′,∴△ABE ≌△CD ′E.∴AE =CE. 设BE =x ,则AE =CE =4-x.∴32+x 2=(4-x)2.解得x =78.∴BE =78.21.(12分)已知:△ABC 是等腰直角三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰三角形PCQ ,其中∠PCQ =90°,探究并解决下列问题:(1)如图1,若点P 在线段AB 上,且AC =1+3,PA =2,则:①线段PB PC =2;②猜想:PA ,PB 2,PQ 2三者之间的数量关系为PA 2+PB 2=PQ 2;(2)如图2,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图2给出证明过程.解:(1)①6 2提示:过C 作CH ⊥AB 于H ,则CH =AH =HB =1+32=2+62,∴PH =AH -AP =2+62-2=6-22,PC =PH 2+CH 2=(6-22)2+(6+22)2=2. ②PA 2+PB 2=PQ 2(理由:PA 2=2,PB 2=6,PQ 2=2PC 2=8,∴PA 2+PB 2=PQ 2). (2)证明:过点C 作CD ⊥AB 于点D.∵△ACB 为等腰直角三角形,CD ⊥AB ,∴CD =AD =DB. ∵PA 2=(AD +PD)2=(DC +PD)2=DC 2+2DC·PD +PD 2, PB 2=(PD -BD)2=(PD -DC)2=DC 2-2DC·PD +PD 2, ∴PA 2+PB 2=2DC 2+2PD 2.∵在Rt△PCD中,由勾股定理,得PC2=DC2+PD2,∴PA2+PB2=2PC2. ∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴PA2+PB2=PQ2.。

浙教版八年级下册数学 第1章 二次根式 单元测试卷

浙教版八年级下册数学  第1章   二次根式   单元测试卷

浙教版八年级下册数学第1章 二次根式 单元测试卷时间:100分钟 满分:120分一.选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是( )A .15B .0.5C . 5D .50 2.下列各式一定是二次根式的是( ) A .-7 B .32m C .a 2+b 2 D .a b3.若a <1,化简(a -1)2-1=( )A .a -2B .2-aC .aD .-a4.方程|4x -8|+x -y -m =0,当y =1时,m 的值是( )A .-2B .-1C .1D .25.下面计算正确的是( )A .3+3=3 3B .27÷3=3C .2·3= 5D .(-2)2=-26.如图,一个小球由地面沿着坡比为1∶2的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 m B .103m C .4 5 m D .2 5 m 7.若式子m +2(m -1)2有意义,则实数m 的取值范围是( ) A .m >-2 B .m >-2且m≠1 C .m≥-2 D .m≥-2且m≠18.如果x +y =2xy ,那么y x的值为( ) A .-1 B .1 C .2 D .以上答案都不对9.如图,数轴上A ,B 两点对应的实数分别是1和3,若A 点关于B 点的对称点为点C ,则点C 所对应的实数为( )A .23-1B .1+ 3C .2+ 3D .23+110.下列选项错误的是( )A .3-2的倒数是3+ 2B .若x <2,则(x -1)2=1-x;C .x 2-x 一定是非负数D .当x <0时,-2x在实数范围内有意义 二.填空题(每小题4分,共24分)11. 已知矩形的长为2 5 cm ,宽为10 cm ,则面积为____ cm 2.12.18-8=___.13.已知a ,b 为等腰三角形的两条边长,且a ,b 满足b =3-a +2a -6+4,则此三角形的周长为____.14.若|2 021-a|+a -2 022=a ,则a -2 0212=___.15.对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b=a +b a -b ,如3※2=3+23-2=5,那么12※4=____.16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S =14[a 2b 2-(a 2+b 2-c 22)2].现已知△ABC 的三边长分别为1,2,5,则△ABC 的面积为_____. 三.解答题(共66分)17.(12分)计算:(1) 18m 2n (2) -121 024×5(3) -13225 (4) (-144)×(-169)18.(8分)(1) 先化简,再求值:(1x +1-1)÷x 2-x x +1,其中x =2+1.(2) 解方程:(3+1)(3-1)x =72-18.19.(8分) (8分)如图,港口A 在观测站O 的正东方向,OA =4 km.某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向.求该船航行的距离AB 的长(结果保留根号).20.作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为22,5和3的三角形.(要求三角形的顶点在小格的顶点处).21.(10分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在的直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80 cm,AC=165 cm.求:(1)支架CD的长;(2)真空热水管AB的长(结果保留根号).22.(10分)细心观察图形,认真分析各式,然后解答问题.如图,OA22=(1)2+1=2,S1=12;OA23=12+(2)2=3,S2=22;OA24=12+(3)2=4,S3=32;…(1)请用含有n(n为正整数)的等式表示上述变化规律:OA2n=________;S n=________;(2)若一个三角形的面积是22,计算说明它是第几个三角形?(3)求出S21+S22+S23+…+S29的值.23.(10分)阅读材料:琪琪在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的琪琪进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+22mn.∴a=m2+2n2,b=2mn.这样琪琪就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照琪琪的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得:a =________,b=________;(2)若a+63=(m+n3)2,且a,m,n均为正整数,求a的值.。

河南省实验中学八年级数学下册第一单元《二次根式》测试题(包含答案解析)

河南省实验中学八年级数学下册第一单元《二次根式》测试题(包含答案解析)

