Matlab 概率论与数理统计
Matlab在《概率论与数理统计》教学中的应用
Matlab在《概率论与数理统计》教学中的应用
Matlab提供了丰富的概率分布函数,可以帮助学生更好地理解不同的概率分布。
学生可以使用Matlab生成正态分布、二项分布、泊松分布等不同的概率分布,并画出相应的概率密度函数、累积分布函数等图形。
通过实际的计算和绘图,学生可以更直观地看到不同概率分布的特点,加深对概率分布的理解。
Matlab提供了各种统计函数,可以方便地进行数据的描述性统计和推断性统计。
学生可以使用Matlab计算样本的平均值、方差等描述性统计量,还可以使用Matlab进行假设检验、置信区间估计等推断性统计。
通过实际的计算和分析,学生可以更好地掌握统计学中的概念和方法。
Matlab还可以进行模拟实验,帮助学生理解概率和统计的原理。
学生可以使用Matlab 模拟抛硬币的实验,验证概率的定义和性质。
学生还可以使用Matlab模拟中心极限定理,观察样本均值的分布趋于正态分布的情况。
通过实际的模拟实验,学生可以更深入地理解抽样分布和极限定理等重要概念。
Matlab还可以用于数据的可视化。
学生可以使用Matlab绘制直方图、散点图、箱线图等图形,展示数据的分布和变化。
通过可视化的方式,学生可以更好地理解数据的特点和规律,并能够更直观地展示和解释统计分析的结果。
Matlab在《概率论与数理统计》教学中具有广泛的应用价值。
通过利用Matlab进行计算、模拟和可视化等任务,可以帮助学生更好地理解概率和统计的概念和方法,提高学习效果。
在教学中合理地使用Matlab可以有效地促进学生对概率论与数理统计的学习和理解。
概率论和数理统计的Matlab 实现
expcdf 函数 功能:计算累加指数分布函数。 语法:P = expcdf(X,MU) 描述:expcdf(X,MU) 计算参数为 MU 的数据 X 的累加指数分布函数。指数 MU 必须为
正。 累加指数分布函数的计算公式为:
概率论和数理统计的 Matlab 实现
1概 述
自然界和社会上会发生各种各样的现象,其中有的现象在一定条件下是一定要发生的, 有的则表现出一定的随机性,但总体上又有一定的规律可循。一般称前者为确定性事件, 后者为不确定性事件(或称随机事件)。概率论和数理统计就是研究和揭示不确定事件统计 规律性的一门数学学科。
f (x |l) =
lx x!
e-l
I (0,1,K )
(x)
y=
f (x | b) =
x b2
çæ - x 2 ÷ö
eçè 2b2 ÷ø
y
=
f
(x
| v)
=
Gçæ è
v
+ 2
1
÷ö ø
Gçæ è
v 2
÷ö ø
1
1
vp
ççèæ1 +
v +1
x2 v
÷÷øö
2
y=
f (x | N) =
1 N
I (1,..., N ) ( x)
y
=f(x|r,p)
=
ççèæ
r
+
x x
+
1÷÷øö
p
x
q
x
I
(
0,1,...)
(
x)
其中, q = 1 - p
第8章 matlab 概率论与数理统计问题的求解
8.1.3 概率问题的求解
图4-9
• 例:
>> b=1; p1=raylcdf(0.2,b); p2=raylcdf(2,b); P1=p2-p1 P1 = 0.8449
>> p1=raylcdf(1,b); P2=1-p1 P2 = 0.6065
• 例:
>> syms x y; f=x^2+x*y/3; >> P=int(int(f,x,0,1/2),y,0,1/2) P= 5/192 >> syms x y; f=x^2+x*y/3; P=int(int(f,x,0,1),y,0,2) P= 1
8.1.2.3
பைடு நூலகம்
分布
• 例:
>> x=[-0.5:.02:5]‘; %x=[-eps:-0.02:-0.5,0:0.02:5]; x=sort(x’);替代 >> y1=[]; y2=[]; a1=[1,1,2,1,3]; lam1=[1,0.5,1,2,1]; >> for i=1:length(a1) y1=[y1,gampdf(x,a1(i),lam1(i))]; y2=[y2,gamcdf(x,a1(i),lam1(i))]; end >> plot(x,y1), figure; plot(x,y2)
8.1.2.2 正态分布
正态分布的概率密度函数为:
• 例:
>> x=[-5:.02:5]'; y1=[]; y2=[]; >> mu1=[-1,0,0,0,1]; sig1=[1,0.1,1,10,1]; sig1=sqrt(sig1); >> for i=1:length(mu1) y1=[y1,normpdf(x,mu1(i),sig1(i))]; y2=[y2,normcdf(x,mu1(i),sig1(i))]; end >> plot(x,y1), figure; plot(x,y2)
(完整版)Matlab概率论与数理统计
Matlab 概率论与数理统计、matlab 基本操作 1. 画图【例01.01】简单画图hold off; x=0:0.1:2*pi; y=sin (x);plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,二维均匀随机数hold off ;x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30;plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100);plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]);xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b');hold on ;'r' ,x,y60, 'r' ,y60,x,'r')'r');'m.')2. 排列组合kC=nchoosek(n,k) : CC n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从 n1 至U n2 的连乘【例01.03】至少有两个人生日相同的概率365 364|||(365 rs 1)rs365365 364 365 rs 1 365 365365rs=[20,25,30,35,40,45,50]; %每班的人数p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs));%用连乘公式计算for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end%用公式计算(改进) for i=1:le ngth(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365); end ; end%用公式计算(取对数) for i=1:le ngth(rs)p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end公式计算P 1n!C NN nN!1 (N n)!1N nN (N 1) (N n 1)、随机数的生成3. 均匀分布随机数rand(m,n);产生m行n列的(0,1)均匀分布的随机数rand(n);产生n行n列的(0,1)均匀分布的随机数【练习】生成(a,b)上的均匀分布4. 正态分布随机数randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma42)上的正态分布5. 其它分布随机数三、一维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布(2) 均匀分布_ k k n k(3) 二项分布:binopdf(x,n,p),若X ~ B(n, p),则P{X k} C n p (1 p),x=0:9 ;n=9;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]当n较大时二项分布近似为正态分布x=0:100; n=100;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')ke⑷泊松分布:piosspdf(x, lambda),若X ~ (),贝U P{ X k}k!x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081,0.0027]k 1⑸几何分布:geopdf (x, p),贝U P{X k} p(1 p)x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ] x=0:10;N=20;M=8; n=4;y= hygepdf(x,N,M, n); plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2. 概率密度函数(1)均匀分布:unifpdf(x,a,b) , f (x)其它a=0;b=1;x=a:0.1:b; y= uni fpdf (x,a,b);1 2 厂(x )2 ■厂ex=-10:0.1:12;mu=1;sigma=4;y= no rmpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); % 产生 10000 个正态分布的随机数 d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a 为横轴,求出10000个正态分布的随机数的频率(6)超几何分布:hygepdf(x,N,M,n),则 P{Xk}C k nM CNC N(2)正态分布:normpdf(x,mu,sigma) , f (x)plot(x,y,'b-',a,b,'r.')1 _x⑶指数分布:exppdf(x,mu), f (x)其它x=0:0.1:10;mu=1/2;■ t京■I_ey= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n i F⑷2分布:chi2pdf(x,n) , f (x; n) 2n ^( n 2) % e x 0hold onx=0:0.1:30;n=4;y= chi2pdf(x, n);plot(x,y,'b');%blue n=6;y= chi2pdf(x, n);plot(x,y,'r');%red n=8;y=chi2pdf(x ,n );plot(x,y,'c');%cya n n=10;y= chi2pdf(x, n);plot(x,y,'k');%black lege nd(' n=4', 'n=6', 'n=8', 'n=10');n 1((n 1) 2) x2 2⑸t 分布:tpdf(x,n) , f (x; n) ------------------ 1 -J n (n. 2) nhold onx=-10:0.1:10;n=2;y= tpdf(x, n);plot(x,y,'b');%bluen=6;y= tpdf(x, n);plot(x,y,'r');%redn=10;y= tpdf(x ,n );plot(x,y,'c');%cya nn=20;y= tpdf(x, n);plot(x,y,'k');%black lege nd(' n=2', 'n=6', 'n=10', 'n=20');((m山m 门2n2) 2)小2% 2 1 5 % 2(n2 2) n2n2x 0(6) F 分布:fpdf(x,n1,n2) , f (x; n「n2) (E 2)0 x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x, n1, n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x, n1, n2);plot(x,y,'r');%red n1=10; n2=6;y= fpdf(x, n1, n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x, n1,n 2);plot(x,y,'k');%black legend(' n仁2; n2=6', ' n1= 6; n2=10', ' n仁10;n2=6', ' n仁10; n2=10');3.分布函数F(x) P{X x}【例03.01】求正态分布的累积概率值设X ~ N(3,22),求 P{2 X 5}, P{ 4 X 10}, P{ X 2}, P{X 3},14.逆分布函数,临界值y F(x) P{X x} , x F (y) , x称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=normin v(y,0,1);【例03.03】求2(9)分布的累积概率值hold offy=[0.025,0.975];x=ch i2in v(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0, n); plot(x0,y0, 'r'); x1=0:0.1:x(1);y1=chi2pdf(x1, n);x2=x(2):0.1:30;y2=chi2pdf(x2 ,n);hold onfill([x1, x(1)],[y1,0], 'b');fill([x(2),x2],[0,y2], 'b');【练习1.1】二项分布、泊松分布、正态分布(1)对n 10, p 0.2二项分布,画出b(n,p)的分布律点和折线;(2)对np,画出泊松分布()的分布律点和折线;(3)对np, 2叩(1 p),画出正态分布N( , 2)的密度函数曲线;(4)调整n, p,观察折线与曲线的变化趋势。
概率论与数理统计MATLAB上机实验报告
《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
_Matlab在概率统计中的应用
第8章 Matlab在概率统计中的应用概率论与数理统计是研究和应用随机现象统计规律性的一门数学科学。
其应用十分广泛,几乎遍及所有科学领域、工农业生产和国民经济各部门。
本章将利用Matlab来解决概率统计学中的概率分布、数字特征、参数估计以及假设检验等问题。
8.1 数据分析8.1.1 几种均值在给定的一组数据中,要进行各种均值的计算,在Matlab中可由以下函数实现。
mean 算术平均值函数。
对于向量X,mean (X) 得到它的元素的算术平均值;对于矩阵,mean (X)得到X各列元素的算术平均值,返回一个行向量。
nanmean 求忽略NaN的随机变量的算术平均值。
geomean 求随机变量的几何平均值。
harmmean 求随机变量的和谐平均值。
trimmean 求随机变量的调和平均值。
8.1.2 数据比较在给定的一组数据中,还常要对它们进行最大、最小、中值的查找或对它们排序等操作。
Mtalab中也有这样的功能函数。
max 求随机变量的最大值元素。
nanmax 求随机变量的忽略NaN的最大值元素。
min 求随机变量的最小值元素。
nanmin 求随机变量的忽略NaN的最小值元素。
median 求随机变量的中值。
nanmedian 求随机变量的忽略NaN的中值。
mad 求随机变量的绝对差分平均值。
sort 对随机变量由小到大排序。
sortrows 对随机矩阵按首行进行排序。
range 求随机变量的值的范围,即最大值与最小值的差(极差)。
8.1.3 累和与累积求向量或矩阵的元素累和或累积运算是比较常用的两类运算,在Matlab中可由以下函数实现。
sum 若X为向量,sum (X)为X中各元素之和,返回一个数值;若X为矩阵,sum (X)为X中各列元素之和,返回一个行向量。
nansum 忽略NaN求向量或矩阵元素的累和。
cumsum 求当前元素与所有前面位置的元素和。
返回与X同维的向量或矩阵。
cumtrapz 梯形累和函数。
matlab概率论部分数学实验指导书
1.9
0.8
1.1
0.1
0.1
4.4 5.5 1.6 4.6 3.4
0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0
试就下列两种情况分析这两种药物的疗效有无显示性的差异。 ( α = 0.05 ) 。 ① X 与 Y 的方差相同;② X 与 Y 的方差不同。 (7) 、 已知某一试验, 其温度服从正态分布, 现在测量了温度的五个值为: 1250, 1265,1245,1260,1275。问是否可以认为 µ = 1277 (8) 、其它教材上的题目或自己感兴趣的题目。 ( α = 0.05 ) 。 ?