一、选择题1. )A .1B .2C .3D .4 2.下列计算中,正确的是( )A +=B =C .2=12D =3.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+64.2a =-,那么下列叙述正确的是( )A .2aB .2a <C .2a >D .2a5.下列二次根式的运算:==5=,2=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个6. ) A .1个B .2个C .3个D .4个7.n 为( ).A .2B .3C .4D .58x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x =9.下列二次根式中,最简二次根式是( )A B C D 10.下列计算正确的是( )A =B =C .216=D 1=11.下列二次根式能与 )A B C D 12.函数y =x 的取值范围是( ). A .2x > B .2x ≠ C .2x < D .0x ≠二、填空题13a b ,那么2(2)b a +-的值是________.14.若4y =,则y x 的平方根是__________.15.已知a 、b 为有理数,m 、n 分别表示521amn bn +=,则3a b +=_________.16.===…(a 、b 均为实数)则=a __________,=b __________.17.若1<x <4=___________18.比较大小:“>”、“<”或“=”).19.)0a >=______.20.己知0a ≥a =.请你根据这个结论直接填空:(1=______;(2)若22120202021x +=+______三、解答题21.在数轴上点A 为原点,点B 表示的数为b ,点C 表示的数c ,且已知b 、c 满足b 1+=0,(1)直接写出b 、c 的值:b=______,c=_______;(2)若BC 的中点为D ,则点D 表示的数为________;(3)若B 、C 两点同时以每秒1个单位长度的速度向左移动,则运动几秒时,恰好有AB=AC ?22.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭ (2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 23.计算:(11-+(2)3)(3--24()201220202π-⎛⎫+-- ⎪⎝⎭25.先化简,再求值:22121211x x x x x ÷---++,其中x =26.先化简,再求值:22111121x x x x x x --÷+--+,其中x .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.2.C解析:C【分析】根据二次根式加法法则、乘法法则、除法法则依次计算得到结果,即可作出判断.【详解】A 、原式不能合并,不符合题意;B、原式==C 、原式12=,符合题意;D、原式.故选:C.【点评】 此题考查了二次根式的乘除法,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.3.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.【详解】解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A .【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.4.A解析:A【分析】根据二次根式的性质可得a-2≤0,求出a 的取值范围,即可得出答案.【详解】解:|2|2=-=-a a ,20a ∴-,2a ∴,故选:A .【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.5.C解析:C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】=,故①正确;==②正确;5=,故③正确;2,故④错误;∴正确的3个;故选:C .【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.6.B解析:B【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分母),判断即可.【详解】解:∵2==|x =,∴、,共2个,故选:B .【点睛】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键. 7.B解析:B【分析】27n 一定是一个完全平方数,把27分解因数即可确定.【详解】27n 一定是一个完全平方数,把27分解因数即可确定.∵22733=⨯,∴n 的最小值是3.故选B .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非==.解题关键是分解成一个完全平方数和一个代数式的积的形式.8.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A .【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.9.A解析:A【分析】根据最简二次根式的定义逐项判断即可得.【详解】A是最简二次根式,此项符合题意;B===C a==不是最简二次根式,此项不符题意;D2故选:A.【点睛】本题考查了最简二次根式,熟记定义是解题关键.10.B解析:B【分析】根据二次根式加减法、乘除法的法则分别计算即可得到答案.【详解】A A错误;B==B正确;=,故选项C错误;C、28==D错误;D故选:B.【点睛】本题主要考查了二次根式的加减乘除运算,熟练掌握运算方法是解题的关键.11.C解析:C【分析】根据同类二次根式的定义可得答案.【详解】A=,不能与B=合并,故本选项不符合题意;C=合并,故本选项符合题意;D,不能与合并,故本选项不符合题意.故选:C .【点睛】本题主要考查了同类二次根式的定义,即二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.14.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =,∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零. 15.4【分析】只需先对估算出大小从而求出其整数部分a 其小数部分用表示再分别代入进行计算;【详解】∵2<<3∴2<<3∴m=2n==把m=2n=代入∴化简得:∴且解得:∴故答案为:4【点睛】本题考查了无理解析:4【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52=3,把m=2,n=3代入21amn bn +=∴ ((22331a b -+-=,化简得:())616261a b a b ++= ,∴ 6161a b +=且260a b +=,解得: 1.5a =,0.5b =-∴331.50.54a b +=⨯-=,故答案为:4.【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;16.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.17.【分析】原式利用二次根式的性质得到然后利用的范围去绝对值后合并即可【详解】∵原式故答案为:【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键解析:52x -【分析】 原式利用二次根式的性质得到41x x ---,然后利用x 的范围去绝对值后合并即可.【详解】∵14x <<, 原式41x x =---()()41x x =----4152x x x =-+-+=-.故答案为:52x -.【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键. 18.<【分析】先把根号的外的因式移入根号内再比较大小即可【详解】∵==<∴<故答案为:<【点睛】本题考查了比较二次根式的大小能选择适当的方法比较两个实数的大小是解此题的关键解析:<【分析】先把根号的外的因式移入根号内,再比较大小即可.【详解】 ∵, ∴故答案为:<【点睛】本题考查了比较二次根式的大小,能选择适当的方法比较两个实数的大小是解此题的关键.19.-b 【分析】先确定b 的取值范围再利用二次根式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b的取值范围及理解被开平方数具有非负性.20.4041【分析】(1)直接利用二次根式的性质化简即可;(2)先利用平方差公式得到x=2020×4042再利用平方差公式可计算出2x+1=40412然后根据二次根式的性质计算【详解】(1);故答案为:解析:4041【分析】(1)直接利用二次根式的性质化简即可;(2)先利用平方差公式得到x=2020×4042,再利用平方差公式可计算出2x+1=40412,然后根据二次根式的性质计算.【详解】(1=3=;故答案为:3;(2)∵x+1=20202+20212,∴x=20202+20212−1=20202+(2021+1)(2021−1)=2020×(2020+2022)=2020×4042,∴2x+1=2×2020×4042+1=4040×4042+1=(4041−1)(4041+1)+1=40412−1+1=40412,∴4041=.故答案为:4041.【点睛】本题考查了二次根式的性质与化简:利用二次根式的基本性质进行化简;利用积的算术平方根的性质和商的算术平方根的性质进行化简.三、解答题21.(1)-1;7;(2)3;(3)运动3秒时,恰好有AB=AC.【分析】(1)根据非负数的和为零,可知绝对值和根号下的式子同时为零,可得答案;(2)根据中点坐标公式,可得答案;(3)设第x秒时,AB=AC,可得关于x的方程,解方程,可得答案.【详解】解:(1)b1+=0,∴b+1=0,c−7=0,∴b=−1,c=7,故答案为:−1,7.(2)由中点坐标公式,得173 2-+=,∴D 点表示的数为3,故答案为:3.(3)设第x 秒时,AB=AC ,由题意,得x+1=7−x ,解得x=3,∴第3秒时,恰好有AB=AC .【点睛】本题主要考查实数与数轴,难度一般,熟练掌握绝对值和二次根式的非负性以及数轴的基础知识是解题的关键.22.(1)12)12x -,12- 【分析】(1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案.【详解】解:(1)原式(14124121⎛=⨯--=--+= ⎝⎭;(2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠, x 只能取0,当0x =时, 原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1);(2)-15.【分析】(1)利用二次根式的加减运算法则计算即可;(2)根据平方差公式计算.【详解】(1)原式=6-(2)原式=22(33(3)92415-+--=--=-=-【点睛】本题考查了二次根式的加减法及平方差公式,掌握二次根式的加减法的运算法则是解题的关键.24.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.25.1x -,【分析】 首先将原式分子分母因式分解,先算除法,再算减法,最后把x 的值代入进行计算即可.进而化简求出答案.【详解】解:原式=22121211x x x x x -+⋅--+ =()()()2112111x x x x x -⋅-+-+ =()1211x x x x --++ =()()1211x x x x x x --++ =1x-当x ==3- 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.11x x -+,3. 【分析】 先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可.【详解】 解:22111121x x x x x x --÷+--+ 21(1)1(1)(1)1x x x x x x -=-++--111x x x =-++ 11x x -=+,当1x =时,原式==3=.【点睛】本题主要考查分式的混合运算和化简求值,分母有理化,灵活运用分式的混合运算顺序和运算法则是解答本题的关键.。

北师大版数学八年级下册 第一章 单元测试卷

北师大版数学八年级下册 第一章 单元测试卷

第一章单元测试卷一、选择题(每题3分,共30分)1.由下列线段a,b,c组成的三角形,不是直角三角形的是( )A.a=3,b=4,c=5B.a=1,b=错误!未找到引用源。

,c=错误!未找到引用源。

C.a=9,b=12,c=15D.a=错误!未找到引用源。

,b=2,c=错误!未找到引用源。

2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°3.下列四个命题中,假命题是( )A.“等边对等角”与“等角对等边”是互逆定理B.等边三角形是锐角三角形C.角平分线上的点到角两边的距离相等D.真命题的逆命题是真命题4.下列能判定三角形是等腰三角形的是( )A.有两个角为30°,60°B.有两个角为40°,80°C.有两个角为20°,100°D.有两个角为50°,80°5.已知等腰三角形的两条边长分别是7和3,则第三条边的长是( )A.7或3B.7C.4D.36.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( )A.65°B.50°C.60°D.57.5°7.下列两个三角形中,一定全等的是( )A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC 于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN 的长为 ( )A.4 cmB.3 cmC.2 cmD.1 cm9.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )A.4错误!未找到引用源。

成都市八年级数学下册第一单元《二次根式》测试题(有答案解析)

成都市八年级数学下册第一单元《二次根式》测试题(有答案解析)

一、选择题1.下列是最简二次根式的是( )A .6B .4C .15D .3 2.计算132252⨯+⨯的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 3.式子1x -在实数范围内有意义,则x 的取值范围是( )A .0x ≥B .1x ≤C .1x ≥-D .1≥x 4.当x 为何值时,1x -在实数范围内有意义( ) A .1x > B .1≥x C .1x < D .1x ≤ 5.下列计算中正确的是( ).A .5611+=B .()255-=-C .1234÷=D .1233-=6.已知,在ABC 中,D 是BC 边上一点,30,45ABC ADC ∠=∠=.若D 是BC 边的中点,则ACB ∠的度数为( )A .95°B .100°C .105°D .110°7.3b -(a ﹣4)2=0a b ) A 23 B .23 C 43 D .438.3 )A .3B 3C 3D .339.下列各式中,错误的是( )A .2(3)3=B .233-=-C .2(3)3=D 2(3)3-=- 10.下列四个数中,是负数的是( )A .2-B .2(2)-C . D11.估计- ) A .0到1之间 B .1到2之间C .2到3之间D .3到4之间12. )A B .C D .二、填空题13.已知最简根式a =________,b =________.14.计算:=_________.15.计算:2=___________.16.已知关于x 的不等式(2)2a x a +>+的解集为1x <______.17.如果最简二次根式ab =____________.18.化简-15827102÷31225a=___________. 当1<x <4时,|x -=____________.19.已知3y =,则()x x y +的值为_________.20.20y =,则x y +=________.三、解答题21.先化简,再求值:(221111a a a++--)÷a ,其中a .22.(10|12021-;(2)已知:3(4)64x +=-,求x 的值.23.先化简再求值:2211,211a a a a a ----+-其中a = 24.计算:(1(23-(3)1031|32|2(20201)22-⎛⎫-+⨯+-+ ⎪⎝⎭25.阅读理解:某节数学课上,钱老师在复习数轴上的点与数之间的关系时,给出了新的定义:若,,A B C 是数轴上的三个点,如果点C 到A 的距离是点C 到B 的距离的2倍,那么我们就称C 是[,]A B 的黄金点.例如,如图①,点A 表示的数为1-,点B 表示的数为2,表示数1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[,]A B 的黄金点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 是[,]B A 的黄金点.(1)如图②,E F 、为数轴上两点,点E 所表示的数为4-,点F 所表示的数为2.数____所表示的点是[,]E F 的黄金点.(2)如图③2所表示的点G 是[,]M N 的黄金点,当点M 在点N 的右侧,且点N 所表示的数为1-时,此时点M 所表示的数为_______________.(3)如图④,,A B 为数轴上两点,点A 所表示的数为10-,点B 所表示的数为50.现有一只电子蜗牛P 从点B 出发,以3个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,,P A 和B 中恰有一个点为其余两点的黄金点.(请直接写出答案)26.-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据最简二次根式的定义逐项分析即可.【详解】,是最简二次根式;=2,故不是最简二次根式,不符合题意;=,故不是最简二次根式,不符合题意;D.3=,故不是最简二次根式,不符合题意; 故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.2.D解析:D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4=== ∵34<<,∴748<<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 3.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4.A解析:A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A.【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.5.D解析:D【分析】根据二次根式的性质,对各个选项逐一分析,即可得到答案.【详解】不可直接相加运算,故选项A错误;=,故选项B错误;5==,故选项C错误;2==D正确;故选:D.【点睛】本题考查了二次根式的整式;解题的关键是熟练掌握二次根式混合运算的性质,从而完成求解.6.C解析:C【分析】过A作AE⊥BC于E,在AE上取点F,连接CF,使得∠CFE=30°,设DE=x,即可得出CE=DE-CD=()23-x ,进而得到AE=()23+CE ,再根据EF=3CE ,CF=2CE ,得到AF=AE-EF=2CE=CF ,即可得到∠ACE 的度数,从而得到结果.【详解】解:如图所示,过A 作AE ⊥BC 于E ,在AE 上取点F ,连接CF ,使得∠CFE=30°, 设DE=x ,∵∠ABE=30°,∠ADE=45°,∴AE=x ,BE=3x ,BD=CD=()31-x , ∴CE=x-()31-x=()23-x , ∴AE CE =23+,即AE=()23+CE , 又∵Rt △CEF 中,EF=3CE ,CF=2CE ,∴AF=AE-EF=2CE=CF ,∴∠FAC=∠FCA=12∠CFE=15°, ∴∠ACE=∠ACF+∠ECF=15°+60°=75°,∴∠ACB=105°,故选C .【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.7.A解析:A【分析】先根据算术平方根的非负性、偶次方的非负性求出a 、b 的值,再代入化简二次根式即可得.【详解】由算术平方根的非负性、偶次方的非负性得:4030a b -=⎧⎨-=⎩, 解得43a b =⎧⎨=⎩,===, 故选:A .【点睛】本题考查了算术平方根的非负性、偶次方的非负性、化简二次根式,熟练掌握算术平方根和偶次方的非负性是解题关键.8.D解析:D【分析】直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数;【详解】=3. 故选:D .【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键; 9.D解析:D【分析】根据算术平方根的意义,可得答案.【详解】解:A 、2(3=,故A 计算正确,不符合题意;B 、3=-,故B 计算正确,不符合题意;C 、23=,故C 计算正确,不符合题意;D 3=,故D 计算错误,符合题意;故选:D .【点睛】(a≥0).10.C解析:C【分析】先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】A 、220-=>,不符合题意;B 、()2240-=>,不符合题意;C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.11.B解析:B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【详解】解:2,∵34<<,∴.122<<,故选:B.【点睛】此题主要考查了估算无理数的大小,正确估算无理数是解题关键.12.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A不是同类二次根式,故本选项不符合题意;B、=C=D、=故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.【分析】根据同类二次根式的定义得到解方程组即可【详解】由题得:解得:故答案为:1【点睛】此题考查最简二次根式同类二次根式的定义解二元一次方程组正确理解最简二次根式同类二次根式的定义列出方程组是解题的解析:7 2【分析】根据同类二次根式的定义得到122531ba b+=⎧⎨-=-⎩,解方程组即可.【详解】由题得:122531ba b+=⎧⎨-=-⎩,解得:721ab⎧=⎪⎨⎪=⎩.故答案为:72,1.【点睛】此题考查最简二次根式、同类二次根式的定义,解二元一次方程组,正确理解最简二次根式、同类二次根式的定义列出方程组是解题的关键.14.【分析】根据二次根式的除法法则运算即可【详解】解:解法一===-4解法二==-4故答案为:-4【点睛】本题考查了二次根式的除法可以直接被开方数相除也可以先化简两个二次根式再相除解析:4-【分析】根据二次根式的除法法则运算即可.【详解】解:解法一,===-4.解法二,=2-,=-4.