A =[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 22
20 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16
实验四、样本的统计与计算 实验目的: 熟练使用 matlab 对样本进行基本统计,包括样本的位置统计、分散性统计、样 本中心矩、分布的形状统计。求样本均值、中位数、样本方差,偏度、峰度、 样本分位数和其它数字特征,并能做出频率直方图和经验分布函数。 实验内容: 来自总体的样本观察值如下,计算样本的样本均值、中位数、样本方差、极差, 偏度、峰度、画出频率直方图,经验分布函数图。
概率论与数理统计的MATLAB实现讲稿
第9章 概率论与数理统计的MATLAB 实现MATLAB 总包提供了一些进行数据统计分析的函数,但不完整。
利用MATLAB 统计工具箱,可以进行基本概率和数理统计分析,以及进行比较复杂的多元统计分析。
本章主要针对大学本科的概率统计课程介绍工具箱的部分功能。
9.1 随机变量及其分布利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布律(概率密度函数)和分布函数。
9.1.1 离散型随机变量及其分布律如果随机变量全部可能取到的不相同的值是有限个或可列个无限多个,则称为离散型随机变量。
MATLAB 提供的计算常见离散型随机变量分布律的函数及调用格式: 函数调用格式(对应的分布) 分布律y=binopdf(x,n,p)(二项分布) )()1(),|(),,1,0(x I p p x n p n x f n xn x --⎪⎪⎭⎫ ⎝⎛=y=geopdf(x,p)(几何分布) xp p p x f )1()|(-= ),1,0( =xy=hygepdf(x,M,K,n)(超几何分布) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=n M x n K M x K n K M x f ),,|(y=poisspdf(x,lambda)(泊松分布) λλλ-=e x x f x !)|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) NN x f 1)|(=9.1.2 连续型随机变量及其概率密度对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有⎰∞-=x dt t f x F )()(则称X 为连续型随机变量,其中函数)(x f 称为X 的概率密度函数。
MA TLAB 提供的计算常见连续型随机变量分布概率密度函数的函数及调用格式:函数调用格式(对应的分布) 概率密度函数y=betapdf(x,a,b)(β分布) )10()1(),(1),|(11<<-=--x x x b a B b a x f b ay=chi2pdf(x,v)(卡方分布) )2(2)|(2212v exv x f v x v Γ=--)0(≥xy=exppdf(x,mu)(指数分布) μμμxe xf -=1)|()0(≥xy=fpdf(x,v1,v2)(F 分布) 2211222121212121111)2()2()2(),|(v v v v v x v x vv v v v v v v x f +-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ΓΓ+Γ= y=gampdf(x,a,b)(伽马分布) b xa a e x ab b a x f --Γ=1)(1),|()0(≥xy=normpdf(x,mu,sigma)(正态分布) 22)(21),|(σμπσσμ--=x ex fy=lognpdf(x,mu,sigma)(对数正态分布) 22)(ln 21),|(σμπσσμ--=x ex x fy=raylpdf(x,b)(瑞利分布) 222)|(b x e b x b x f -=y=tpdf(x,v)(学生氏t 分布) 2121)2()21()|(+-⎪⎪⎭⎫ ⎝⎛+Γ+Γ=v v x v v v v x f πy=unifpdf(x,a,b)(连续均匀分布) )(1),|(],[x I ab b a x f b a -=y=weibpdf(x,a,b)(威布尔分布) )(),|(),0(1x I eabx b a x f bax b ∞--= 比如,用normpdf 函数计算正态概率密度函数值。
MATLAB教程第八章 概率和数理统计
t0 t0
某人到此办事,若等待时间超过15分钟,他就离 去。设此人一个月要去该处10次,试求: (1)恰好有两次有两次离去的概率; (4)离去的次数占多数的概率。
解:首先求任一次离去的概率,
解: p1=Hygepdf(1,500,50,10) p1 = 0.3913 p2=Hygepdf(0,500,50,10)+Hygepdf(1,500,50,10) p2 = 0.7365 p3=1-Hygepdf(0,500,50,10) p3 = 0.6548
例5:计算指数密度函数值
解: y=exppdf(5,1:5) y= 0.0067 0.0410 0.0630 0.0716 0.0736 y=exppdf(1:5,1:5) y= 0.3679 0.1839 0.1226 0.0920 0.0736
分布
例1 :某单位有内线电话300部,假设任意一时刻每部电话打外线电
话的概率为0.01,求在某一时刻恰有4部电话打外线的概率。在某一时 刻打外线电话的最可能部数是多少?
解:设X表示某一时刻该单位打外线电话的电话部数, 则X的统计规律可用二项分布来描述,X~B(300,0.01)。 记A=“某一时刻恰有4部电话打外线”,则所求概率为 p=p(A)=p(X=4)。 p=binopdf(4,300,0.01) p = 0.1689 计算某一时刻打外线电话的最可能部数 y=binopdf([0:300],300,0.01); [pp,m]=max(y) pp = 0.2252 m= 4
概率与分位数的关系 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2.1171 2.5 p=0.9
Matlab在《概率论与数理统计》教学中的应用
Matlab在《概率论与数理统计》教学中的应用【摘要】摘要:本文探讨了Matlab在《概率论与数理统计》教学中的应用。
在介绍了研究背景、目的和意义。
在分别阐述了Matlab在概率论教学中的基本概念应用、在数理统计教学中的数据分析应用、在概率论与数理统计教学中的模拟实验设计、在教学案例分析中的应用以及在编程训练中的应用。
结论部分总结了Matlab在教学中的重要性,并展望了未来研究方向。
本文旨在为教师和学生提供更有效的教学和学习工具,以提高教学效果和学习成果。
Matlab在概率论与数理统计教学中的应用将在未来持续发展,并为该领域的研究和实践提供更多可能性。
【关键词】Matlab, 概率论, 数理统计, 教学, 应用, 模拟实验, 数据分析, 编程训练, 教学案例分析, 重要性, 研究方向, 总结1. 引言1.1 研究背景研究背景部分将重点介绍Matlab在概率论与数理统计教学中的应用现状和意义。
通过Matlab软件,学生可以直观地展示概率分布的图像、计算统计量、进行数据拟合和模拟实验等操作。
Matlab的使用不仅提高了教学效果,也使学生在处理大量数据和复杂问题时更加得心应手。
在现代社会,数据分析已经成为一项必不可少的技能。
运用Matlab软件进行概率论与数理统计教学的实践意义愈发重要。
本文将进一步探讨Matlab在概率论与数理统计教学中的具体应用,以期能够为教学改革和学生能力培养提供参考和借鉴。
1.2 目的引言概率论与数理统计是现代数学中非常重要的一门学科,它不仅是其他学科的基础,而且在各个领域都有着广泛的应用。
而在教学中,如何让学生更加直观地理解和应用这些概念,是一个很重要的问题。
本文旨在探讨Matlab在《概率论与数理统计》教学中的应用,通过应用Matlab软件,可以更好地帮助学生理解难点,提高学习的效率和趣味性,从而提高教学质量。
1.3 意义在《概率论与数理统计》教学中,Matlab的应用具有重要的意义。
MATLAB第7章 概率论与数理统计
P{(X,Y)=(xi, yi)}= P{X=xi,Y= yi}=pij, i,j=1,2,..., 为二维离散型随机变量(X,Y)的联合分布律,也称(X,Y)的概率分布。
7.2.5二维随机变量及概率分布
7.6方差分析
在实际中,一种结果往往会受到几种不同因素的影响,如一种产品的 质量可能会受到设备性能和操作人员技能等方面的影响;不同的营销方 式对同一产品的销售量可能产生不同的效果;某一地区居民的消费水平 可能与人均收入、商品价格及广告力度等因素有关;化学合成过程可能 会受到温度、时间和材料成分的影响;农作物产量可能会受到气候、肥 料、品种及土质等因素的影响;等等。方差分析(analysis of variance, 简 写ANOVA)就是对由不同因素变化时所产生的结果进行统计特性的差异分 析,以检验各种因素对所研究对象的某一特性的影响程度,是假设检验 方法的一种多元推广。