故答案为:-4.【点睛】本题考查了二次根式的除法,可以直接被开方数相除,也可以先化简两个二次根式再相除.15.2【分析】根据二次根式的性质化简即可【详解】2故答案为:2【点睛】此题考查二次根式的性质掌握二次根式的性质:是解答此题的关键解析:2【分析】根据二次根式的性质化简即可.【详解】2=2,故答案为:2【点睛】此题考查二次根式的性质.掌握二次根式的性质:2a a ==,是解答此题的关键. 16.【分析】根据不等式的性质得到再根据二次根式的性质化简即可【详解】∵的解集为∴∴故答案为:-a-2【点睛】此题考查不等式的性质:不等式两边乘(或除以)同一个负数不等号的方向改变以及二次根式的性质及化简 解析:2a --【分析】根据不等式的性质得到20a +<,再根据二次根式的性质化简即可.【详解】∵(2)2a x a +>+的解集为1x <,∴20a +<,∴|2|(2)2a a a =+=-+=--.故答案为:-a-2.【点睛】此题考查不等式的性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,以及二次根式的性质及化简,掌握不等式的性质是解题的关键.17.0【分析】根据最简二次根式及同类二次根式的定义得求出ab 的值代入计算即可【详解】由题意得解得∴ab=0故答案为:0【点睛】此题考查最简二次根式及同类二次根式的定义解二元一次方程组熟记定义是解题的关键 解析:0【分析】根据最简二次根式及同类二次根式的定义得12233b a a b +=⎧⎨+=+⎩,求出a 、b 的值代入计算即可.【详解】由题意得12233b a a b +=⎧⎨+=+⎩,解得10b a =⎧⎨=⎩, ∴ab=0,故答案为:0.【点睛】此题考查最简二次根式及同类二次根式的定义,解二元一次方程组,熟记定义是解题的关键.18.;【分析】由二次根式的性质进行化简然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案【详解】解:-÷====;∵∴∴;∴;故答案为:;【点睛】本题考查了二次根式的乘除运算二次根解析:2- 25x -+.【分析】由二次根式的性质进行化简,然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案.【详解】 解:-15827102÷31225a=158-=158-=2=2-∵14x <<,∴40x -<,10x ->,∴44x x -=-∴44(1)25x x x x -=---=-+;故答案为:2-25x -+.【点睛】本题考查了二次根式的乘除运算,二次根式的性质,绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行解题.19.25【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:25【点睛】本题考查了二次根式有意义解析:25【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以22()(23)525x x y +=+==.故答案为:25.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.20.2【分析】先根据非负数的性质得出关于xy 的方程求出xy 的值代入x+y 进行计算即可【详解】解得故答案为:2【点睛】本题考查的是非负数的性质解题的关键是掌握非负数的性质即几个非负数的和为0时这几个非负数解析:2【分析】先根据非负数的性质得出关于x 、y 的方程,求出x 、y 的值,代入x+y 进行计算即可.【详解】220x y -+=,20x ∴-=,0y =,解得2x =,202x y +=+=.故答案为:2.【点睛】本题考查的是非负数的性质.解题的关键是掌握非负数的性质,即几个非负数的和为0时,这几个非负数都为0.三、解答题21.211a -,1 【分析】 将括号中的第一项分母分解因式,第二项提取−1,找出最简公分母,通分后利用同分母分式的加法法则计算,同时根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,合并约分后得到最简结果,然后将a 的值代入即可求出原式的值.【详解】(221111a a a ++--)÷a =[(1)(1)(1)(1211)a a a a a a ++-+-+-]1a ⨯ =21111()(1)a a a a a +-+--⨯ =211a -,当a =1121=-. 【点睛】 此题主要考查了分式的混合运算以及化简求值问题,二次根式的混合运算,选择正确的计算方法,首先进行通分降低了计算量是解决问题的关键.22.(12)8-【分析】(1)根据立方根、绝对值、零指数幂、二次根式的性质计算,即可得到答案; (2)根据立方根的性质,计算得44x +=-,再通过求解方程,即可得到答案.【详解】(10|12021-211=+-=(2)∵3(4)64x +=- ∴44x +==- ∴8x =-. 【点睛】本题考查了立方根、绝对值、零指数幂、二次根式、一元一次方程的知识;解题的关键是熟练掌握了立方根、绝对值、零指数幂、二次根式、一元一次方程的性质,从而完成求解.23.()()211a a -+,1. 【分析】分母先分解因式化简,两个异分母分式通分后相减,再把a 值代入求解即可.【详解】2211211a a a a a ----+- =211(1)(1)(1)a a a a a ----+-=1111a a --+ =()()(1)(1)11a a a a +---+ =()()211a a -+,当a =原式231=-=1【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24.(1)2-;(2)0;(3)3. 【分析】(1)先化为最简二次根式,再合并即可;(2)先算除法,再合并即可;(3)先化简再合并即可. 【详解】解:(1-=2=2-;(2)原式13-=2+1-3=0;(3)原式=221-=3.【点睛】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.25.(1)8或0;(2);(3)203t s =或403s 或10s . 【分析】(1)如图,设G 是是[,]E F 的黄金点,且G 对应的数是,x 则2,GE GF = 再利用两点之间的距离公式表示,,GE GF 再列绝对值方程,解方程可得答案;(2)如图,设M 对应的数为,y 由数2所表示的点G 是[,]M N 的黄金点,点M 在点N 的右侧,可得:()2221,y -=+再解方程可得答案; (3)由题意得P 对应的数为:503t -,603,PA t =- 3,60PB t AB ==,再分六种情况讨论:当P 是[,]A B 的黄金点,则2,PA PB = 当P 是[,]B A 的黄金点,则2,PB PA = 当B 是[,]P A 的黄金点,则2,PB BA = 当B 是[,]A P 的黄金点,则2,BA BP = 当A 是[,]B P 的黄金点,则2,BA AP = 当A 是[,]P B 的黄金点,则2,AP AB = 分别列方程求解并检验即可得到答案.【详解】解:(1)如图,设G 是是[,]E F 的黄金点,且G 对应的数是,x则2,GE GF =点E 所表示的数为4-,点F 所表示的数为2.4,2,GE x GF x ∴=+=-42224,x x x ∴+=-=-424x x ∴+=-或4240,x x ++-=当424x x +=-时,8,x ∴=当4240x x ++-=时,0,x =所以8或0所表示的点是[,]E F 的黄金点.故答案为:8或0.(2)如图,设M 对应的数为,y2所表示的点G 是[,]M N 的黄金点,点M 在点N 的右侧,2,212,GM GN GN GM y ∴===,)2221,y ∴= 222+2322y ∴==所以M 对应的数为322+,故答案为:32+2.(3)如图, P 的最长运动时间为:()5010=203s --,由题意得P 对应的数为:503t -,()50310603,PA t t =---=- ()505033,PB t t =--=当P 是[,]A B 的黄金点,则2,PA PB = 60323,t t ∴-=⨯20,3t ∴= 当P 是[,]B A 的黄金点,则2,PB PA =()32603t t ∴=-40,3t ∴= 当B 是[,]P A 的黄金点,则2,PB BA =()501060AB =--=,3260,t ∴=⨯可得:40,t =不合题意舍去,当B 是[,]A P 的黄金点,则2,BA BP =6023,t =⨯10,t ∴=当A 是[,]B P 的黄金点,则2,BA AP =()602603t ∴=-,10,t ∴=当A 是[,]P B 的黄金点,则2,AP AB =603260,t ∴-=⨯20,t ∴=- 不合题意,舍去,综上:当203t s =或403s 或10s 时,,P A 和B 中恰有一个点为其余两点的黄金点. 【点睛】本题考查的是数轴上两点之间的距离,数轴上的动点问题,分类讨论的数学思想,绝对值方程的应用,一元一次方程的应用,合并同类二次根式,掌握以上知识是解题的关键. 26.332【分析】先化简二次根式,然后进行求解即可.【详解】3=⨯+3==【点睛】本题考查了二次根式的运算,解题的关键是掌握二次根式的运算法则.。