基于一维分析方法并通过相关数学运算可以方便地实现二维或多维随 机变量及概率的分析。 【例7-21】 已知二维连续随机变量(X,Y)的联合密度函数为
f (x, y) cex2y,x 0, y 0
试求: 1) 确定常数c; 2)计算概率P{2X+Y≤1}; 3) 求(X,Y)的联合分布函数。
7.2.6随机变量函数的分布
7.5假设检验
假设检验是指先对总体分布中的参数或对总体分布做出某种 假设, 从总体中随机抽取一个样本来检验假设是否接受或拒绝。总 体假设检验分为两类:参数假设检验和总体分布假设检验。总体 假设通常设立原假设H0(或零假设,null hypothesis)和备择假设 H1(或对立假设,alternative hypothesis)。由于要从随机抽取的 一个子样本来检验总体假设是否接受或拒绝,因此可能犯两类错 误:第一类错误为拒绝真,第二类错误是接受假。
MATLAB在概率论和数理统计中的应用论文
MATLAB 在概率论和数理统计中的应用一、 引言概率论与数理统计作为现代数学的重要分支,在自然科学、社会科学和工程技术等领域都具有极为广泛的应用。
概率论和数理统计是研究随机现象的客观规律并付诸应用的数学学科。
用概率论和数理统计的知识来解决实际问题时,大致遵循以下流程图。
实际问题数学表达概率论与数理统计模型符合实际结束分析求解 检验是否随着计算机技术的普及和开展,我们可以用计算机语言轻松的完成以上过程中的求解和建立模型过程。
可以大大提高准确率和使用者的效率。
二、 MATLAB 软件介绍及其特点1984年美国MathWorks 公司推出了MATLAB 软件。
MATLAB 是以矩阵作为数据操作的根本单位的程序设计语言,是主要面对科学计算、数据可视化、系统仿真,以及交互式程序设计的高科技计算环境。
为科学研究、工程设计以及必须进展有效数值计算的众多科学领域提供了一种全面的解决方案。
MATLAB 软件具有以下特点[1]:I,具有强大的数值计算和符号运算功能II,操作界面简单,编程语言自然III,具有先进的数据可视化功能IV,具有强大的开放性和可扩展性总之,MATLAB是工程师和科研者使用最广泛的软件之一。
三、MATLAB中关于概率统计的命令和函数MATLAB中的Statistics Toolbox提供了丰富的关于概率统计的命令和函数,用于解决概率论和数理统计中的常见问题。
下表将列举常用的概率统计中的命令和函数。
利用上述函数产生一个44矩阵的标准正态随机数,MATLAB代码如下:>> R=normrnd(0,1,4,4)R =-0.8095 -0.7549 -0.2414 -0.0301 -2.9443 1.3703 0.3192 -0.16491.4384 -1.7115 0.3129 0.62770.3252 -0.1022 -0.8649 1.0933 产生的随机数可以在工作窗口查看。
假设要想求参数为=1=2=2=3μσμσ,;,的正态分布的期望和方差,那么相应的MATLAB 的代码为: >> clear >> a=[1 2]; >> b=[2 3];>> [m v]=normstat(a,b) m =1 2 v =4 9在MATLAB 的统计工具箱中提供了一个演示程序disttool ,可以直观的演示常见分布的分布函数和概率密度函数。
Matlab在_概率论与数理统计_教学中的应用
课程教材总第216期概率论与数理统计作为现代数学的重要分支,在自然科学、社会科学和工程技术等领域都具有极为广泛的应用。
一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。
由于近年来突飞猛进的发展与应用的广泛性,其目前已发展成为一门独立的一级学科。
概率论与数理统计是研究随机现象客观规律并付诸应用的数学学科,是理、工、经、管类本科生必修的一门重要的基础课。
随着计算机技术的发展和普及,概率论与数理统计的理论与方法在经济、管理、金融、保险、军事和科学技术中得到了长足的发展和广泛应用,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理等,同时又向基础学科、工科等学科渗透,与其他学科相结合发展成为边缘学科,这是概率论与数理统计发展的一个新趋势。
本课程概念繁多,而传统的课堂教学方法主要是板书演算讲解,造成学生对抽象概念的实质领会存在困难。
作为新时代的教育工作者就必须努力地吸取世界上一切优秀的教育思想、教学手段,并创造性地应用于我们的教学事业。
我们把Matlab应用到本课程教学中不仅能提高学生的学习兴趣,而且能提高教学效率。
一、Matlab软件特点介绍1984年,美国MathWorks公司推出Matlab,它是由Matrix和Laboratory这两个词缩写组合而成,在许多领域得到了广泛应用。
Matlab是一种高性能的、用于工程计算的编程软件,它把科学计算、结果的可视化和编程都集中在一个使用非常方便的环境中。
[1]在国外的高校中已普遍把Matlab作为专用的科学计算语言来开设,已成为大学生、研究生、教师必备的基本技能。
Matlab可以进行矩阵运算、数据可视化、实现算法、创建用户界面、连接其他编程语言程序等。
如今,Matlab已经成为概率论与数理统计、线性代数、自动控制理论、时间序列分析、动态系统仿真等高等课程的基本教学工具。
概率论matlab实验报告
概率论与数理统计matlab上机实验报告班级:学号:姓名:指导老师:实验一常见分布的概率密度、分布函数生成[实验目的]1. 会利用MATLAB软件计算离散型随机变量的概率,连续型随机变量概率密度值。
2.会利用MATLAB软件计算分布函数值,或计算形如事件{X≤x}的概率。
3.会求上α分位点以及分布函数的反函数值。
[实验要求]1.掌握常见分布的分布律和概率密度的产生命令,如binopdf,normpdf2. 掌握常见分布的分布函数命令,如binocdf,normcdf3. 掌握常见分布的分布函数反函数命令,如binoinv,norminv[实验内容]常见分布的概率密度、分布函数生成,自设参数1、X~B(20,0.4)(1)P{恰好发生8次}=P{X=8}(2)P{至多发生8次}=P{X<=8}(1)binopdf(8,20,0.4)ans =0.1797(2)binocdf(8,20,0.4)ans =0.59562、X~P(2)求P{X=4}poisspdf(4,2)ans =0.09023、X~U[3,8](1)X=5的概率密度(2)P{X<=6}(1) unifpdf(5,3,8)ans =0.2000(2) unifcdf(6,3,8)ans =0.60004、X~exp(3)(1)X=0,1,2,3,4,5,6,7,8时的概率密度(2)P{X<=8}注意:exp(3)与教材中参数不同,倒数关系(1)exppdf(0:8,3)ans =Columns 1 through 30.3333 0.2388 0.1711Columns 4 through 60.1226 0.0879 0.0630Columns 7 through 90.0451 0.0323 0.0232(2) expcdf(8,3)ans =0.93055、X~N(8,9)(1)X=3,4,5,6,7,8,9时的概率密度值(2) X=3,4,5,6,7,8,9时的分布函数值(3)若P{X<=x}=0.625,求x(4)求标准正态分布的上0.025分位数(1)normpdf(3:9,8,3)ans =Columns 1 through 30.0332 0.0547 0.0807 Columns 4 through 60.1065 0.1258 0.1330 Column 70.1258(2)normcdf(3:9,8,3)ans =Columns 1 through 30.0478 0.0912 0.1587 Columns 4 through 60.2525 0.3694 0.5000 Column 70.6306(3)norminv(0.625,8,3)ans =8.9559(4)norminv(0.975,0,1)ans =1.96006、X~t(3)(1)X=-3,-2,-1,0,1,2,3时的概率密度值(2)X=-3,-2,-1,0,1,2,3时的分布函数值(3)若P{X<=x}=0.625,求x(4)求t分布的上0.025分位数(1)tpdf(-3:3,3)ans =Columns 1 through 30.0230 0.0675 0.2067 Columns 4 through 60.3676 0.2067 0.0675 Column 70.0230(2)tcdf(-3:3,3)ans =Columns 1 through 30.0288 0.0697 0.1955 Columns 4 through 60.5000 0.8045 0.9303 Column 70.9712(3)tinv(0.625,3)ans =0.3492(4)tinv(0.975,3)ans =3.18247、X~卡方(4)(1)X=0,1,2,3,4,5,6时的概率密度值(2) X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求卡方分布的上0.025分位数(1)chi2pdf(0:6,4)ans =Columns 1 through 30 0.1516 0.1839 Columns 4 through 60.1673 0.1353 0.1026 Column 70.0747(2)chi2cdf(0:6,4)ans =Columns 1 through 30 0.0902 0.2642 Columns 4 through 60.4422 0.5940 0.7127 Column 70.8009(3)chi2inv(0.625,4)ans =4.2361(4)chi2inv(0.975,4)ans =11.14338、X~F(4,9)(1)X=0,1,2,3,4,5,6时的概率密度值(2) X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求F分布的上0.025分位数(1)fpdf(0:6,4,9)ans =Columns 1 through 30 0.4479 0.1566 Columns 4 through 60.0595 0.0255 0.0122 Column 70.0063(2)fcdf(0:6,4,9)ans =Columns 1 through 30 0.5442 0.8218Columns 4 through 60.9211 0.9609 0.9788Column 70.9877(3)finv(0.625,4,9)ans =1.1994(4)finv(0.975,4,9)ans =4.7181实验二概率作图[实验目的]1.熟练掌握MATLAB软件的关于概率分布作图的基本操作2.会进行常用的概率密度函数和分布函数的作图3.会画出分布律图形[实验要求]1.掌握MATLAB画图命令plot2.掌握常见分布的概率密度图像和分布函数图像的画法[实验内容]任选四种分布,自设参数(已画八种分布图像,可熟悉各分布特点)1、X~B(20,0.4)代码:x=0:20;y=binopdf(x,20,0.4)plot(x,y,'.')结果:2、X~exp(3)概率密度图像代码:x=0:0.01:15;y=exppdf(x,3)plot(x,y)结果:分布函数代码:x=-1:0.01:15;y=expcdf(x,3)plot(x,y)结果:3、X~P(4)概率密度图形代码:x=0:10;y=poisspdf(x,4)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10; y=poisscdf(x,4) plot(x,y)结果:4、X~U(3,8)概率密度图形代码:x=0:0.01:10;y=unifpdf(x,3,8)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10;y=unifcdf(x,3,8) plot(x,y)结果:5、X~N(4,9)概率密度图形代码:x=-10:0.01:18;y=normpdf(x,4,3); plot(x,y)结果:分布函数图形代码:x=-10:0.01:18;y=normcdf(x,4,3); plot(x,y)结果:同一坐标系,均值是4,标准差分别为1,2,3的正态分布概率密度图形代码:x=-5:0.01:15;y1=normpdf(x,4,1);y2=normpdf(x,4,2);y3=normpdf(x,4,3);plot(x,y1,x,y2,x,y3)结果:6、X~t(3)概率密度图形代码:x=-10:0.01:10;y=tpdf(x,3);plot(x,y)结果:分布函数图形代码:x=-10:0.01:10; y=tcdf(x,3); plot(x,y)结果:7、X~卡方(4)概率密度图形代码:x=0:0.01:15;y=chi2pdf(x,4);plot(x,y)结果:分布函数图形代码:x=0:0.01:15; y=chi2cdf(x,4); plot(x,y)结果:8、X~F(4,9)概率密度图形代码:x=0:0.001:10;y=fpdf(x,4,9);plot(x,y)结果:分布函数图形代码:x=0:0.001:10; y=fcdf(x,4,9); plot(x,y)结果:实验三数字特征[实验目的]1 加深对数学期望,方差的理解2理解数学期望,方差的意义,以及具体的应用3 加深对协方差,相关系数的理解4 了解协方差,相关系数的具体的应用[实验要求]1 概率与频率的理论知识,MATLAB软件2 协方差,相关系数的理论知识,MATLAB命令cov,corrcoef [实验内容]P101-11代码:exp=[];price=[-200 100];exp(1)=expcdf(1,4)exp(2)=1-exp(1)Ey=exp*price'结果:exp =0.2212exp =0.2212 0.7788Ey =33.6402即平均获利为Ey=e^(-1/4)*300-200=33.6402p101-13代码:Syms x yfxy=(x+y)/3;Ex=int(int(fxy*x,y,0,1),x,0,2)Ey=int(int(fxy*y,y,0,1),x,0,2)Exy=int(int(fxy*x*y,y,0,1),x,0,2)E=int(int(fxy*(x^2+y^2),y,0,1),x,0,2)结果:Ex =Ey =5/9Exy =2/3E =13/6>>P102-22代码:Syms x yfxy=1;Ex=int(int(fxy*x,y,-x,x),x,0,1) Ey=int(int(fxy*y,y,-x,x),x,0,1)Ex2=int(int(fxy*x^2,y,-x,x),x,0,1) Ey2=int(int(fxy*y^2,y,-x,x),x,0,1) Dx=Ex2-Ex^2Dy=Ey2-Ey^2结果:Ex =Ey =Ex2 =1/2Ey2 =1/6Dx =1/18Dy =1/6>>P103-26代码:Syms x yfxy=2-x-y;Ex=int(int(fxy*x,y,0,1),x,0,1);Ey=int(int(fxy*y,y,0,1),x,0,1);Ex2=int(int(fxy*x^2,y,0,1),x,0,1);Ey2=int(int(fxy*y^2,y,0,1),x,0,1);Dx=Ex2-Ex^2;Dy=Ey2-Ey^2;Exy=int(int(fxy*x*y,y,0,1),x,0,1);Covxy=Exy-Ex*Eyrxy=Covxy/(sqrt(Dx)*sqrt(Dy))D=4*Dx+Dy结果:Covxy =-1/144rxy =-1/11D =55/144实验四统计中的样本数字特征实验五两个正态总体均值差,方差比的区间估计[实验目的]1掌握两个正态总体均值差,方差比的区间估计方法2会用MATLAB求两个正态总体均值差,方差比的区间估计[实验要求]两个正态总体的区间估计理论知识[实验内容]P175-27代码:x1=[0.143 0.142 0.143 0.137]x2=[0.140 0.142 0.136 0.138 0.140] x=mean(x1)y=mean(x2)s1=var(x1)s2=var(x2)s=sqrt((3*s1+4*s2)/7)t=tinv(0.975,7)d1=(x-y)-t*s*sqrt(1/4+1/5)d2=(x-y)+t*s*sqrt(1/4+1/5)结果:s =0.0026t =2.3646d1 =-0.0020d2 =0.0061即置信区间为(-0.0020,0.0061)P175-28代码:u=norminv(0.975,0,1)s=sqrt(0.035^2/100+0.038^2/100)d1=(1.71-1.67)-u*sd2=(1.71-1.67)+u*s结果:u =1.9600s =0.0052d1 =0.0299d2 =0.0501>>即置信区间为(0.0299,0.0501)P175-30代码:f1=finv(0.975,9,9)f2=finv(0.025,9,9)f3=finv(0.95,9,9)f4=finv(0.05,9,9)s12=0.5419s22=0.6065d1=s12/s22/f1d2=s12/s22/f2d3=s12/s22/f3d4=s12/s22/f4结果:d1 =0.2219d2 =3.5972d3 =0.2811d4 =2.8403>>即置信区间为(0.2219,3.5972),置信下界为0.2811,置信上界为2.8403实验五假设检验[实验目的]1 会用MATLAB进行单个正态总体均值及方差的假设检验2 会用MATLAB进行两个正态总体均值差及方差比的假设检验[实验要求]熟悉MATLAB进行假设检验的基本命令与操作[实验内容]P198-2原假设H0:平均尺寸mu=32.25;H1:平均尺寸mu<>32.25方差已知,用ztest代码:x=[32.56,29.66,31.64,30.00,31.87,31.03][h,sig,ci,zval]=ztest(x,32.25,1.1,0.05)[h,sig,ci,zval]=ztest(x,32.25,1.1,0.01)(注:h是返回的一个布尔值,h=0,接受原假设,h=1,拒绝原假设;sig表示假设成立的概率;ci为均值的1-a的置信区间;zval为Z统计量的值)结果:h =1sig =0.0124ci =30.2465 32.0068zval =-2.5014h =sig =0.0124ci =29.9699 32.2834zval =-2.5014即a=0.05时,拒绝原假设H0;a=0.01时,接受原假设H0p198-3原假设H0:总体均值mu=4.55;H1:总体均值mu<>4.55方差未知,用ttest代码:x=[4.42,4.38,4.28,4.40,4.42,4.35,4.37,4.52,4.47,4.56][h,sig,ci,tval]=ttest(x,4.55,0.05)结果:h =1sig =6.3801e-004ci =4.3581 4.4759tval =tstat: -5.1083df: 9sd: 0.0823h=1,即拒绝原假设H0p198-10是否认为是同一分布需要分别检验总体均值和方差是否相等原假设H0:mu1-mu2=0;H1:mu1-mu2<>0代码:x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8][h,sig,ci]=ttest2(x,y,0.05)结果:h =sig =0.9172ci =-0.2396 0.2646h=0,即接受原假设H0,mu1-mu2=0,两分布的均值相等;验证方差相等的matlab方法没有找到可采用以下语句整体检验两个分布是否相同,检验两个样本是否具有相同的连续分布[ h ,sig, ksstat]=kstest2(x,y,0.05)原假设H0:两个样本具有相同连续分布H1:两个样本分布不相同代码:x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8][ h ,sig, ksstat]=kstest2(x,y,0.05)结果:h =sig =0.9998ksstat =0.1528>>h=0,即接受原假设H0,两个样本有相同的连续分布。
将MATLAB引入概率论与数理统计教学的探究
将MATLAB引入概率论与数理统计教学的探究作者:翁智峰来源:《高教学刊》2016年第11期(华侨大学数学科学学院,福建泉州 362021)摘要:概率统计是高校数学教学中的重点难点内容。
由于对其缺乏直观理解且计算繁琐,学生很难熟练掌握。
文章探讨将MATLAB引入概率统计教学,即可提高教学效率,增加学生的学习兴趣,又可以提高学生的知识运用能力和动手能力。
关键词:概率论与数理统计;MATLAB数值实验;教学改革中图分类号:G642 文献标志码:A 文章编号:2096-000X(2016)11-0134-02Abstract: Probability and mathematical statistics course is the difficult point in college mathematics teaching. Due to the lack of intuitive understanding and tedious calculation, it is difficult for students to grasp it. This paper discuss the introduction of MATLAB software in the probability and statistics teaching, which can improve teaching efficiency, increase students' interest in learning and can improve the students' ability to use knowledge and hands-on ability.Keywords: probability and mathematical statistics; MATLAB numerical experiments;teaching reform概率论与数理统计是高等院校数学系和统计系的基础课程,同时也是工科类、经管类部分专业学生的必修课程,对学生的后续学习起到奠基作用。
Matlab在《概率论与数理统计》教学中的应用
Matlab在《概率论与数理统计》教学中的应用1. 引言1.1 研究背景概率论与数理统计作为现代科学研究的基础,广泛应用于物理、生物、经济、工程等各个领域。
在教学中,传统的概率论与数理统计教学往往通过纸笔计算和手工绘图进行,这样的方式在一定程度上限制了学生对概念的理解和实际应用能力的培养。
而引入Matlab这样的数学计算软件,可以极大地提高教学效率,使学生更直观地理解抽象的数学概念,提高他们的学习兴趣和动手能力。
通过将Matlab与概率论与数理统计相结合,可以更好地展示概率分布、统计分析、随机模拟等概念,加深学生对这些内容的理解和掌握。
研究Matlab在概率论与数理统计教学中的应用具有重要意义。
本文将探讨Matlab在概率论与数理统计教学中的具体应用,分析其在教学中的优势和未来发展方向。
1.2 研究意义概率论与数理统计作为数学学科中重要的分支,旨在研究事件的发生规律以及数据的分布特征,对现代科学、技术和社会管理等领域都具有重要的应用价值。
在教学中,采用Matlab作为工具可以加深学生对概率与统计理论的理解,提高他们的计算和分析能力,培养他们解决实际问题的能力。
通过引入Matlab,学生可以更加直观地掌握数学模型的建立和计算方法,提高他们对概率与统计学习的兴趣和积极性,进一步激发他们学习的潜力。
Matlab在教学中的应用也有助于培养学生的动手能力和实际解决问题的能力,提高他们的实践能力和创新思维。
教师可以结合具体案例,引导学生运用Matlab工具分析问题,并进行模拟实验和数据处理,使学生在实践中不断探索、思考和总结,从而提高他们的学习效果和实际应用能力。
Matlab在概率论与数理统计教学中的应用具有重要的意义和价值。
2. 正文2.1 Matlab在概率论教学中的基本概念应用Matlab可以用来计算概率。
通过编写简单的代码,可以计算各种随机事件发生的概率,例如掷硬币、抛骰子等。
这样的实践可以帮助学生深入理解概率的概念,同时提高他们的计算能力。
(完整版)Matlab概率论与数理统计
(完整版)Matlab概率论与数理统计Matlab 概率论与数理统计⼀、matlab基本操作1.画图【例01.01】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,⼆维均匀随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on;plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r');plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');axis([-20 80 -20 80 ]);2. 排列组合C=nchoosek(n,k):kn C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从n1到n2的连乘【例01.03】⾄少有两个⼈⽣⽇相同的概率公式计算nn nn NNn N N N N n N N N C n p )1()1(1)!(!1!1+--?-=--=-=365364(3651)365364365111365365365365rs rs rs ?-+-+=-=-?rs=[20,25,30,35,40,45,50]; %每班的⼈数 p1=ones(1,length(rs)); p2=ones(1,length(rs));% ⽤连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end% ⽤公式计算(改进) for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;end% ⽤公式计算(取对数) for i=1:length(rs)⼆、随机数的⽣成3.均匀分布随机数rand(m,n); 产⽣m⾏n列的(0,1)均匀分布的随机数rand(n); 产⽣n⾏n列的(0,1)均匀分布的随机数【练习】⽣成(a,b)上的均匀分布4.正态分布随机数randn(m,n); 产⽣m⾏n列的标准正态分布的随机数【练习】⽣成N(nu,sigma.^2)上的正态分布5.