一元二次方程 浙教版初中数学八年级下册单元测试(解析版)

一元二次方程 浙教版初中数学八年级下册单元测试(解析版)

浙教版初中数学八年级下册第二章 一元二次方程单元测试一、单选题1.下列方程是一元二次方程的是 ( )A. −6x +2=0B. 2x 2−y +1=0C. x 2+2x =0D. 1x 2+x =22.如果关于x 的一元二次方程(m+1)x 2+x+m 2﹣2m ﹣3=0有一个根为0,则m 的值( ) A. ﹣1 B. 3 C. ﹣1或3 D. 以上答案都不对3.将方程x(x-2)=x+3化成一般形式后,二次项系数和常数项分别为( ) A. -3,3 B. -1,-3 C. 1,3 D. 1,-34.一元二次方程2x 2+6x +3= 0 经过配方后可变形为( )A. (x +3)2 =6B. (x −3)2 =12C. (x +32)2=34 D. (x −32)2=1545.用公式法解方程 √2 x 2+4 √3 x=2 √2 ,其中求的Δ的值是( ) A. 16 B. ± 4 C. √32 D. 646.方程x (x ﹣1)=5(x ﹣1)的解是( )A. 1B. 5C. 1或5D. 无解 7.如果关于x 的方程x 2﹣ √k x+1=0有实数根,那么k 的取值范围是( ) A. k >0 B. k≥0 C. k >4 D. k≥48.受新冠肺炎疫情影响,某企业生产总值从1月份的300万元,连续两个月降至260万元,设每月平均下降率为x ,则可列方程( )A. 300(1+x)2=260B. 300(1−x 2)=260C. 300(1−2x)=260D. 300(1−x)2=260 9.如图,有一长方形鸡场,鸡场的一边靠墙(墙长 18 米),另三边用竹篱笆围成,竹篱笆的总长为 35 米,与墙平行的边留有 1 米宽的门(门用其它材料做成),若鸡场的面积为 160 平方米,则鸡场与墙垂直的边长为( )A. 7.5 米B. 8米C. 10米D. 10米或8米 10.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( ) A. 10 B. 9 C. 7 D. 5二、填空题11.关于x 的一元二次方程ax 2+bx -2020=0有一个根为x =-1,写出一组满足条件的实数a ,b 的值:a =________,b =________.12.若关于x 的一元二次方程 2x 2+(2k +1)x −(4k −1)=0 的二次项系数、一次项系数、常数项的和是0,则 k = ________.13.若2(x-1)2-8=0,则x的值为________.14.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是________.15.某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价____________元.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.三、解答题17.已知x1,x2是关于x的方程x2﹣kx+5(k﹣5)=0的两个正实数根,且满足2x1+x2=7,求实数k的值.18.解方程:(1)(x+2)2=4(自选方法) (2)2x²-x-1=0(配方法)、(3)x²-1=4x(公式法) (4)x²-1=2x+2(因式分解法)19.已知m是方程x2−3x=0的一个根,求(m−3)2+(m+2)(m−2)的值.20.阅读第(1)题的解题过程,再解答第(2)题:( 1 )例:解方程x2﹣|x|﹣2=0.解:当x≥0时,原方程可化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1(不合题意.舍去)当x<0时,原方程可化为x2+x﹣2=0.解得:x1=﹣2,x2=1(不合题意.舍去)∴原方程的解是x1=2,x1=﹣2.( 2 )请参照上例例题的解法,解方程x2﹣x|x﹣1|﹣1=0.21.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因ac=0;我们记“ K=b2−此ax2+bx+c=a(x−t)(x−2t)=ax2−3atx+2t2a,所以有b2−929ac”即K=0时,方程ax2+bx+c=0为倍根方程;2下面我们根据此结论来解决问题:这几个方程中,是倍根(1)方程①2x2−3x+1=0;方程②x2−2x−8=0;方程③x2+x=−29方程的是________(填序号即可);的值为________;(2)若(x−1)(mx−n)=0是倍根方程,则2nm22.将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成 |b a |d c ,定义 |b a |d c=ad -bc ,上述记号就叫做2阶行列式.(1)若 |492x |3x 1 =0,求x 的值; (2)若 |1−x x+1|x+1x−1 =6,求x 的值.23.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G 等为代表的战略性新兴产业.据统计,目前广东5G 基站的数量约1.5万座,计划到2020年底,全省5G 基站数量是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座.(1)计划到2020年底,全省5G 基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率; (3)求2021年底全省5G 基站的数量.24.如图,在△ABC中,∠B=90°,AB=12cm,BC=16cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为t秒.(1)当t为何值时,△PBQ的面积等于35cm2?(2)当t为何值时,PQ的长度等于8 √2cm?(3)若点P,Q的速度保持不变,点P在到达点B后返回点A,点Q在到达点C后返回点B,一个点停止,另一个点也随之停止.问:当t为何值时,△PCQ的面积等于32cm2?答案解析一、单选题 1.【答案】 C【考点】一元二次方程的定义及相关的量【解析】【解答】解:A .是一元一次方程,故A 不符合题意; B .是二元二次方程,故B 不符合题意; C .是一元二次方程,故C 符合题意; D .是分式方程,故D 不符合题意. 故答案为:C .【分析】只含有一个未知数,且未知数的次数最高是2的整式方程,叫做一元二次方程,据此逐一判断即可.2.【答案】 B【考点】一元二次方程的根【解析】【解答】解:把x =0代入方程(m +1)x 2+x +m 2﹣2m ﹣3=0中,得 m 2﹣2m ﹣3=0, 解得m =3或﹣1,当m =﹣1时,原方程二次项系数m +1=0,舍去, 故答案为:B .【分析】把x =0代入方程(m 2﹣1)x 2+(m +1)x ﹣2=0中,解关于m 的一元二次方程即可求得m 的值. 3.【答案】 D【考点】一元二次方程的定义及相关的量 【解析】【解答】去括号:x 2-2x =x +3, 移项合并:x 2-3x -3=0. 二次项系数1,常数项-3. 故选D .【分析】先将方程化为一般式,然后求出结论即可. 4.【答案】 C【考点】配方法解一元二次方程 【解析】【解答】解:∵2x 2+6x +3= 0 ∴ x 2+3x =−32 ∴ x 2+3x +94=−32+94 ∴ (x +32)2=34 故答案为:C【分析】先把常数项移到方程的右边,再把二次项系数变为1,然后配方,方程两边都加上一次项系数一半的平方,即可得到答案.5.【答案】D【考点】公式法解一元二次方程【解析】【解答】解:∴√2x2+4√3x−2√2=0⋅a=√2,b=4√3,c=−2√2∴b2−4ac=(4√3)2−4×√2×(−2√2)=64故答案为:D【分析】首先把方程化简为一般形式,再得出a、b、c的值,最后求出判别式的值即可.6.【答案】C【考点】因式分解法解一元二次方程【解析】【解答】解:原方程可化为x(x﹣1)﹣5(x﹣1)=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.故答案为:C.【分析】先把方程右边的因式移到左边,再提取公因式x﹣1,即可利用因式分解法求出x的值.7.【答案】D【考点】一元二次方程根的判别式及应用【解析】【解答】∵关于x的方程x2- √k x+1=0有实数根,∴{k≥0Δ=(√k)2−4×1×1≥0,解得:k≥4.故答案为:D.【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.8.【答案】D【考点】一元二次方程的实际应用-百分率问题【解析】【解答】设每月平均下降率为x,得300(1−x)2=260故答案为:D.【分析】设每月平均下降率为x,根据1月份生产总值×(1-平均下降率)2=3月份生产总值列出方程即可.•9.【答案】C【考点】一元二次方程的实际应用-几何问题【解析】【解答】解:设鸡场的长为x,因为篱笆总长为35米,由图可知宽为:35−(x−1)2米,则根据题意列方程为:x·35−(x−1)2=160,解得:x1=16,x2=20(大于墙长,舍去),宽为:35−(16−1)2=10(米),所以鸡场的长为16米,宽为10米,即鸡场与墙垂直的边长为10米.故答案为:C.【分析】设长为x,则根据图可知一共有三面用到了篱笆,长用的篱笆为(x−1)米,与2倍的宽长的总和为篱笆的长35米,长×宽=面积160平方米,根据这两个式子可解出长和宽的值.10.【答案】C【考点】一元二次方程的根与系数的关系【解析】【解答】解:根据题意得α+β=2,αβ=﹣3,所以α2+β2+αβ=(α+β)2﹣αβ=22﹣(﹣3)=7.故答案为:C.【分析】根据根与系数的关系得到α+β=2,αβ=﹣3,再利用完全平方公式得到α2+β2+αβ=(α+β)2﹣αβ,然后利用整体代入的方法计算.二、填空题11.【答案】1;-2019 答案不唯一【考点】一元二次方程的根【解析】【解答】解:把x=-1代入ax2+bx−2020=0得a-b−2020=0,当a=1时,b=-2019.故答案为:1,-2019.答案不唯一【分析】根据一元二次方程的解的定义,把x=-1代入方程得到a-b−2020=0,于是a取1时,计算对应的b的值.答案不唯一12.【答案】2【考点】一元二次方程的定义及相关的量【解析】【解答】∵关于x的一元二次方程2x2+(2k+1)x−(4k−1)=0的二次项系数、一次项系数、常数项的和是0,∴2+2k+1+[−(4k−1)]=0,解得:k=2.故答案为:2.【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0),a,b,c分别叫二次项系数,一次项系数,常数项,利用二次项系数、一次项系数、常数项的和是0列关于k的方程即可得答案.13.【答案】3或-1【考点】直接开平方法解一元二次方程【解析】【解答】解:2(x-1)2-8=0(x-1)2=4x-1=±2x1=3,x2=-1故答案为:3或-1.【分析】由题意解方程,求出方程的解即可求出答案. 14.【答案】 -2【考点】一元二次方程根的判别式及应用【解析】【解答】∵关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根, ∴△=4-4(a +1)×3≥0,且a +1≠0, 解得a ≤- 23 ,且a ≠-1, 则a 的最大整数值是-2. 故答案为:-2.【分析】若一元二次方程有实数根,则根的判别式△=b 2-4ac ≥0,建立关于a 的不等式,求出a 的取值范围.还要注意二次项系数不为0. 15.【答案】 4【考点】一元二次方程的实际应用-销售问题 【解析】【解答】解:设每件应降价x 元,根据题意得 (20+5x )(44-x )=1600 解之:x 1=36,x 2=4. ∵x ≤10 ∴x =4 故答案为:4.【分析】设每件应降价x 元,用含x 的代数式表示出销售量及每一件的利润,再根据销售量×每一件的利润=1600,列方程求出方程的解,即可得到符合题意的x 的值。

北师大版数学八年级下册第二单元测试卷附答案解析

北师大版数学八年级下册第二单元测试卷附答案解析

北师大版数学八年级下册第二单元测试卷姓名:得分:一、选择题1.不等式6x+5>3x+8的解集为()A.x>2 B.x>1 C.x<1 D.x<22.代数式5x﹣4的值小于0,则可列不等式()A.5x﹣4<0 B.5x﹣4>0 C.5x﹣4≤0 D.5x﹣4≥03.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.4.如果关于x的方程的解不是负值,那么a与b的关系是()A.a> b B.b≥ a C.5a≥3b D.5a=3b5.不等式组的所有整数解的和是()A.2 B.3 C.5 D.66.如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A.4对 B.6对 C.8对 D.9对7.不等式﹣2x<4的解集是()A.x>2 B.x<2 C.x<﹣2 D.x>﹣28.下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.9.不等式﹣3x+6>0的正整数解有()A.1个 B.2个 C.3个 D.无数多个10.在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.11.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>212.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2二、填空题13.不等式4x﹣3<2x+1的解集为.14.不等式组的整数解为.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.16.若a>c,则当m时,am<cm;当m时,am=cm.17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有个.18.不等式组﹣1<x﹣5<11的解集是.19.若不等式组有解,则a的取值范围是.20.一次函数y=﹣3x+12中x时,y<0.21.不等式x﹣8>3x﹣5的最大整数解是.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.三、解答题23.解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)﹣<0.24.解不等式组:(1);(2).25.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少?26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几枝笔?28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?30.在全市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D 地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?答案与解析1.不等式6x+5>3x+8的解集为()A.x>2 B.x>1 C.x<1 D.x<2【考点】C6:解一元一次不等式.【专题】选择题【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:6x﹣3x>8﹣5,合并同类项,得3x>3,系数化为1,得:x>1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.代数式5x﹣4的值小于0,则可列不等式()A.5x﹣4<0 B.5x﹣4>0 C.5x﹣4≤0 D.5x﹣4≥0【考点】C8:由实际问题抽象出一元一次不等式.【专题】选择题【分析】根据不等关系小于0列式即可.【解答】解:∵代数式5x﹣4的值小于0,∴5x﹣4<0,故选A.【点评】本题考查了实际问题与一元一次不等式,是基础题,读懂题目信息是解题的关键.3.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【考点】CD:由实际问题抽象出一元一次不等式组.【专题】选择题【分析】易得学生总人数,不空也不满意思是一个宿舍人数在1人和5人之间,关系式为:总人数﹣(x﹣1)间宿舍的人数≥1;总人数﹣(x﹣1)间宿舍的人数≤5,把相关数值代入即可.【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.【点评】考查列不等式组,理解“不空也不满”的意思是解决本题的突破点,得到相应的关系式是解决本题的关键.4.如果关于x的方程的解不是负值,那么a与b的关系是()A.a> b B.b≥ a C.5a≥3b D.5a=3b【考点】C6:解一元一次不等式;85:一元一次方程的解.【专题】选择题【分析】本题首先要解这个关于x的方程,求出方程的解,根据解是负数,可以得到一个关于a的不等式,就可以求出a的范围.【解答】解:解关于x的方程,得x=,∵解不是负值,∴≥0,解得5a≥3b;故答案为C.【点评】本题是一个方程与不等式的综合题目;解关于x的不等式是本题的一个难点.5.不等式组的所有整数解的和是()A.2 B.3 C.5 D.6【考点】CC:一元一次不等式组的整数解.【专题】选择题【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.【解答】解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选D.【点评】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.6.如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A.4对 B.6对 C.8对 D.9对【考点】CC:一元一次不等式组的整数解.【专题】选择题【分析】先求出不等式组的解集,再得出关于a、b的不等式组,求出a、b的值,即可得出选项.【解答】解:∵解不等式①得:x>,解不等式②得:x≤,∴不等式组的解集为<x≤,∵x的不等式组的整数解仅有7,8,9,∴6≤<7,9≤<10,解得:15≤a<17.5,21≤b<23,∴a=15或16或17,b=21或22或23,即(15,21),(15,22),(15,23)(16,21),(16,22)(16,23),(17,21),(17,22),(17,23)共9对,故选D.【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.7.不等式﹣2x<4的解集是()A.x>2 B.x<2 C.x<﹣2 D.x>﹣2【考点】C6:解一元一次不等式.【专题】选择题【分析】两边同时除以﹣2,把x的系数化成1即可求解.【解答】解:两边同时除以﹣2,得:x>﹣2,故选D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.【考点】C2:不等式的性质.【专题】选择题【分析】根据不等式的性质分析判断.【解答】解:A、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a≤4a,故错误;B、因为2<3,不等式两边同时加上x,不等号方向不变,即x+2<x+3正确;C、因为﹣1>﹣2,不等式两边同乘以a,而a≤0时,不等号方向改变,即﹣a ≤﹣2a,故错误;D、因为4>2,不等式两边同除以a,而a≤0时,不等号方向改变,即,故错误.故选B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.不等式﹣3x+6>0的正整数解有()A.1个 B.2个 C.3个 D.无数多个【考点】C7:一元一次不等式的整数解.【专题】选择题【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1,故选A.【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.10.在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】选择题【分析】根据在数轴上表示不等式解集的方法利用排除法进行解答.【解答】解:∵不等式x≥﹣2中包含等于号,∴必须用实心圆点,∴可排除A、B,∵不等式x≥﹣2中是大于等于,∴折线应向右折,∴可排除D,故选:C.【点评】本题考查的是在数轴上表示不等式解集的方法,即“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.11.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>2【考点】F3:一次函数的图象.【专题】选择题【分析】通过观察函数图象,当y<0时,图象在x轴左方,写出对应的自图象在x轴左方变量的范围即可.【解答】解:由图象可得,一次函数的图象与x轴的交点为(﹣2,0),当y<0时,x<﹣2,故选A.【点评】熟悉一次函数的性质.学会看函数图象.12.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2【考点】72:二次根式有意义的条件.【专题】选择题【分析】二次根式的被开方数x﹣2是非负数.【解答】解:根据题意,得x﹣2≥0,解得,x≥2;故选:A.