其它分布随机数三、⼀维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布 (2) 均匀分布(3) ⼆项分布:binopdf(x,n,p),若~(,)X B n p ,则{}(1)k k n kn P X k C p p -==-,x=0:9;n=9;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当n 较⼤时⼆项分布近似为正态分布 x=0:100;n=100;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')(4)泊松分布:piosspdf(x, lambda),若~()Xπλ,则{}! k eP X kkλλ-==x=0:9; lambda =3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ] (5)⼏何分布:geopdf (x,p),则1 {}(1)kP X k p p-==-(6)超⼏何分布:hygepdf(x,N,M,n),则{}k n kM N MnNC CP X kC--==x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]x=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数(1)均匀分布:unifpdf(x,a,b),1()a x bf x b a≤≤=-其它a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);(2)正态分布:normpdf(x,mu,sigma),221()2()2xf x eµσπσ--=x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产⽣10000个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a为横轴,求出10000个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3)指数分布:exppdf(x,mu),11()xe a x bf xθθ-≤≤=?其它x=0:0.1:10;mu=1/2;y= exppdf(x,mu);plot(x,y,'b-',x,y,'r*')(4)2χ分布:chi2pdf(x,n),12221(;)2(2)00n xnx e xf x n nx--≥=Γ<hold onx=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%redn=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(5)t分布:tpdf(x,n),22((1)2)(;)1(2)n xf x nnn nπ-Γ+=+?Γ?hold onx=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue n=6;y= tpdf(x,n);plot(x,y,'r');%redn=10;y= tpdf(x,n);plot(x,y,'c');%cyann=20;y= tpdf(x,n);plot(x,y,'k');%black legend('n=2', 'n=6', 'n=10', 'n=20');(6)F分布:fpdf(x,n1,n2),112122212112121222(()2)10(;,)(2)(2)00n n nnn n n nx x xf x n n n n n nx+--Γ++≥=?ΓΓ<hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数(){}F x P X x=≤【例03.01】求正态分布的累积概率值设2~(3,2)X N,求{25},{410},{2},{3}P X P X P X P X<<-<<>>,p1=normcdf(5,3,2)- normcdf(2,3,2)=0.5328p1=normcdf(1,0,1)- normcdf(-0.5,0,1) =0.5328p2=normcdf(10,3,2)- normcdf(-4,3,2)=0.9995p3=1-(normcdf(2,3,2)- normcdf(-2,3,2))=0.6977p4=1-normcdf(3,3,2)=0.5004. 逆分布函数,临界值(){}y F x P X x ==≤,1()x F y -=,x 称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例03.03】求2(9)χ分布的累积概率值hold offy=[0.025,0.975]; x=chi2inv(y,9); n=9;x0=0:0.1:30;y0=chi2pdf(x0,n); plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n); x2=x(2):0.1:30;y2=chi2pdf(x2,n); hold onfill([x1, x(1)],[y1,0],'b'); fill([x(2),x2],[0,y2],'b');函数名调⽤形式注释sort sort(x),sort(A) 排序,x 是向量,A 是矩阵,按各列排序 sortrows sortrows(A) A 是矩阵,按各⾏排序 mean mean(x) 向量x 的样本均值 var var(x) 向量x 的样本⽅差 std std(x) 向量x 的样本标准差 median median(x) 向量x 的样本中位数 geomean geomean(x) 向量x 的样本⼏何平均值 harmmean harmmean(x) 向量x 的样本调和平均值 rangerange(x)向量x 的样本最⼤值与最⼩值的差【练习1.1】⼆项分布、泊松分布、正态分布(1)对10,0.2n p ==⼆项分布,画出(,)b n p 的分布律点和折线;(2)对np λ=,画出泊松分布()πλ的分布律点和折线;(3)对2,(1)np np p µσ==-,画出正态分布2(,)N µσ的密度函数曲线;(4)调整,n p ,观察折线与曲线的变化趋势。
MATLAB引入概率论与数理统计教学的实践探究
MATLAB引入概率论与数理统计教学的实践探究作者:蔡希文来源:《知识文库》2018年第18期学习概率的分析和统计的主要目的就是为了通过统计分析,得出相关数据背后隐藏的重要信息,从而获得对于某个事件的最终认识和评价,为决策提供有效的参考。
这就好比是中奖概率的计算一样,而MATLAB数学软件则是专门针对数据进行统计和分析的一款数学软件,将MATLAB数学软件应用到概率论与数理统计教学的实践中,能够有效强化概率论与数理统计教学的实践成效,促使数学的概率论与数理统计教学的实践不断获得突破。
本文介绍了MATLAB数学软件及其优势,分析目前将MATLAB引入数学概率论与数理统计教学的实践中存在的问题,并探究将MATLAB引入概率论与数理统计教学实践的有效途径。
以往的数学概率论与数理统计教学主要是通过具体的统计和计算公式,对于相关数据信息进行统计和分析,得出最终的分析结果,发挥数学概率和统计的功能。
但是在众多的数据统计和概率运算中,需要记住大量的计算公式,不同的概率类型和统计学知识,要求学习者必须要在大量的公式中以最快的速度调出有用的公式,进行数据的统计和概率计算,这无疑是增加了学习者的负担,在未来的统计和概率计算工作中,将进一步实现现代化、信息化,强调利用信息技术进行概率的计算和统计,因此,当前概率论和数理统计教学要转变教学方式,积极引入创新的教学途径,借助科技发展的成果,做好概率和数理统计教学工作。
1 MATLAB的内涵和优势实际上,MATLAB是一种商业数学软件,该软件是由美国的一家软件公司开发的,能够实现算法开发、数据计算、数据分析、可视化等高级的数字技术功能,其中包含了交互式环境和计算语言。
该商业数学软件是MATRIX以及LABORATORY的合成词,翻译过来就是指矩阵工厂,这种矩阵工厂研发和使用主要是针对科学计算、数字可视化以及交互式程序设计的高科技计算环境。
这款商业数字软件集众多技术和功能与一身,软件系统能够实现数值分析、数据计算、矩阵排列和计算、建模和仿真、可视化等目标,是目前众多行业发展中需要用到的一款有效数据计算和分析系统,软件突破了传统的非交互式程序设计语言的编辑模式,是现代科技进步和发展优化的产物。
MATLAB 在概率论与数理统计课程教学过程中的应用
MATLAB 在概率论与数理统计课程教学过程中的应用作者:韩静来源:《发明与创新(职业教育)》 2020年第9期【作者简介】韩静(1983—),女,硕士研究生,研究方向:概率论与数理统计,图论。
韩静(山西大学商务学院,山西太原030031)摘要:在大学本科经济管理、理工类课程中,概率论与数理统计是重要内容,同时也是基础课程,其学习质量直接影响学生对数学原理的理解与应用能力。
在传统课堂上,教师在讲解概率论与数理统计课程时,一般会重视理论的讲解,在数学统计软件编程实现上缺少实操性投入。
MATLAB是数学三大软件之一,将之用于概率论与数理统计教学,能够帮助学生与教师从繁琐的计算中解脱出来,有更多的时间学习数学原理知识。
关键词:概率论与数理统计;MATLAB软件;应用概率论与数理统计这一课程是经济管理、工科及理科等诸多专业的数学基础必修课,山西大学在授课中,将这一课程划分为两部分内容,前面是对概率论的讲解,重点在于探讨理论知识,如概率论概念、相关定理及公式的介绍、对随机过程及统计过程中的问题加以解决,后面是将概率论作为基础,探索试验结果作为依据的统计推断方法,如回归分析、方差分析、假设检验、参数估计及非参数检验等。
在这一课程的教学过程中,教师需要借助案例演示,为理论教学提供支撑,激发学生理解能力与动手能力,增强学生对相关知识的掌握,各种专业软件是直观演示概念的重要工具。
一、MATLAB软件介绍在解决数学问题时,常用的软件包括符号运算、统计及数值计算软件,而MATLAB是这些常用软件中,最易操作、应用最广泛的工具。
MATLAB软件具有较高数值计算能力,且可用于图形处理,用户界面友好,工具包丰富,在各领域均可得到应用。
MATLAB软件具有可扩展性,它具备的工具箱,就是特定功能下的函数集合,主要包括数学和优化、控制系统分析与设计、统计与数据分析、图形处理、分布式计算、金融建模、信号处理及通信等。
这些工具箱多数为开放式语言写就,便于用户查看源代码,结合自身需要,创建或修改自定义函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 概率论与数理统计一、matlab基本操作1.画图【例01.01】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,二维均匀随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on;plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r');plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');axis([-20 80 -20 80 ]);2. 排列组合C=nchoosek(n,k):kn C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从n1到n2的连乘【例01.03】至少有两个人生日相同的概率公式计算nn nn NNn N N N N n N N N C n p )1()1(1)!(!1!1+--⋅-=--=-=365364(3651)365364365111365365365365rs rs rs ⋅-+-+=-=-⋅rs=[20,25,30,35,40,45,50]; %每班的人数 p1=ones(1,length(rs)); p2=ones(1,length(rs));% 用连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end% 用公式计算(改进) for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;end% 用公式计算(取对数) for i=1:length(rs)二、随机数的生成3.均匀分布随机数rand(m,n); 产生m行n列的(0,1)均匀分布的随机数rand(n); 产生n行n列的(0,1)均匀分布的随机数【练习】生成(a,b)上的均匀分布4.正态分布随机数randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma.^2)上的正态分布5.其它分布随机数一维随机变量的概率分布 1. 离散型随机变量的分布率(1) 0-1分布 (2) 均匀分布(3) 二项分布:binopdf(x,n,p),若~(,)X B n p ,则{}(1)k k n kn P X k C p p -==-,x=0:9;n=9;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当n 较大时二项分布近似为正态分布 x=0:100;n=100;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')(4)泊松分布:piosspdf(x, lambda),若~()Xπλ,则{}! k eP X kkλλ-==x=0:9; lambda =3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ] (5)几何分布:geopdf (x,p),则1{}(1)kP X k p p-==-(6)超几何分布:hygepdf(x,N,M,n),则{}k n kM N MnNC CP X kC--==x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]x=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数(1)均匀分布:unifpdf(x,a,b),1()a x bf x b a⎧≤≤⎪=-⎨⎪⎩其它a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);(2)正态分布:normpdf(x,mu,sigma),221()2()2xf x eμσπσ--=x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产生10000个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a为横轴,求出10000个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3)指数分布:exppdf(x,mu),11()xe a x bf xθθ-⎧≤≤⎪=⎨⎪⎩其它x=0:0.1:10;mu=1/2;y= exppdf(x,mu);plot(x,y,'b-',x,y,'r*')(4) 2χ分布:chi2pdf(x,n),122210(;)2(2)00n x n x e x f x n n x --⎧≥⎪=Γ⎨⎪<⎩hold onx=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%red n=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(5) t 分布:tpdf(x,n),22((1)2)(;)1(2)n x f x n n n n π-⎫Γ+=+⎪Γ⎭hold onx=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue n=6;y= tpdf(x,n);plot(x,y,'r');%red n=10;y= tpdf(x,n);plot(x,y,'c');%cyann=20;y= tpdf(x,n);plot(x,y,'k');%blacklegend('n=2', 'n=6', 'n=10', 'n=20');(6)F分布:fpdf(x,n1,n2),112122212112121222(()2)10(;,)(2)(2)00n n nnn n n nx x xf x n n n n n nx+--⎧⎛⎫⎛⎫Γ+⎪⎪+≥⎪ ⎪=⎨ΓΓ⎝⎭⎝⎭⎪<⎪⎩hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数(){}F x P X x=≤【例03.01】求正态分布的累积概率值设2~(3,2)X N,求{25},{410},{2},{3}P X P X P X P X<<-<<>>,p1=normcdf(5,3,2)- normcdf(2,3,2)=0.5328p1=normcdf(1,0,1)- normcdf(-0.5,0,1) =0.5328p2=normcdf(10,3,2)- normcdf(-4,3,2)=0.9995p3=1-(normcdf(2,3,2)- normcdf(-2,3,2))=0.6977p4=1-normcdf(3,3,2)=0.5004. 逆分布函数,临界值(){}y F x P X x ==≤,1()x F y -=,x 称之为临界值 【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例03.03】求2(9)χ分布的累积概率值hold offy=[0.025,0.975]; x=chi2inv(y,9); n=9;x0=0:0.1:30;y0=chi2pdf(x0,n); plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n); x2=x(2):0.1:30;y2=chi2pdf(x2,n); hold onfill([x1, x(1)],[y1,0],'b'); fill([x(2),x2],[0,y2],'b');函数名 调用形式 注 释sort sort(x),sort(A) 排序,x 是向量,A 是矩阵,按各列排序 sortrows sortrows(A) A 是矩阵,按各行排序 mean mean(x) 向量x 的样本均值 var var(x) 向量x 的样本方差 std std(x) 向量x 的样本标准差 median median(x) 向量x 的样本中位数 geomean geomean(x) 向量x 的样本几何平均值 harmmean harmmean(x) 向量x 的样本调和平均值 rangerange(x)向量x 的样本最大值与最小值的差【练习1.1】二项分布、泊松分布、正态分布(1) 对10,0.2n p ==二项分布,画出(,)b n p 的分布律点和折线;(2) 对np λ=,画出泊松分布()πλ的分布律点和折线;(3) 对2,(1)np np p μσ==-,画出正态分布2(,)N μσ的密度函数曲线;(4) 调整,n p ,观察折线与曲线的变化趋势。