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.不等式4x﹣3<2x+1的解集为.【考点】C6:解一元一次不等式.【专题】填空题【分析】利用不等式的基本性质,把﹣3移到不等号的右边,把2x移到等号的左边,合并同类项即可求得原不等式的解集.【解答】解:4x﹣3<2x+1,4x﹣2x<1+3,2x<4,x<2,故答案为:x<2.【点评】本题考查了解一元一次不等式,以及解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.不等式组的整数解为.【考点】CC:一元一次不等式组的整数解.【专题】填空题【分析】先求出不等式的解集,再据此求出不等式的整数解.【解答】解:由①得,2x>﹣1﹣1,x>﹣1;由②得,x≤3﹣2,x≤1;不等式组的解集为:﹣1<x≤1,其整数解为0,1.【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【解答】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4,故答案为:x<4.【点评】本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.16.若a>c,则当m时,am<cm;当m时,am=cm.【考点】C2:不等式的性质.【专题】填空题【分析】根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,可知m<0,【解答】解:∵a>c,又知:am<cm,∴根据不等式的基本性质3可得:m<0;又知:am=cm,∴m=0,故答案为:<0;=0.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有个.【考点】C9:一元一次不等式的应用.【专题】填空题【分析】(1)根据“两位正整数其个位数字比十位数字大4”可得此两位数为(10×十位数)+个位数;(2)再根据此两位数小于88,列出不等式即可.【解答】解:设十位数字为x,则个位数字为x+4依题意得10x+x+4<88得x<又∵x应为正整数,且大于0;并且0≤个位数字≤9,因而5≤x+4≤9∴1≤x≤5故这样的两位数有5个.【点评】用不等式进行求解时,应注意未知数的限制条件.本题中正确用代数式表示出这个两位数是解决本题的关键.18.不等式组﹣1<x﹣5<11的解集是.【考点】CB:解一元一次不等式组.【专题】填空题【分析】可以直接用口诀解题,也可用不等式的性质直接解不等式组.【解答】解:不等式每个部分都加5得,4<x<16,故答案为:4<x<16.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.也可利用不等式的性质求解(不等式两边同时加上一个数,不等号的方向不变).求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.若不等式组有解,则a的取值范围是.【考点】C3:不等式的解集.【专题】填空题【分析】根据不等式组有解,可得a与2的关系,可得答案.【解答】解:∵不等式组有解,∴a≤2,故答案为:a≤2.【点评】本题考查了不等式的解集,不等式的解集是大于小的小于大的.20.一次函数y=﹣3x+12中x时,y<0.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】y<0即3x+12<0,解不等式即可求解.【解答】解:根据题意得:﹣3x+12<0,解得:x>4,故答案为:>4【点评】本题考查了一次函数与不等式的关系,认真体会一次函数与一元一次不等式(组)之间的内在联系.把求函数自变量的取值的问题转化为不等式的求解问题是关键.21.不等式x﹣8>3x﹣5的最大整数解是.【考点】C6:解一元一次不等式.【专题】填空题【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x﹣8>3x﹣5的解集为x<﹣;所以其最大整数解是﹣2.【点评】解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.23.解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)﹣<0.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【专题】解答题【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:5x﹣6≤2x+6,移项,得:5x﹣2x≤6+6,合并同类项,得:3x≤12,系数化为1,得:x≤4,将解集表示在数轴上如下:(2)去分母,得:2(2x﹣1)﹣(5x﹣1)<0,去括号,得:4x﹣2﹣5x+1<0,移项、合并,得:﹣x<1,系数化为1,得:x>﹣1,将解集表示在数轴上如下:.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.解不等式组:(1);(2).【考点】CB:解一元一次不等式组.【专题】解答题【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集.【解答】解:(1)解不等式5x﹣6≤2(x+3),得:x≤4,解不等式,得:x>0,∴不等式组的解集为0<x≤4;(2)解不等式3+x≤2(x﹣2)+7,得:x≥0,解不等式5x﹣1<3(x+1),得:x<2,∴不等式组的解集为0≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少?【考点】CB:解一元一次不等式组.【专题】解答题【分析】解不等式解不等式2x﹣m>n﹣1得x>,由不等式组的解集为﹣1<x<1可得=﹣1,从而知m+n的值,代入即可.【解答】解:解不等式2x﹣m>n﹣1,得:x>,∵不等式组的解集为﹣1<x<1,∴=﹣1,∴m+n=﹣1,则(m+n)2014=(﹣1)2014=1.【点评】本题主要考查解不等式的基本能力,根据不等式组的解集得出m+n的值是解题的关键.26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.【考点】CC:一元一次不等式组的整数解.【专题】解答题【分析】解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k 的范围,即可知道k的取值.【解答】解:解方程组得∵x大于1,y不大于1从而得不等式组解之得2<k≤5又∵k为整数∴k只能取3,4,5答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.【点评】此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k的式子,最终求出k的范围,即可知道整数k的值.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几枝笔?【考点】C9:一元一次不等式的应用.【专题】解答题【分析】设她还可能买x只笔,根据总钱数不超过21元,列不等式求解.【解答】解:设她还可能买x只笔,由题意得,3x+2×2.2≤21,解得:x≤.答:她还可能买5枝笔.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列不等式求解.28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?【考点】CE:一元一次不等式组的应用.【专题】解答题【分析】设该校一共有x人去植树,共有y棵树.则根据题意可得:,求解即得【解答】解:设个植树小组有x人去植树,共有y棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:,将y=4x+20代入第二个式子得:0<4x+20﹣8(x﹣1)<8,5<x<7.答这个植树小组有6人去植树,共有4×6+20=44棵树.【点评】此题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?【考点】FH:一次函数的应用.【专题】解答题【分析】(1)根据存款数=原有存款+又存入的钱数,列式即可;(2)列出一元一次不等式,然后求解即可.【解答】解:(1)根据题意,甲:y1=400x+800,乙:y2=200x+1800;(2)根据题意,400x+800>200x+1800,解得x>5,所以,从第6个月开始,甲存款额能超过乙存款额.【点评】本题考查了一次函数的应用,比较简单,读懂题目信息是解题的关键.30.在全市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D 地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【专题】解答题【分析】(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)由题意列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可.【解答】解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,∴2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.【点评】本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.。

北师大版八年级下册数学第二单元测试题与答案(一)

北师大版八年级下册数学第二单元测试题与答案(一)

北师大版八年级下册数学第二单元测试题与答案(一)北师大版八年级下册数学第二单元测试题及答案(一)一、选择题1.不等式-2x<4的解集是()A。

x>2B。

x<2C。

x<-2D。

x>-22.下列不等式一定成立的是()A。

5a>4aB。

x+2<x+3C。

-a>-2aD。

x<y3.不等式-3x+6>的正整数解有()A。

1个B。

2个C。

3个D。

无数多个4.在数轴上表示不等式x≥-2的解集,正确的是()A。

B。

C。

D。

5.如图,当y<时,自变量x的范围是()A。

x<-2B。

x>-2C。

x<2D。

x>26.要使代数式有意义,则x的取值范围是()A。

x≥2B。

x≥-2C。

x≤-2D。

x≤27.不等式组的解集是()A。

x<3B。

3<x<4C。

x<4D。

无解8.若a>b>0,则下列结论正确的是()A。

-a>-bB。

a+b>a-bC。

a3<b3D。

a2>b29.下列图形中,能表示不等式组的解集的是()A。

B。

C。

D。

10.观察函数y1和y2的图象,当x=1,两个函数值的大小为()A。

y1>y2B。

y1<y2C。

y1=y211.如果不等式组有解,那么m的取值范围是()A。

m>5B。

m≥5C。

m<5D。

m≤812.不等式组的最小整数解为()A。

-1B。

0C。

1D。

4二、填空题13.已知三角形的两边为3和4,则第三边a的取值范围是2<a<7.14.不等式组的解集是{x|-3<x<2}。

15.不等式组-1<x<4的整数解有5个。

16.若a>c,则当m<loga c时,am<cm;当m>loga c 时,am>cm。

17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有2个。

18.不等式组-1<x-5<11的解集是{ x|4<x<16 }。

19.若不等式组有解,则a的取值范围是{ a|a<1或a>3 }。

20.一次函数y=-3x+12中x=-2时,y<18.21.不等式x-8>3x-5的最大整数解是-4.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为{ x|x≥a }。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13{x x ≥≤初二年级第一次月考试题
(新北师版)数学
一.选择题
1.下列条件中能判定△ABC ≌△DEF 的是 ( )
A .A
B =DE ,B
C =EF ,∠A =∠
D B .∠A =∠D ,∠B =∠
E ,∠C =∠F
C .AC =DF ,∠B =∠F ,AB =DE
D .∠B =∠
E ,∠C =∠
F ,AC =DF
2.下列命题中正确的是 ( )
A .有两条边相等的两个等腰三角形全等
B .两腰对应相等的两个等腰三角形全等
C .两角对应相等的两个等腰三角形全等
D .一边对应相等的两个等边三角形全等
3.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE =5,则线段DE 的长为 ( )
A .5
B .6
C .7
D .8
4.至少有两边相等的三角形是( )
A .等边三角形
B .等腰三角形
C .等腰直角三角形
D .锐角三角形
5.函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( ).
A .x>0
B .x<0
C .x<2
D .x>2
6.已知x y >,则下列不等式不成立的是 ( ).
A .66x y ->-
B .33x y >
C .22x y -<-
D .3636x y -+>-+
7.将不等式组 的解集在数轴上表示出来,应是( ).
8.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx+b>ax 的解集是( )
A .x>1
B .x<1
C .x>2
D .x<2
9、对“等角对等边”这句话的理解,正确的是 ( )
A .只要两个角相等,那么它们所对的边也相等
B .在两个三角形中,如果有两个角相等,那么它们所对的边也相等
C .在一个三角形中,如果有两个角相等,那么它们所对的边也相等
D .以上说法都是正确的
10、已知:在△ABC 中,AB ≠AC ,求证:∠B ≠∠C .若用反证法来证明这个结论,可以假设
( )
A .∠A =∠
B B .AB =BC
C .∠B =∠C
D .∠A =∠C 二.填空题
1.在△ABC 中,AB =AC ,∠A =44°,则∠B = 度.
2.“直角三角形两条直角边的平方和等于斜边的平方”的逆定理是 .
3.不等式930x ->的非负整数解是 .
4.如图,AB =AD ,只需添加一个条件 ,就可以判定△ABC ≌△ADE. A C B D
5.如图,在△ABC 中,∠C =90°,D 为BC 上的一点,且DA =DB ,DC =AC .则∠B = 度.
(第4题图) (第5题图) (第6题图)
6.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于点D,∠A =30°,BD =1.5cm ,则
AB= cm .
三.解答题
1.解下列不等式(组),并把它们的解集在数轴上表示出来:
(1) 112x x -+≥ (2)
2.有一个长方形足球场的长为x m ,宽为70m .如果它的周长大于350m ,面积小于7560m 2,求x 的取值范围,并判断这个球场是否可以用作国际足球比赛.
(注:用于国际比赛的足球场的长在100m 到110m 之间,宽在64m 到75m 之间)
3.已知:如图,点D 是△ABC 内一点,AB =AC ,∠1=∠2.
求证:AD 平分∠BAC .
3(2)4121
3{
x x x x --≤+>-
4.求证:等腰三角形两腰上的中线相等.
5.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).
(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;
(2)顾客到哪家超市购物更优惠?说明你的理由.
6.已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.
(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.
7.已知A、B两个海港相距180海里.如图表示一艘轮船和一艘快艇沿相同路线从A港出发到B港航行过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)。

根据图象解答下列问题:
(1)请分别求出表示轮船和快艇行驶过程的函数表达式(不要求写出自变量的取值范围);
C O B A
D P (2)快艇出发多长时间后能超过轮船?
(3)快艇和轮船哪一艘先到达 B 港?
8.如图,已知P 点是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,垂足为C 、D 。

(7分)
(1)求证:∠PCD=∠PDC ; (2)求证:OP 垂直平线段CD
9、如图,∠A=∠D=90°,AC=BD.求证:OB=OC ;
10、如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E .
(1)求证:△ACD ≌△AED ;
(2)若∠B=30°,CD=1,求BD 的长.。

相关文档
最新文档